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ON THE EXISTENCE OF UNITARY FLAT CONNECTIONS OVER 
THE PUNCTURED SPHERE WITH GIVEN LOCAL MONODROMY 

AROUND THE PUNCTURES* 

INDRANIL BISWAS* 

1. Introduction. Let X be the complement of a finite subset of the projective 
line CP1, or equivalently, it is a connected smooth affine curve of genus zero over C. 
To each point s E CP1 —X of the finite set we associate an orbit Cs of the conjugation 
action of the unitary group U(r) on itself. A natural class of examples of this situation 
is obtained by considering the local monodromy of a unitary local system over X. Our 
aim here is to characterize the examples that arise this way. More precisely, we give 
a sufficient condition on the collection {Cs} for it to realize as the local monodromy 
of a unitary local system over X [Theorem 3.10]. The condition is in the form of a 
finite set of inequalities constructed using the eigenvalues of the conjugacy classes Cg 
and their multiplicity. For each such inequality, we give a condition which determines 
whether the validity of this inequality is necessary to ensure the existence of a unitary 
flat connection with the given local monodromy {Cs} [Theorem 3.23]. 

A further restricted class of examples of such data {Cs] is obtained by considering 
the local monodromy of irreducible unitary local systems over X. We give a similar 
condition on {Cs} for it to realize as the local monodromy of an irreducible unitary 
local system over X. 

These results were earlier proved for the special case of 17(2) [Bi], 

There is a natural bijective correspondence between the set of all equivalence 
classes of irreducible representation of the fundamental group ^i(X) into U(r) and 
the set of all isomorphism classes of rank r parabolic stable bundles over CP1 of 
parabolic degree zero and CP1 — X as the parabolic divisor. Furthermore, the space 
of equivalence classes of representations of 7ri(X) into U(r) are in one-to-one cor- 
respondence with the space of 5-equivalence classes of rank r parabolic semistable 
bundles of parabolic degree zero [Sil], [MS]. In these correspondences, fixing the con- 
jugacy class of the local monodromy around s G CP1 — X is equivalent to fixing the 
parabolic data at s. 

Our approach here is to try to obtain necessary and sufficient conditions for the 
existence of a parabolic (semi)stable bundle with a given parabolic data. 

In [FS] and [N] the cohomology groups of a smooth moduli space of parabolic 
stable bundles have been computed. One possible way of concluding that a given 
space is nonempty is to check that its 0-th cohomology is nonzero. However, the 
computations in [FS] and [N] are made under the assumption that the moduli space 
is nonempty, thus making them unsuitable for the problem addressed here. 

If {rs}seQpi_x are conjugacy classes in SL(r,C) with at-least one conjugacy 
class rs having distinct eigenvalues, then a theorem of Simpson gives a necessary and 
sufficient condition on {rs} for it to realize as the local monodromy of a SX(r, C) local 
system over X [Si2]. However, as already noted in [Bi], the solutions for SL(r, C) and 
U(r) are quite different. What goes into the condition for the existence of a 5L(r, C) 
local system with given local monodromy, is the multiplicity of the eigenvalues of the 
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334 I. BISWAS 

given conjugacy classes. In contrast - in the case of U(r), the actual eigenvalues, and 
not just their multiplicity, feature in the inequalities in Theorems 3.10 and 3.23. 

Thanks are due to C. S. Seshadri for posing the question addressed here. 

2.  Preliminaries. Let 

S:={si,...,s4cQP1 

be a finite set of points of the complex projective line. We shall recall the definition 
of a parabolic bundle over CP1 with S as the parabolic points [MS, Definition 1.5]. 

DEFINITION 2.1. A parabolic bundle over CP1, with S as the parabolic divisor, 
consists of the following: 

1. A rank r holomorphic vector bundle E over CP1; 
2. for every s G 5, a filtration by subspaces, of the fiber Es of E at 5, 

Es = F1ES D F2ES D ... D F*'-1^ D FlsEs D F/s+1.Es = 0 

called the quasi-parabolic flag] 
3. for every s G 5, a string of real numbers {af}i<;<zs, called the parabolic 

weights, such that 

0 < af < a^ < ... < OLIS-I < as
ls < 1; 

the weight af corresponds to the subspace FlEs in the quasi-parabolic flag. 

We shall denote the parabolic bundle, defined above, by E*. 
The dimension of FlEs/F

l+1Es is called the multiplicity of the weight af; this 
multiplicity will be denoted by m^. 

The parabolic degree of E*, denoted by par-degF*, is defined as [MS, Definition 
1.11]: 

Is 

(2.2) par-degF* := degree E + *}] ^ ra^f 
ses i=i 

For any s G S and any integer j G [1,^], define k(s,j) to be the integer in the 
interval [1, ls] which is the minimum of all t G [1, Is] satisfying the following condition: 

ml (2.3) j < £ 

Note that the inequality j > k(s,j) is valid. 
For any s G S and j G [1,T], define 

(2-4) «i:=^(sJ) 

where k(s,j) is defined in (2.3). Thus we have the following string of numbers: 

(2.5) 0 < af < a* < ... < af < 1 

The type of the flag {FlEs} in Definition 2.1(2) (that is the integers ml
s) can be read 

off from the sequence {af} by just counting the number of times each af repeats. 
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The parabolic degree of E*, defined in (2.2), now becomes 

r 

par-degE* := degree E + y^y^qf 
ses i=i 

The quotient par-degE^/rankE1 is called the slope of £?*, and it is denoted 
by  par-z^E1*). 

For a parabolic bundle £*, any subbundle of E has an induced parabolic structure 
induced by E*. If V is a subbundle of E, then the quasi-parabolic flag in Vs is simply 
the intersection of Vs with the flag in Definition 2.1(2). If Vs D Fl+lEs is a proper 
subspace of Vs D FlEs, then the parabolic weight of Vs fl F

2ES is af. Let K denote 
the parabolic bundle obtained this way. 

The parabolic bundle E* is called parabolic stable (respectively, parabolic 
semistable) if for every nonzero subbundle V ^ E, the following inequality between 
the slopes of E* and V* is valid [MS, Definition 1.13]: 

(2.6) par-/x(T4) < par-//(.E*)(respectively,    par-^(V*) < par-^E*)) 

A parabolic semistable bundle is called parabolic polystable if it is a direct sum of 
parabolic stable bundles of same slope. 

In [Sil] and [MS] a bijective correspondence between 

Hom(7r1((CF1 - 5), U(r))/U(r), 

namely the space of equivalence classes of U(r) representations of the fundamental 
group of CP1 — 5, and the space of all parabolic polystable bundles (or equivalently, 
5-equivalence classes of parabolic semistable bundles) over CP1 of parabolic degree 
zero and with S as the parabolic points, has been established. In this correspondence, 

the subspace Homirr(7ri(CP1 — 5), U(r))/U(r), consisting of all irreducible represen- 
tations, corresponds to the space of all parabolic stable bundles of parabolic degree 
zero. For a parabolic polystable bundle E* of parabolic degree zero and with parabolic 
structure as in Definition 2.1, the corresponding equivalence class of representations 
p £ Hom(7ri(CP1 — 5), U(r))/U(r) has the property that the local monodromy for p 
around any s € S has {exp(27rv/—To^f),..., exp(27r\/—To^)} as the eigenvalues, where 
af are defined in (2.4). Thus the parabolic data at a parabolic point determines - and 
is determined by - the conjugacy class of the local monodromy of the corresponding 
unitary representation. 

For a parabolic bundle, say E*, of parabolic degree zero, J2ses Si=i ai must be 
an integer, since it is equal to —degE. Since the product of the monodromies around 
all the punctures is the identity element, for any p E Hom(7ri(CP1 — 5), U(r))/U(r), 
considering the determinant of this product, the condition Ylses Si=i ai ^ ^ ^s 

obtained again. 
The following condition for the existence of a representation of TTI (CP1 — 5) in 

U(2) is known. 

THEOREM 2.7 [Bi]. Assume that the integer ^2seS(ai +0^) is odd (respectively, 
even), say 2N + 1 (respectively, 2N). Then there is a parabolic stable bundle of 
parabolic degree zero and with parabolic weights {d^a^} at s G S, if and only if for 
every subset D C S of cardinality 2j (respectively, 2j + 1), where j is a nonnegative 
integer, the following inequality holds: 

-N-j+ ]r^+    £   a?<0 
sen ses-D 
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There is a parabolic semistable bundle with the given parabolic data if and only if the 
left-hand side of the above inequality is nonnegative. 

Generalizing Theorem 2.7, in the next section we shall give a criterion for the 
existence of a parabolic (semi) stable bundle over CP1 with a given parabolic data. 

3.  A criterion for the existence of a parabolic stable bundle.  Fix a 
parabolic data for a parabolic bundle of rank r and of parabolic degree zero, with 
S as the parabolic points. This simply means that for each s £ 5, we have a string of 
numbers {af}, where 1 < i < r, satisfying the condition (2.5), and J2ses Si=i ai ^s 

an integer. Let M > 0 and m £ [0, r — 1] be the integers such that 

(3.7) .£;5>! = Mr ra 
ses i=i 

For any s € 5, define ls to be the number of distinct a*. The multiplicity of the z-th 
one, in the increasing order of {o^}, is denoted by ml. 

Let G(s,r) denote the flag variety consisting of all flags of the type 

(3.8) Cr  = V1  D V2 D ... D V1*-1  D Vls  D Vls+1 = 0 

in Cr such that dim(Vl/Vl+1) = ra*. For any n G [1, r - 1], fix a subspace Wn on Cr, 
say the subspace spanned by the first n basis vectors. 

For an integer n e [l,r — 1], let Z(s,n) denote the set of all maps 

(3.9) A : {1,2...,/,} —►{0,1,2,...,n} 

such that Yli=i MO — n and A(i) < ra^. 
For any A £ X(s,n), define 

(3.10) S(Wn,\)CG(s,r) 

to be the Schubert variety consisting of all flags of the type (3.2) such that 

Is 

dim(wvnn>5>(j) 
3=i 

Clearly 5(Wn, A) is nonempty. It is known that 5(Wn, A) is an irreducible subvariety 
of G(s,r). Now define 

(3.11) C(s,A) :=codimS(Wn,\), 

to be the codimension of S(Wn, A) in G(s,r). 
For any A £ 1(5, n), as above, define 

Is 

(3.12) a;(«,A):=X;A(tK 
i=l 

Let X(n) denote the Cartesian product of X(s,n). In other words, 

X(n):={nA5|As£X(5,n)} 
5G5 
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Now, for any A = Yises ^ ^ -^(n) define 

(3.13) C(A):=£C(s,As) 
ses 

where ((s,\s) is defined in (3.5). Also define 

(3.14) UJ(\) = YJU(
S
^S) 

where UJ(S,XS) is defined in (3.6). 
We need to make one more definition before stating a theorem. 
For any integer n G [1, r — 1], let K(n) denote the set of all 

k:={kuk2,...,kn}eZn 

with ki < k? < ... < kn and kn — ki < 1, such that all ki > — 1 and at-most m of 
them are — 1, where m is defined in (3.1). So either ki = ki or ki = ki + 1. Define 
the function 

(3.15) 6 : if (n) —> Z 

by (J(fc) = n(m + r) — n2 + r YA=I ^i- Note that 6(k) is a nonnegative integer. We 
shall see later that the number 5(k) has the following interpretation: denoting the line 
bundle of degree i over CF1 by 0(i), the number S(k) coincides with the dimension of 
the moduli space of all rank n subbundles of the vector bundle (9®(r-m) 0 0(l)em 

which decompose as 0^ 0(—ki). 
Now we are in a position to state the criterion for the existence of a parabolic 

(semi)stable bundle of rank r and parabolic degree zero, and with {af } as the parabolic 
weights at s. 

THEOREM 3.10. Let n G [l,r — 1] be an integer, and k — {ki,... kn} G K(n), 
and A = YlseS As G T(ri), with 

C(A) < 6(k) 

There is parabolic semistable bundle of rank r and of parabolic degree zero over CP1
; 

with S as the set of parabolic points and {af} as the parabolic data at s G S, if for 
every such pair k and X, the following inequality is valid: 

n 

(3.11) UJ(X) - Mn - ^h < 0 
i=i 

Moreover, there is a parabolic stable bundle, with the given parabolic data, if the left- 
hand side of the inequality (3.11) is strictly negative for every pair k and X satisfying 
the above condition. 

The functions £, u and 8 were defined in (3.7), (3.8) and (3.9) respectively. 
The number of nontrivial inequalities that appear in Theorem 3.10 is actually 

finite. Indeed, if, for example, kn > Mr, then the left-hand side of (3.11) is automat- 
ically strictly negative. 
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Proof of Theorem 3.10.  For any j G Z let 0{j) denote the line bundle over CF1 

of degree j. Define 

em (3.12) E := 0(-M)^r-m^ 0 0{-M + 1) 

to be the vector bundle of rank r on CP1. The theorem will be proved by constructing a 
parabolic structure on E of the given type which is also parabolic semistable. This will 
be done by first considering all parabolic structures on E and then omitting all those 
which admit candidates for destabilizing subbundles. The inequality condition (3.11) 
will be used in ensuring that what remains is nonempty from dimension considerations. 

Take any & := {fci,..., &n} G K(n). Define 

n 

(3.13) V(k) := 0 0{-M - h) 
i=l 

to be the vector bundle of rank n on CP1. The given condition 

#{i|fci = -1} < m 

(# denotes the cardinality of a set) ensures that V(k) can be realized as a subbundle 
of E. To see this, let ki = — 1 for i < ra', and ki > 0 for i > m'. Let Lj denote the j-th 
direct summand line bundle in the direct sum (3.12). In other words, Lj = 0(—M) 
or 0(—M + 1) depending on whether j < r — m or not. For any i < ra', let fi be the 
identity homomorphism from 0(—M — ki) to Lr-i+i. For any i G [m1 4- l,n], fix a 
pair of nonzero homomorphisms (/i,i,/i,o), 

Ji '= (ho,hi) ' 0(-M~ki) —^ Li-m>eLi-m.+1 

such that the two divisors {z\fi,o(z) — 0} and {z\ fi^(z) — 0}, and also the two 
divisors {z\ fi,i(z) = 0} and {z\ fi+i^(z) = 0} are disjoint. It is easy to check that 
the homomorphism 

07, : V(k) -> E 

is injective with its image being a subbundle of £7, or equivalently, the quotient E/V(k) 
is torsion-free. 

Let M(k) denote the moduli space of all subbundles of E isomorphic to V(k). 
In other words, M(k) is the quotient, by the automorphism group A\it(V(k)), of the 
space all injective homomorphisms of V(k) into E with a torsion-free quotient. The 
space M(k) is nonempty by the previous remark. 

For any s G 5, let G(ES) denote the flag variety, consisting of flags in Es of type 

(3.14) Es = El D E2
S D ... D E1/"1 D El

s
s D El

s
s+1 = 0 

such that dim(El/El+1) — ra^. Evidently the Cartesian product 

g:=l[G(Es) 
s€S 

parametrizes the space of all quasi-parabolic flags of the given type on E. We shall 
construct a family of Schubert varieties in G(ES) parametrized by M(k). 
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Take any A = ILeS^5 ^ Z(n). Imitating the definition of S(Wni A) in (3.4), for 
any subbundle F C E with F G .A/f(fc), define the Schubert variety 

(3.15) S(F,\S)CG(ES) 

by replacing Cr, Wn and A in (3.4) by Es, Fs and As respectively. Define the subvariety 

S(F,X) := Y[S(F,\t) € fl G(Et) = Q 
ses ses 

of Q given by the Cartesian product of all S(F, As). 
Let 

(3.16) C := {(F,G)\G e S(F, A)} C M(k) x g 

be the incidence variety. Denoting the projection of M{k) x Q onto Q by P2, define 

n(k,\) := p,(C) 

In other words, the equality 

n(k,x)=   U   (]ls(F,\aj)cg 
FeM(k)     S£S 

is valid. Let %(k1\) denote the Zariski closure oil-i(k1X) in Q. 
Consider the union 

(3.17) 0:= (J H(k,\) 
nG[l,r-l], {\el(n) ,keK(n) \ C(X)>S(k)} 

taken over all n and all pairs (&, A) with ((X) > S(k). 
The following proposition will be needed to estimate the dimension of %(&, A). 

PROPOSITION 3.18.   The variety M(k) is of dimension S(k) (defined in (3.9)). 

Proof.  We shall first show that V(k) is rigid. 
According to a theorem due to Grothendieck, every vector bundle over CP1 de- 

composes as a direct sum of line bundles. It is easy to compute the dimension of the 
space of global endomorphisms of 0i:=1 O(^), where bi < &2 < ... < &iv, to be the 
following: 

N 

(3.19)    dimi?o(CP1,End(0O(&i))) = ^(fy -&* + !) + ^max^- - h + 1,0} 

Now, for a fixed integer N and fixed total degree X)i=i bi, the right-hand side of (3.19) 
takes the minimum possible value, which is iV2, if and only if bjv — bi < 1. Invoking 
semicontinuity, in a family of vector bundles over CP1 of rank N and degree Yli=i bi, 
with \bi — bj\ < 1 for 1 <i,j < AT, the subvariety of the parameter space over which 
the vector bundle decomposes as 0i=1 0(bi), is a Zariski open subset. 

The tangent space of M(k) at any point / £ M(k) is: 

TfM(k) ^^(CPSHom^®,-^-)) 
V(A;) 
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Indeed, this is immediate from the combination of the description of the tangent space 
of a Grassmannian together with the above observation that V(k) is rigid. 

Consider the following exact sequence of vector bundles: 

0 —> End(V(k),V(k)) —> Hom(V(k),E) —> Hom^fc), -£-) —> 0 
V(k) 

Since the vector bundle Hom(V(k),E) is a direct sum of line bundles of degree at- 
least -1, we have H1(CF1,E.om(V(k),E)) = 0. Now the long exact sequence of 
cohomologies and the Riemann-Roch theorem give: 

dimtf0(CP\Hom(F(&),-^L-)) = dim H0 (OP1, Horn (V(k),E)) 
V(k) 

+ dimH1(£F\End(V(k))) - (iimff0(aP1,End(Vr(fc))) 

n 

n(m + r) + r 2_J ki — n2 = S(k) 
i=l 

In other words, M(k) is a smooth variety of dimension 5(k). This completes the proof 
of the proposition.□ 

From Proposition 3.18 the following inequality for the dimension of H(k,X) is 
obtained: 

dimT-^M) < dimC = <&(Jfc) + dim^ - C(A) 

Therefore, dim/H(A:,A) < dim^ if ("(A) > S(k). Thus 0 is a countable union of 
subvarieties of G of dimensions strictly less than that of G- (If dim £7 = 0, then 0 is 
empty.) This immediately yields that the complement 

(3.20) U := G - 0 

is nonempty. 
Recall that G parametrizes the space of parabolic structures of the given type on 

E. Evidently Theorem 3.10 is an immediate consequence of the following proposition: 

PROPOSITION 3.21. Assume that the inequality condition (3.11) is valid. Then 
the parabolic structure of E corresponding to every point in U is actually parabolic 
semistable. Moreover, if the left-hand side of (3.11) is strictly negative, then every 
point ofU represents a parabolic stable structure on E. 

Proof of Proposition 3.21. Let E* denote a parabolic structure on E correspond- 
ing to a point 

B:=l[B8eU 
s€S 

where 

(3.22) Bs := {Es = E] D E2
S D ... D E1/'1 D El

s
s D El

s
s+1 - 0} 
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is a flag in Es as in (3.14). 
Let F = V(k) be a subbundle of rank n of £?, where k £ K(n); the vector bundle 

V(k) is defined in (3.13). Construct an element An of the set X(s,n) (defined in (3.3)) 
using the condition 

Is 

J2Xs(J) = dMEi
snFs) 

j=i 

where El
s is defined in (3.22). Furthermore, define A := Hses^8* 

Evidently the left-hand side of the inequality (3.11) is the parabolic degree of F 
with the parabolic structure induced by E* (after substituting A constructed above 
in (3.11)).  Indeed, degF = —Mn — X)ILi &*> and the parabolic weight at s € S is 
u(s, As), where the function u(s, —) is defined in (3.6). 

Since B £ It, we have £(A) < S(k). So the inequality (3.11), combined with the 
above observation on the parabolic degree of F, implies that the subbundle F does 
not violate the semistability condition for E*. 

Let 

^ = ©0(60 
2=1 

be a subbundle of E, with bi < 62 < ••• < ^n- The space of subbundles of E 
of rank n and of total degree Yli=i ^ ls parametrized by an irreducible variety; we 
shall call this variety as Af. Using semicontinuity for the dimension of the space 
of global endomorphisms and (3.19), we conclude that there is a unique k £ K(n) 
with the property that all the points in Af such that the corresponding subbundle is 
isomorphic to V(k), constitute a Zariski open dense subset of Af. Now we observe 
that the Zariski closures of H(k,X) are removed in the construction of U in (3.20). 
Repeating the earlier argument after substituting this new k we conclude that F' 
cannot violate the semistability condition for E*. 

The same argument yields the stability of E* if the left-hand side of (3.11) is 
strictly negative. This completes the proof of the proposition.D 

We already observed that Proposition 3.21 completes the proof of Theorem 3.10.0 

Note that the condition ("(A)  < S(k) was invoked in the proof Theorem 3.10 

only to ensure that the dimension of the subvariety 1-L{k,X) is strictly less than the 
dimension of Q whenever the condition fails. Define 

U'-G-     U    ft(M) 
U(k,\)±G 

to be the complement in Q of all %(&, A) which are proper subvarieties. Then the proof 
of the Proposition 3.21 goes through without any change if we replace U (defined in 
(3.20)) by W. In other words, what we have actually proved is apparently a bit 
stronger than Theorem 3.10. More precisely, we have actually proved the following: 
if the inequality (3.11) is valid for all pairs 

(M) €if(n) xX(n) 
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with ?i(k,\) = Q, then there is a parabolic semistable bundle with the given parabolic 
data. Moreover, the existence of a parabolic stable bundle is ensured if the strict 
inequality is valid. 

There are examples, with r = 4, of pairs (fc, A) such that £(A) < S(k) but H(k, A) 
is actually a proper subvariety of G- 

The following theorem shows that the weaker sufficient condition, stated above, 
for the existence of a parabolic (semi)stable bundle actually gives a necessary and 
sufficient condition for the existence of a parabolic (semi) stable bundle with a given 
parabolic data. 

THEOREM 3.23. Let(k,X) e K(n)xl(n) be such that H(k,X) = Q. If there is 
a parabolic semistable bundle, with the given parabolic data, then for every such pair 
(k,X), the following inequality is valid: 

n 

(3.24) (j(A) - Mn - ^ fci < 0 

If furthermore there is a parabolic stable bundle, with the given parabolic data, then the 
left-hand side of the inequality (3.24) is strictly negative for every pair (k, A) satisfying 
the above condition. 

Proof The first step will be to establish the following statement: if there is a 
parabolic semistable bundle with the given data, then there is one whose underlying 
vector bundle is E defined in (3.12). 

Let W* be a parabolic semistable bundle over OP1 of the given type, with W as 
the underlying bundle. 

There is a family of vector bundle 8 —> CP1 x V over CF1 parametrized by a 
vector space V such that for some v G V, the vector bundle £\cpixv '1S isomorphic to 
W, and over the general point of V, the vector bundle is isomorphic to E [Br], [BH]. 
We quickly recall the construction of the family £. Let I be a sufficiently large integer 
such that both E 0 0(1) and W ® 0(1) are generated by global sections. Therefore, 
the vector bundle V := 0(-/)e^r_1^ is a subbundle of both E and W. Let V denote 
the vector space i71(CP1, Hom((9((r—1)1 — Mr+ra), V)), parametrizing all extensions 
of the line bundle 0((r — 1)1 — Mr + m), which is isomorphic to E/V or W/V, by the 
vector bundle V. So both E and W are represented in the universal family 

£ —> OP1 x V 

of extensions. In Proposition 3.18 we saw that the vector bundle V(k) is rigid. The 
proof shows that E is rigid. So there is a nonempty Zariski open subset of V over 
which the underlying vector bundle for the extension is isomorphic to E. 

Let U be a Zariski open subset of V, containing a point corresponding to W, 
such that the restriction of £ to any subvariety of the type s x U, where s E 5, 
is algebraically trivializable. Actually U can be taken to be the entire V. Fixing 
trivializations of £ over s x U, the quasi-parabolic structure of W* is extended to all 
vector bundles parametrized by U. From the openness of the parabolic semistability 
condition, [Se], there is a nonempty Zariski open set U' C [/, such that for every 
u £ [/', the corresponding parabolic bundle over CP1 is parabolic semistable. 

Let U" be the Zariski open dense subset of V consisting of all points for which the 
corresponding vector bundle is isomorphic to E. The property of this subset U" that 
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it is Zariski open and dense follows from the rigidity of E established in the proof of 
Proposition 3.18. 

Now for every u G U' H U", the corresponding parabolic bundle is parabolic 
semistable and the underlying vector bundle is E. 

The proof of the theorem will be completed by showing that if the inequality 
(3.24) fails then there cannot be any parabolic structure of the given type on E which 
is semistable. 

If W* is parabolic stable, then using the openness of the parabolic stability con- 
dition, and repeating the above argument, we get a parabolic stable bundle E* with 
E as the underlying vector bundle. 

Let JE7* be a parabolic semistable bundle of the given type, with E as the under- 
lying vector bundle. Take a A — YlseS A5 G l(n) and a k = {fci,..., kn} G K(n) such 

that %{k,\) — Q. We want to establish the inequality (3.24). 
We have already remarked that Q parametrizes the space of all quasi-parabolic 

structures on E. Let U C Q be the nonempty Zariski open subset parametrizing 
the parabolic semistable structures. Let E'^ be a parabolic bundle corresponding to a 
point 

0etfn«(M) = l7 

contained in the intersection of U and %(&, A). Let F G M(k) be a subbundle of E 
such that 

9--=Jl9sZjlS{F,\s) 
ses        ses 

(in terms of the notation used in (3.15) and (3.16)). 
Since El is parabolic semistable, with E as the underlying vector bundle, the 

parabolic degree of the subbundle F, with the parabolic structure induced by E^ is 
nonpositive. The condition that gs G 5(F, Xs) implies that the total parabolic weight 
of F at the parabolic point s, for the parabolic structure induced by E^, is at-least 
UJ(S, As), where the function UJ(S, —) is defined in (3.6). As degF = — Mn — X^ILi &*? 
the inequality (3.26) is evidently a consequence of the condition that the parabolic 
degree of F is nonpositive. 

If E* is parabolic stable, then consider the parabolic structure on E corresponding 
to a point in the intersection o£l-L(k, A) and the Zariski open subset of Q parametrizing 
parabolic stable structures on E. Repeating the above argument we immediately 
conclude that the left-hand side of (3.26) must be strictly negative. This completes 
the proof of Theorem 3.23.0 

If r = 2 and #5 = 3, and the parabolic weights at all the three parabolic points 
are {2/3,0}, then the inequalities in (3.11) are valid; but one of the strict inequalities 
in Theorem 3.23 is not satisfied (take j — 1). Consider the direct sum of the trivial 
line bundle with the trivial parabolic structure and 0(—2) with parabolic weights 2/3 
at each parabolic point. It is evidently a parabolic semistable bundle. However there 
is no parabolic stable bundle with this parabolic data at the parabolic points. 

If #5 is odd, r = 2 and X}ses(ai + ^I) — 1> w^^ a^ least one a^ being nonzero, 
then there is no parabolic semistable bundle with the parabolic data {af,*^}. This 
is immediate after setting j — 0 in the inequality in Theorem 3.23. 
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