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TWO INTEGRABLE SYSTEMS RELATED 
TO HYPERBOLIC MONOPOLES* 

R. S. WARD* 

Abstract. Monopoles on hyperbolic 3-space were introduced by Atiyah in 1984. This article 
describes two integrable systems which are closely related to hyperbolic monopoles: a one-dimensional 
lattice equation (the Braam-Austin or discrete Nahm equation), and a soliton system in (2-1-1)- 
dimensional anti-deSitter space-time. 

1. Introduction. Sir Michael Atiyah has made important contributions in sev- 
eral areas of mathematical physics, and these include the study of Bogomolny-Prasad- 
Sommerfield (BPS) monopoles; see, for example, Atiyah and Hitchin (1979). Static 
BPS monopoles are solutions of a nonlinear elliptic partial differential equation on 
some three-dimensional Riemannian manifold. Most work on monopoles has dealt 
with the case when this manifold is Euclidean space R3: the equations are then 
completely-integrable, and can be handled by geometrical techniques. But the mono- 
pole equations on hyperbolic space H3 are also integrable, as was pointed out by Atiyah 
(1984a,b); and in some ways, hyperbolic monopoles are simpler than Euclidean ones. 
Hyperbolic monopoles tend to Euclidean monopoles as the curvature of the hyperbolic 
space tends to zero, although this is a delicate fact which was only recently established 
(Jarvis and Norbury 1997). 

This note describes two integrable systems which are intimately related to, and 
were motivated by, hyperbolic monopoles. The first is a discrete system (or integrable 
mapping), which in a certain sense is dual to the hyperbolic monopole system; this is 
the discrete Nahm or Braam-Austin equation. The second comes from replacing the 
positive-definite space H3 by a Lorentzian version, namely anti-deSitter space. The 
Bogomolny equation becomes an evolution equation on this space-time, admitting 
soliton solutions. 

2. Hyperbolic Monopoles and the Discrete Nahm Equations. Motivated 
by the monad construction for instantons used by Atiyah et al (1978), Nahm (1982) 
discovered a kind of duality (subsequently called reciprocity: see Corrigan and God- 
dard 1984) between the monopole equations and solutions of a nonlinear ordinary 
differential equation. This ODE (described below) is called the Nahm equation. 

For monopoles on hyperbolic space H3 of curvature -C, a variant of the Nahm 
construction works (Braam and Austin 1990), at least if C~1 is a positive integer. 
Such "integral" hyperbolic monopoles correspond to certain solutions of a discrete 
Nahm equation: a nonlinear difference equation defined on C"1 lattice sites. This is 
actually a special case of the ADHM construction (Atiyah et al 1978) for instantons. 

One has a picture, therefore, of a correspondence (reciprocity) between monopoles 
on the 3-space of constant negative curvature —C, and solutions of the discrete Nahm 
equation on a one-dimensional lattice with lattice spacing C (provided C is the inverse 
of an integer). The limit C —> 0 is the continuum limit, in which the discrete Nahm 
(difference) equation becomes the Nahm (differential) equation. It seems likely on 
general grounds that reciprocity operates, in some sense, for non-integral hyperbolic 
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monopoles; but this remains an open question. In what follows, I shall concentrate just 
on the discrete Nahm equations, and not say anything about hyperbolic monopoles. 

Let A; be a fixed positive integer; and let Aj, Bj, Cj and Dj denote k x k matrices, 
defined for each value of the integer j. In other words, we have four k x k matrices 
on a one-dimensional lattice indexed by j. Let s± denote the forward and backward 
step operators on this lattice: so (s+tyj = ^j+i and (s-^)j = ^-i. For brevity, the 
subscript j will usually be omitted in what follows; thus A stands for Aj, A+ = s+A 
stands for Aj+i, and so forth. 

Consider the two linear operators 

U := Cs+ + A^ 

V := Ds- - \-lB 

(acting on a A:-vector $ defined on the lattice). Here A is a constant scalar parameter, 
and the minus signs are mainly for notational convenience. The eigenvalue equations 

[/$ := C#+ + AA* = Ctf, 
(1) 

V* := £>-*_ - A"1^* = yT1^ 

are difference equations which propagate ^ forwards and backwards along the lattice. 
In order for a nontrivial solution (simultaneous eigenfunction of U and V) to exist, we 
need U and V to commute, and the parameters A, £, //to satisfy an algebraic relation 
(which turns out to be the vanishing of a homogeneous polynomial in these three 
variables). The condition [C/, V] — 0 gives the discrete Nahm equation; equation (1) is 
a Lax pair for it; and the algebraic relation defines a spectral curve (from which one 
can derive conserved quantities, show that the solutions of discrete Nahm correspond 
to stepping along straight lines on the Jacobian of this curve, etc: see Murray and 
Singer 1998). 

The condition that [[/, V\ — 0 should hold for all A is equivalent to 

A+^DAD-1, 

(2) 5+ = C'^BC, 

C+J9+ = 23C + [A+,B+]. 

These are the discrete Nahm (or Braam-Austin) equations. They consist of three 
difference equations for four (matrix) functions: the under-determinacy reflects the 
gauge freedom in (2). Namely, if A is a non-singular matrix on the lattice, then the 
system (2) is invariant under the gauge transformations 

A >-> KAhT1 

B •-> AtfA"1 

(3) v } c h-> ACA;
1 

A gauge choice such as D = C converts (2) into a determined system: three matrix 
difference equations for three matrices. 

For completeness, let us note the correspondence with the notation of Braam and 
Austin (1990), where the equations (2) were first derived. The relation between A, B, 
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C, D and their matrices /3j, jj is given by A = 5*, D = C*, and 

72j+i = Cj . 

I shall not describe the spectral curve and its consequences here; but merely 
list the eight independent conserved quantities in the k = 2 case. They are trA, 
tr A2, tvB, tr£2, tr(CjD), ti(ACD), tr(BCjD), and ti[CD{CD - 2AB)]. Each of 
these expressions is constant on the lattice, by virtue of (2); note that they are also 
gauge-invariant. 

A continuum limit of (2) may be obtained as follows. Replace the integer variable 
j by t = jh, where h is the "lattice spacing", and take the limit h -» 0. Write 

C7 = (2/l)-
1J+iir3 = I>, 

B=1i(T1+iT2) = -A*, 

where the Ta are antihermitian k x k matrices, I denotes the identity matrix, and star 
denotes complex conjugate transpose. Then the ft —> 0 limit of (2) is 

(5) -7-Ta + |£a/37 [T/j, T7]  = 0, 

which are the Nahm equations. Similarly, one obtains the standard Lax pair for the 
Nahm equations as the continuum limit of (1), if £ and /i are chosen appropriately. 

3. Reduction to a Discrete Toda System. It has long been known that 
the Nahm equation reduces to the Toda lattice. The Ta take values in a Lie algebra, 
which (in the simplest case that we are considering here) is su(k). To reduce to Toda, 
one takes T3 in a Cartan subalgebra, and Ti dz iT2 corresponding to ± a set of simple 
roots. What follows is the discrete version of this reduction. 

We express A, B, C and D in terms of 2k lattice functions fa = faj, pa — paj, 
where a = 1,2,... , fc, as follows: C = D = diag(/i, /2,... , fk) and 

(6) B = 

/0    P2    0    ...     0\ 
0     0    P3    ...     0 

.  0    0     0    ...   pk 

VPI   00   ...   0 / 

= -A*. 

Then the discrete Nahm equations (2) reduce to 

,   , (Pa)+ = Pafa/fa-l , 
U f2a=U2a)-+P2

a+l-pl, 

where /o is interpreted as /fc, and Pk+i as pi (in other words, the index a is periodic 
with period k). The equations (7) constitute a discrete-time Toda lattice. The first 
example of such a system was that of Hirota (1977), and many other examples have 
been described more recently. 

Notice that the quantity S = J2t=i fa ^s conserved; in other words, £+ = E. Let 
us define a parameter ft by S = fc/ft2, and assume that fah -» 1 as ft -> 0, for each a. 
Then the ft -> 0 limit of (7) is the differential equation 

(8) ^2logp2-p2
+1-2p2+p2_1, 
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which is the Toda lattice. 
Let us look in detail at the k = 2 case.   Rewrite fa and pa in terms of three 

functions u, v, w, and the constant /i, according to 

/i = ft" VlH- 2hw, 

f2 = h-Wl-2hw, 

p1=u-v, 

P2 = u + v. 

Then (7) is 

K;_|_ — w + 2fti/+t;+ 

(9) u+ = (u - 2ft^)/vT^ftW 

v+ = (v — 2hwu)ly/l — Ah2w2, 

which are a discrete-time version of Euler's equations for a spinning top (with an 
appropriate choice of moments of inertia). Indeed, in the continuum limit ft -> 0, (9) 
becomes Aw/dt = 2uv, du/dt — -2vw, dv/dt = —2wu. These are Euler's equations, 
which can be solved in terms of elliptic functions; and (9) can be solved likewise, as 
follows. 

Notice that (9) admits two independent conserved quantities, namely 

G = u2-v2, 

ft = 2w2 + u2 + v2 - Ahwuv. 

This enables one to express u and v in terms of w (and 0, fi); and then the first 
equation in (9) leads to a difference equation for w alone. Its solution is 

k 
(11) Wj = — sn(6ft) sn(bjh + c), 

where fc, b and c are "constants of integration". Here k denotes the modulus of the 
elliptic functions. The conserved quantities 0 and ft are related to k and b as follows: 

0 = (2ft2)-1[cn(6ft)-dn(&ft)], 

Q = (2ft2)-1 [1 - cn(6ft) dn(Wi)]. 

The functions u and v are then given by 

(u + v)2 = (fi - 2w2 + A)/(l - 2ftw), 

' (u - v)2 = (fi - 2w2 - A)/(l + 2hw), 

where Aj = ft-1 sn(6ft) cn(6jft+c) dn(bjh-\-c). To see that u and v are well-defined (and 
real) for all 6, c and 0 < k < 1, note first that l±2ft^ is positive. Secondly, fi-2u>2 > 0, 
from the inequality 1 - en dn > k2 sn2. Finally, (SI - 2w2)2 - A2 = (1 - 4ft2w2)02 > 0. 
As a final remark, note that in the limiting case k = 1, the solution is 

w = (2ft)"1 tanh(6ft) tanh(fa), 

v = u= (2ft)-1 tanh(6ft) sech(bt)/y/l + tanh(6ft) tanh(^). 

It seems likely that this elliptic k = 2 solution corresponds to hyperbolic 2- 
monopoles with gauge group SU(2), via the Braam-Austin construction. More gener- 
ally, for k > 2 one may speculate that discrete-Toda solutions correspond to hyper- 
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bolic fc-monopoles with Ck cyclic symmetry, since this is what happens for Euclidean 
monopoles (Sutcliffe 1996). 

4.  Solitons in (2+l)-Dimensional Anti-deSitter Space-Time. Let M be 
a three-dimensional Riemannian manifold, with metric g and volume element rj. We 
are interested in Yang-Mills-Higgs fields on M, with gauge group SU(2) (for simplic- 
ity). So we have a Higgs field $ = ^(x^) taking values in the Lie algebra su(2); here 
XIL _ (x0,^1,^2) are local coordinates on M. A gauge potential (connection) Afl(x

u) 
determines the covariant derivative D^ — dQ/dx*1 H- [AM,$]. The gauge field (cur- 
vature) is the su(2)-valued 2-form F^ — [D^Dy]. And the Bogomolny equations for 
(AM,$)are 

(13) D§ = *F, 

or, in index notation, 

(13') D^ - ^rf^Frt. 

These are coupled nonlinear partial differential equations which, in general, are not 
completely integrable. But (13) is an integrable system (in the sense that a Lax pair 
exists) if the metric g has constant curvature. For example, if (M, g) is Euclidean space 
B? or hyperbolic space iJ3, then (13) is the equation for Euclidean or hyperbolic BPS 
monopoles, respectively. 

Another possibility is for g to have Lorentzian signature —h +, and then (13) 
are evolution equations in the space-time {M,g). Soliton solutions in the case of flat 
space-time have been studied in some detail: see Ward (1988, 1990, 1998). The aim 
here is to describe an example in curved space-time. 

There are two curved space-times with constant curvature: deSitter space with 
positive scalar curvature i?, and anti-deSitter space with R < 0 (Hawking and Ellis 
1973). I shall deal here with the latter case only, namely anti-deSitter space (AdS). 
By definition, (2+l)-dimensional anti-deSitter space is the universal covering space of 
the hyperboloid W with equation 

(14) U2 + V2 -X2 -Y2 = 1, 

and with metric induced from 

(15) ds2 = -dU2 - dV2 + dX2 + dY2. 

If, for example, we parametrize the hyperboloid H by 

U = sec p cos 0 

V = sec p sin 8 
(16) 

X = tan p cos (p 

Y = tan p sin (p 

with 0 < p < 7r/2, then we get the metric 

(17) ds2 = sec2 p(-d92 + dp2 + sin2 pdip2). 

At this stage, the space-time contains closed timelike curves, because of the periodicity 
of 9. Anti-deSitter space is the universal cover of %, in which 9 is unwound (so that 
8 6 R). Consequently, AdS, as a manifold, is the product of an open spatial disc 
(on which p and (p are polar coordinates) with time 8 e R. It is a space of constant 
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curvature, with scalar curvature equal to —6. Null/spacelike infinity X consists of the 
timelike cylinder p — 7r/2; this surface is never reached by timelike geodesies. 

In what follows below, we shall also use Poincare coordinates £, x and r > 0. 
They are defined by 

* = -17(17 + X) 

(18) r = l/(t/ + X) 

a: = y/(J7 + -X:), 

in terms of which the metric is 

(19) ds2 = r-2(-dt2 + dr2 + dx2). 

But these only cover a small part of AdS, corresponding to half U + X > 0 of the 
hyperboloid Ti. The surface r = 0 is part of infinity X. 

The minitwistor space corresponding to AdS, or rather to the Poincare space 
(19), is CP1 x CP1, which we visualize as a quadric Q in CP3 (cf. Hitchin 1982). The 
points of space-time correspond to certain plane sections (conies) of Q. The space 
of all planes is a CP3. But the relevant conies have to be real (which in this case 
means that their defining planes have real coefficients), and nondegenerate. So the 
space of these acceptable conies is the "top half" of RP3, parametrized by the real 
homogeneous coordinates (U^X.Y) with U2 + V2 - X2 - Y2 > 0. This HP3 is 
double-covered by the original hyperboloid H, and is essentially the Poincare space 
(19). More accurately, the coordinates (t,r,x) cover all of RP3 except for a set of 
measure zero. If a; and C are standard coordinates on the two CP1 factors of Q, then 
the conies are 

(20) u = „(C) = "C-(™ + '-a> = (y + v)CHx-u) 

where u = x + t and v = x — t. Eqn (20) expresses the correspondence between 
space-time and twistor space Q. 

The idea now is that holomorphic vector bundles V over Q (saisfying some mild 
conditions) determine multi-soliton solutions of (13) in anti-deSitter space, via the 
usual Penrose transform. In our case, the relevant vector bundles are stable bundles 
of rank 2, with Chern numbers Ci = 0 and C2 = 2n, n being a positive integer. In the 
simplest case n = 1, the moduli space of such bundles is 5-complex-dimensional {cf. 
Hurtubise 1986, Buchdahl 1987). When we impose reality conditions, which amounts 
to taking the gauge group to be SU(2) rather than SL(2,C), the moduli space becomes 
5-real-dimensional. So we expect, in this simplest case, to get a five-parameter family 
of soliton solutions, exactly as for the flat-space-time system (Ward 1988, 1990, 1998). 
This is exactly what happens (Hickin 1998). 

One explicit way of seeing how solutions arise is as follows: it involves a Lax pair 
for the integrable system (13). Define two operators Vi and V2 by 

Vi=rdr-2{Ci-u)du 

V2 = 2dv+r-1(<;-u)dr. 

Notice that Vi and V2 both annihilate the expression (20). This is related to the 
fact that twistor space Q is the quotient of the distribution {Vi, V2} (on the four- 
dimensional correspondence space whose local coordinates are (£,r, xX))-   The Lax 
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pair involves the gauge-covariant version of (21), and consists of the pair of equations 

[rDr + $-2((-u)Du]^ = 0 

[2JDfl+r"1(C-ti)(2?r-r-1*)]^ = 0, 

where ip = ^(t, r, x, Q is a 2 x 2 matrix. The consistency condition for this overdeter- 
mined system is exactly (13). 

The functions ip corresponding to n = 1 bundles can be taken to have the rational 
form 

where / denotes the identity 2x2 matrix, (o is a complex constant, p{t,r, x) is a 
row 2-vector of linear functions of CJQ = ^(Co), and p* denotes its complex conjugate 
transpose. So p has the form 

(24) p = (auo + 6, CUQ + d), 

where a, 6, c, d are complex constants with ad — bc^ 0. The Yang-Mills-Higgs fields 
($, Afj) can then be read off from (22-24), and they will automatically satisfy (13). 
The parameters £05 CL, 6, c, d are not all significant: it is clear from (23) that an 
overall complex scaling of p will not change -0, and furthermore that multiplying p on 
the right by a constant SU(2) matrix will induce a gauge transformation on ($, A^). 
Removing this freedom leaves us with a five-real-parameter family of solutions. 

Each of these solutions represents a single soliton (lump), and the five parameters 
describe the location (2), velocity (2) and size (1) of this soliton. It is straightforward 
to write down the fields ($,AM) explicitly as rational functions of t, r, x (or [/, V, 
X, y) — but these expressions are not immediately transparent, and we shall make 
do with the following remarks. The solitons are spatially localized, in the sense that 
$ -> 0 and F^v —► 0 as r —> 0, i.e.. as one approaches null/spacelike infinity X. To see 
a simple example, one may set p = (CJQ, 1). Then the positive-definite gauge-invariant 
quantity — tr $2 (which is a good one for visualizing the field) is given by 

(25) - tr$2 = 8r4/[(r2 + x2 - t2)2 + 2x2 + 2*2]2. 

The graph of this function is a single lump, with its maximum along the timelike 
geodesic x = 0, r2 = t2 -f 1: a soliton in free fall. 

5. Concluding Remarks. Many of the ramifications of Atiyah's (1984b) work 
on hyperbolic monopoles are only now being addressed. In the positive-definite case, 
a study of the relation between hyperbolic monopoles (and their symmetries) and the 
corresponding spectral curves is currently underway (Murray and Singer 1998). In the 
Lorentzian case, soliton solutions and their corresponding vector bundles are being 
investigated (Hickin 1998); specific questions include multi-soliton (n > 1) dynamics, 
and what happens in deSitter (rather than anti-deSitter) space. 
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