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MODULI SPACES AND FREDHOLM THEORY FOR 
PSEUDOHOLOMORPHIC SUBVARIETIES ASSOCIATED TO 

SELF-DUAL, HARMONIC 2-FORMS* 

C. H. TAUBESt 

A compact, oriented Riemannian 4-manifold whose intersection form is not nega- 
tive definite has a non-trivial closed, self-dual 2-form. Such a form defines a symplectic 
structure away from its zero set, and the metric can be used to defines a compatible 
almost complex structure. Although this almost complex structure is singular across 
the zero set of the given 2-form, one can none-the-less study the associated pseu- 
doholomorphic subvarieties in the compliment of the zero set. In this regard, it is 
natural to restrict attention to those which have the following three properties: First, 
they are closed subsets of the compliment of the zero set of the given self-dual 2-form. 
Second, they are submanifolds except at a set which can be empty, but is at worst 
countable and non-accumulating. Third, the given self-dual 2-form has finite integral 
over the sub variety. With regard to the second point, remark that the condition of 
pseudoholomorphicity is no more nor less than the requirement that the almost com- 
plex structure preserve the tangent space at all manifold points. With regard to the 
third point, remember that a pseudoholomorphic variety is naturally oriented at its 
manifold points by the restriction of the symplectic form. 

The main theorem in [Tl] asserts that such pseudoholomorphic subvarieties exist 
when the given 4-manifold has a non-zero Seiberg-Witten invariant. Meanwhile, [T2] 
discusses aspects of the regularity theory of pseudoholomorphic subvarieties when the 
metric and self-dual 2-form have a certain prescribed structure near the zero set of 
the 2-form. This structure is also described in (1.1) below as it is assumed here as 
well. In the regard, note that there are no obstructions to finding metrics and forms 
which obey the constraints from [T2]. 

This article serves as a sequel of sorts to [Tl] and [T2] as it constructs a moduli 
space for a certain subset of pseudoholomorphic subvarieties. To describe this subset, 
digress momentarily to note that the aforementioned, prescribed structure for the 
metric and 2-form near the latter's zero set guarantees that this zero set is a disjoint 
union of embedded circles with a distinguished 2-plane subbundle in its normal bun- 
dle. With the digression now ended, the subset of pseudoholomorphic subvarieties in 
question consists of those which approach the zero set of the self-dual form with one 
tangent asymptotic to the distinguished 2-plane subbundle. The following drawing 
illustrates a one sheeted example: 
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Where the form is zero Where the form is zero 

J 
Distinguished plane Distinguished plane 

3-d slice along the form's zero set 3-d slice across the form's zero set 

A sub variety with one tangent asymptotic to the distinguished 2-plane bundle 

The subvarieties whose sheets all conform to the preceding illustration are called 
boundary regular here and are described in more detail by Definition 1.2. There are 
examples of boundary regular pseudoholomphic subvarieties; and it is most probably 
the case, though not yet proved, that such varieties (including those from [Tl]) are 
generic in a suitable sense. 

In any event, this article constructs stratified moduli spaces for the boundary 
regular pseudoholomphic subvarieties. The following theorem summaries the basic 
picture- 

Theorem. The set of pseudoholomphic subvarieties has a natural topology for which 
the subset, Mb, of boundary regular subvarieties is open. Moreover, the latter set 
is a countable, nested union Mb = Mb,o 3 -Mb,! 3 • • • D Mb,k C • • •, where, 
for each k > 0, Mb,k+i C Mb,k is closed and each C G Mb,k — M.b,k+i has an open 
neighborhood in Mb,k which is homeomorphic to the zero set of a smooth map between 
balls about the origin in the kernel and cokernel of a Fredholm operator. 

(Definition 2.3, below, gives a complete definition of {Mb,k}k>o) 
In the case where the closed, self dual form is nowhere zero, the preceding con- 

clusion forms a key part of the foundation of the theory of pseudoholomorphic curves 
on symplectic manifolds. (See, e.g., [Gr], [MS].) Thus, this article serves to extend 
a part of the foundational structure to the context of pseudoholomorhpic curves for 
self dual forms. 

As an aside, note that there is reasonable evidence that the compliment of the 
set of boundary regular subvarieties has, in some generic sense, codimension at least 
1 relative to nearby boundary regular subvarieties. In any event, this compliment will 
not be discussed here, but in a planned sequel. 

At the time of this writing, the author knows of three 4-manifold applications of 
this self-dual, pseudoholomorphic geometry. The first is the classical case where the 
self-dual 2-form has no zero set and thus makes the manifold symplectic. See [T3], 
[T4] for a summary of applications in the symplectic case. The second case assumes 
that the four-manifold has a non-trivial circle action, in which case one can study 
an 51 invariant version of the story. This turns out to be equivalent to studying a 
certain form of circle valued Morse theory on a three manifold. The reader is referred 
to [HL1], [HL2] and [Tu]. The third is provided by the main theorem in [Tl] which 
asserts the following: If b2+(X) > 1 and X has a non-zero Seiberg-Witten invariant, 
then there are pseudoholomorphic subvarieties in the compliment of a closed, self-dual 
form's zero set which have intersection number 1 with every 2-sphere that links said 
zero set. 

In any event, [T4] also contains some rash speculations by the author about 
possible directions for the general 4-manifold story.  In this vein, note that the fact 
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that the boundary regular subvarieties form a moduli space with a model given by 
Fredholm operators backs the suggestion from [Tl] and [T4] that the Seiberg-Witten 
invariants of the four manifold can be obtained by counting the pseudoholomorphic 
subvarieties which form the homological boundary of the closed form's zero set. 

The reader is also encouraged to study the well developed approach of Hofer, 
Wysocki and Zehnder to pseudoholomorphic subvarieties for singular forms. Their 
work is described in a series of articles which begin with [HWZ] and are summarized 
and referenced in Hofer's 1998 ICM plenary lecture [H]. 

1. The background. With the preceding preamble complete, it is time to de- 
scribe in more detail the background and setting for the Theorem in the Introduction. 
In particular, the description of the setting starts with a formal restatement of the 
definition of a pseudoholomorphic sub variety: 

DEFINITION 1.1. Let u and J be a pair consisting of a symplectic form and a 
compatible almost complex structure on a smooth, oriented (possibly non-compact) 4- 
manifold. A subset C in the four manifold is called a pseudoholomorphic subvariety 
when the following conditions are met: 

• C is closed. 
• There is a countable set A C C without accumulation points and with the 

property that C — A is a smooth, dimension 2 submanifold whose tangent 
space is mapped by J to itself. 

• Icu <00- 
Equivalently, C is a pseudoholomorphic subvariety when there exists a complex curve 
CQ with a proper, pseudoholomorphic map into the ^-mam/o/d which is 1-1 except on 
a countable, nonaccumulating set, and which pulls back the symplectic form UJ to a 
finite volume 2-form. 

With the notion of a pseudoholomorphic subvariety understood, return now to the 
case where the 4-manifold in question is the compliment of the zero set of a closed, 
self-dual 2-form on a compact Riemannian 4-manifold. (Below, the 4-manifold is 
denoted by X). A digression follows now to explain certain geometric constraints 
which will be assumed in this paper. 

To start the digression, remark, as above, that the discussion here follows that in 
[T2] by assuming certain constraints on the self-dual 2-form and the metric near the 
zero set of the former. In particular, assume that the form, u;, vanishes transversely 
as a section of the metric's bundle of self-dual 2-forms. It then follows (see, e.g., [T2]) 
that the normal bundle to Z in X splits naturally as the direct sum of a real line 
bundle and a real 2-plane bundle. The former can either be orientable or not along 
each component of Z. This line bundle will be called the 'z-axis bundle' for reasons 
that should be evident below. (Note that Gompf shows that the mod (2) parity of 
the number of components of Z which have orientable z-axis bundle is opposite the 
mod (2) parity of the sum of the first Betti number of X with the self-dual part of 
the second Betti number of X.) 

With respect to the behavior of the metric and form u near Z, assume in addition 
that each component of the zero set, Z, of u has a tubular neighborhood with the 
property that either it or its double cover has coordinates (t:x,y,z) where t £ S1 — 
E/(27rZ) and where (x^y^z) takes values in some positive radius ball about the origin 
in E3. Furthermore, assume that in these coordinates, 

• The set where Z = o;-1^) corresponds to the t-axis. 
• The given metric is Euclidean, dt2 + dx2 + dy2 -f dz2. 



278 C. H. TAUBES 

• LJ = xdt A dx -f ydt A dy — 2zdt Adz + xdy A dz — ydx A dz — 2zdx A dy. 
• The coordinates (t,ZjX,y) are defined on Z's tubular neighborhood as op- 

posed to a double cover precisely when the z-a^xis line bundle is orientable. 
(i.i) 

(Note that in the coordinates of (1.1), the z-axis line bundle coincides with the z-axis.) 
In (1.1) and below, neither the form LJ nor the metric are distinguished notation- 

ally from their pull-backs to the double cover of the given neighborhood of Z. As 
noted in [T2], the constraints in (1.1) are not hard to satisfy. To simplify the nota- 
tion in the subsequent discussions, the following convention will be employed: Unless 
stated to the contrary, the radius out from Z on which (1.1) holds will be taken to be 
1. Also, the length of each component of Z will be assumed to equal 27r. Except for 
the notational simplifications, neither of these two assumptions has any substantive 
affect on the subsequent discussion. 

As in [T2], it proves useful to introduce the functions. 
• f = 2-1{x2+y2-2z2). 
• h = (x2 -{-y2)z. 
• g = (x2+y2+4z2)1/2 (1.2) 

as well as the standard radial coordinates p = (x2 + y2)1^2 and ip = arctan(2//x) for 
the x-y plane. Also introduce the function r — (t2 + x2 -h y2 + z2)1^2 to measure 
distance to the origin. With regard to the introduction of the functions in (1.2), the 
point is that the metric line element and the form LU have the following nice form in 
the coordinates (£,/,/i,<p): 

• ds2 = dt2 + g-2(dt2 + p-2dh2) 4- p2dcp2 

• LJ = dt A df + dcp A dh (1.3) 
With the digression now at an end, here is a summary of some of [T2]'s result 

about pseudoholomorphic subvarieties in X — C: If the metric and closed-self dual 
form obey the constraints in (1.1), then a pseudoholomorphic subvariety C enjoys the 
following regularity properties: 

• The subvariety has finite area. 
• There is a finite and possibly empty set Zs C Z which is characterized by 

the property that each point in Z — Zs has a ball neighborhood in X which 
intersects C as a finite set of components where the closure of each is a real 
analytically embedded half disk whose straight edge coincides with Z. 

• If r G Z — Zs, then each component of the intersection of C with a small 
radius ball centered at r is described by one of the following two statements: 

(a) The component is a half-disk in the t-z plane. 
(b) The  component is  a graph over the  (£, p)  plane,  parameterized as 

(t,p,z(t,p),(p(t,p)) with 

tp(t,p)=tp0(t) + O(p2) 

^P) = ^(t)^ + 0(P4). 

where ipo(m) is an analytic function of t which is defined near t = r. 
Moreover, the higher order terms in the preceding expansions are also 
determined by the function ipo. 

• Let q+ and q- denote the respective number of components of the intersection 
of C with a sufficiently small radius ball about a point in Z — Zs which 
lie, respectively, in the ±z > 0 portion of the t-z plane.   Let p denote the 
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corresponding number of components which are described by Statement b, 
above. Then q± and p are constant on each component of Z. (1.4) 

(These results summarize Proposition 2.1, 7.1 and 9.1 in [T2].) 
Here is an important consequence of (1.4): If p > 0 on a component of Z and if 

r ^ Zs lies in that component, then C near r is described completely by the numbers 
q± plus a set {<£>oc*}i<a<p of analytic functions which are defined on a neighborhood 
of r in Z. 

With the preceding understood, a definition of a boundary regular pseudoholo- 
morphic sub variety is in order. 

DEFINITION 1.2. A pseudoholomorphic subvariety C C X — Z is called boundary 
regular when it satisfies the following two constraints: 

• Zs = 0. 
• q± = 0 along each component of Z. 

Concerning this notion of boundary regularity, it is important to realize that (1.5) 
has the following consequence: 

On some tubular neighborhood of each component of Z, a boundary regular, pseudo- 
holomorphic subvariety C is described by a non-negative integer p and an unordered 
set ofR/(2irZ) valued, real analytic functions {ipoa}i<a<p on Z (1.5) 

Indeed, start at a fixed point in the given component of Z, and then the local data from 
Part b of the third point (1.4) pieces together as the given component of Z is circum- 
navigated to give an ordered set of real analytic functions. However, when the starting 
point is reached, the resulting ordered set of functions might differ from the original 
by a permutation of the indices {!,••• ,p}. The components of C near the given 
component of Z are then in 1-1 correspondence with the set of orbits in {!,••• ,p} 
of the Z action generated by this permutation. If such an orbit has p' elements, then 
the corresponding component of C can be parameterized by 51 x (0, e) where the 
projection to the (0,£) factor is given by the restriction of the function p, and where 
the S1 factor is parameterized by r = t/p'. Restriction of the functions z and ip to the 
given component of C defined the latter as functions of p and r, and then the part of 
c in question is parameterized via (r,p) -» (p'r,pcos((p(r,p)),psin (<P(T,P),Z(T,p)). 

Concerning these functions Z(T, p) and <P(T, p): Both are real analytic for 0 < p < e 
for some positive e; and both are determined by cpoM = ^(^O) as in Part b of the 
third point of (1.4). Conversely, a positive integer p' and a real analytic map, <po, 
from S1 to 51 = M/(27rR) defines a boundary regular pseudoholomorphic subvariety 
in a small neighborhood of the given component of Z via the power series expansion 
in p which is implicit in Part b of the third point of (1.4). 

The discussion of the past few paragraphs should have made clear that a boundary 
regular, pseudoholomorphic subvariety contains an open set with compact closure 
whose compliment is diffeomorphic as a manifold with boundary to a union of annuli 
of the form 51 x (0,1]. Moreover, the completion of each such annulus using the 
induced metric from X is S1 x [0,1]. And, the tautological embedding of the half 
open annulus into X extends to this closed annulus as a map into X that sends 
S1 x {0} into some component of Z as a covering map. 

This section ends with some special examples of boundary regular, pseudoholo- 
morphic subvarieties. These examples are defined in the neighborhood described in 
(1.1) of a component of Z. Also in these examples, the parameter t in the compo- 
nent of Z in question is normalized so as to identity the latter with R/(2irZ). The 
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examples below are characterized by an integer p > 1, a positive integer q which is 
either zero, or relatively prime to p, and a number a G M/(27rZ). With (p, q, a) given, 
the corresponding subvariety is parameterized by (r, p) E M/(27rZ) x [0,1] though the 
M/(27rZ) valued function (p(T,p) and the function Z(T,P). In this case, ip = qr + a is 
a linear function of r, while z depends only on p and is the unique smooth function 
on [0,1] which obeys 

+ 2pz - qp2 = 0, 

• z(p) = fpp
2 + 0(p4). 

The following sketch illustrates one of the previous examples: 
(1.6) 

jty-plane 

2. Moduli spaces for pseudoholomorphic subvarieties. This section pro- 
vides the definition and describes some of the basic properties of the moduli space 
for the set of boundary regular pseudoholomorphic subvariaties. In addition, there is 
a final subsection which touches on a different topics, which is the observation that 
the numbers q± as defined in the last point in (1.4) are always zero if the metric and 
corresponding closed, self-dual 2-form, though subject to the constraints in (1.1), are 
chosen in a sufficiently generic way. 

The proofs of the assertions in this section are deferred to the subsequent sections. 

a) The moduli space. Let M denote the set of pseudoholmorphic subvarieties 
in X-Z. The definition below specifies a topology on M. 

DEFINITION 2.1. Topologize M by defining a basis for the open neighborhoods of 
a given pseudoholomorphic subvariety C as follows: The sets in this basis are labeled 
by the positive real numbers, and the set, U{e), labeled by e > 0 consists of those 
C G M for which 

| /  u — /   UJ\ -f- sup   dist (x, C) + sup  dist (x, C1) < e 
Jc        Jc xec xec 

(2.1) 

The proposition below summarizes some of the elementary features of this topol- 
ogy: 

PROPOSITION 2.2. The assignment of C C M to the positive number fcuj £ 
(0, oo) defines a locally constant function on M.. In addition, each component of Z 
defines, for each C G Ai, the numbers q± and p as descibed in (1-4)\ and the combi- 
nation p — q+ — q- is a locally constant function on M. In addition, the intersection 
number of C C M with any given oriented submanifold in X-Z defines a locally 
constant function on M. which depends only on the homology class of the given sub- 
manifold in Il2(X — Z\ Z). Finally, the area of C C M defines a continuous function 
on M. 
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b) The decomposition of the subspace of boundary regular subvari- 
eties. Use Mb C M to denote the subspace of boundary regular subvarieties. The 
Theorem from the introductory section refers to a stratification of Mb and the pur- 
pose of this subsection is to define the stratification. This is to say that the plan 
here is decompose Mb as a nested union of sets, {Mb,k} where Mb = Mb,o and 
where Mb,k+i C Mb,k+i is closed. The following eight steps describe the criteria of 
membership in Mb,k' 

Step 1: Let C G Mb- Because C is pseudoholomorphic, there is a smooth 2- 
manifold with boundary, CQ, with complex structure on its interior, Co, and with 
a smooth map a : CQ —> X which is almost everywhere 1-1, restricts to Co as a 
pseudoholomorphic map into X-Z with image C, and restricts to DCQ as a map 
into Z which is a local covering map onto its image. Let x(Co) denotes the Euler 
characteristic of CQ. 

Step 2: Introduce the pull-back G*TX. This bundle has an almost complex 
structure on CQ which extends to one over CQ. TO define this extension, first observe 
that all of the singular points of a lie in Co (see (1.4)) and away from these points, 
(j*TX decomposes as TCQ ® cr*iV, where iV is the normal bundle to the image of 
Co where the latter is imbedded. The almost complex structure G*TX respects this 
splitting, so the extension to <9Co of the almost complex structure on TCQ and aN 
extend that on a*TX. 

With the preceding understood, here is how to extend the almost complex struc- 
ture on TCQ: Because of Part b of the third point in (1.4), the functions (£, p) from a 
neighborhood in X of a component Zl C Z pull back by a to CQ as local coordinates 
near a boundary component which maps by a to Z'. Here, p = 0 on the boundary 
component in question, and the corresponding vector fields dt and dp are tangent to 
the boundary and inward pointing, respectively. And, on this component, the almost 
complex structure on TCQ sends dt to — dp. 

Meanwhile, the almost complex structure on N extends over the same bound- 
ary component of CQ as follows: First, the normal bundle on the given boundary 
component is spanned by the vector field dz and co$((po)dy — s'm(cpo)dx, where ipo is 
the restriction to OCQ of the E/(27rZ) valued function ip. And, the almost complex 
structure on N sends dz to — (cos(<po)dy — sin((po)dx). 

With an almost complex structure on <T*TX, the latter's complexification can be 
written as V 0 V*, where V -» C0 is the complex 2-plane bundle of type (1,0) tangent 
vectors. 

Step 3: The purpose of this step is to define a first Chern number for the complex 
line bundle A2V -> C0. Such a number is defined with the specification of a nowhere 
vanishing section of A2V along <9Co- Indeed, given the latter, this first Chern number 
is defined by first extending the given section over Co so its zeros are non-degenerate 
and then making the usual algebraic count of the zeros. 

Meanwhile, a nowhere vanishing section of A2V along BCQ is defined by a pair 
consisting of nowhere vanishing sections of TCQ and of N along SCQ . Take the vector 
field dt as the section to use for TCQ, and use the section of N along dCjQ which is 
defined in the next step. 

Use the notation ci(a*TX) to denote the resulting first Chern number. 

Step 4: This step constitutes a digression of sorts of define a nowhere vanishing 
section of N along SCQ- TO begin, consider an end of C where the z-axis line bundle is 
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orientable. Pick a positive direction for the z-axis, and agree to push C off itself along 
the given component of Z by pushing into this positive z direction. Pulled back to C0, 
this positive z-axis pushoff defines a section of cr*N near the relevant components of 
dCjQ which extends over these boundary components as a nowhere vanishing section. 

Near a component of Z where the z-axis line bundle is not orientable, pick a 
starting point, 0, on the given component of Z, and then pick a positive direction 
for the z-axis at 0. Move in the positive direction along Z and in doing so, push C 
off of itself in the positive z direction until a point just short of the return to 0 is 
reached. To obtain a continuous push-off, note that the normal bundle to C near 0 is 
oriented, and so the original choice of z-axis at 0 defines a positive orthogonal axis in 
the normal bundle of C near 0. Use a push off C near 0 into this positive orthogonal 
axis to connect the push-offs on either side of 0. The following diagram illustrates: 

z = 0 

The push-off near 0 for dc in the non-orientable case 

These push-offs of C near Z also pull back to CQ where they define a nowhere 
vanishing section of a*N on the relevant components of OCQ. 

Step 5: The purpose of this step is to define a self intersection number of C. The 
latter will be denoted C • C and it is defined as follows: First, perturb C near its 
singular points in X-Z so that the result, C", agrees with C near Z and intersects X-Z 
as a submanifold. Then, use the push-off of C near Z as described in the previous 
step to push C" off of itself near Z and extend this push-off over the rest of C. The 
number C • C is then the intersection number of C" with such a push-off. 

Step 6:  With the preceding steps completed, consider: 

DEFINITION 2.3. For each integer k > 0, define Mb,k C Mb to be the subspace 
of C G Mb for which 

k < k(C) = C • C - ci(c7*TX) + x(Cfa). (2.2) 

In the event that C is immersed, the formula for k{C) can be expressed in some- 
what more enlightening fashion in terms of a pair of integers which characterize, in a 
sense, the number of double points of the extension of a to the manifold with bound- 
ary C_Q. The first such integer, rac, is defined to be the number of double points 
of C C X - Z as defined in the usual way. That is, mc is the number of distinct, 
unordered, 2-element subsets {0,0'} C Co with the property that a(o) = cr(o'). The 
second integer, nc, is a sort of measure of the degree to which the extended a fails 
to immerse dCjQ.  To be precise, nc is obtained as a sum whose terms are indexed 
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by data of the form (r, {^oa'^Oa"}) where r G Z and where {yw, ^W'} is an un' 
ordered, 2-element subset from (1.5)'s data {(^oa} whose values coincide at r. The 
contribution to nc from such a data set is defined to be the degree of vanishing at r 
of ^Oa' — ^Oa" • 

With vfic and nc understood, it then follows from Lemma 4.1, below, that 

ci(<7*TX) = C • G + x(Co) - 2mc - nc- (2.3) 

Thus, if C G A^b is immersed, then 

A;(C)=2mc + nc. (2.4) 

In particular, note that when C is embedded and when the integer p from (1.5) is one 
along each component of Z, then fc(C) = 0 and so C is in the top strata of .M&. 

c) The properties of {.M&^j-j^o. The purpose of this subsection is to describe 
some of the salient features of the {JM^^}. In particular, note that the Theorem from 
the Introduction is a direct consequence of Proposition 2.4, 2.5 and 2.6. 

PROPOSITION 2.4.  The subset Mb is an open subset of M. 

PROPOSITION 2.5. Define {Mb,k}k>o as above. Then Mb = Mb,o and for k > 0, 
Mb,k+i is a closed subset of Mb,k> 

PROPOSITION 2.6. Suppose that k > 0 and that C C Mb,k - .M&^+i- Then C 
has a neighborhood U C Mb,k with the following property: There exists a Fredholm 
operator Dc, a ball B C kernel (Dc), a smooth map f : B —> cokernel {Dc) which 
takes 0 to 0, and a homeomorphism T from /_1(0) onto U. 

The next proposition describes (in part) how the data {<£oa} from (1.5) which 
describes a boundary regular subvariety near Z varies with the chosen variety in Mb- 
In this regard, remember that the data {(poa} can be viewed as an ordered set of real 
analytic maps from S1 to E/(27rZ), where each <^o in the latter set corresponds to an 
end of C near the given component of Z. Here, the map (^o which corresponds to a 
given end of C is the p = 0 limit of the restriction to said end of the function ip. 

PROPOSITION 2.7. Suppose that k>0 and that C C Mb,k-Mb,k-\-i- Then C has 
an open neighborhood U C Mb,k — Mb,k+i with the following property: Let Z' C Z be 
a component. The ends near Z' of any C G U can be put in 1-1 correspondence with 
those of C. And, specify an end of C and thus a corresponding end of any element 
in U. The latter is defined (as described in (1.5)) by a positive integer p1 and a real 
analytic map tpo from S1 to S1 — M/(27rZ). This integer p' is the same for all element 
of U; while the association of the map tpo to an element in U defines a continuous 
map from U into the Frechet space of real analytic maps from S1 to S1. 

d) The operator Dc* The operator Dc which appears in Proposition 2.6 is 
obtained from a certain d operator on the smooth model C0 with an added zero'th 
order, M-linear term. If C is immersed, then the relevant d operator acts on sections 
of C's normal bundle. In the non-immersed case, the d operator in question acts on 
sections of the bundle V from Step 2 of Section 2b. (On the interior, Co of CQ, the 
bundle V is the pull-back via a of the bundle of type (1,0) complex tangent vectors 
of X-Z.) In either case, the domain and range of Dc are obtained by completing, 
with a norm of Sobolev type, a space of sections of the relevant vector bundle. This is 
analogous to the procedure followed when C is compact and X is symplectic. However, 
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there is one substantive difference, which is that the sections which define the domain 
are constrained appropriately on dCjQ. The details of this are fairly technical and the 
reader is referred to Section 5, below, for the rest of the story. 

The formal dimension of Mb,k in Proposition 2.5 is given by the index of the 
operator Dc- The next proposition gives a geometric formula for this index. This 
geometric data consists of the Euler characteristic, x(Co), the characteristic number 
ci(a*TX) from Step 3 of Section 2b, and a non-negative number N'^C). The defi- 
nition of N'{C) requires a short digression: To begin the definition, remember that 
the z-axis, as defined locally in (1.1), may or may not define an orient able line bundle 
near any given component of Z. In any event, each end of C inherits, by restriction, 
the £-axis line bundle from Z, and on each end of C, this line bundle can be either 
orientable or not. Given the preceding, the number N'{C) is the number of ends of 
C to which the restriction of the z-axis line bundle is not orientable. 

With the digression now over and N'(C) defined, consider 

PROPOSITION 2.8.  The index of Proposition 2.6,s operator Dc is 

index {Dc) = 2c1(a*TX) - x(Co) + N'(C). (2.5) 

Note that when C is immersed, then (2.3) can be used to write (2.5) in ways 
which may or may not be more appealing. 

What follows are two examples of the formula in (2.5). For the first example, 
let M be a compact, oriented, 3-manifold with b1 > 0 and take X — S1 x M. If 
the metric on X is suitably generic, a non-zero class in ii/'1(M;Z) is represented by 
a harmonic map ip : M —> S1 with non-degenerate critical points. (See, e.g. [Ho].) 
Moreover, one can find such a metric and coordinates (x,y,z) on some neighborhood 
of each of </?'s critical points which make the metric the standard Euclidean one and 
which put v = —iip~1dip into the standard form: xdx + ydy — 2zdz. Now take the 
product metric on X. Then, introduce LJ = dt A v + *i>, where £ is a standard affine 
coordinate on S1 and where * denotes the Hodge star on M. This 2-form is closed 
and self dual. Moreover, it vanishes transversally in a union of circles and (1.1) is 
satisfied near each such circle. (The circles in question are the products of 51 with 
the critical points of v.) 

Now, let 7 C M be a noncompact gradient flow line for the dual vector field to v 
which lies in the intersection of the ascending disk of an index 1 critical point and the 
descending disk of an index 2 critical point. Then, C = S1 x 7 is a boundary regular, 
pseudoholomorphic submanifold in X. To compute the index of Dc, note the each 
component of Z has oriented £-axis, and thus N'^C) — 0 in Proposition 2.8. Also, 
x(Co) = 0 since C is a cylinder. It is left to the reader to check that C • C = 0 as 
well, and so according to (2.3) and (2.5), Dc has index 0. (It is an exercise to identify 
the kernel and cokernal of Dc purely in terms of an operator on sections over 7 of its 
normal bundle in M.) 

Here is the second example (the idea for this example came from work of Luttinger 
[Lu]): To begin, take X — R4 = C2 with complex coordinates (A, rj). Use the standard 
Euclidean metric on E4. Let u denote the following self dual, harmonic 2-form on E4: 

UJ = i2-1 [(1-|A|2 + \v\2)(dX AdX + drjAdj]) 

(2.6) -f (AT? - Rrj)dX Adr)- {Xrj - Rrj)dX A djj]. 

Here, R > 0 is a constant. 
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When R > 1 in (2.6), the zero set of u consists of the circle, Z', where |A| = 1 
and r] = 0 and another circle with |A| = R. Of interest is the former component, 
Z'. This example obeys (1.1) only to leading order in the distance to Zl so there is 
still a well defined z-axis bundle over Z'. The latter is non-orient able. Also, the disk 
C — {(A,r]) : |A| < 1 and 77 = 0} is pseudoholomorphic and its only end approaches 
Z' with p = 1. 

Note that this example does not obey (1.1). However, it is a straightforward 
task to perturb this example in any chosen neighborhood of Z' to obtain a new 
metric and self dual, harmonic 2-form which does conform to (1.1). In fact, given 
e > 0, the new form and metric can be taken to be £ close in the C1 topology to 
the old ones. Furthermore, the perturbation can be made so that the disk C stays 
pseudoholomorphic. As this perturbed version obeys (1.1), Proposition 2.8 can be 
employed to compute the index of the resulting operator Dc- To make the story short, 
the value of the index (as computed using (2.3) in (2.5)) is zero because x(Cf) = 1, 
N^C) = 1 and C • C = — 1. (The computation of C • C is test of endurance to get 
all of the orientations correct.) 

One can also consider (2.6) with 0 < R < 1. In this case, there is just one 
component of Z, the radius 1 circle in the 77 — 0 plane. For these values of /£, the 
z-axis line bundle here is orientable. Once again, the disk C = {(A, rj) : |A| < 1 and 
77 = 0} is pseudoholomorphic, but now its only end approaches Z' with p = 0 with 
q — 1. Thus, the disk in this case is not in Mb and Proposition 2.8 has nothing to 
say. However, this case is discussed further in Subsection 2f below. 

e) Additional properties of Mb related to behavior near Z. As previously 
noted in (1.5), the intersection of a given C G Mb with an appropriate tubular 
neighborhood of any given component Z1 C Z is characterized by an integer p > 0 
and a set {^oa}i<a<p of locally defined, real analytic, E/(27rZ)-valued functions on 
Z'. The set can be ordered unambiguously on any open interval in Z', but any 
ordering suffers a permutation upon circumnavigation of Z'. Here is another way to 
say the same thing: The restriction of the function cp to the p = constant slices of 
C near Z' defines, in the limit as p tends to zero, a real analytic map from a p-fold 
cover of Z' to E/(27rZ) whose push-forward produces the set {</?oc*}- Meanwhile, the 
component of this p-fold cover of Z' are in 1-1 correspondence with the components 
of C near Z'. 

As C near Z' is a union of annuli, and as (p maps the latter into M/(27rZ), there is 
well defined, integer valued degree which Z' associates to C. Note that this degree is 
not the same as the covering degree p. In the example of (1.6), the degree in question 
is equal to the integer q. 

If the reader is uneasy with the absence of a global ordering for the set {^oa}) 

view the latter, at the loss of some information, as the data for a map, <£, from Z' into 
the p'th symmetric product of the circle. In fact, identity SympS'1 with the obvious 
subset of SympC and identify SympC with Cp via the map which send the unordered 
set {Ai, • • • , Xp} of complex numbers to the ordered set of coefficients (ai, • • • , ap) of 
the polynomial zp + aizp~1 H ap = Ili<a<p(z — Aa). Then, the map $ from Z' to 
Cp is real analytic. 

Move to a different, but nearby point in the moduli space Mb, and the data 
{(foa} must change. If the new point is in the same (open) stratum, Mb,k — Mb,k+i, 
as the old, then Proposition 2.7 details the change in {(^o,a}- If the new point lies in 
a different stratum, the following proposition describes (in part) how {ipoa} changes. 
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PROPOSITION 2.9. The multiplicity, p, associated by each component of Z to 
a boundary regular subvariety defines a locally constant function on Mb- Likewise, 
the degree of the map ip that each component of Z associates to a regular, pseudo- 
holomorphic subvariety is also locally constant on Mb- Furthermore, specify a compo- 
nent Z' C Z and the assignment of the corresponding data {(poa}i<a<p to an element 
of Mb defines a continuous map from Mb into the Banach space of continuous maps 
of Z' into SymPiC). 

Given a component Z' C Z, the number of ends near Z' of a subvariety from 
Mb does not define a continuous function. However, such is the case on a subspace 
Mrb C Mb where the following condition is enforced: 

For each r C Z, introduce (1.5)'s set {(poa}i<a<p of analytic func- 
tions which are defined on Z near r and describe C near r.  If a 
distinct pair of functions from the set {^oa}i<a<p coincide at r,        ,     . 
then the pair have distinct derivatives at r. \ '() 

The following proposition concerns the ends of subvarieties in Mrb'- 

PROPOSITION 2.10. The subspace Mrb is an open subsets of M. Moreover, if 
C C Mrb, then C has a neighborhood hi, with the following properties: Let Z' C Z 
be a component. The ends near Z' of any C G U can be put in 1-1 correspondence 
with those ofC. In addition, specify an end of C and thus a corresponding end of any 
element in U. The latter is defined (as described above) by a positive integer p' and a 
real analytic map tpo from S1 to S1 = M/(27rZ). Then, this integer p' is the same for 
all elements of U; while the association of the map ipo to an element in U defines a 
continuous map from U into the Frechet space of real analytic maps form S1 to S1. 

There almost surely exist pseudoholomorphic submanifolds C G Mb — Mrb which 
have neighbors in Mb having fewer ends, but an explicit example is not available. 

The discussion in Section 2 of Mb is now at its end. 

f) The appearance of q±. This last subsection considers a topic which is 
somewhat disjoint from the previous topics as it describes the subset of pairs of 
Riemannian metrics on X and corresponding self dual 2-forms for which (1.1) is 
obeyed and which have the following additional property: Every C G M has q± = 0 
along each component of Z. The description of this set is provided by the next two 
propositions. 

PROPOSITION 2.11. Let Q denote the set of pairs consisting of a smooth metric 
on X and a closed, self-dual 2-form which together obey (1.1). There is a subset 
Q' C Q which is a countable intersection of open and dense sets (for the C00 topol- 
ogy) and which is characterized by the following property: Let C C X — Z be any 
pseudoholomorphic subvariety as defined using the chosen metric and closed, self-dual 
2-form from Q'.  Then both q± from (1-4) vanish at each point of Z. 

The following proposition details an additional property of Q': 

PROPOSITION 2.12.  The inclusion Q' c Q induces homotopy equivalence. 

These last two propositions are proved in Section 6. Suffice it to say for now that 
the deformation problem for a pseudo-holomorphic subvariety with q± ^ 0 does not 
even have deformations which are local to Z. (One can view this as a consequence 
of the fact that the first order deformation problem is described by an operator with 
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infinite dimensional cokernel. In this regards, think of this cokernel as the obstruction 
to keeping the subvariety through a deformation of the almost complex structure.) 

The R = 0 case of the form in (2.6) provides a very explicit example. As remarked, 
Z in this case consists of the standard unit circle in the rj = 0 plane. Also, the standard 
unit disk in the rj = 0 plane is pseudoholomorphic. But, this disk has p — 0 and q = l. 
A deformation of this disk can be described by giving 77 as a function of the complex 
coordinate A on the disk. In particular, the first order deformations of this disk 
correspond to functions rj on the disk which obey the following equation: 

^-Iw^m^0- (2-8) 

The solutions to this equation all have the form 

V=      n®      , (2.9) 
\/(l-|A|2) 

where rjo is an anti-holomorphic function of A. 
Note that (2.9) holds on any open subset of the disk, and in particular, an annulus 

with outer boundary the |A| = 1 circle. As there are no non-trivial anti-holomorphic 
functions on such an annulus which vanish on the |A| — 1 circle, there are no locally 
defined pseudo-holomorphic perturbations of the disk. 

g)  Table of Contents. The remainder of this article is occupied with the proofs 
of the propositions in this section. Here is a directory: 

§3.   Proofs of Propositions 2.2, 2.4, 2.9 and 2.10 
§4.   Proofs of Propositions 2.5 and 2.7. 
§5.   Proofs of Propositions 2.6 and 2.8. 
§6.   Proofs of Propositions 2.11 and 2.12. 

3. Convergence in M. This section contains the proofs of Proposition 2.2 (in 
Section 3c), Proposition 2.4 (in Section 3d), Proposition 2.9 (in Sections 3e and 3f) and 
Proposition 2.10 (in Section 3h). The section also contains a more general discussion 
of the notion of convergence in M. 

a) Geometric convergence. This subsection consists of a digression whose 
purpose is to introduce the notion, from Definition 3.1 of [T2], of geometric con- 
vergence for sequence of pseudoholomorphic subvarieties. This notion is reproduced 
in 

DEFINITION 3.1. Let Y be a (possibly non-compact) 4-manifold with symplec- 
tic form LJ and with a compatible almost complex structure J. Let Ct be a count- 
able, decreasing sequence of positive numbers with limit zero and let {CS}S€Q G Y 
be a corresponding sequence of finite energy, pseudoholomorphic subvarieties. Let 
C C Y be a finite energy, pseudoholomorphic subvariety as well. Say that {Cs} 
converges geometrically to C when the following two requirements are met: 

• Treat each Cs and also each irreducible component of C as a 2-dimensional, 
rectifiable current which assigns to a smooth 2-form with compact support in 
Y the integral of the form over the subvariety in question. Let C denote the 
set of irreducible components ofC. Require that the sequence of currents {Cs} 
converge weakly as a current to the current ^2c'£CrnC'^'> where mc is, for 
each C € C, a positive integer. 
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• For each compact subset K C Y, introduce the number, dxis), which is the 
supremum over pairs (x,y) G (C5 OK) x (C OK) of the sum of the distances 
from x to C and from y to Cs. Then, for each such K, require that the limits 
as s -> 0 of the numbers ^(s) exist and equal zero. 

This notion of geometric convergence is observably at least as strong as the notion 
of convergence in M. The fact that they are equivalent notions is asserted as 

LEMMA 3.2. A sequence {C;} C M which converges to C G M converge geomet- 
rically to C. 

The proof of this lemma requires the following auxiliary lemma: 

LEMMA 3.3. Let {Ci} C M converge to C G M. Then the sequence of numbers 
whose i 'th term is the area of C; is bounded and converges to the area of C. 

Proof of Lemma 3.3. This is an immediate consequence of Proposition 2.1 in [T2]. 

With the preceding lemma in place, consider the 

Proof of Lemma 3.2. As the areas of the CVs are uniformly bounded, the se- 
quence {Ci} is norm bounded when viewed as a sequence of 2-dimensional, rectifiable 
currents. Indeed, if C C {Ci} and if hi is a smooth 2-form, the | Jc, K\ < £ • sup^- |/c|. 

As a bounded sequence of rectifiable currents, any subsequence of {Ci} will have, 
according to either Proposition 3.3 or 3.8 in [T2], a subsequence which converges 
geometrically. Choose such a geometrically convergent subsequence and let C denote 
the set which defines the limit. Since {d} converges pointwise to C, it follows that the 
subvarieties which appear in the set C consist precisely of the irreducible components 
of C. Furthermore, C associates a positive multiplicity to each such component, but 
each such multiplicity must equal one. Indeed, this last assertion follows from the 
assumed convergence to the energy of C of the sequence whose z'th term is the energy 
of Ci. Since all multiplicities are one, the preceding argument demonstrates that the 
given subsequence of {Ci} must converge geometrically to C. This last point implies 
that convergence in M implies geometric convergence to the same limit. 

b) Convergence away from Z. This subsection analyzes the convergence of 
d to C near points of C which are uniformly far from Z. The following lemma 
summarizes the conclusions. 

LEMMA 3.4. Let p G C be a manifold point. There exist a disk D C C centered 
at p, a disk D' C C centered at the origin and an embedding e : D x D* —t X which 
sends D x 0 to D and which has the following property with respect to the sequence 
{Ci}: For all i sufficiently large, the e-inverse image of Ci fl e(D x D') is the graph 
of a smooth map rji : D -* D'. Moreover, the sequence {rji} converges to zero in the 
C00 topology as i tends to infinity. 

Proof of Lemma 3.4- As indicated in Lemma 5.4 of [T5], one can choose disks 
Di C C centered at p, D' C C centered at 0 and an embedding e : Di x D' -> 
X which maps Dx x 0 to Di and is such that the submanifold e(w x D') C X is 
pseudoholomorphic for each w G Di. Since {d} converges geometrically to C, it 
follows that when i is large, each d has algebraic and hence geometric intersection 
number 1 with each such pseudoholomorphic disk. Thus, when i is large, Cif) Image 
(e) is the image via e of the graph of a continuous map rji : Di -* ZV Moreover, the 
fact that d is pseudoholomorphic translates into an elliptic, first order differential 
equation for rji. Since {rji} converges pointwise to zero uniformly over Di, standard 
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elliptic estimates can be employed to prove that {rji} converges to zero in the C00 

topology on any concentric disk D C Di of strictly smaller radius. 

c) Proof of Proposition 2.2. With Lemmas 3.2 - 3.4 in hand, the proof of 
Proposition 2.2 can be completed with the following argument. To begin, let ^ be 
any 2-form on X with compact support in X-Z. Lemma 3.2 implies that integration 
of/x defines a continuous function on M. This implies that the intersection numbers 
with compact submanifolds in X-Z define locally constant functions on M. 

The fact that the assignment of p — q+ — q- (as defined by a component of Z) 
to each C G M defines a locally constant function follows from the observation that 
the latter is the intersection number of C G M with a generic linking 2-sphere of the 
component of Z in question. 

The continuity of the area as a function on M is stated and proved as part of 
Lemma 3.3. 

Finally, consider the function on M that is defined by integration of u. The latter 
is continuous (by definition) and so at issue here is whether it is a locally constant 
function. To see that such is the case, first fix a cut-off function x '• [0> o0) —^ '[0? 1] 
which is non-increasing, 1 on [0,1] and 0 on [2, oo). Next, observe that LJ is exact near 
Z. In fact, if follows from (1.3) that near any given component of Z, u — da, where 
a = —fdt — h dtp and so has norm |a| < CM2- 

With all of this understood, fix e > 0 but tiny and note that UJ£ = UJ — d(x{\u\/e)a) 
is cohomologous to UJ. Furthermore, a crude integration by parts argument shows that 
integration of u;£ over C G M gives the same as integration of CJ over C. Indeed, to 
prove this claim, consider, for s G (0,e), the integral over C of (1 — x(\w\/s))(u -a;5). 
Integration by parts and the observed bound on |a| finds the latter integral no greater 
than Cs area (C). Now take s to zero to obtain the claim. 

To continue the argument for the local constancy of the integration of tu function, 
suppose now that C G M and that {d} C M converges to C. Given e > 0, Sard's 
theorem finds some e' G (0,e/4) for which the |u;| = e1 locus misses all non-manifold 
points of C. Moreover, Sard's theorem finds such e' which is a regular value of 
the restriction of \u\ to C. With e' fixed, Lemma 3.4 implies that these same two 
conclusions hold for each d if i is sufficiently large. Furthermore, the convergence of 
Ci to C as detailed in Lemma 3.4 implies that for i large, a closed, null-homologous 
cycle in the \LO\ ye' portion of X-Z is obtained by taking the union of C with the 
orientation reversed version of Ci and then joining their boundaries on the |a;| = e' 
locus by the obvious linear deformation in the normal bundle of C. (Note that this 
cycle lives entirely in a tubular neighborhood of C.) Use Li to denote this closed 
cycle. 

Since Li is null-homologous, LU£ has integral zero over L^. On the otherhand, 
UJ£ = 0 where Li is not either C or Ci, and so the integral of LJ£ over C must be equal 
to its integral over d at least when i is large. Thus, the integrals of UJ over C and 
over d must also agree when i is large. 

d) Proof of Proposition 2.4. To start the argument , suppose here that C C 
Mb and that {Ci} C M converges to C. The proof that Mb is open is obtained with 
a demonstration that d G Mb when i is large. 

The analysis of the convergence of {Ci} near Z invokes certain properties of C 
and the discussion starts by summarizing them. In particular, note that because of 
(1.4), there exists s > 0 and £ > 1 such that each point in C which lies in the tubular 
neighborhood of a component, Z', of Z from (1.1) and which has r < £ also obeys 
\z\ < C P2 < p/200.   By choosing e smaller if necessary, one can assume that the 
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r < e part of C intersects each ball of radius e centered on Z' as a union of some 
fixed number, p, components, where the closure of each component is an embedded 
half disk which can be parameterized as in the third point of (1.4). 

To simplify the proof's notation, agree henceforth that C denotes only the r < e 
part of the variety in the previous two paragraphs. 

Now, for s € (0,6:), consider a ball B C X of radius s and center on Z'. It then 
follows directly form (1.4) that 

/      uj = 2ps3/S + 0(s4). (3.1) 
JcnB 

Since there is an apriori bound on the area of each C*, it follows from Lemma 3.4 
that with s fixed, and S > 0 chosen, there exists / = /(s, S) such that when i > I, then 
the integral of LJ over d fl B is within 25s3/3 from 2ps3/3. Remember this bound. 

Now the reader is urged to read Section 4 of [T2] and especially Proposition 4.1 
of [T2]. With Proposition 4.1 in [T2] understood, suppose that the index i is large 
and that d is not in Mb- Fix r 6 Z and then rescale coordinates centered at r as 
in Section 4 of [T2] to define a 2-dimenisonal current, C, on E x E3 as described in 
Proposition 4.1 and Equation 4.1 of [T2]. This current gives the 'tangent cone' of Ci 
at r. Since Ci is assumed to lie in M — Mb, there will be a component Z', and a 
point r G Z' where at the least one of the following assertions holds: 

• Counting multiplicities, C contains at least p+1 submanifolds on which z = 0 
and cp is constant. In this case, there will be at least one submanifold in C 
which coincides with the t-z plane. 

• Counting multiplicities, C contained at least p submanifolds on which z = 0 
and ip = constant, and at least one cone on which (<p,h) restrict without 
critical points. On each such cone, the integral of dtp over a level set of h is 
a positive integral multiple of 27r. (3.2) 

(Note that C contains at least p submanifolds on which z = 0 and cp is constant 
because Ci has intersection number p with each linking 2-sphere of the component 
Z>.) 

If follows from (3.2) that given i, there exists si > 0 such that when s' G (0,5;) 
and when B' is the ball of radius s' centered at r, then the integral of UJ over dnB' is 
assuredly greater than 2(p+ ^)s/ /3, where K > 0 is a constant which is independent 
of the index i. Given this last fact, reintroduce the ball B C X of radius s centered 
at r. The third point of Proposition 2.1 in [T2] implies that the integral of u over 
d fl B is greater than 2(p + ft)s3/3. 

This last conclusion is incompatible with the bound by 2(p + S)s3 /S for the same 
integral. Thus, Ci is in Mb when the index i is large. 

e) Proof of the first two assertions of Proposition 2.9 and bounds 
for {Ci}. The assertions from Proposition 2.9 are proved in this subsection and 
in the following one. The first two assertions of Proposition 2.9 are more or less 
direct consequences of Lemma 3.5 which establish some useful apriori bounds for the 
sequence {C;}. Lemma 3.5 is the focal point in this subsection 

To begin the discussion, assume as before only that C G Mb. Fix attention on a 
component Z' of Z and then fix e > 0 as in the previous section. So as to simplify 
notation, C will also denote the subset of points in the chosen pesudoholomorphic 
subvariety with f < s2. (Whether C refer to all or just part of the chosen subvariety 
should be clear from the context.) 



MODULI SPACES FOR PSEUDOHOLOMORPHIC SUBVARIETIES 291 

In any event, as now / < s2 on C, the latter is a smooth submanifold with 
boundary, and 

• / dt A df = 27Tps2, 
./cn{/<s2} 

• f dipAdh = 4,s3 fy2\^0a\2dt + O(s3). (3.3) 
Jcn{f<sZ}                        J  ^ 

Meanwhile, in the second line of (3.3), the summation in the integral on the right side 
is over the p (locally defined) components of C. Note that the first line of (3.3) implies 
that 27rp gives the integral of dt over the / = constant curves in C. The equalities in 
(3.3) imply that the area of the portion of C where r < s is bounded by £s. 

Now, consider the restriction to the neighborhood of Z* of each Ci from the given 
sequence from M. which converges to C. As with C, there will be no notational 
distinction between the whole of d and the portion near Z*. 

Lemma 3.5, below, summarizes some of the initial observations about each Ci. 
The statement of the Lemma 3.5 introduces, for each index i, what will be called 

the formal metric closure of Ci. The latter is the compact space, C^, which is obtained 
by completing Ci using the induced metric from X. In this regard, note that (1.4) 
implies that each end of Ci near Z* is a smoothly embedded, open annulus in X-Z. 
This implies that the corresponding part of C_i is a smooth manifold with boundary, 
and that the tautological embedding of Ci into X-Z extends as a smooth map from 
a neighborhood of the boundary of C^ into X which sends the boundary to Z* as 
a covering map. There is an equivalent picture of C^ in terms of the smooth curve 
model Co* of Definition 1.1. From this point of view, (1.4) implies that C§i is the 
interior of a smooth, compact manifold with boundary, C^. Moreover, the almost 
everywhere 1-1 pseudoholomorphic map Oi'. Coa -> X - Z whose image is Ci extends 
over CjQi to map the latter's boundary to Z as a covering map onto its image. With 
CM understood, then a neighborhood of the boundary of CQ^ is naturally identified 
with a neighborhood of C^ — Ci in C_i. 

LEMMA 3.5. There are constants e > 0 and £ > 1 which have the following 
significance: 

• tf i > C; then cr* maps the boundary of C^ to Z' as a p to 1 map. 
• If i > C; then \z\ < p/100 where r <e on Ci. 
• If i > C and tf s < e7 then the area of Ci D {r < s] is bounded by (s. 
• Ifi>( and tf s <e> then the integral over C;n{r < s] ofdcpAdh is bounded 

by(s3. 

This lemma is proved below. 
In the mean time, note that the first point of this lemma gives the first assertion 

of Proposition 2.9. Also, the second assertion of Proposition 2.9 follows from the 
second point of Lemma 3.5 with the help of Lemma 3.4. Indeed, it follows from (1.4) 
that the degree associated to Ci by Z' is (2n)~1 times the integral of the form dip 
over a level set of r for a sufficiently small, but positive value of the function r on Ci. 
(Equation (1.4) insures that sufficiently small values of r on d are regular values.) 
Meanwhile, Lemma 3.4 implies that the r = e/2 level set is a smooth curve in Ci 
when i is large, and that the integral of dip over this level set is the same as that for 
the corresponding level set of C. Finally, the second point of Lemma 3.5 and Stoke's 
theorem imply that these two integrals produce 27r times the degree associated by Z 
to Ci and C, respectively. 

Proof of Lemma 3.5.   The argument for the first point begins with the observation 
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that when i is sufficiently large, then the r = e/2 part of d must also lie where 
\z\ < p/200. Indeed, this follows from the pointwise nature of the convergence of 
{Ci} to C. In particular, this implies the following: If i sufficiently large, then for all 
s < £2/100, the locus where f = s on Ci is compact. 

Here is the first implication of the preceding observation: One can fix SQ € 
(£2/300, £2/200) to be simultaneously a regular value of the restriction of / to each 
d. Then, for large z, the Ci and s = SQ version of the first integral in (3.3) must be 
very close to 27rpso. (This follows from Lemma 3.4 using Stoke's theorem.) However, 
since dt is a closed from whose periods are integer multiples of 27r, it follows that for 
sufficiently large z, the Ci and s = SQ version of the top line in (3.3) is precisely 27rpso. 
This implies that the integral of dt over the curve / = SQ on d is also equal to 27rp 
if i is large. But then, if 5 < sp is a regular value of / on Ci, the curves f = s and 
f = SQ on Ci are homologous on Ci as all level sets of / with small values of / were 
observed to be compact. Thus, the integral of dt over any f = s curve on d equals 
27rp. In particular, this is true for very small values of s, which indicates that cr; maps 
crr1(Z/) (a subset of <9£Z(H) as a p to 1 map onto Z. 

To begin the proof of the second point in Lemma 3.5, note that the observation 
that \z\ < p/200 where r = e/2 on Ci also implies that the function / is positive where 
r < e/2 on d. Indeed, if / is ever zero on Ci, then d has finite, positive intersection 
number m with some / = 0 and t — constant pseudoholomorphic subvariety where 
r < e/2. (Note that Ci has no such intersections where r = e/2 and where r is very 
small since it eventually approaches Z where \z\ = 0(p2).) This implies that for 
all sufficiently small but positive J, there are m intersections (counting multiplicity) 
between d and the / = —£,£ = constant pseudoholomorphic subvarieties which occur 
where r < e/2. Since all of these intersections have positive intersection number, 
these intersections must persist as 5 is increased. Moreover, as 5 is varied, these 
intersection points must move continuously as a ^-dependent map into the m-fold 
symmetric product of X. Even so, none of these intersection points can cross the 
r — ej2 divide (because / is seen to be positive there) and this causes a problem since 
r > e/2 on the / = —(e2/4),t — constant subvarieties. 

To continue with the proof of the second point of Lemma 3.5, observe that if / > 0 
on d where r < e/2, then one can introduce the function u = (2/)1/2 on the r < e/2 
portion of Ci. Together the pair (t,u) restrict as local coordinates in a neighborhood 
of almost every point on the r < e/2 portion of Ci. Note that the critical points of 
the restriction of u agree with those of the restriction of t. (This follows from the fact 
that Ci is pseudo-holomorphic.) 

Given the preceding, introduce the function v = h/u3 = z/u -f 2z3 /v?. This 
function is bounded on d where r < ej2 and tends to zero as Z is approached. 
(The function v is very small at all points sufficiently near Z on Ci since (2.1) also 
described each Ci on some neighborhood of Z.) The claim here is that v has no 
positive maximum nor negative minimum on d where r < e/2. Since v tends to zero 
near Z on d and, where i is large, v is less that 1/150 on the r = e/2 divide, it 
follows that v < 150 on all of the r < e/2 portion of Ci when i is large. This implies 
the second assertion of Lemma 3.5. 

To see that v has no positive maximum (or negative minimum), first assume that 
such a point occurs in Ci where (£, u) are good coordinates. In this regards, note that 
the restriction to Ci of the pair (ip, v) obey the following equation: 

• Vu + 3v/u - (1 + Kl)(Pi = 0. 
• Vt + (1 + K2)<Pu = 0. (3.4) 



MODULI SPACES FOR PSEUDOHOLOMORPHIC SUBVARIETIES 293 

Here, the subscripts denote partial differentiation by the indicated variable. Also, 
K,I = p2/u2 - 1 and ^2 = g2p2 /u* - 1. In particular, both KI^ are functions of z2/u2 

and thus both can be viewed as smooth functions of the function v2 which are analytic 
when v2 < 1/100. (In this regard, remember that v is defined in terms of the function 
A = z/u by the formula v = A + 2A3. Since the derivative v\ = 1 4- 6A2 > 0, this 
relationship can be inverted to give A as a smooth function of v.) 

In any event, if follows by differentiating (3.4) that 

(1 + fti)"1^™ - 3^/u2) + (1 + K2)-1vtt = 0 (3.5) 

at a critical point of v where (£, u) are good coordinates. This last equation implies 
that v has no positive maxima nor negative minima where (£, u) are good coordinates. 

Now consider points where (t, u) are not good coordiantes. If such a point is a 
manifold point of d, then dv ^ 0 there, since the 2-form u at such a point is given by 
u3d(p A dv. Meanwhile, the possibility of a local maximum at a singular point of d 
can be ruled out using the local picture of such points which is proved in Part a of the 
Appendix in [T2]. Indeed, the argument in this case follows directly from the analog 
of (3.5) which is obtained by differentiating Equation (A.5) in [T2] with respect to 
the complex variable v as defined using (A.6) in [T2] and then examining the result 
at v = 0. 

The third pint in Lemma 3.5 follows directly from Proposition 2.1 in [T2] in as 
much as the integral of LJ over d 'ls uniformly bounded. 

The fourth point in Lemma 3.5 is obtain from (5.4) in [T2] with the observation 
that the constant £ which appears there for each d can be bounded by an index 
i independent constant which is determined by points in C which are uniformly far 
from Z. Indeed, this assertion follows from (5.6) in [T2] with the remark that the 
bounds given in [T2] for each of the terms in this equation are determined by the 
behavior of the restriction of the 1-form dip to points of d which are uniformly far 
from Z and near manifold points of C. In particular, Lemma 3.4 insures that the 
bounds which are so obtained for d are, for large i, within a fixed factor, say 2, of 
those which are obtained for C by the same arguments. 

f) Proof of Proposition 2.9, completion. This subsection completes the 
proof of Proposition 2.9; the as yet unproved assertion is a corollary to Lemma 3.6 
below. The latter provides some additional uniform estimates for the sequence {Ci}. 

Before stating Lemma 3.6, it proves useful to digress to set the stage. To begin 
the digression, note that as remarked in the previous step, the function u = (2/)1/2 

is well defined on C where r < e; thus where r <e and i is large, there is a map from 
Ci to 51 x (0,6] given by the values of the functions t and u. The latter map extends 
to one from (7$ to S1 x [0,e]. Here, u = 0 corresponds to the boundary components of 
C^ near Z', and then t on the u = 0 locus maps the latter as a p to 1 cover of S1. (As 
in the previous section, there will be no notational distinction between the portion of 
Ci near Z' where u < e and the whole of d] the distinction should be clear from the 
context.) 

As the inverse image of all but finitely many values (£, u) on d consists of p 
points, the tautological map from where r < e in C^ into X is determined by an 
unordered set of p (locally defined) pairs of functions {<Pi,ajWi,a}i<a<p- Here, the 
ordering and thus the labeling of the elements of {(^i,., vi,-)} may no^ ^e we^ defined. 
Indeed, a consistent labeling is assured only in some small neighborhood of any point 
where these pairs are distinct. This set can also be viewed as the push-forward via 
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the functions (t,u) to S1 x [0,e] of the functions ((p,v = h/u3) and the latter view 
will now be taken. 

At times, it will prove convenient to consider {^j,.} as a maP from S2 x [PJ
6

] ^0 

the p'th symmetric product of S1. For this purpose, introduce the polynomial Vj (A) = 
II.A—exp^,^.)) in the variable A. Expand the latter as ^(A) = Ap+aiAp-1H hap, 
and the coefficients provide a well defined map $j : S1 x [0, e] -> Cp which determines 
the set {^j,.} as a map into Symp(5'1). (These coefficients of V determine the set 
{<£/,.} up to ordering and up to adding a multiple of 27r to any element.) 

With the digression now at its end, consider: 

LEMMA 3.6. Let e > 0 be as in the previous lemma. There is a constant £ > 1 
which has the following significance: 

• Ifi>(> then \v\ < (u where r < e on Ci. 
• If i > C and if s € (0,6:) and if D is the u > 0 part of a disk of radius s in 

S1 x [—£,e], then 

/E.(|^V|
2 + KV|2)<CS

1/C. (3.6) 
JD 

• The sequence of maps {$j. : Sl x [0,^] —>> Cp} is uniformly equicontinuous. 

Lemma 3.6 implies directly the final assertion of Proposition 2.9. Indeed, it follows 
from the third point of Lemma 3.6 that the sequence {<£*} converges uniformly on 51 x 
[0,e] to the corresponding map $ as analogously defined by the pseudoholomorphic 
submanifold C. Here, Lemma 3.4 insures that {$j} converges to $ on compact subsets 
of S1 x (0, e] and then the fact that the sequence is uniformly equicontinuous on the 
compact domain 51 x [0,£] implies that it must also converge to $ on a neighborhood 
of Z = S1 x {0}. 

Proof of Lemma 3.6. The lemma's first point follows directly from the second 
point of Lemma 3.5 using the argument in [T2] which proves Eq. (8.4) in [T2]. Lemma 
3.6's second point then follows from the first point using the argument in [T2] which 
proves Lemma 8.2 in [T2]. The final point then follows from the second point here 
using the argument in [T2] which proves Lemma 8.3 in [T2]. 

g) Properties of {^i,.} as defined by elements from {Ci}. This subsec- 
tion serves as a digression of sorts to further describe the behavior of the sequence 
{(</?VJ^V)} as defined using the sequence {Ci}. Here, the behavior of this sequence 
will be considered in a neighborhood of a point on Z with the following property: 

The point has a ball neighborhood which, when i is large, intersects each Ci 
as a union of p irreducible components; here, p is the number of components 
of the intersection of the given ball with C. (3.7) 

(Remember that an irreducible component of the intersection of C with an open set 
is the closure in this open set of a component of the set of smooth points of C.) 

Note that every point in Z satisfies (3.7) in the case where p — 1. Meanwhile in 
the case where p > 1, the final assertion of Proposition 2.9 insures that all but finitely 
many points in Z obey (3.7). Indeed, when p > 1, (3.7) can fail only at points in Z 
where the polynomial V which defines the map $ from the given pseudoholomorphic 
subvariety C has coincident roots. 

In any event, the point of (3.7) is as follows: Near a point where (3.7) holds, there 
is, for all i sufficiently large, an unambiguous labeling of the set of pairs {(<£>*,., Vi,-)} 
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which turns the latter into an ordered sequence of pairs of functions on the intersection 
of the u > 0 portion of the t-u plane with a disk whose center has the ^-coordinate of 
the given point on Z and u = 0. Moreover: 

LEMMA 3.7. Fix a point in Z where (3.7) holds. For all i sufficiently large, a 
labeling can be found for {(^i,.,fi,.)} on a neighborhood of the point in question so 
that the each of the resulting p sequences of pairs of functions converges as a sequence 
of pairs of real analytic functions on the intersection of the u>0 half of the t-u plane 
with a disk centered at the point with the t-coordinate of the given point in Z and 
u = 0. 

Proof of Lemma 3.7. As remarked above, when (3.7) holds, the set {(^i,.,^,.)} 
can be unambiguously labeled for large i on a fixed neighborhood of the origin in the 
t-u plane. Do so, and focus attention on one such labeled pair, (<p;,i>i). For each i, 
the corresponding pair consists of real analytic functions on the intersection of the 
u > 0 part of the t-u plane with a disk D whose center has the t-coordinate of the 
given point in Z and u = 0. This assertion is proved in Section 8b of [T2]. The 
proof, after a rewriting of (3.4), is no more than an appeal to the standard theorems 
about regularity of solutions to elliptic equations. In particular, as these theorems are 
proved by establishing apriori bounds for derivatives, they automatically imply the 
asserted convergence of the sequence {(ipi,Vi)} as a sequence of pairs of real analytic 
functions. 

h) The proof of Proposition 2.10. The proof of Proposition 2.10 depends on 
a key lemma (Lemma 3.8) which concerns the topology near Z of subvarieties C G Mb 
which are close to the given variety C. In this regard, note that the topology near 
a component Z' of Z of a subvariety in a p = 1 component of Mb is necessarily 
constant, as each such subvariety is properly diffeomorphic near Z' to an annulus. 
Indeed, it follows from Lemma 3.5 and the subsequent discussions that when C G Mb 
has p = l, then there exists e > 0 and a neighborhood of C in Mb with the following 
significance: If C" comes from the given neighborhood, then the conclusions of Lemma 
3.5 hold for C". In particular, this implies that the r < e/2 portion of C" is a graph 
over the (t,u) plane; that is, the functions (t,u) restrict to the r < e/2 region of C" 
as good coordinates. 

On the other hand, if C has p > 1, then there may or may not be a fixed e > 0 
and neighborhood of C in Mb such that (t,u) are good local coordinates on the 
r < e/2 portion of any C7 from the given neighborhood. Examples are given in the 
next subsection where such is definitely not the case. In any event, were there such 
an e, then (3.7) would hold at all points of Z for any sequence {d} C Mb which 
converges to C. 

However, when p > 1, it turns out that there exists e > 0 and an apriori bound 
on the topological complexity of the r < e/2 portion of any C C Mb which is near 
to C. This is made precise in Lemma 3.8, below. Prior to reading this lemma, the 
reader should note the following consequence of (1.4): To each C G Mb there is 
a corresponding smooth, complex curve C'o with a proper, almost everywhere 1-1, 
pseudoholomorphic map a' : C -> X — Z whose image is C". 

LEMMA 3.8. Fix C G Mb- Then there exists e > 0; an integer N and a neigh- 
borhood of C in Mb with the following significance: First, if C G Mrb, then N — 0. 
In any event, let C lie in the given neighborhood; let C'o denote the smooth model 
for C, and let a' : C'o —> X denote the almost everywhere 1-1, pseudoholomorphic 
map whose image is C.  Then, both t and u — (2/)1/2 are well defined on the r < e/2 



296 C. H. TAUBES 

portion of C. Moreover, the pull back via a' of either t or u to C, has no more than 
N critical points. 

This lemma is proved below. (A precise bound on iV comes from Lemma 4.2 and 
the discussion in Steps 8 and 9 of Section 4b to come.) 

Consider first using Lemma 3.8 for the 

Proof of Proposition 2.10. As TV = 0 for C e Mrb, it follows from Lemma 3.4 
and Lemma 3.8 that C has a neighborhood U C Mb and each point in Z has a ball 
neighborhood such that the restriction of each C" C U to the given ball is a disjoint 
union of p components. That is, every sequence {d} C Mb which converges to C 
obeys (3.7) at each point in Z. With this understood, the conclusions of Proposition 
2.10 follow immediately from Lemma 3.7. 

This subsection ends with the 

Proof of Lemma 3.8. First of all, Lemma 3.5 insures that there exists e > 0 a 
neighborhood in Mb of C such that t and u are well defined on the r < e/2 portion 
of C from the given neighborhood. 

With this understood, consider first Lemma 3.8's assertion that there is a bound 
to the topological complexity of d near Z. For this purpose, suppose the contrary, 
that no such bound exists. Then, there exists a sequence {C*} C Mb which converged 
to C but which did not admit a uniform bound on the number of critical points of the 
pull-back of t and u to the corresponding Ci. With this sequence {d} understood, 
a three step argument provides the necessary contradiction. 

Step 1: It follows from Lemma 3.7 that there is a neighborhood of each point 
where (3.7) holds which lacks critical points of (t,u) on any d with i sufficiently 
large. With this understood, one need only focus attention on Ci near points in Z 
where the polynomial V as defined using C has coincident roots. Fix one such point 
and agree on coordinates so that its t value is zero. Now, focus on the restriction of 
C and of each d to a neighborhood of this points. 

Step 2: As in the Appendix to [T2], it proves useful to change variables from v 
to a function b — b(v) which is defined in (A.l) of [T2]. Here, b is an analytic function 
of v when the latter is small, and in particular, b(v) = v + 0(v3). With b understood, 
introduce the complex valued rj = (p + i-b. By virtue of (3.4), this function obeys the 
nonlinear version of the <9-bar equation in (A.2) of [T2]. 

Next, introduce the completion, (7, of C with respect to the induced metric from 
X. As attention is restricted below to where u < s on C, the space C is a manifold 
with two boundary components, which properly fibers over 51 x [0, e] with fiber degree 
p. (In this case, C_ is the same as the closure of the model Co-) 

Let TT denote the projection from C to S1 x [0,£] and consider 7r*C as a fiber 
bundle over C. The latter space consists of triples (w = t + i • u, 7]-, 77+), where each 
(w,rj±) G C_. Note that C_ embeds canonically in 7r*C as the set of triples of the 
form (w, 77,7]), and often C_ will be identified with is image in 7r*C via this embedding. 
Note that the closure of 7r*C — C in ir*C_ adds only certain points of C_ which lie over 
Z = S1 x {0}. Indeed, this closure adds only points over t 6 S1 where the polynomial 
VQ has coincident roots, and the added points correspond precisely to these coinciding 
roots. 

Now introduce the function A on 7r*C —(7 whose value at (w,r]-,r}+) is r]- —rj+. 
Use (p and b to denote the respective real and imaginary parts of A. Note that the 
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function A is non-zero on 7r*C — C_. However, the function extends to the closure of 
7r*C — C in C, and its zero set on this closure is exactly the set of points in C_ which 
are added in the closure operation. 

As in Step 3 of Part b of the Appendix to [T2], this A will be used to define 
an embedded oriented graph F in the closure of 7r*C — C_. Here, F will be defined 
only over some small neighborhood of a point o £ S1 x [0, e] where two or more roots 
of the polynomial Vo coincide. In particular, take this to be a closed half disk D of 
radius less than e whose straight edge lies on S1 x {0} and center lies at the point in 
question, o. Moreover, take the disk radius small so that the point o is the only point 
on the straight edge of D where Vo has coincident roots. 

By the way, note that over D — o there are p • (p - 1) components of 7r*C - (7, 
where each component is diffeomorphic via the projection to D — o. These components 
correspond to an ordered pair of distinct components of C_ \D-O> 

Here is how to define F (see Lemma A.4 in [T2]): As a set, F consists of the zero 
of the function b. The vertices are the 6 = 0 critical points of b and also the points of 
C_ \z which are added when closing 7r*C — C. And, by taking the radius of D to be 
very small, one can insure that only the latter sort of vertices appear. In fact, except 
for some minor notional issues, no generality is lost by assuming that F has just a 
single vertex, and this assumption will now be made. (The graph F would have two or 
more vertices in this situation when VQ has two or more distinct multiple roots at the 
given point in Z. Since different roots of Vo correspond, at least locally, to different 
components of C, the essentially local analysis that follows can be applied separately 
to each of the corresponding parts of 7r*C.) 

As in Part b of the Appendix to [T2], orient each edge of F by requiring the 
positivety of the restriction of the 1-form dtp. 

The behavior of F near the vertex in question is described in Lemma A.5 of [T2] 
and in the subsequent remark: Let D' C 7r*C — C denote a component whose closure 
in 7r*C contains the vertex. (Remember that D' is diffomorphic to D — o). Then, 
there are some m + 1 edges of F in D' which emanate from the vertex. Here m is 
the order of vanishing of (p as one moves through the vertex along the inverse image 
of the u = 0 line in D'. (Thus, m — 1 is the order of vanishing of dtp as one moves 
through the vertex along the same path). Two of these edges lie over the u = 0 line, 
and the remainder are slight deformations of straight arcs which run from the center 
of D' through the interior of D' to the circular part of the boundary of D'. 

As noted, all of the edges are naturally oriented by d(p and as one precedes around 
the boundary of D', the orientations reverse as successive edges are encountered. 
(They alternate pointing in and out of D'.) 

Step 3: For large z, make the analogous construction of C^ and TT*^; then use the 
construction in Part b of the Appendix to [T2] to build the analogous oriented graph 
Ti. (The closure of TT*^ - C^ in C^ contains Fj.) Fix a disk neighborhood B C D 
of the center point o which is concentric to .D, but with much smaller radius. Then, 
when i is large, TT*^ \D-B is diffeomorphic to 7r*C \D-B and this diffeomorphism 
carries Ti to F and preserves the orientations. Thus, for large i, any extra vertices of 
Ti must lie over B. 

With the preceding understood, the argument in Step 10 of Part b of the Appendix 
to [T2] provides an index i independent bound to the number of extra vertices of Fj. 
In this regard, note that the arguments in Step 10 of Part b of appendix in [T2] require 
the 1-form dip to restrict to d \D as an exact form. This happens automatically if the 
variation of tp on C; \D is smaller than 27r, and the latter is insured for large i through 
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Proposition 2.6 provided that D is chosen so that ip on C \D has small variation. 
The bound from Step 10 of Part b of the Appendix in [T2] implies that there is 

an index i-independent bound to the number of points in the set A* C Ci which are 
either singular points of d or else critical points of u (and i). This is to say that 
there is an i independent bound to the number of critical points on the model curve 
Cio of the pulled back functions. This conclusion contradicts the initial assumption 
about the sequence {C;}. 

Now consider the assertion in Lemma 3.8 that N = 0 when C G Mrb- Indeed, 
this follows immediately from the discussion in Step 10 of Part b of the Appendix in 
[T2] since in this case, the graphs T which are constructed project to the t-u plane 
with image the u = 0 line. 

i) Topology changes near Z. The purpose of this subsection is to provide 
some (local) examples which exhibit a pseudoholomorphic submanifold C with nearby 
pseudoholomorphic submanifolds that have different topology near Z. These examples 
are 'local' in the sense that they are defined only in a neighborhood of Z — Sl x {0} 
in the coordinate system on S1 x B3 given in (1.1). Presumably, these local examples 
also occur in the context where X is compact. In the examples below, p = 2 and the 
pseudoholomorphic subvarieties are defined by giving a set of pairs {((pa,ya)}i<a<2 
of the variables (t,u) which are defined near u = 0 and obey (3.4). 

In these examples, take (ipi,vi) = (0,0). Fix a positive integer q. Since t —>- 
sin9 t is a real analytic function of t, there exists e > 0 and a pair of functions 
((p2(t,u),V2(t,u)) which are defined where 0 < u < s, which obey ^(^O) = sinq t 
and V2 = (£, 0) = 0, and which solve (3.4). The subvariety C defined by the pair 
{(^cn^a)}!^ is, near u = 0, a submanifold that consists of a union of two annuli. 
Indeed, to prove that C is a submanifold where u > 0 but small, it is enough to prove 
that the two sheets of C do not intersection. In this regard, the only worry is near 
t = 0 or t = TT, and u = 0, and a short digression follows to examine the behavior of 
C near t = 0 and u = 0. 

To start the digression, change coordinates to polar coordinates (5,9) in the t-u 
plane (so that t = s cos 9 and u = s sin 9). In these coordinates, power series expansion 
for (p2 and V2 read 

• <p2(t,u) = s%(cos<9) + 0(sq+2) 
. V2(t,u) = {q + 3)-ls(*sm9a'q(cos9) + 0{s(i+2) (3.8) 

Here, aq(-) is a polynomial of degree q with the same parity as q, while af
q denotes 

the derivative of aq. To be more precise, a = aq, as a function of w £ [—1,1], is the 
unique solution to the differential equation 

(1 - w2)'1 ((1 - w2)V)7 + q(q + 3)a = 0 (3.9) 

which obeys aq(l) = 1. For example, the relevant q = 0,1,2 and 3 solutions are: 
ao(w) — l,ai(w) — w,a2(w) = (5w2 - l)/4, and as(w) = (7w3 - 3it;)/4. 

In any event, as the only solution to (3.9) with both a and a' zero at the same 
point has a = 0, both cp2 and V2 in (3.8) vanish simultaneously near s — 0 only at 
5 = 0. 

With the digression now at an end, consider the subvariety C which is obtained 
by perturbing the u = 0 boundary values of ip2 to sin9 t + 5, where 8 is a small real 
number.   The resulting subvariety C is defined by (<pi,vi) = (0,0) as before, and 
(^2,1/2). 

Note that for small 8, the subvariety is a submanifold where u is small expect 
possibly near t = 0 or t = n where its two sheets are close to each other. Near t = 0 



MODULI SPACES FOR PSEUDOHOLOMORPHIC SUBVARIETIES 299 

and u — 0, the behavior of C can be analyzed by writing the analogous power series 
expansion to (3.9). Through order sq, the resulting expansion finds: 

• <p'2 = s%(cos60 + 5 + 0(sq+2), 

. v2 = (q + S)-1s«smOa,
q(cos0)+O(sq+2). (3.10) 

Thus, when 8 has small norm, the two sheets of C intersect near s = 0 at the points 
whose coordinates (s,0) are such that a'^cosfl) = 0 and s = (-a^(cos0)~1(5)1/g. 
Thus, the intersection points of the two sheets of C are determined by the critical 
points of aq which have critical value whose sign is opposite to that of 6. For example, 
in the case where q = 1, there are no critical points at all, where as in the case q — 2^ 
there is one critical point of aq (where w = 0), and here a2 = —1/4, so the sheets 
intersect when 5 > 0, but they do not when S < 0. 

In general, the maximum principle with (3.9) implies that the positive critical 
values correspond to local maxima and the negative ones to local minima of aq. 
Moreover, there are q — 1 critical points in all; and q/2 of them have aq < 0 when q 
is even, while (q — l)/2 have aq < 0 when q is odd. Thus, even so C is still a union 
of two annuli near u = 0, these annuli now intersect some number of times. 

In the previous example, C", though possibly immersed, is still the union of two 
embedded annuli as was the unperturbed version with S = 0. Thus, the irreducible 
components of C do not change their topology as 5 is varied from zero. However, an 
example where the topology of the irreducible components do change topology when 
6 is non-zero can be constructed from C". To do so, fix 5 and construct C" as above. 
Focus attention on the intersection points between the two sheets. In any specified 
neighborhood of these intersection points, the intersections can be resolved to give a 
connected submanifold C* which agrees with C" outside of the given neighborhood. 
This submanifold is obtained from the two annuli by adding 1-handles between them, 
where each self intersection point of C accounts for precisely one of the added handles. 
(Thus, the genus of C* is one less than the number of self intersection point of C.) 

Specify a neighborhood of the double points of C and a standard construction 
modifies C" to produce a closed, symplectic submanifold which agrees with C outside 
of the given neighborhood. In addition, if the given neighborhood of the double points 
is a union of sufficiently small radii ball, then this new symplectic submanifold can be 
perturbed so that the result is back in Mr- This last perturbation will not generally 
be compactly supported away from Z. None-the-less, the resulting submanifold will 
be closed to C in Mr if \S\ is small and if the resolution of the double points of C" are 
done in sufficiently small radii balls. These last claim are not meant to be obvious. 
In any event, they can be proved by employing the Fredholm theory outlined in 
Proposition 2.6 and Section 5 to define the pseudoholomorphic perturbation of the 
symplectic resolution of the singular C. The details for this argument are omitted as 
the discussion would be lengthy and mostly tangential to the story line here. 

4. Proofs of Proposition 2.5 and 2.7. This section contains the proof of 
Proposition 2.5 and then that of Proposition 2.7. The proof of Proposition 2.5 has 
two parts. Part 1 considers the assertion that M& = Mb,o, while Part 2 considers the 
closure of M^k+i 'in Mb,k • 

a) The proof that M,b = A^o- The assertion that these two space are 
equal is equivalent to the assertion that k(C) from (2.2) is non-negative. Meanwhile, 
the latter assertion ultimately stems from the fact, first observed by Gromov [Gr] 
and McDuff[McD], that the local sign of intersection between pseudoholomorphic 
subvarieties is positive. In any event, the detailed argument for non-negativity of the 
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right side of (2.2) follows. 
To begin, perturb the map a away from <9Co so that the resulting map, a , is 

both symplectic and an immersion on int(Co). For such a perturbation, the sum 
of the signs associated to the self-intersection points of cr (Co) is non-negative and 
strictly positive if a is not 1-1. (The latter assertion follows from [McD]. The fact 
that a can be made symplectic follows from the known structure of a near its critical 
points as presented in [Ye], [PW] or [MS].). 

Each of the terms on the right hand side of (2.2) can be computed using the map 
cr instead of a (with the immersed submanifold C = a (int (Co)) replacing a). In 
particular, use the fact that C is immersed to write a *TX = TCo 0 iV. It then 
follows that ci((7*TX) = ci(cr'*TX) = x(Co) + dc>, where dc> is the degree of the 
normal bundle cr*Nc> —> Co as defined using the section on <9Co that is described in 
Step 4 of Section 2b. Thus, the right hand side of (2.2) is equal to k(C') = C' •C' — dc>. 

Here is how to compute k(C ): Remark first that there exists a tubular neighbor- 
hood J\f C X of Z in which C — C and neither has any immersed points. Indeed, 
the existence of such a neighborhood follows from (1.4). Second, if the section over 
9Co has small enough norm, then the resulting push-off, C of C can be constructed 
to have no intersection points with C in N save in a neighborhood, N C J\f which 
is the union of small balls, one for each point t € Z where a distinct pair (v^oc*' > Voa" ) 
from (1.4)'s data set {v?ooj coincide. Moreover, the radii of these balls can be fixed 
in advance. With the preceding understood, it follows that kc> is the sum of two con- 
tributions. The first contribution is twice the algebraic sum of the immersion points 
of C . As remarked previously, this sum is always non-negative and positive unless 
the original map a is everywhere 1 to 1. The second contribution is the intersection 
number between C   and C  in N. The following lemma describes the latter: 

LEMMA 4.1. When the balls making up Af have sufficiently small radius, and 
when C is then defined so its intersections with C in J\f take place in Af , then the 
algebraic intersection number between C and C in J\f is the same as the geometric 
intersection number. In fact, this intersection number is a sum of contributions, one 
from each pair (t, {(p0a', ^oa" }) where t G Z and where {^0Q/ , <p0a" } is an unordered 
two component subset of (1.5)'s data set {(^oa} whose values coincide at t. The 
contribution of such a pair to the intersection number of C and C in J\f is equal to 
the order of vanishing of ip0a> — (p0a" . 

Proof of Lemma 4-1• To compute this intersection number, note that when the 
balls in J\f have small radius, the local intersection numbers can be computed with 
the help of the power series expansion in the third line of (1.4). In this regard, it is 
probably most convenient to consider the expansion in (1.4) in the polar coordinates 
(s,0) as in (3.8). The details are left to the reader except for the following four 
remarks: First, each pair (^oa'^Oa') from (1-4)'s data set has an expansion whose 
first term is a non-zero, real multiple of the right hand side of (3.8) for some choice 
of non-negative integer q. Second, the difference (<p0a/ - ip0a>< ,vQa' - v0a"), between 
any two such pairs also has an expansion whose first term is a non-zero, real multiple 
of the right hand side of (3.8). Third, one need only know the first non-zero term of 
this difference to compute the required local algebraic intersection numbers. Finally, 
the latter computation is completely straightforward. 

b) The closure of Adb,k-\-i in A4.b,k. To prove that Mb,k+i C M^k is closed, 
consider a sequence {CJ C M^k+i - Mb,k+2 which converges in Mb- Let C denote 
the limit subvariety. This subvariety is in Mb^c) and one must show that k(C) > 
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k + 1. The argument for this follows in twelve steps. 

Step 1: Fix £o > 0 with the following properties: First, the coordinates in (1.1) 
are valid on the radius eo tubular neighborhood of each component of Z. Second, C 
intersects each of these tubular neighborhoods as a disjoint union of embedded annuli 
with z/p « 1. Third, the coordinates (t,u = (2/)1/2) restrict to these same parts of 
C as local coordinates. Let J\f denote the closed, radius £o/100 tubular neighborhood 
of Z. 

Let Co and a : Co -» C be as described in Subsection 4a. The section over 
dCo of (j*N from Step 4 in Section 2b can be chosen so that it extends with no zeros 
over J\f, and so that corresponding push-off C of C has only positive local intersections 
with C in the radius e tubular neighborhood of Z, and so that these occur only in a 
disjoint union, Af , of very small balls about the points in Z where a pair from (1.4)'s 
data {ifoa} have coincident values. 

With the preceding understood, the last two terms in the expression on the right 
hand side of (2.2) can be evaluated by restricting attention solely to the compliment 
of 0--1(int (Af)) on Co- Meanwhile, the contribution of the first term on this same 
side of (2.2) is a sum of two parts, one from this same compliment of cr~1(int (AT)), 
and one from J\f . 

Step 2:  Now consider the sequence {C;}. It follows from Lemmas 3.4 and 3.7 that 

for i large, each Ci intersects the domain Af — J\f as an embedded, push-off C. Thus, 
when i is large, the given section of C s normal bundle over Af defines a corresponding 
push-off of each d on the compliment of Af . This results in a decomposition of each 
term of the Ci version of the right hand side of (2.2) into a sum of two contributions, 
one from the compliment of Af and the other from Af . 

Given the preceding, use Proposition 2.2 to draw the following conclusion: 

When the index i is large, then the contributions from the compliment of 
Af to each of the first two terms of the Ci and C versions of the right hand 
side of (2.2) are equal. (4.1) 

Step 3: Each Ci has its corresponding smooth model Cio with map cr^. In this 
regard, note that the complex structure on C;o is uniquely defined by cr;. Moreover, on 
a~1(Af — Af ), each C^o is diffeomorphic to a^1 (Af — Af ) C C via a map A* to C which 
makes {c^^(A71(•))} converge to a in the C00 topology. In particular, this implies that 
the Ai-induced complex structures on a~l(Af — Af ) converge to the complex structure 
on C. Now, this does not imply that the complex structure over the remainder of Ci 
converge to those on C, although it would if the genus of the compliment of (J~l{N ) 
in do was the same as that of CQ. Even so, standard results about complex structures 
on surfaces imply that the genus of the part of C^o under consideration is no less than 
the genus of Co- That is: 

The contribution to xi^io) from the compliment of Af  is no greater than x(Co)- 
(4.2) 

Equations (4.1) and (4.2) imply that the contribution from the compliment of Af 
to k(Ci) is no greater than the contribution from this same compliment to k(C). In 
fact, the argument shows the following: 

The contribution to k(Ci) from the compliment of Af is, for large i, strictly 
less than the corresponding contribution to k(C) unless the compliment of 
a~1(Af ) in do is diffeomorphic to that of a~1(Af ) in CQ. (4.3) 
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Step 4: Meanwhile, the contribution to k(Ci) from a ball component B C Af' is 

no greater than B s contribution to k(C). In fact, one has: 

The contribution to k(Ci) from a component B C J\f is no greater than B s 
contribution to k(C); and the former is strictly less than the latter if, on 
cr~1(S); the composition of Gi with projection to the t-u plane has critical /A A\ 
points . \ - ) 

The fact that k(Ci) < k(C) for large index i follows directly from (4.4) and (4.3). 
As previously remarked, the claim that Mb,k is closed follows from this last conclusion. 

Step 5: The remaining steps in this subsection are occupied with the justification 

of (4.4). This step starts the analysis by considering B s contribution to k(C). In this 
regard, remember that the contribution to k(C) from B occurs solely in the C • C 
term in (2.2). Indeed, let o G Z denote the center of this ball, and then reintroduce 
the data {</?oa} for C as defined near o using (1.5). By assumption, there exists a 
2-element subset {(p0a', (pQa" } C {poa} whose values coincide at the point o. And, 
with this understood, the contribution, (C • C% to C • C from the ball centered at o 
is obtained by summing over all such 2-element subsets the degree of vanishing at o 
of the corresponding difference ip0(Xt — ip0ci" . 

The number (C •C)0 can be computed differently. Although slightly convoluted, 
the computation of (C»C)0 given below proves useful as it uses data from the bound- 
ary of B instead directly from o. In any event, the new computation requires a return 
to the milieu of the proof of Lemma 3.8 in Section 3h. As in Section 3h, the discussion 
can be simplified without loss of generality by assuming that all of the ^a coincide 
at the point o in question. 

With the preceding now understood, re-introduce from the proof of Lemma 3.8 
the u > 0 half disk D centered at 0 in the t-u plane. Take the radius e of D small, so 
that C\D lies in the ball B from Af about the point o. 

Also, re-introduce C to denote the metric closure C\D and then 7r*C_—C_. The later 
space consists of p(p — 1) copies of D with the projection to the t-u plane providing 
this identification. Likewise, re-introduce the oriented graph F as in Step 2 of the 
proof of Lemma 3.8. If the diameter e is small, then it follows from Lemma A.5 in 
[T2] that F consists of a union of slightly perturbed straight arcs where each arc has 
one endpoint over the origin in £>, and the other endpoints lie in the t2 + u2 — e2 

boundary of 7T*C_—C_. In this regard, note that two such arcs intersect (if at all) only 
at the point over the origin. 

The number of arcs in F determine (C • C)o and vice versa. To see that such is 
the case, it proves convenient to introduce a subgraph F0 C F which is obtained by 
deleting the set of u = 0 edges from F on which t < 0 and re(A) > 0. Now, let K 
denote the set of edges e G F0 on which re(A) > 0. Here is the point: 

There are exactly  (C • C)o   elements in K. (4.5) 

To prove (4.5), let D and D denote the two components of 7r*C - C_ that cor- 
respond to a given, unordered, 2-element subset {a ,a } of {1, • • • ,p}. Then both 
F fl D and F D D are comprised of m + 1 arcs, where m is the degree of vanishing 
of ip0oL' — ip0oi" at t — 0. (In both cases, two of the arcs lie where u — 0.) The total 
number of arcs in F Pi (D U D ) which have re (A) > 0 is m 4-1 since those with re 
(A) < 0 in D' have re(A) > 0 in D" and vice-versa.   On the other hand, precisely 
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one of these arcs is deleted from F to make F0. Thus, each of the two element subsets 
of {1, • • -p} contributes the same number of elements to R as it does to (C • C)o- 

Step 6: Now consider, for large index z, the corresponding space TT*^ - C^ 
and the corresponding oriented graph F;. The point of introducing F^ is that the 
contribution to k(Ci) from B can be determined with the help of F;. However, this 
ultimate goal requires a digression in order to describe F^. This digression occupies 
Steps 6-9. 

The digression starts in this step with a description of F^ near the boundary of 
^C_i — G-i where t1 + u2 — e2. In particular, the proof of Lemma 3.8 noted that F^ 
near the t2 4- u2 — e2 boundary of 7r*Cj — C^ consists of exactly 2 • (C • C)o +p{p — 1) 
disjoint, slightly perturbed arcs, with each ending on this boundary. Of these, pre- 
cisely 2p(p — 1) project to the u = 0 line segment in D. The point here is that near 
this boundary TT*^ — C^, the arcs which comprises F; are in 1-1 correspondence with 
those which comprise F. Indeed, each arc in F^ is very close (when i is large) to a like 
oriented arc in F and vice-versa. 

Step 7: Other vertices of F^ lie either on the u = 0 line or are critical points of 
the function b. Lemma A.4 in [T2] describes F^ near the latter: There are an even 
number greater than 2 of incident edges, where half are oriented inward and half out- 
ward (these orientations alternate as the vertex is circled.) 

Step 8: An edge of F* can limit to a point in (7; C TT*^. Since Aj vanishes on 
Cj this function is not bounded away from zero on such an edge. In any event, Step 
5 in Part b of the Appendix to [T2] describes how F^ intersects a neighborhood of 
a point in C^: There is a non-zero and even number of edges in this neighborhood 
which approach the given point in C^, with half having re(A;) > 0 and half having 
re(Ai) < 0. 

Here is a pertinent example: If the point in C^ under consideration is an immersion 
point where (t,u) are good coordinates on each sheet, then there will be four incident 
edges of F; with exactly two having re(Ai) > 0. 

Here is a second pertinent example: There are precisely two edges of F^ near a 
manifold point of C^ where the projection TT to the t-u plane is critical. And, precisely 
one of the latter has re(Aj) > 0. 

Step 9: Very close to the u = 0 line, TT*^ — C^ consists of p(p — 1) strips, each 
projecting to D as {(t,u) : t2 -f u2 < e and 0 < u < 8}. Here 8 is positive, but 
8 « e. (Note that the size of 8 will depend on the index i.) Indeed, when 8 is 
small, then the analysis of Fj where u < 8 proceeds as with F in Step 4 above, and 
finds that F^ intersects each such strip as a union of almost straight arcs. Each arc 
where u is not identically zero will have one endpoint where u = 8 and the other 
where u = 0. At a u = 0 endpoint, the complex function A^ (the restriction to TT*^ 

of T?- — 7^+) either vanishes or not. In this regard, remember that the u = 0 arc 
endpoints where A; = 0 correspond to the triples {t{(pi Qa>, (pi 0a" }) where t € (—e, e) 
and where {ipi 0a>, (^ 0a" } is a pair from the index i version of the data set from (1.5) 
with coincident values at t. If the degree of vanishing of the difference, (^ 0Q,/ — <^ 0a» 
is m, then this vertex has m + 1 incident edges with two lying on the u = 0 locus. 

Next, recall from Lemma A.4 in Part b of the Appendix in [T2] that the edges of 
Ti are oriented by the restriction of the 1-form d(re(Ai)). Moreover, it follows from 
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Lemma A.5 in this same reference that each A; = 0 vertex on the u = 0 line has at 
least one incident edge with re(Aj) > 0. In fact, according to Lemma A.5 in [T2], the 
inward and outward pointing edges which are incident on this vertex alternate when 
travelling around a small half circle which starts on the u = 0 line above the vertex 
(as measured by t) and ends on the u = 0 line below the same vertex. Thus, if the 
number of such edges is even, then there are equal numbers of inward pointing and 
outward pointing edges. If there is an odd number of incident edges, then the numbers 
of inward pointing and outward pointing edges differ by one. (As A^ vanishes on the 
vertex in question, outward pointing edges have re(Ai) > 0 and inward pointing ones 
have re(Aj) < 0.) Furthermore 

• // the number of incident edges is even and if there is an outward pointing 
incident edge where u = 0 and \t\ < \t(v)\, then there is also inward pointing 
edge with u = 0 and \t\ > \t(v)\. 

• // the number of incident edges is odd, then either bothu = 0 edges are inward 
pointing, or both are outward pointing. (4.6) 

Meanwhile, the arguments for Lemma A.5 in [T2] work just as well for edge end- 
points on the u = 0 line where re(A;) is not equal to zero. In particular, the descrip- 
tion of the incident edges from the preceding paragraph holds at these vertices as well. 

Step 10: With the digression now at an end, it is time to get to the point about 
IV For this purpose, introduce F? C F^ to denote a certain subgraph which is obtained 
by deleting appropriate edges where u = 0. To be precise, delete a u = 0 edge e if 
re(Ai) > 0 on e, and if t is negative at e's starting vertex and increases along e. 
Likewise, delete a u = 0 edge e if re(Ai) > 0 on e and if t is positive at e's starting 
vertex and decreases along e. 

With F^ understood, let N; denote the set of edges of F^ on which re(A;) > 0, 
but not bounded away from zero. Now consider: 

LEMMA 4.2.   When the index i is large, then K has at most (C • C)o elements. 

This lemma is proved below, so accept it for the moment as it is the key to the proof 
(4.4). 

Here is a simple case which exhibits the lemma's application: 

• Assume that the map ai immerses ^^(B) in X. (4.7) 

Under the preceding assumption, the contribution from B to the Ci version of 
(2.2) is a sum of the following two terms. 

• Twice the number of double points of &{ on a^1(B). 
• The sum of integer weights indexed by the triples (r, {<^50Q/, ^oa" }) where r 

lies on the u = 0 line in the t-u plane where \t\ < e, and where {(pii0a', Pi^a" } 
is an unordered, 2-element subset from {<^,oa} whose values coincide at r. 
The weight for such a triple is the degree of vanishing of(pi0a> -<^?oa" • (4-8) 

With (4.8) understood, note that Steps 8 and 9 have the following consequence: The 
sum of the terms in (4.8) is never greater than the number of elements in N*. Moreover, 
this sum is strictly less than the number of elements in tii if the composition of ai 
with the projection to the t-u plane has critical points. Thus, under the assumption 
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that ai immerses crr1(S), Lemma 4.2 guarantees (5.4). 
The next step explains why Lemma 4.2 implies (4.4) without the constraint in 

(4.7). 

Step 11: Here is how to go from Lemma 4.2 to (4.4) in the general case. Take 
a > 0 but very small (as in Step 8 above) and perturb ai where tfu > S on cr~1(6) 
where u > 5 (with S very small) to make the result a pseudoholomorphic immersion. 
The construction of such a perturbation is standard using the analysis from either 
Section 5, below, or from [MS]. Moreover, the perturbation can be made so as to be 
close to the original where a*u > 28 in any given topology. Then, by employing a 
bump function, the perturbation can be melded to the original where S < (j*u < 25 
to give a map, cr^ from a^l(B) with the following properties: First, the latter is 
pseudoholomorphic where <J*U > 25. Second, it agrees with cr^ where a*u < 5. Third, 
it is close to ai on cr2~1(/3) in any Ck topology given a priori. 

Here are the reasons for considering such a map a^ If the cr^ is close to &{ as 
measured by the C1 topology, then the following four points can be assumed 

• The contribution to k(Ci) from B can be computed using Gi instead of cr^. 
• The pull-back of the function t by ai will have critical points if ai pulls t back 

with critical points. 
• The corresponding oriented graph 1^ will be a slight push-off of Fj where 

a*u < 25 and near where cr*(t2 -I- u2) — e2. 
• The corresponding t^ can be defined even though (Ji is not quite pseudoholo- 

morphic everywhere. (4.9) 

Indeed, the first point above follows directly from the definition of fc(-). The second 
point in (4.9) follows from (A.6) in [T2]. The third point follows from the discussion 
in Step 9 above, and then the final point follows from the third point. 

With (4.9) understood, the argument in the previous step as applied to the result- 
ing K; shows that the contribution to k(Ci) from B is strictly less than B s contribution 
to k(C) and thus verifies (4.4) in the general case. 

Step 12:   This step contains the 

Proof of Lemma 4-2. Introduce, as in (A.28) of [T2], the notion of an oriented, 
graphical path. In the present context, this is an embedded, oriented path in F^ 
which is a connected union of edges and vertices, and which traverses edges only in 
the direction of their orientation by d(xe(Ai)). With this notion understood, Lemma 
4.2 follows directly from the discussion in Step 6 above and the following assertion: 

Each e G Ki labels on oriented, graphical path ipe in F^ whose first edge 
is e, and which ends where t2 + u2 = e.   Moreover, if e ^ e , then 
intersections between ij)e and i/y occur, if at all, only at verticies of T® ,* .. ^ 
where re(Ai) > 0. \ -    J 

Here is how to build the set {ilje : e E Ki}: Start with an edge e G Ki and use the 
arguments for Lemma A.6 in [T2] to construct the required oriented, graphical path 
ipe. The point to Lemma A.6 in [T2] is that there are no obstructions to successively 
adding edges to an initial edge e until the t2 + u2 = e2 half-circle is reached; there 
are new edges to extend ipe past any vertex of F^. In this regard, the fact that re(A;) 
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increases along ^e insures that ^e is embedded and never returns to K^. (Use (4.5) 
when applying the arguments from Lemma A.6 in [T2] to extend ^c past any u = 0 
vertex of T?.) 

To construct ^e/ for other e G N;, employ the inductive strategy from the proof 
of Lemma A.6 in [T2]. To summarize, suppose that ipe has been constructed for all e 
in a subset ^ C Kj. Suppose that this collection {ipe : e G N^} satisfies the following 
criteria: 

• Each ipe is an oriented, graphical path whose starting edge is e and whose 
ending vertex is on the t2 + u2 = £2 half-circle. 

• The collection {tpe} is pairwise disjoint except possibly for the sharing of 
vertices ofT® where re(Ai) > 0. (4.11) 

Let F^ denote the compliment in F^ of the union of the edges of the graphical paths 
{tpe' G NJ. If e G Ni — N^, then the construction of ipe just described for the first 
choice of e G Kj can now be repeated essentially verbatim but with 1^ replacing F?. 
The result is a graphical ^e/ which obeys the first point in (4.11) and is disjoint from 
{i{;e : e G N^} except possibly at vertices of F; with re(Aj) > 0. These last points 
insure that the induction argument can be continued until all edges from N; are ac- 
counted for. 

c) The Proof of Proposition 2.7. Proposition 2.7 follows as an immediate 
corollary from Lemma 4.3, below, and Lemma 3.7; the argument is the same as that 
used in the previous section for Proposition 2.10. 

LEMMA 4.3. Let C G Mb,k — M^k+i- Then C has a neighborhood UQ C Mb,k 
and each point in Z has a neighborhood B and an integer p such that C G UQ inter- 
sects B as a union of p irreducible components. 

Proof of Lemma 4-3- Let Z C Z be a component. As in (1.4), there is an 
integer p > 0 such that each point in Z has a ball neighborhood which intersects C 
in precisely p disjoint components. Using (4.4), an argument via reduction ad absur- 
dum finds a neighborhood UQ C Mb,k — Mb,k+i of C and a tubular neighborhood 
U C X of Z such that each C G UQ intersects U as a multi-valued graph over the 
t-u plane. This directly implies Lemma 4.3. 

5. Fredholm operators. The purpose of this section is to present the proof of 
Proposition 2.6 and then that of Proposition 2.8. Note that the proof of Proposition 
2.6 is carried out first under the restricted assumption that C is the image of an 
immersion; the latter arguments are then generalized to handle all cases. The motiva- 
tion for this is simply that the complications which arise from C's lack of compactness 
can be separated from those which arise from non-immersion points. Moreover, the 
former are novel to the story here, while the latter appear already in the case where 
X is symplectic. 

a) The definition of Dc. Start with a given C G Mb which is the image of 
an immersion into X — Z. Then C has a normal bundle, JV -» C, which inherits the 
structure of a complex line bundle from the almost complex structure J. Moreover, the 
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Riemannian metric gives N a hermitian structure and thus a holomorphic structure. 
There is a tubular neighborhood No C N oi the zero section of N with an expo- 

nential map e : NQ -> X — Z which maps iVo onto a neighborhood of C and sends the 
zero section onto C. In particular, if K C C is compact, then there exists some 5 > 0 
such that NO\K contains the radius S disk bundle in iV. Note that e can be chosen so 
as to map each fiber of NQ onto a pseudoholomorphic disk. (See, e.g. Lemma 2.2 in 
[T6].) 

Via composition with e, a section s of NO\K defines a deformation of K. The con- 
dition that this deformation be pseudoholomorphic translates into a certain nonlinear 
differential equation for the sections s. The latter has the schematic form 

ds + Ro(s) + R1(s,Vs)=0 , (5.1) 

Here, i?o is an E-linear, fiber preserving map from iVo to A^(8)T0'1C, while i?i is a non- 
linear, fiber preserving, real analytic map from iVo 0 {No 0 T*C) to N ® T0,1C. Note 
that, |i?o| is bounded by a If-dependent constant, while |i?i(a, 6)| < CKI^KI^I + |&|)j 
where (K depends on K as indicated. (The d operator in (5.1) and the covariant 
derivative V are defined in the usual way from the complex hermitian structure on 
N.) 

The linearization of (5.1) defines the differential operator Dc over K, namely 

Dcs = ds + Ro(s) . (5.2) 

With Dc understood, consider now its domain and range: The domain D is defined 
to be the closure of the space of smooth sections of N -4 C using the norm 

= /(|VS|2 + M-2H2)a.. (5.3) 
JC 

Meanwhile, the range IZ for Dc is the closure of the space of smooth sections of 
N^T0ilC using the norm ||s||^ = fc \s\2(jj. In both cases, the fiber norms on N®T*C 
are defined using the metric which is induced from the metric on X. Note that the 
obvious polarizations of the norms here give inner products that make both 1) and 71 
Hilbert spaces. 

b) Outline of the proof of Proposition 2.6 for immersed C. Let C again 
denote an immersed element of Mb- With Dc understood, the initial arguments 
for Proposition 2.6 verify that the operator Dc extends to D as a Fredholm map 
into TZ. With this task accomplished, the next part of the proof follows a well worn 
path: This path begins by finding the ball B C kernel (Dc) with its map / : B -» 
cokernel (Dc)- This is done in the usual way: The implicit function theorem is first 

used to find 

• A ball B C   kernel (Dc)- 
• A smooth map, Si from B to the orthogonal compliment of kernel(Dc) in V 

which is such that 
a) si(0) = 0. 
b) s = so + si(so) solves all of (4-3) save, perhaps, its projection onto the 

cokernel of Dc- (5.4) 

The map / in the statement of Proposition 2.6 is then obtained by projecting (5.3) 
(as an TZ-valued function on B) onto the cokernel of Dc- Meanwhile, the map J7 in 



308 C. H. TAUBES 

Proposition 2.6 sends s G B to the image of the composition of s (as a section of iV) 
with the exponential map e. 

The final part of the proof of Proposition 2.6 verifies that when C G M.b,k — 
.M&^+i, then the ball B can be chosen so that T as just defined maps /~1(0) home- 
omorphically onto a neighborhood of C in Mb^h- 

The formal aspects of the proof just outlined are completely standard (see, e.g. 
[MS]). However, the non-compactness of C lends some novelty to the implimentation 
of the standard arguments. Needless to say, the novel part of the analysis takes place 
near Z. 

c) Proof of Proposition 2.6 when C is immersed. The proof is broken 
into ten steps, where the first six are devoted to the proof that DQ is Fredholm when 
C G Mb is immersed in X — Z. 

Step 1: This first step sets the stage by summarizing various relevant properties 
of C. To begin, recall that an e > 0 exists such that the r < e region of C satisfies the 
conclusions of Lemma 3.5 near any given component Z C Z. Moreover, in this region, 
the functions t and u restrict as local coordinates so that C is represented locally as a 
p-sheeted graph (t, u, (</?«(£, u), v^t, u)i<a<p). Here the set {(</?<*, va)} can be ordered 
locally, but the ordering may be permuted upon cycling around Z . Also, if the z- 
axis is unoriented as a line bundle over Z , then cycling around Z multiplies each 
pair from the set {(<£><*,^<*)} by -1. In any event, ipa(t,u) = (poa(t) + 0(u2) while 
va(t,u) = 4~1(<9^oa)^ + 0(u3)] and both of these locally defined functions have 
analytic dependence on t and u. 

As just remarked, there may be some permutation of the labels of (ipacVa) and 
multiplication by -1 around Z . Fix attention on a non-empty subset of the label 
set {!,••• ,p} on which the resulting Z action is transitive. One can assume that 
this subset has labels {!,••• ,#}. This subset corresponds to an annular component, 
A, of the r < e region of C, whereby the projection to the (t, u) plane is a q to 1 
covering map. Thus, the metric closure of A is parameterized by coordinates (r, u) G 
R/(27rqZ) x [0,e]. Here, the projection from the u = 0 boundary to Z is the standard 
q to 1 map from R/{27rqZ) to E/(27rZ). 

Meanwhile, for e small, the pseudoholomorphic submanifolds given by a pair of 
numbers (c, c) G E/(27rZ) x (0,£2/8) by setting t = c and f = c intersect the given 
annular component A C C transversally near Z . Thus, a section of the normal bundle 
of A is specified by a pair ip = (a, (3) of sections over R/(27rqZ) x (0,e] of a certain 
real line bundle over R/(27rqZ) x [0,6:]. Here, the line bundle in question is naturally 
isomorphic to the restriction to A of the z-axis line bundle (which is defined over a 
tubular neighborhood in X of each component of Z). In particular, (a, /?) are not 
bonafide functions if and only if the z-axis line bundle is unorientable and q is odd. 
In any case, the implicit exponential map sends ((r, u), (CK,/?)) G 7V|,4 to the point in 
the manifold X with coordinates (r, u, y?(r, u) -j- a, V(T, U) + /3). 

With this last point understood, the norm || • H© in (5.3) for a section with support 
on A is equivalent to the norm for the pair ip = (a, (3) whose square is 

\mi = f m\2+u-2w2)u3dTdu. (5.5) 
JA 

Likewise, the norm || • ||^ in terms of these same coordinates (a, (3) for the normal 
bundle has square || • \\l = JA \ • \2u3dTdu. 
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Finally, note that the operator Dc in (5.2), when attacking a section of iV^, can 
be written in terms of the data ip = (a, ft) with the following result: Dcip has two 
components (the real and imaginary parts of the expression in (5.2)), and they can 
be written as 

• aT — l3u — 3tt  1/3 -I- K,iaT 4- 2/^ v (pT(5 . 
• au + /3r + K2 au + 2K!2 V ipul3 . (5.6) 

Here, KI^ are the functions of v2 which appear in (3.4), while ^^ denote their deriva- 
tives with respect to this variable. (Remember that ^1,2 = 0(v2) and that both are 
analytic functions when v2 < 1/100.) 

Step 2:    This step states and proves a fundamental inequality for the operator 
Dc- The inequality in question is summarized by 

LEMMA 5.1. // the constant e > 0 which defines (in part) the annular region A C 
C is sufficiently small, then there is a constant ( > 1 with the following significance: 
Let if) — (a,/?) have support on A and vanish near the u — e boundary of A. Suppose 
that a and ft restrict as L\ functions to every open set in A on which u is bounded 
away from zero. Moreover, assume that both ||JDC'0II* 

an^ ll^-1^!!* are finite. Then 
is finite and ||^||** < C||-Dc^||*. 

Proof of Lemma 5.1. It is sufficient to prove the inequality using smooth ip = 
(a,P). With this understood, fix a bump function x '• [O?00) -* [0,1] which is 1 near 
zero and 0 on [1, oo) and nowhere increasing. For the moment, also fix 8 > 0 but with 
5 « e. Let xs denote the function of u whose value is that of x at the point u/S. 

Square the expressions in (5.6), multiply the result by (1 - xs)2 and integrate 
over A with respect to the measure vPdrdu. Integration by parts finds that 

/ (1 - X5)2\Dc^\2u*dTdu > [ (1 - X6)2(\diP\2 + 3u-2p2)u3dTdu 
JA JA 

- ^2(ii(i - xswwi + IKI - xsh- VII
2

*)+mdxsmitt'7) 
Here, £ > 1 is a constant which is independent of e if the latter is small, and inde- 
pendent of ip. By the way, the terms with the e2 factors in (5.7) come from the terms 
in (5.6) with KI^ and /^ 2- Meanwhile, the last term in (5.7) comes from rewriting 
Iu>s^ ~~ X(5)2[Q:u(^3/?)r — OiT(u3P)u]dTdu via an application of integration by parts 
ancl then the triangle inequality. 

The next observation is that the last term in (5.7) tends to zero as S tends to 
zero. Indeed, to see that such is the case, note that the last term is no larger than 
ClAn{u<b} lip^udrdu. Since this same integral is finite for S = e, the corresponding 
sequence of S versions is monotonically decreasing as 5 tends to zero with limit zero. 

Given this last point, it follows that the S —> 0 limit in (5.7) can be taken to yield 
the inequality ||i?c^||* > ll^ll* — C^IMI**- This is not quite the required inequal- 
ity since HV'II** is the sum of ||d^||^ and lln-1^!^. However, a simple integration by 
parts argument demonstrates that the latter is no greater than the former if ip van- 
ishes near the u — e circle in A. Thus, the 5 —> 0 limit in (5.7) gives the inequality 
ll-^c^ll* > (2~1/2 — f£)||T/>||**. And, this last inequality verifies the assertions of the 
lemma. 

Step 3:   Lemma 5.1 has the following global statement as a corollary: 
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LEMMA 5.2. There is a compact, measurable set K C C and a constant £ > 1 
with the following significance: If s £ 2), £/ien ||s||5) < C(||i^cs||7^ 4- ||x^5||^|| where 
XK denotes the characteristic function of K. 

Proof of Lemma 5.2. Fix a smooth, non-negative function x on X which is one 
on some very small radius tubular neighborhood of Z and which is zero on the com- 
pliment of the concentric tubular neighborhood with twice the radius. In particu- 
lar, the support of the restriction of x to C should lie in the union of the annuli A 
as described above. Then write s = x5 + (1 — x)s- A. standard trick then finds 
\\Dcs\\n > (-'(WDciXs^n + \\Dc((l - x)s)\\n - IMk), where C > 1 is indepen- 
dent of 5. Now apply Lemma 5.1 to the term with Dc(Xs) and apply a standard 
elliptic inequality to that with -Dc((l — x)5) to obtain the lemma. 

Step 4: Lemma 5.2 implies that Dc has finite dimensional kernel. This is a stan- 
dard argument because the Rellich theorem implies that the map from s -» XKS from 
2) to L2{K) is compact when K C C is compact and measurable. Or, one can argue 
as follows: As Dc is elliptic, each s 6 kernel (.Dc) with ||s||s) = 1 enjoys a priori 
bounds for its first derivatives on an open set with compact closure in C. Because 
of this fact, an infinite dimensional kernel would imply, given e > 0, the existence of 
s e kernel (D) with \\s\\® = 1 and with |s| < e at each point of K. Indeed, given 
any finite number of points in K, one could find an s G kernel (Dc) which vanished 
at each. Scaling by E* would find such an s with \\s\\^ = 1. Make the number of such 
points large and reasonably uniformly spread over K and then the apriori bound on 
the first derivatives of s would require \s\ to be uniformly small (< e) on the whole 
of K. Of course, if e is small, then Lemma 5.2' inequality can not hold. This contra- 
diction forces the conclusion that kernal (Dc) is finite dimensional. 

Step 5: The purpose of this step is to describe the behavior of an element in 
s G  kernel (Dc) near Z. In particular, consider 

LEMMA 5.3. Let s be a smooth section of C 's normal bundle which is annihilated 
by Dc and which obeys Jc \s\2w = 1. Then s E 5). Moreover, s extends to the metric 
closure of C in the following way: On the annular end A C C, write s in terms of 
(a,P) as in (5.6). Then a and (3 extend over the missing boundary, S1 x {0} C A to 
define real analytic functions of the variables (T,U) for R/(27rqZ) x [0,6]. In addition, 
a -ao(T) + 0(u2) and /? = 4:-la0(r)u + 0(u3). 

Proof of Lemma 5.3. Let B C M4 denote the ball about the origin of radius e, 
and interpret u as the radial coordinate on B. In this way, a becomes a section, a, 
of one of the two real line bundles over S1 x (B — 0). Meanwhile, introduce the three 
form /? = (3u3a where a is the volume 3-form on the unit sphere in E4. Note that 
the condition that fc\s\2uj < oo implies that both a and f3_ are square integrable on 
S1 x B with respect to the standard volume element. 

With a and /? understood, (5.6) can be rewritten schematically as 

da + *d/? + *(w A /?) = 0 . (5.8) 

Moreover, d * /3 = 0 because /? is a function only of t and u. Here and in (5.8), the 
symbol * denotes the Hodge star for a certain real analytic metric on S1 x B which is 
within 0(u2) of the product flat metric; meanwhile, w is a certain real analytic 1-form 
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on S'1 x B. Equation (5.8) and the added constraint that d * /? = 0 form a linear, 
elliptic system of differential equations on S1 x B, and standard elliptic regularity 
theorems (applied on S1 x B) imply that both a and ft are real analytic differential 
forms on 51 x B. This last result translates back to the annulus A to yield the asser- 
tions of Lemma 5.3. 

Step 6: This step completes the argument for the assertion that Dc is Fredholm. 
In this regard, note first that Dc has closed range; this is a direct consequence of 
Lemma 5.2 via a standard argument. With the range of Dc closed, the cokernel of 
Dc is isomorphic to the vector space of TJ G TZ which are annihilated by a certain 
differential operator £)£. Here D^r] = luj^D^dujlri) with D^ being the formal L2 

adjoint of Dc- 
Now, DQ is an elliptic operator and so 77 is smooth. Moreover, on an annu- 

lar end A, the operator DQ can be written in terms of the coordinates (a, /?) for 
the normal bundle A7", and in this guise, it has the same schematic form as Dc 
in (5.6). In particular, the analysis in the proof of Lemma 5.3 implies that any 
s £ kernel {DQ) with JG \S\

2
LO < 00 lies in the TV 0 T0'1C version of the domain S). 

That is, /^(IVsl2 -f |a;|-2|s|2)cc; < 00. Then, the arguments for Lemmas 5.1-5.3 apply 
with no substantive modifications to show that /c(|Vs|2 + |ct;|~2|s|2)<x> < ( fK \s\2w, 
where K C C is a certain measurable set with compact closure, and where both K 
and £ are independent of the chosen s £ kernel(.D£). This last point then implies via 
standard arguments that the kernel of DQ is finite dimensional. 

Step 7: As before, assume here only that C G Mb is immersed inX — Z. This step 
begins the construction of a map / : kernal(Dc) —> cokernel(.Dc) with an associated 
map J7: /_1(0) —> M,. Both maps have a rough description in Subsection 5b, above. 
To obtain a rigorous definition, various auxiliary issues need to be covered. This step 
is devoted these preliminary tasks. 

The first of these tasks is the introduction of the orthogonal projection 11 : IZ -> % 
which maps onto the image of Dc- In this regard, the metric to use is that which 
arises from the polarization of the norm || • ||^. This operator 11 is also the projection 
orthogonal to the kernel of the operator DQ. By definition, Dc maps 2) onto the 
image of 11 and it maps the orthogonal compliment of kernel (.Dc) isomorphically 
onto this image. (Define 'orthogonality' here using the metric which is obtained by 
polarizing the norm || • ||x).) In particular, Dc has a bounded inverse on ITfc, denoted 
by DQ

1
 , which is defined to map 117^ to the aforementioned orthogonal compliment 

in 2) to kernel (.Dc). 
The second task introduces a vector subspace 2) C 2) which is mapped by #1 

in (5.1) to 1Z. (Here and below, Ri should be viewed as simply a map which sends 
a section of A^o to one of N <g) r0'1^.) the definition of 2) requires the introduction 
of a set U whose elements are subsets of C. Here, D G U when D C C is either a 
disk a radius e/2 or less, or else D lies in an annular end A and is the intersection of 
A = S1 x (0, e) with a disk in S1 x [—e, e] and which has its center in S1 x [0,e\. Note 
that each D G U has a well defined radius and the latter will be denoted by r(D). 

The definition of 2) also requires the choice of a constant 8 G (0,1/1000). With 
J, fixed declare s G 2)   when the following is finite: 

||S||2S, = IMII, + supD6Wr(Z?)-' / (|VS|2 + M-^HM-^ . (5.9) 
JD 
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According to Lemma 5.3, the kernel of Dc lies in 5)'.   In any event, let 3}'1 C 5)' 
denote the intersection of D  with the orthogonal compliment in 2) to the kernel of 

Here is the fundamental lemma concerning £> : 

LEMMA 5.4. The vector space 3) is a Banach space with the norm \\ • H^y. 
Moreover, with Ri from (5.1) viewed mapping sections of No to those of N (8)T0,1C; 

then the latter maps © into 71. In addition, D^URi defines a smooth map from a 
ball B CD   about the origin to 1) ± whose derivative at 0 € 3D   vanishes. 

This lemma is proved in Step 10. 

Step 8: This step assumes Lemma 5.4 and then completes the construction of 
the maps / and J7 in (5.4). As in the previous steps, the arguments here only require 
that C G Mb be a immersed in X-Z. 

To begin the arguments, introduce T : OS' -» D'-1- by the rule T(-) = (•)i' + 
JD^1ni?i(-). Here, s1- is the projection of s onto 2) -L. Since D^URi^) has vanish- 
ing derivative at the origin, the implicit function theorem can be applied to obtain a 
ball B C kernel(iDc) containing 0 together with a smooth map si : B —> 5) -L with 

the property that T(so + si(so)) = 0 and ||si||s)' < Clkolli)- Here, ( is indepen- 
dent of so- With si understood, define the map / : B —> cokernel(Dc) by setting 
f(so) = (1 — ir)Ri(so + si(so)). The map J7 of (5.4) is defined on the whole of B by 
the exponential map; so by construction, it embeds /~1(0) into a neighborhood in M 
of the given pseudoholomorphic submanifold C. 

Step 9: This step completes the proof of Proposition 2.6 under the assumption 
that C is immersed. In particular, with the map J7 of (5.4) understood, the time has 
come to consider the image of J7. In particular, Proposition 2.6 assets that when C 
lies in Mb^k, then J7 maps B onto a neighborhood of C in Mb,k — ^6,^+1- And, this 
conclusion follows in a straightforward manner from the implicit function theorem 
construction of J7 provided that each C from some neighborhood in Mb,k of C is the 
image (via the exponential map) of a section of C"s normal bundle. And, the latter 
conclusion follows directly from Lemma 4.3, Lemma 3.7 and (4.3). 

Step 10:   This step contains the 

Proof of Lemma 5.4- To prove that 2) is a Banach space with the norm whose 
square appears on the right side of (5.9), it is enough to prove that Cauchy sequences 
in this norm have limits in 2) . This task is straightforward and left to the reader. 
The assertion that i?i maps a non empty ball B C 2) to 7Z follows from the assertion 
that the L00 norm is bounded on the unit ball in 2) . Then, the latter assertion follows 
from Theorem 3.5.2 in [Mo] after a minor modification of the latter to account for the 
fact that the metric closure of C has a boundary. (See, e.g. the proof of Lemma 8.3 
in [T2].) In fact, Theorem 3.5.2 implies that there exists £ > 0 such that the Holder 
norm with exponent £ is bounded on the unit ball in 2) . 

The proof that D^1 maps ILRi(-) into 2) •L is obtained in two parts. To begin, 
introduce the shorthand q = D^URiis) for s e B'. There are two parts to the 
argument that g E 2) . The first finds a constant £ > 0 which is independent of s and 
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has the following significance: When D C U has center in C — A, then 

(|Vg|2 + M-^nvr1* < Cr(D)s\\s\\l, . (5.10) L D 

Indeed, the existence of such ( can be deduced directly from Theorem 5.4.1 in [Mo] 
using the equation Dcq = ILRi. 

With (5.10) understood, it remains only to obtain the inequality in (5.10) for 
those D C U which lie in A. To derive this version of (5.10), first write q in terms of 
a pair (a,/3) so that Dcq is given by (5.6). Then, introduce (a,/3) as in (5.8). This 
translation rewrites the equation Dcq = ni?i as an equation on S1 x B which has 
the schematic form 

cfa + *d/3 + *(wA/3) =7r ,. (5.11) 

with the auxiliary condition that d * /3 = 0. Here TT is an square integrable real line 
bundle valued 1-form on S1 x B (using the product metric). Moreover, if 22 C S1 x B 
is a ball, and if r denotes the radius of D, then JD |7r|2dvol < Cr5||5||j). It then follows 
from this last fact using Theorem 5.3.7 in [Mo] that 

/ (|Va|2 + |V£|2) dvol  < (rs\\s\y . (5.12) 
JD 

After some straightfoward manipulations, this last equation implies that 

(|da|2 + u-6\d(u3(3)\2)u3dTdu < Cr(I>)'||s||^ (5.13) 
/. 

for all D £ U which lie in A. And, it is a straightfoward matter (which is left to the 
reader) to derive the D C A version of (5.10) from this last equation. 

d) The Proof of Proposition 2.6 in the general case. The argument for 
Proposition 2.6 are organized into six steps, with the first providing an overview of 
sorts. 

Step 1: In the case where Z — </>, the discussion is fairly standard (see, e.g. [MS] 
or Section 7 of [T5].) The strategy followed here mimics that used in the Z — </> case. 
The basic point is that deformation via sections of the normal bundle can not be used 
when C is not immersed, and the replacement considers not a deformation of C but a 
deformation of the map a from the smooth model Co. Using an exponential map on 
X, suitably small deformations of the latter which are pseudoholomorphic correspond 
to sections over Co of a*TX which obey a nonlinear equation whose symbol is the 
same as that of d. The outline in Section 5B is then applied in this new context to give 
the desired result. In particular, since the non-immersed points of C are away from Z, 
the required analysis marries the discussion in the previous subsections (which is still 
valid near Z) to the standard analysis as found in [MS] which is valid away from Z. 
The steps along the way are straightforward for the most part, and so the discussion 
will be brief in as much as it will touch only on the points where the path to follow is 
not fairly obvious. In particular, these points all involve the operator which replaces 
the operator Dc in the previous subsections. 
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Step 2: As just noted, the complications here arise because Co is not compact. 
However, Co does have a natural compacification, CQ to which a extends and maps 
the boundary of Z as a local covering. Moreover, as noted previously in Section 
2b, (T*TX extends over the boundary as a complex vector bundle. This means that 
the deformation problem that one studies in the case of compact Co can be formally 
set up here. The only novelty is that of setting boundary conditions for sections of 
cr*TX on dC^. 

In order to specify the appropriate boundary conditions, it is crucial to realize that 
a section s of or*T0ilCo can be written near dCo in terms of a section, so, of T0,1^ 
and a section Si ofa*N. In this regard, note that T0,1^ has a canonical basis 
along dCo, that being the vector field dt — idu. This basis identifies a section of 
T0,1^ over dCo with a complex valued function on dCo- And, with this identifica- 
tion understood, restrict attention here to sections s of a*r0,1X for which the corre- 
sponding so is real along the dCo- Such a section defines a first order deformation of 
Co which keeps dCo in Z. 

Meanwhile, an additional restriction on the section s of cr*T0'1X arises from con- 
sideration of the G*N part of 5 near dCo- In particular, consider only sections s where 
the corresponding cr*./V component, si, is such that (|Vsi|2 + U~

2
\SI\

2
)(J*LU is inte- 

grable near dCo- (The reader should note that this is the same condition which was 
imposed in Section 5a.) 

Required now is a Hilbert space completion of the just described space of sections. 
Here is the appropriate one: Complete the space of smooth sections of (j*r0'1X whose 
si component is real on dCo using the norm whose square sends a section s to 

/ (|V((l - x)s+XSo) I2 +1 ((1 - X)s + xso) |2dA+ /   (|V(x5l)|
2 + u^xs,|>*^ 

JCo JCo (514) 

Here x is the pull-back via a to C0 of a smooth function which is one on some small 
radius tubular neighborhood of each component of Z and zero on the compliment of 
a slightly larger tubular neighborhood. Meanwhile, dA is the induced area form. Call 
the resulting Hilbert space £). 

Also required is the Hilbert space 1Z which is obtained by completing the space 
of sections of a*TX using the norm whose square sends s to 

/   \((l-x)s + XSo)\2dA+ f   IxailVw. (5.15) 
J Co J Co 

(No additional boundary conditions are imposed on the si part of sections from 7Z.) 

Step 3: The condition that a small section s of a*T0,1X defines a pseudoholomor- 
phic deformation of C amounts to a nonlinear equation for s whose formal linearization 
defines an operator, Dc, with the schematic form 

D'c = d + Ilo(>) . (5.16) 

Here, Ro(') is a certain M-linear endomorphism from a*TX to cr*TX 0 T0'1^. 
Note that D'c extends as a bounded operator from 2) to TZ. Moreover, 

LEMMA 5.5. The operator D'c from (5.21) induces a Fredholm operator from 
2) toll. 

The remainder of this step is occupied with the 
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Proof of Lemma 5.5. The proof requires a well known result about boundary 
condition specifications for the d operator. A digression which starts here states and 
proves the required result. Here is the statement: 

LEMMA 5.6. Let C be a compact, Riemann surface with boundary. Let E —> C 
be a hermitian, holomorphic line bundle and suppose that SQ is a unit length section 
of E along dC . Use C^IE^SQ) to denote the space of sections s of E which are 
real multiplies of SQ along dC . Meanwhile, suppose that RQ is a smooth section of 
the bundle ofR linear homomorphisms from E to E (g) T0,1C and then let D denote 
the R-linear operator d + RQ : C00^,^) -» C00^ 0 T0'1^). Then D extends as 
a Fredholm operator from the L\ completion of CCO

(E,SQ) to the L2 completion of 
Coo(E®T0>1C'). 

Proof of Lemma 5.6. Because C is compact and RQ is zero'th order, it is sufficient 
to consider the case where i?o = 0. In this case, integration by parts finds that 

/   N2> / (|VS|2-CW2)-C/    \s\2, (5.17) 
JC' JC' JdC' 

where £ is a constant. In this regard, note that there would ordinarily be a term 
in (5.17) which involves the integration over dC of a bilinear in s and Vs, but the 
latter vanishes under the assumption that s is a real multiple of so on DC . In the 
usual way, (5.17) implies that D has closed range and finite dimensional kernel on 
the L\ completion of C00

{E^SQ). (Remember that the map from L\ functions to L2 

functions on the boundary is compact [Ad].) 
Since the range of D is closed, its cokernel can be identified with the kernel of the 

formal L2 adjoint of D acting on sections of C^IE 0 T0,1C ) which are imaginary 
multiples of a certain fiducial section E 0 T^C along DC . In this regard, note 
that T0'1C has a canonical section along dC , namely the projection of the tangent 
vector to the boundary, while E has the given section SQ. In any event, an analog of 
(5.17) holds for this adjoint of D and this means that the cokernel of D is also finite 
dimensional. 

With the digression for Lemma 5.6 now over, the proof of Lemma 5.5 is obtained 
by coupling the arguments in Steps 1-6 of the proof of Proposition 2.6 in Section 5c 
with those for Lemma 5.6. The details are completely straightforward and left to 
the reader. Alternately, excision arguments can be invoked since Dc splits naturally 
enough near dCo into a direct sum of operators for which the Fredholm story has 
already been told. 

Step 4 : With the operator Dc understood, the remainder of the argument for 
Proposition 2.6 proceeds as in Steps 7-9 of Section 5c and as outlined in Section 5b. 
The details here are left to the reader save for two comments about the operator to 
use to play the role of Dc in Sections 5b, c. The point is that one should not use 
Dc, but use instead an operator which is obtained from Dc by restricting the latter 
to the compliment of a certain finite dimensional subspace of the domain £> and then 
projecting orthogonal to a certain finite dimensional subspace of the range 1Z. (Both 
projections are required even when Co is compact.) 

Consider first the range projection: Its purpose is to allow the complex structure 
on Co to vary when a is deformed. In any event, this finite dimensional subspace is 
the image via push-forward by the differential of a of the cokernel in T^OCQ 0 T0,1^ 
of the image of d. Here d is operating on the L2 closure of the space of sections SQ of 
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the holomorphic tangent bundle of CQ which are real on 00$. Meanwhile, the range 
space for d is the L2 closure of the space of sections of To,iCo <8> T0,1^. 

The trimming of the domain 1) compensates for the possible presence of non- 
trivial diffeomorphisms of C_0 which are close to the identity, preserve <9Co and 
are holomorphic on Co- (Such diffeomorphisms exist only on spherical, cylindrical, 
toroidal and disk components of CQ.) In particular, the finite dimensional subspace 
of 2) which is involved here is also pushed forward by the differential of cr. Indeed, it 
is the push-forward of the space of sections of the holomorphic tangent bundle of C_0 

which are in the kernel of d and which are real on OCQ. 

e) The proof of Proposition 2.8. Observe first that it is sufficient to consider 
the validity in (2.5) solely for the case where C is immersed. Here is why: The 
subvariety C determines its smooth model curve, Co with the pseudoholomorphic 
map a : CQ —>> X - Z. If cr is not an immersion, there is, in any event, a perturbation 
of a which results in a map a which immerses CQ with solely positive double points, 
agrees with a near QCQ, and pulls UJ back as a strictly positive form. Moreover, 
the map a can be as close to a as desired in any given Ck topology. Since C = 
image (cr ) is immersed, symplectic and has only positive double points, the map cr 
is pseudoholomorphic for certain perturbed complex structures on CQ and X-Z. In 
particular, these almost complex structures can be taken close to the originals (and 
that on X-Z equal to the original near Z) by taking cr to be close to cr. The point 
here is that the right hand side of (2.5) can be computed using these new complex 
structures as well as the old. Meanwhile, the new version of the operator Dc will be 
a perturbation of the old (as long as cr is close to cr) and so the left hand side of (2.5) 
can also be computed using the new data instead of the old. 

With the preceding understood, assume now that C is immersed. In this case, 
the right hand side of (2.5) is x(Co) -f 2dc + N (C), where dc is the degree of the 
normal bundle to the immersion as defined using sections whose behavior near Z are 
described in Step 4 of Section 2b. (This is because a*TX splits as TCQ 0 iV when C 
is immersed.) Thus, the goal here is a proof of the assertion that the index of Dc is 
equal to x(Co) + 2dc + N (C). The following six steps achieve this goal. 

Step 1: Consider first the case where C has a compact component C . Here, the 

index of Dc is equal to the real index of the d operator for C0 acting on sections 
of the normal bundle to C . the Riemann-Roch theorem finds the latter equal to 
x(C,

0) + 2dc/. 

Step 2: Consider here a component C which is non-compact. To save notation, 
this component will be denoted also by C. The strategy here is to compare Dc with 
an appropriate d operator on a compact Riemann surface which is obtained from C_0 

by capping each end of the latter with a disk. 
The discussion starts with the observation that the inequality in Lemma 5.2 allows 

Dc to be continuously deformed through first order, Fredholm differential operators 
to obtain an operator, Dc with the following properties: There exists e >. 0 and 
define with this e, near each component of Z, the usual annulus A = 51 x (0,6:] c C. 
Then, require that Dc is C-linear on the compliment of the union of these annuli. 
Meanwhile, on S1 x (0,e/2] C A, the operator Dc, when written using the variables 
(a,/?), is the restriction from 51 x (0, oo) of an operator Do which sends (a,/?) to 

• aT - pu - ?>x(u)u-lp , 
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• au + (3T . (5.19) 

Here, x 'ls a favorite non-increasing, smooth function on [0, oo) which is identically 1 
near 0 and identically zero on the half line [e/2, oo). 

Step 3: The advantage of using Dc arises because the kernel of the operator 
DQ in (5.19) can be written down in a fairly explicit manner by separating variables. 
In particular, a linearly independent generating set Q = UnQn of elements in the 
kernel of DQ is described below. Here, n ranges over the nonnegative integers when 
the z-axis line bundle pulls back to the annulus A as an oriented bundle; otherwise, n 
ranges over the positive element in Z + 1/2. This set Q generates the kernel of DQ in 
the following sense: Each element in the kernel the restriction of D'o to any annulus 
S1 x (a, b) for 0 < a < b < oo is a suitable linear combination of elements of the set 

Q. 
The set Qo consists of the pair of solutions, 

(1,0). 
(0, k(u) = exp(3 /s>u x(s)s-1ds)). (5.20) 

Meanwhile, for each non-zero n, the corresponding Qn consists of four solutions having 
the form 

(a±n(u) cos(EnT),b±n(u) sm(EnT)) . 
(-a±n(u) sin(£nT), b±n(u) cos(Enr)) . (5.21) 

where En = 27rn/q. In this last equation (a+n,6+n) and (a_n,6_n) are two pair of 
functions of u which depend on the label n. In this regard, for small values of u, the 
leading order behavior of (a+n,fo+n) and (a_n,6_n) is given by 

a+n = 1 + S^E^u2 + • • • , &+n = -l^EnU + • • • , 
a_n = 2-1E-2u-2 + 4-1 In (Enu) • • • ,    6_n = ^"S"3 - ^E'1^1 + ■ 

" (5'.22) 

In this last equation, the notation ' • • •' indicates a function of u which is a higher 
order in u as those indicated. In particular, the a+n version of this function vanishes 
as u4 and the 6+n as u3. 

On the other hand, (a+n, 6+n) are 0(eEnU) for large values of u, while (a_n, b-n) 
are characterized by the condition that this pair is 0(e~EnU) as u gets large. In 
this regard, note that the maximum principle implies that subspace in kernel (DQ) of 
bounded elements is precisely the E-linear span of the solution in the top line of (5.20). 
Moreover, there are no ip E kernel (Do) with / l^k^^dtdu < oo. (Remember 
that k(u) is defined in the second line of (5.20). In particular, as u tends to zero, 
k(u) ~ w-3, while k(u) ~ constant as u gets large.) 

(Note: If the length of the component of Z here is some lz ^ 27r, then replace q 
in the expression for En by qlz/^TT.) 

Step 4: As the index of Dc is the same as that of Dc, it is sufficient to compute 
the index of the latter. With this understood, the simplest case to consider is the 
case where the z-axis line bundle pulls back to each annulus A as an oriented bundle. 
This assumption will be made in this step and in Step 5. 

To begin the discussion, note that any element in the kernel of Dc must restrict 
to (0,e/2) in the kernel of DQ. AS such an element has bounded (a,/3) as u —>• 0, it 
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must lie in the linear span of the set Q+ C Q whose members consist of the solution 
in the top line of (5.20) and those elements in (5.21) with the + subscript. 

Another way to phrase the preceding conclusion is that the complex valued func- 
tion a + i(3 must restrict to the circle u = e/2 as an E-linear combination of the 
constant function 1 and the complex exponentials {XelEnT : X £ C}n>o. In particular, 
this last observation implies the following : If each end of C is capped off with a disk, 
the given element in the kernel of Dc extends as a holomorphic function over each 
such disk. 

The preceding observation can be further rephrased as follows: Let N(C) denote 
the number of ends of C. Then, the kernel of Dc on C is isomorphic to the zero set of 
N(C) linear equations on the kernel of a certain 9-operator on the compact, complex 
curve C* which is obtained from C by attaching disks to each boundary component. 
In particular, the d operator in question here is coupled to the complex line bundle 
over (7* whose degree is the self intersection number of C as defined by pushing C off 
itself in the +z direction near each component of Z. 

A similar analysis for the cokernel of Dc finds that the cokernel of the aforemen- 
tioned twisted d operator of C* is the zero set of N(C) E-linear equations on the 
cokernel of Dc. The point here is the following: If i/; is an element in the cokernel of 
the twisted d operator, then tp' s restriction to the u = e/2 circle, when written as 
a+ifi, must have zero constant term in its Fourier expansion. However, the analogous 
constant term for an elements in the cokernel of Dc is constrained only to lie in the 
real, dimension 1 subspace of C which is defined by the restriction of the solution in 
the first line of (5.20). 

Step 5: The preceding identifications imply that index (Dc) = x(C*) + 2dc — 
N(C), where x(C*) now denotes the Euler characteristic of C*. Note that this number 
is x(C) + 2dc, as required. 

The conclusion that index (Dc) = x(C*) + 2dc — N(C) is easiest to see when 
the real index of the d operator on C* is at least 27V(C) and when the index of Dc 

is positive. In this case, a generic, C-linear perturbation of Dc with support on A's 
compliment will have three effects: First, the perturbed operator will again determine 
a corresponding d operator on C*. Second, the resulting perturbation of Dc will have 
trivial cokernel, and thus so will the corresponding d operator in C*. Third, a certain 
C-linear map from the kernel of this d operator to ^^(C)^ will be surjective. Here, 
the coordinates of this map correspond to a labeling of the ends of (7, and the i'th 
coordinate is evaluation at the center point of the added disk which corresponds to 
the i'th end. 

Given that the aforementioned map is surjective, it follows immediately that the 
N(C) real equations which cut the kernel of the perturbed Dc out of the kernel of 
the corresponding d operator on C* are linearly independent. This last point implies 
that the index of Dc is iV(C) less than that of the corresponding d operator on C*. 
As the index of the latter is x(C*) *+" 2dc, the result follows. 

The argument for the general case can be made by a similar comparison of the 
kernels and cokernels of D'c and the d on (7*. Alternately, the general case can be 
reduced to the preceding one using the excision property of the index. 

Step 6: In this step, assume that the z-axis line bundle restricts from a tubular 
neighborhood of Z as an orientable line bundle to some number N(C) of ends of C, 
while its restriction to some number TV (C) of ends is not orientable.  Construct as 
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before the compact, complex curve C* by capping off the ends of C with disks. Once 
again, the kernel of the operator Dc can be identified as the solution space of some 
N(C) E-linear equations on the kernel of the d operator on C* coupled to a certain 
complex line bundle over C*. In fact, just as before, such end of C which approaches a 
component of Z with oriented z-axis accounts for precisely one of these real equations. 
The other ends of Z do not contribute to these linear equations. 

Meanwhile, the complex line bundle in question has a degree which is defined 
using sections near Z which behave as follows: The section pushes off towards the 
4-£-axis along each component of Z with oriented z-axis. To define the section along 
a component Z C Z with unoriented z-axis, it is sufficient to consider the section 
along the circle where u = e/2. Here, choose any nowhere vanishing section s = (a, ft) 
of the normal bundle to C along this circle with the following properties: 

• (a,/J)|T=o = (l,0). 
• (a,/3)|r=27r = (-l,0) . 
• Vr(a>i8)|T=o = (0,-l). 
• (a, /3) ^ (dbl, 0) except where r = 0 and r = 27r. (5.23) 

The reader can check that the section near Z just described is homotopic through 
non-vanishing sections of N to that which is given in Step 4 of Section 2b. Thus, the 
degree in question for the complex line bundle is dc- 

With the preceding understood, the arguments in the previous two steps can be 
repeated essentially verbatim to conclude that mdex(Dc) = x(C*) + 2dc — N(C) = 
x(C) + 2dc + N,(C). 

6. The appearance of q±. The purpose of this section is to provide proofs of 
Proposition 2.11 and 2.12. 

a) The proof of Proposition 2.11. The proof of this proposition starts with 
a digression to state a lemma about perturbations of the given J in a small ball. In 
the statement of the lemma, a symplectic subvariety of a ball is said to have finite 
energy when the integral of the symplectic form over the subvariety is finite. 

LEMMA 6.1. Let Bi and B± denote the standard balls of radius 1 and 4 in E4 

with center at the origin, and let u denote the standard symplectic form on E4. Let 
J be an u-compatible, almost complex structure on B4 and let C C B4 be a properly 
embedded finite energy, J-pseudoholomorphic subvariety which contains the origin. 
Now, let J denote the space of smooth, LJ-compatible, almost complex structures on 
B4 which agree with J on a neighborhood of B4-B1 in B4. And, let Jo C J denote 
the subset of complex structures which admit a finite energy, pseudoholomorphic sub- 
variety which contains the intersection of C with B4 — Bi. Then J — Jb is a Baire 
set, being a countable intersection of open and dense subsets of J. 

Given the preceding lemma, here is how to prove Proposition 2.11: Suppose that 
((?,6j) does not lie in Q . Then either #+,#_ is non-zero, or both are non-zero. The 
argument below assumes that #+ = 1 and q- — 0. Except for some sign changes, the 
same argument works for the case #_ = 0 and #+ — 1. The argument for the case 
where both q± — 1 also requires only cosmetic changes to the argument that follows. 
In any event, the argument for these last two cases is omitted. 

To begin, fix some small e > 0 and let B be a ball of radius 20 e with center on 
Z and such that the pair (g,Lj) is described by (1.1) in B. Now, fix a ball B4 C B of 
radius 4e whose center lies on the positive z portion of the t-z plane at distance at 8£ 
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from where z — 0. Let B\ C B± denote the concentric ball of radius e. 
Now, let J denote the almost complex structure v/2^_1a;/|a;| and consider an 

^-compatible almost complex structure, J , which agrees with J except in a compact 
subset of the interior of B\. Together, J and UJ define a pair (g ,uS) £ Q. 

If this pair does not lie in Q and is sufficiently close to (#, CJ), then there will exist 
a J -pseudoholomorpic subvariety C C X - Z which also contains some non-empty 
neighborhood of z — 0 in the z > 0 portion of the t-z plane which lies in the ball B. 
(Of course, C might contain some part of the z < 0 portion of the t-z plane, but if 
this were true for all J near to J, then by Proposition 3.8 in [T2], the invariant q- 
would equal one for C.) 

There is a version of the unique continuation principle which is valid for pseu- 
doholomorphic submanifolds. The latter implies, in part, the following: Let U be 
a connected, open subset of the intersection of the original ball B with the z > 0 
portion of the t-z plane. If there are points with sufficiently small values of z in U, 
then U C C . (This unique continuation principle follows from the fact that pseudo- 
holomorpic subvarieties are manifolds on the compliment of a countable set of points. 
See, e.g. [PW], [Ye], [Pan], [MS].) With this last point understood, it follows that 
C contains the annulus A in the t-z plane given by intersection of the latter with 
I?4 - Bi. 

On the other hand, according to Lemma 6.1, there is a Baire subset of w- 
compatible perturbations of J such that any such J differs from J only in Bi and 
admits no pseudoholomorphic subvariety of B4 which contains the annulus A. 

Proof of Lemma 6.1. First of all, by restricting to a smaller ball inside i?i, 
and then rescaling the metric, one can restrict to the case where the given J is a 
small perturbation of the standard almost complex structure JQ, and where C is a 
properly embedded disk in B^ which is a small perturbation of the disk about the 
origin in the t-z plane. (Here, E4 is given coordinates (t,z,x,y) and u = dt A dz + 
dx A dy, while Jo = dtdz — dzdt -h dxdy — dydx.) For E > 0, let JE C J denote the 
subset for which the following statement is true: No pseudoholomorphic subvariety 
with energy J u < E contains the intersection of C with B± — Bi. The proposition 
follows with a demonstration that JE is open and dense for all positive numbers E. 

The proof that JE is open argues that the compliment, J — JE is closed. For 
this purpose, consider J G J and a sequence {Ji) in J — JE which converges to J . 
By assumption, for each i, there is a finite energy, Jj-pseudoholomorphic subvariety 
Ci C B± which contains the intersection, A, of C with B± — Bi and which has energy 
no greater than E. With this understood, appeal to Proposition 3.8 in [T2] to deduce 
that the sequence {Ci} has a subsequence which converges geometrically to a limit 
that includes a pseudoholomorphic subvariety for J which also contains A and which 
has energy no greater than E. Thus, J G J — JE. 

To see that JE is dense in J, argue as follows: Take j' G J - JE and it 
is sufficient to prove that this J is in the closure of JE. The proof will be by 
contradiction; namely the assumption that J lies in the interior of J — JE will yield 
some nonsense. So, assume that J is in the interior of this last set. Thus, each Ji 
near to J will admit an irreducible, finite energy pseudoholomorphic subvariety, Ci, 
which contains A. To arrive at the contradiction, associate to Ji as described above 
the following: 

£(Ji)  = ln£{[u}, (6.1) 
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where the inf is taken over all irreducible, finite energy Ji-pseudoholomorphic sub- 
varieties in B4 which contain the region A. Note the S is necessarily defined and 
bounded by E on some neighborhood of J . On the other hand, the assumption that 
£ is defined on a neighborhood of J will be shown to imply that £ is unbounded on 
any neighborhood of J . This is the contradiction which proves Lemma 6.1. 

The conclusion that £ is unbounded on any neighborhood of J follows by iterating 
the following lemma: 

LEMMA 6.2. There exists e > 0 with the following significance: Let Ji lie in the 
interior of J — JE. Then, there exist elements in J which are as close as desired to 
Ji in the C00 topology, and which have £ > £(Ji) -f e. 

Proof of Lemma 6.2. Observe first that if Ji G J - JE\ then Proposition 3.8 in 
[T2] implies that there exists an irreducible, Ji-pseudoholomorphic subvariety Ci C 
B4 whose energy is equal to £(Ji) and which contains the region A. Consider now 
perturbing Ji in a small ball which is centered on C, whose closure is contained in #1, 
and whose intersection with A is contained in a connected open set which intersects A. 
The assumption that Ji is an interior point of G — QE implies that the perturbation, 
J2, if sufficiently close to Ji in the C00 topology, comes with an irreducible, J2- 
pseudoholomorphic subvariety of £4 which contains A and whose energy is no greater 
than E. 

Take a sequence of such perturbed versions of Ji which converges to Ji in the C00 

topology. The corresponding sequence of irreducible, pseudoholomorphic subvarieties 
in B4 will converge geometrically, and the limit will be a set of Ji -pseudoholomorphic 
subvarieties with positive multiplicities. (Again, this all follows from Proposition 
3.8 in [T2].) Note that Ci must appear in the set of such subvarieties as each of 
the elements of the sequence contains A and Ci contains A. If Ci appears with 
multiplicity greater than 1, or if a second subvariety appears in the limit set, then 
the energies of the elements in the sequence must be at least some fixed amount, e, 
greater than that of Ci. (The second subvariety intersects Bi but must extend out 
to B± and so has a uniform lower bound to its energy.) 

With this last point in hand, Lemma 6.2 can fail only if the following assertion is 
true: 

Every sequence of subvarieties as just described converges geometrically, 
and the limit is Ci with multiplicity one . (6.2) 

On the other hand, a sequence can be exhibited where the latter conclusion is im- 
possible. The exhibition below of such a sequence completes the proof of Lemma 6.2. 
The exhibition of this promised sequence requires six steps. 

Step 1: The perturbation of Ji will occur in a ball B C Bi of very small radius 
centered on C and situated where Ji = J and where Ci coincides with C. Let 5 > 0 
denote the radius of B . 

Let D denote the intersection of B with C. Then, D C Ci. Moreover, if the 
radius S of B is chosen small, then D is an embedded disk. Furthermore there 
exists c > 0 such that when 6 < 100c, there are complex coordinates (£,77) on a 
neighborhood of B  in E4 with the following properties: 

• {(£,»?) : l£|2 + M2 < <52/4 C B' C {(Z,v) ■ l£|2 + M2 < 4<52}. 
• The origin gives the center of B . 
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• r} = Oon D . 
• When \K\ <C, then the disks EK = {^ = /^, \rj\ < c} are J-pseudoholomorphic. 
• The complex valued 1-form df; and drj have norm yj2 + 0(\r}\ + |^|) and their 

projections into the T0,1 summand ofTB' has norm 0(\rj\). (6.3) 

(See, e.g. Lemma 5.4 in [T5].) 

Step 2: To define the perturbations of Ji, first observe that the tangent space 
at J to the space of ^-compatible almost complex structures consists of first order 
deformations of J of the form [J, S], where ST = S. That is, 5 is a symmetric, 
4x4 matrix. In this case, take S = scr/, where 5 is a real number between 0 and 1, 
where a is a smooth function on B with compact support, and where / is a 4 x 4 
symmetric matrix which has only its t-x and r-t entries non-zero. In particular, require 
I • dt = dx and I ■ dx = dt. 

To be precise about cr, choose a fixed function x '• [0? o0) ~^ [0,1] which equals 
one near 0 and zero near one. Then, set cr{XiV) = x(10(l£|2 + M2)/^2)- 

Varying s towards 0 gives a sequence of first order deformations of Ji which 
converges to Ji in the C00 topology. This first order sequence should then be expo- 
nentiated to obtain the desired sequence of almost complex structures which converges 
to Ji. This sequence will be denoted by {Jis}, where Jis = Ji + scr[Ji,/] + 0(s2a2). 

Step 3 : Perturb Ji to Jis. If the assertion in (6.2) is true, then there must exist, 
for fixed 5 and then for each sufficiently small and positive 5, a Jis-pseudoholomorphic 
subvariety Ds C B which agrees with D on the compliment of the support of the 
function a. Moreover, as s —> 0, the sequence {Ds} must converge to D . These last 
conditions imply that each Ds is an embedded disk which can be written as a graph 
over D . This is to say that each Ds (for small and positive s) is parameterized by 
K G D via (£ = tt,// = /s(tt)). Here, fs is a smooth function. Also, be aware that 
supD> \fs\ —> 0 as s -> 0. 

The argument for the assertion that Ds is a graph over D proceeds as follows: 
If K £ D , then the submanifold EK intersects D exactly once. Meanwhile, for 
small 5, each such EK can be perturbed to give a family of Ji5-pseudoholomorphic 
submanifolds of B parameterized by the points in D . Moreover, the perturbed 
version of E^ can be assumed to pass through the point K in D and to agree with 
the original version when K is near the edge of D . Indeed, a slight modification of 
the arguments for Lemma 5.5 of [T5] will produce this family of perturbations. 

Now, for K, near the edge of D , the corresponding perturbation of E^ has intersec- 
tion number 1 with Ds as the latter agrees there with D . Thus, if Ds is everywhere 
close to D , then each perturbed version of E^ will have intersection number 1 with 
Ds. As both of these varieties are Jis-pseudoholomorphic, it follows that they have 
geometric intersection number 1 as well. Thus, Ds is realized as a graph over D . 

Step 4: Given that Ds is a graph over D , the assertion that Ds is Jis-pseudoholo- 
morphic translates into a certain non-linear differential equation for the function fs. 
In particular, this function obeys an equation having the schematic form 

dfs + vfs +Vfs = sa_ + U . (6.4) 

Here, v and // are determined by the 1-jet of J along C and thus bounded in norm 
by a constant which is independent of the radius, 8 of B and of the parameter s. 
Meanwhile, g_ is, up to a factor of 2 and a sign, just the restriction of a to D . Finally, 
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for small S and sufficiently small s, the terms which comprise IZ in (6.3) obey the 
bound 

|ft|<C(s<5 + s2 + |/s|
2 + |/s||V/s|). (6.5) 

Here, ( is a constant which is independent of 8 and s. 
Note that of interest here are those solutions to (6.4) which have compact support 

in£>\ 

Step 5: Square both sides of (6.4) and integrate over D . After an integration by 
parts to equate J |c?/s|

2 with 4_1 J |d/s|
2, some standard inequalities for the Dirichlet 

integral can be invoked. (Since /s has compact support in D , there is nothing to 
hinder either the integration by parts or the inequalities that will be subsequently 
invoked.) In particular, given that /s has compact support in D and has small norm 
when s is small, and given (6.5), one can deduce that 

/ (r2|/.|2 + Mf.|2)<c*V. (6.6) 
JD' 

where £ is, once again, independent of 5 and s. 

Step 6: To see that the assertion in (6.2) cannot hold for the sequence {Jis}, it 
is sufficient to prove the following: When 5 is small though positive, and when s is 
positive, but very small, no compactly supported function fs satisfies both (6.4) and 
(6.6). Indeed, if fs satisfies (6.4), (6.6) and has compact support, then an integration 
of both sides of (6.4) yields the equality 

/  (vfs + Vfs) = s [   a + 0(53s + 52s2) . (6.7) 
JD' JD' 

(Here, (6.5) has been used to obtain the error term on the right hand side.) In 
particular, note that for small J, and then for very small s, the integral term on the 
right hand side of (6.7) has absolute value which is greater than a certain 8 and s 
independent multiple of s82. Thus, s82 gives the size (in absolute value) of the right 
hand side of (6.7) when 8 is small and then s is very small.) Meanwhile, according 
to (6.6), when 8 is small and then s is very small, the left hand side of (6.7) is no 
greater than a uniform multiple of <53s. Thus, (6.7) cannot hold for small 8 and then 
very small 5. 

b) Proposition 2.12. Once the map, ^, from a ball into Q is fixed, one can 
use a continuous family of isotopies of X (parameterized by the ball) to obtain a new 
map, -0 , which parameterizes closed 2-forms which all have the identical vanishing 
set Z. Then, the metrics and forms which are parameterized by ip will all agree on 
some tubular neighborhood of Z. In this regard, be aware that Q decomposes into 
components which are classified, at least in part, by isotopy classes of the circles which 
comprise the set Z. 

Note that this family of isotopies which turns ^ into xj) , though parameterized by 
the given ball, need not yield the trivial isotopy when the parameterizing point lies on 
the boundary of the ball. In any event, once the map ?/> is perturbed to a map into 
Q , the isotopies can be run backward on this perturbation to obtain a perturbation 
of the given map ty which agrees with -0 on the boundary of the parameterizing ball, 
yet lands fully in Q . 



324 C. H. TAUBES 

With the preceding understood, one can henceforth assume with out losing any 
generality that all the pairs (g,(j) which are parameterized by the map ip have the 
same Z and are identified in some neighborhood of this Z. Then, the preceding proof 
of Proposition 2.11 also proves Proposition 2.12 in that the argument for the former 
concerned a perturbation which was localized to any sufficiently small radius ball near 
Z with center on the t-z plane. 
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