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ON THE GEOMETRY OF NILPOTENT ORBITS* 

WILFRIED SCHMID* AND KARI VILONEN* 

1. Introduction. In this paper we describe certain geometric features of nilpo- 
tent orbits in a real semisimple Lie algebra g^. Our tools are Ness' moment map [N] 
and the proof of the Hodge-theoretic SX2-orbit theorem [S,CKS]; our aim is a better 
understanding of the Kostant-Sekiguchi correspondence [Se]. 

Let us recall the nature of the correspondence. We choose a Cartan decomposition 
9M = ER © PR, which we complexify to 9 = E © p. Four groups will be of interest: the 
automorphism group G = Aut(g)0, the real form GR = Aut(gR)0, the connected 
subgroup K with Lie algebra 6, and KR = GROK, which is maximal compact in both 
GR and K. Sekiguchi [Se] and Kostant (unpublished) establish a bijection between 
the set of nilpotent GR-orbits in gR on the one hand and, on the other hand, the set 
of nilpotent K-orbits in p - this is the Kostant-Sekiguchi correspondence. 

Our proof [SV2] of a representation theoretic conjecture of Barbasch and Vogan 
depends on a particular geometric description of the correspondence. In very rough 
terms, our version of the correspondence amounts to an explicit (but subtle) defor- 
mation of any nilpotent if-orbit in p into the GR-orbit that it corresponds to. Earlier 
[SV2] we had reduced this result - theorem 7.22 below - to certain geometric state- 
ments about nilpotent orbits. These statements - lemmas 8.5 and 8.10 - are proved 
in the final section of this paper. Along the way, we obtain several results on nilpo- 
tent orbits that look interesting in their own right. What we do has implications for 
Kronheimer's instanton flow [Kr]: the flow is real analytic at infinity, with a power 
series expansion that we describe recursively. 

To give some idea of our methods, we consider a nilpotent GR-orbit O in gR — {0}. 
Ness' moment map [N] is a real analytic, i^R-invariant map m : 8(0) —>• PR; here 
S(O) ~ E+\(9 denotes the set of unit vectors in O. The square norm ||m||2 assumes 
its minimum value exactly along a i^R-orbit in S((9), which we call the core of (9, 
and denote by C(O). Each point of the core determines, and is determined by, an 
embedding of 51(2, E) <-» gR, compatibly with the Cartan involutions. This fact - in 
effect, a refined version of the Jacobson-Morozov theorem - is a crucial ingredient of 
Sekiguchi's description of his correspondence. The core contains much information 
about the orbit; for example, O is i^R-equivariantly and real analytically isomorphic 
to TQ^Q^O, the normal bundle of the core. 

The properties of nilpotent GR orbits we mentioned so far all carry over to nilpo- 
tent orbits attached to involutions: if i^R C GR is the fixed point group of an involutive 
automorphism a : GR —> GR, then H^ acts on the nilpotents in the (—l)-eigenspace of 
a on gR. Orbits of this type have cores, which again can be characterized as the set of 
minima of ||ra||2, and orbits in this setting are again isomorphic to the normal bundles 
along their cores. Since K is the group of fixed points of the Cartan involution, this 
discussion applies to nilpotent if-orbits in p. The core of any such orbit Op corre- 
sponds to a i^R-orbit of Cartan-compatible embeddings of 51(2, E) into gR, just as in 
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the case of a nilpotent GR-orbit. Orbits of the two types are Sekiguchi-related pre- 
cisely when their cores coincide via the description of cores in terms of embeddings of 
51(2, E) into gR. This shows, in particular, that the cores of any two Sekiguchi-related 
orbits are i^R-equivariantly, real analytically isomorphic. 

Not only are the cores of Sekiguchi-related orbits isomorphic, but also their normal 
bundles. We show this by giving a description, inspired by the nilpotent orbit theorem 
[CKS,S], of the fibers of the normal bundles, in terms of Cartan-compatible linear maps 
s[(2,M) -» JJR. Since the orbits are isomorphic to the normal bundles of the cores, 
we thus get i^R-equivariant, real analytic isomorphisms between related orbits. The 
existence of isomorphisms of this type had been deduced earlier from Kronheimer's 
results [Kr] by Vergne [Ve]. 

The description of the normal bundles, in conjunction with arguments in [CKS,S], 
leads to our refinements of Kronheimer's results. We recall those results in §3, and 
state and prove the refinements in §5. Neither the logic nor the exposition of the proof 
of our version of the Kostant-Sekiguchi correspondence depends on these two sections. 

We wish to thank David Vogan for informative discussions. In particular, he 
alerted us to the fact that the isomorphism between a nilpotent orbit and the normal 
bundle of its core is a particular instance of a general property of homogeneous spaces 
of reductive Lie groups. 

2. Nilpotent orbits and the moment map. We consider a real semisimple Lie 
algebra g^, and let GR denote the identity component of Aut(gR). Further notation: 
KR C GR is a maximal compact subgroup, 

(2.1) gR  = feepR 

is the Cartan decomposition, and 8 : gR -> gR the Cartan involution. We define the 
inner product 

(2-2) Ki,C2)   =   -£(Ci,0Ca) (CI,C2€8R) 

in terms of the Killing form B. It is positive definite and XR-invariant. We use the 
term "Killing form" loosely: a GR-invariant symmetric bilinear form which is negative 
definite on £R. 

Ness [N] has defined a moment map for linear group actions. In our situation, it 
is a ifR-invariant, real algebraic map 

(2.3) m : QR - {0}   —>  pR, 

described implicitly by the equation 

(2.4) (m(0,»?)  =   gj^jja (^IIAdexp^Cll2)]^. 

As rj runs over gR in this equation, m(Q becomes determined as vector in gR. But 
the inner product is ifR-invariant, hence m(Q does lie in pR. The i^R-invariance also 
implies 

(2.5) m(Ad(*)C)  = Ad(A0(m(C))        (k e KR), 

i.e., the map m is i^R-equivariant. To get an explicit formula for m(C), we calculate: 

(26)      \{jt\\Me^t^\\2)\t=o =  (MX)  = -B([r,,(\,60 

= -Bfo.MC]) = B(T,,6[(,6Q) = -(r^MCD = -([CMv), 
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for every test vector rj e QR, hence 

(2-7) m(0  = - M 

The moment map is invariant under scaling, hence descends to the projectivized Lie 
algebra P(0R). For our purposes, it is preferable to work on 

(2.8a) S(giO  = E+\(0R-{O}), 

the universal (two-fold) cover of lP(flR) = E*\(gR - {0}). Note that 

(2.8b) S(0R) s {Ceto|||CII2 = i}; 

however, to see the action of GR, one must think in terms of the description (2.8a) of 
S(0]R). 

For our next statement, we fix a particular nilpotent Girorbit O C QR — {0}. By 
Jacobson-Morozov, any £ G O can be embedded in an essentially unique sfe-triple. In 
other words, there exist r, £_ in QR such that 

(2.9) [T,C]=2C,     [r,C-] = -2C-,     [C,C-]=r, 

r is unique up to conjugacy by the centralizer of £ in GR, and £_ becomes unique 
once r has been chosen. In particular, the orbit O determines r up to GR-conjugacy. 
Thus, when we re-scale B by requiring 

(2.10) B(T,T)  = 2, 

the normalization depends on the orbit (9, not on the particular choice of £. By 
construction, the re-scaled B restricts to the linear span of CJC-?

7
" 

as the trace form 
of 51(2, E), to which this linear span is isomorphic. The one parameter subgroup of GR 

generated by r normalizes £ and acts on it via E+. This establishes the well-known 
fact that nilpotent orbits are invariant under scaling by positive numbers. The action 
of KR on the nilpotent orbit O commutes with scaling, so the product group KR X E+ 

acts on O. 

2.11. Lemma. A point £ E O is a critical point of the function C »-> ||7Ti(C)||2 if 
and only if there exists a real number a, a < 0, such that 

[MCU]  =  aC     and     [MC],^]   =  -aOC 

The set of critical points is non-empty and consists of a single KR X E+ -orbit. The 
function \\m\\2 on O assumes its minimum value exactly on the critical set. 

Proof. Most of the assertions of the lemma follow readily from an adaptation of 
[N, theorems 6.1, 6.2] to the case of real group actions [Ma]. It is also possible to argue 
directly in our particular situation, as follows. To begin with, £ is a critical point if 
and only if ad(m)(£) normalizes the line E£; this comes down to a short calculation, 
as in the proof of [N, theorem 6.1]. Hence C is a critical point if and only if 

(2.12a) [MCU]  = aC 

for some a G E. Applying 9 to both sides, we find 

(2.12b) [Ma^C]  =  -a0C- 
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Next we argue that (2.12a), plus the nilpotency of £, forces a < 0. Indeed, [(,0Q lies 
in the (-l)-eigenspace of 9, i.e., in pR, on which B is positive definite. Thus 

allCII2 = -B([K,ec],Q,90 = -SCMCLMC]) = -IKC^CIII2 <o. 

Equality cannot hold: write ( = Ci + (2 with Ci G fe, (2 G PR; [C^OQ = 0 implies 
[Ci 5 (2] = 0; both summands are semisimple, making C simultaneously semisimple and 
nilpotent - impossible, since O ^ {0} by assumption. This gives the first assertion of 
the lemma. Continuing with the assumption that £ is a critical point, we rescale £ by 
a positive multiple to make a — —2. Then, if we set r — — [C^C] and C- — — ^C the 
triple C? T, C- is a strictly normal S-triple in the sense of Sekiguchi [Se]. The set of all 
C G O which can be embedded into a strictly normal S-triple consists of exactly one 
l^R-orbit [Se]. Thus, as claimed, the critical set in O is non-empty, and K^ x E+ acts 
transitively on it. The moment map (2.4) extends naturally to the complexification 
Oc of O - i.e., the orbit of Aut(g)0 in g = C ®R 0M passing through O. Any critical 
point of ||m||2 : O —> M>o remains critical for the function ||m||2 on Oc. According 
to [N,theorem 6.2], the set of critical points of ||m||2 : (9c -* M>o coincides with the 
set of minima of ||m||2 on Oc- We conclude that all critical points of ||m||2 on O are 
minima, as asserted by the lemma. 

Let us rephrase the lemma in slightly different terms.    Since E"1-  acts on the 
nilpotent orbit 0, we can define 

(2.13) S(O) - E+\0 ^  {CGO| ||C||2 = 1} 

in analogy to (2.8). We shall call 

(2.14) C{P)  =  { ( G S(O) I C is a critical point for ||m||2 } 

the core of O. The core becomes a submanifold of O when we identify S(0) with the 
set of unit vectors in O: in analogy to (2.8b), 

(2.15) ^(O) is the set of all critical points in O of unit length. 

According to lemma 2.11, 

a)   C(0) is non-empty, 

(2.16) b)   Ku acts transitively on C(0), and 

c)   E+ • C(0) is the critical set in O. 

The simplest example of a pair (JJR, JR) satisfying our hypotheses is (sl(2,E),so(2)). 
To simplify the notation, we set 

SR  = s[(2,E),   with Cartan involution 
(2-17a) *.:.-►«,     61.(0  =  -t 

The three elements 

x0   0/'    J        \1   0J' \o   -1 

constitute a basis of SR and satisfy the relations 

[h,e]  = 2e,    [h,f]  =  -2f,    [e,f]  = h, 
(2"17c) es(e) = -f,   es{h) = -h. 



ON THE GEOMETRY OF NILPOTENT ORBITS 237 

Although we are interested primarily in real Lie algebras, it is useful for certain pur- 
poses to complexify. We write Mor(s, g) for the set of non-zero Lie algebra homomor- 
phisms from s = sl(2, C) to the complexification Q = C (8)R QR of £JR, and define 

MorR(5,0)  =   { $ G Mor(s, 0) | $ is defined over M } , 

(2.18) More(5,0)  =  {$ GMor(5,g) |(9o$ = $o6>s}, 

MorR'*(5,g)  = MorR(s,Q)nMoie{s,g). 

Note that MorR(s,g) is naturally isomorphic to Mor(sR,gK), the set of non-trivial 
morphisms between the real Lie algebras SR, QR. The group KR acts on MorM(5,0) 
through the adjoint action on g^ : (k $)(C) =def Ad &($(£)). 

2.19. Lemma.   T/ie map $ H-> $(e) establishes a KR-equivariant isomorphism 

{ $ G MorR'*(5, g) I *(e) G O }   =  C{0). 

Proof. Note that any $ G MorR,6,(s,g) is uniquely determined by its value on e 
- cf. (2.17c). If C = $(e) lies in the orbit O, it is a critical point, as follows from 
lemma 2.11, coupled with the relations (2.17c); any such £ has unit length since the 
normalization (2.10) of the Killing form makes $ an isometry, relative to the trace 
form on SR. This makes the map $ »->• $(e) well defined and injective. It is surjective 
because a — — 2 in the proof of lemma (2.11) if and only if \\(\\ = 1; in that case, the 
triple C, C-> T defined in that proof satisfy the same relations (2.17c) as e, /, h. The 
equivariance, finally, is obvious from the definition of the action. 

Lemma 2.19, together with 2.16, formally implies a statement that appears, in 
different language, in [Se]: the set of nilpotent GjR-orbit in g^ — {0} corresponds 
bijectively to the set of ifR-orbits in MorR'0(s,0). 

The inner product (2.2), normalized as in (2.10), determines a i^R-invariant Rie- 
mannian metric on SQJR). We use this metric to give meaning to the gradient vector 
field V||m||2 on S(0R). Note that gR acts on §(0R) by infinitesimal translation. For 
f] £ 01R7 t-W) shall denote the vector field corresponding to r]. A simple calculation 
shows 

(2.20) (V|M|2)|C  = 2£(m(C)) 

[N]. In particular, the gradient vector field - both on O and on S(O) - is tangential 
to GR-orbits. 

2.21. Proposition. The function ||m||2 : §((9) -> E is Bott-Morse. It assumes 
its minimum value on the core C(0), and has no other critical points. Its gradient 
flow establishes a natural K^-equivariant real analytic map from S(O) to the core 
C(0) which exhibits C(0) as a strong deformation retract of S(0). 

The normalization (2.10) specifies the value of ||m||2 on C(0) as 2. Thus we can 
conclude: 

2.22. Corollary. The family of open sets {77 G S(0) | ||m||2(r/) < 2 + e} , e > 0, 
forms a neighborhood basis of C(0). 

Since S(0)=R*\0, we can combine the retraction S(0)-+C(0) with E*^ {1} 
to construct a retraction of O: 

2.23. Corollary. There exists a K^-equivariant, real analytic, strong deforma- 
tion retraction O —> C(0) . 
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Proof of proposition 2.21. Recall the notion of a Bott-Morse function: the critical 
set is a compact manifold, and the Hessian descends to a non-degenerate bilinear form 
on the normal bundle. Lemma 2.11 implies that ||m||2 assumes its minimum along 
C(0) and has no critical points outside of C(0)) which is surely smooth and compact. 
Ness [N, theorem 6.2] points out that the non-degeneracy is a general property of 
moment maps attached to linear actions of semisimple groups. This establishes all 
but the final assertion. For the last assertion, let us consider the unstable set of the 
gradient flow of ||m||2 associated to C(0), i.e., the union of the integral curves of 
V||m||2 emanating from C(O). Because the function ||m||2 is Bott-Morse, this set is 
a manifold. We shall show: 

the unstable set of the gradient flow associated 
(2 24) v '    ; to the critical set C(0) consists of all of S(O). 

The existence of a retraction from S(O) to C(O) will then follow. To establish (2.24), 
we may work on IP(O) = {±1}\§((9). This allows us to complexify the situation, 
replacing 1P(0R) by P(g), the projectivization of the complexified Lie algebra g , and 
correspondingly V(0) by P(Oc) > the appropriate orbit of G = Aut0(g). The inner 
product on g^ extends to a hermitian inner product on g, which is preserved by UR, 

the unique maximal compact subgroup of G which contains KR. The definition (2.4) 
of the moment map carries over to the complexified setting, where it agrees with the 
usual (symplectic) moment map associated to the action of Uu on P(g) [N]. According 
to Kirwan [Ki, theorem 6.18], the stratification defined by the gradient flow on P(g) 
is G-invariant. In particular, it is GR-invariant. Since the gradient flow on P(gR) is 
tangential to the G^-orbits, we can deduce that the stratification of P(gR) defined by 
the gradient flow is GR-invariant. 

The assertion of corollary 2.23 can be strengthened considerably: the orbit O is 
isomorphic to the normal bundle of its core C(0). David Vogan pointed out to us that 
this is a particular instance of a general fact about homogeneous spaces of semisim- 
ple Lie groups. Mostow [Mo, theorem 5] proved that any quotient of a semisimple 
group by a semisimple subgroup fibers equivariantly over an orbit of a maximal com- 
pact subgroup, with Euclidean fibers; the fibers are then necessarily the fibers of the 
normal bundle. The analogous statement in general case, i.e., for the quotient of a 
semisimple group by a closed subgroup, can be reduced to Mostow's theorem. Below 
we shall sketch the argument for nilpotent orbits, since we know of no statement in 
the literature that would imply it. 

2.25. Proposition. There exists a KR-equivariant, real analytic isomorphism 
0~TC(0)0. 

Proof We fix a point *(e) € C(0) and use $ G MorR^(5,g) to identify s with a 
subalgebra of g. In particular, e,f,h now all lie in g^, the Cartan involution maps e 
to -/ and h to —ft, and e lies in C(0). We define 

mR = centralizer of ft in g^, 

UR = direct sum of all eigenspaces of ad ft in g^ 

(2.26) corresponding to strictly positive eigenvalues, 

MR = centralizer of ft in GR, 

iVR = exptiR. 

Then HXR 0 UR C gR is a parabolic subalgebra and MR • NR (semi-direct product) the 
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corresponding parabolic subgroup of GR . Since h € pR, the Cart an involution fixes 
TUR, K^ fl MR is maximal compact in MR, and 

(2.27) GR  ~  KRxKpnMR(MR-NR) (fiber product). 

The symbol (GR)e shall denote the centralizer of e in GR, with the analogous conven- 
tion applying also to subgroups of GR and subalgebras of gR. We claim: 

a)    (GR)C  =  (MR)C ■ (JVR)e,    and 
( "    ) b)    (NR)e  = exp((nR)e). 

To see this, we suppose that Ad g(e) = e, and express g using the decomposition (2.27) 
of GR and the Cartan decomposition of MR : 

(2.29) Ad(k exp£ exp??) e  = e,    with  k G KR , f G rriR D pR , rj G UR. 

Then e =def Ad(exp^ exprj) e = Ad(fc~1)e lies in C(O). Because of (2.19), the 
triple e, / = — 0e, /i = [e, /] satisfies the same commutation relations as the triple e, 
/, ft. In particular, [[e, /],/] = —2/. Conjugating by the inverse of 0(exp£ expry) = 
exP(—0 Gxp^7?)? we find 

(2.30) [[Ad(exp(-^)exp(20exp77)e,/],/]  =  -2/ =  [[e, /],/]. 

From the definition of UR, one finds that Ad(exp^) — 10R raises ft-weights. Similarly, 
Ad(—9 exp rj) - 1QR lowers weights, and Ad(exp ^) acts semisimply with strictly positive 
eigenvalues, while preserving weights. We conclude: either exp 77 commutes with e, or 
else 

Ad(exp(-077) exp(2£) exp 77)6 =  ^tCt 

is a linear combination of weight vectors Q, with (k ^ 0 for at least one weight 
k > 2. This latter possibility is incompatible with the identity (2.30): in any finite 
dimensional representation of 5, f2 lowers weights exactly by four and is injective on 
all weight spaces corresponding to weights A: > 2. Conclusion: exp7] G (NR)e. Arguing 
analogously, we find that Adexp(2£)e = e, and even Ad(exp£)e = e because of the 
nature of the action of Ad(exp£). Now, in view of (2.29), k must also commute with 
e. Any element of KR that commutes with e must commute with / = — 0e, hence 
with ft = [e, /]. This puts A;exp£ into (MR)e, as asserted by (2.28a). Finally, if exp rj, 
with 77 G UR, centralizes e, then so do 77 = log(exp77) and the one parameter group 
generated by 77. This implies (2.28b). 

The centralizers of e in KR and MR commute with all of s. In the case of KR, we 
just gave the argument; for MR it follows from the observation that any two members 
of an s^-triple - in our case, e and ft - determine the third. For emphasis, 

(2.31) (KR)e  =  (KR)S,    (MR)e  = (MR)5. 

In particular, (KR)e and (MR)e normalize both UR and (nR)e. We can choose a linear 
complement CR to (nR)e in UR, which is (i^R^-invariant and (MR)e-invariant: we 
decompose ^R SR-isotypically; in the isotypic subspace of highest weight r, we take 
the sum of all eigenspaces corresponding to eigenvalues strictly between 0 and r; 
then CR, the sum of all of these spaces for r > 0, has the required properties. Since 
HR = CR 0 (nR)e (direct sum of vector spaces), 

(2.32) CRx(nR)e   -^>  NRl    ((,77)  *-> exp C- exp 77, 
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is a (if^e-invariant, (M^e-invariant, real analytic isomorphism. Indeed, the diffeo- 
morphism statement can be reduced to an assertion about nilpotent matrix groups, 
which can be verified using Engel's theorem; the invariance properties are a conse- 
quence of the particular choice of CR. Because of (2.27-28) and (2.31-32), 

GR ~ KR xKmnMR (MR • NR) 

(       v -  K® xKRnMR MR xiMm)3 ({MR)5 x CR x (NR)e) 

^   KR XKRnMR (MR X CR) X(MR)3 ((MR)3 X (NR)e) 

=   KR XKRnMR (MR X CR) X(MR)a (GR)e, 

as real analytic manifold with left i^R- and right (GR)e-action; here (MR)S acts on MR 

by right translation and on CR by conjugation. According to [Mo,theorem 5], there 
exists an isomorphism 

(2.34) MR -  (KR n MR) X{KR)5 (PR n mR H (mR)^-) x (MR), 

of real analytic manifolds with left (i^RflMR)- and right (MR)s-action. Mostow states 
his decomposition theorem for connected, semisimple groups; the extension to our 
situation is straightforward. In the decomposition (2.34), (MR)S and (i^R)^ act on 
PR fl TTIR H (rtiR)^- by conjugation. We conclude: 

(2.35) O - C?R/(C?R)e  ^ KRX^^ ((pRnmRn(mR)^)ncR). 

This is equivalent to the statement of the proposition. 

3. The instant on flow. In the previous section, we described a flow on a 
nilpotent orbit O which retracts the orbit to its core. Kronheimer has constructed a 
different flow, which also retracts the nilpotent orbit to its core [Kr]. Let us describe 
his construction in slightly different language. 

We continue with the notation and hypotheses of §2. While we are interested in a 
nilpotent orbit O of the real group GR in the real Lie algebra gR, we will work also with 
the complexified group G, the complexified Lie algebra g, and the complexification 
$ = sl(2,C) of SR = sl(2, E). In analogy to (2.18), we define 

Hom(s, g)  = vector space of C-linear maps $ : s -> g, 

HomR(s,g)  =  { $ G Hom(s,g) | $ is defined over E}, 

' Hom^(s,g)  =  { $ G Hom(s,g) | 0 o $ = $ o 0S }, 

HomR''(s,0)  =  HomR(5,9)nHom^(5,g). 

The Lie bracket can be viewed as a G-equivariant linear map A2g -» g. In the case of 
5, this is an isomorphism for dimension reasons, hence can be inverted to an SL(2, C)- 
equivariant linear map s -> A2s. Combining the two maps, we get a symmetric bilinear 
pairing 

(3.2a) Q  :  Hoin(s,fl) ® Hom(s,g)   —>  Hom(s,g), 

which is uniquely characterized by the equation 

(3.2b)       Q(*i,*2)M] =  ^([*i(w),*2(w)]-[*i(t;),*2M])        (u,ves). 

Note that 

(3.3) Q(*,*)  =  *    <=>    ^GMor(5,g); 
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here, as in the previous section, Mor(5, g) denotes the set of Lie algebra homomor- 
phisms. The pairing is defined over E, i.e., 

(3.4) Q  :  HomR(5,g)0HomR(5,g)   —► HomR(s,0), 

and it is compatible with the Cart an involutions, in the sense that 

(3.5) Q  :  Hom^(5,0)(g)Hom^(s,0)   —-> Horn'fog). 

These properties are immediate consequences of (3.2b). 

3.6. Notation. M is the set of C00-maps $ : (0, oo) -> Horn ' (s,g) satisfying 
the three conditions 

a) im = -Q(m,m), 
b) $ extends continuously to [0, oo), 

c) lim^oo(£$(£)) exists and lies in MorR,e(s1g). 
For $o € MorR'*(s,0), we set M($o) = {$ G M | lim^oo^*^)) - $o}. If C(0) 
is the core of a nilpotent Gu-orbit O C gR, M(C{0)) will denote the union of the 
M{§o) corresponding to morphisms $0 whose image ^^{e) under the isomorphism 
(2.19) lies inC{0). 

The conditions b),c) in this definition can be restated in equivalent, but seemingly 
weaker form - see below. 

3.7. Theorem. (Kronheimer, [Kv]) The space M has a natural structure of C00 

manifold. Via the map <£(•) »-» $(0)(e), this manifold is K^-equivariantly diffeomor- 
phic to the nilpotent orbit O. 

Strictly speaking, Kronheimer states this result for complex groups. Vergne [Ve] 
observed that the statement about real groups formally follows from the result about 
complex groups by restriction. Kronheimer deduces the manifold structure from gen- 
eral properties of moduli spaces for instantons. The manifold structure also becomes 
apparent from our results in §5. 

To make the transition to Kronheimer's formulation, we attach to each $ G M a 
triple of g^-valued functions by evaluating $(£) on the triple (2.17b), 

(3.8a) E(t) = $(i)(e),    F(t)  = *(*)(/),    H(t)  = $(t)(/i). 

This triple completely determines the function $. The requirement that the values 
<£(£) be compatible with the Cartan involution translates into the condition 

(3.8b) F(t)  =  -6E{t),    H{t)  =  -0H(t). 

Let us transcribe the conditions a),b),c) in the definition 3.6. The differential equation 
(3.6a) becomes 

2E'(t)  = -[H(t),E(t)],    2F'(t)  =  [H(t),F(t)], 
( ' aj H'(t)  =  -[E(t),F(t)}; 

the first of these follows from Q($,$)(e) = |Q($, $)[h, e] = |[$(/i),$(e)], and simi- 
larly for the others. Next, 

(3.9b) E(t),F(t),H(t)   extend continuously to  [0,oo), 
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and finally, 

the limits  EQ = ]]m(tE(t)),   FQ = Km(tF(t)),   HQ = limCtHCt)) 
fo QC\ t-yoo t-¥oo t-yoo 

exist and satisfy 2Eo = [JBo,^],   2Fo = -[Ho,Fo],   HQ = [EO.FQ]. 

In terms of the triple, the map $ H->. $(0)(e) reduces to evaluating E(t) at zero. 
Kronheimer, who works in the context of complex nilpotent orbits, uses a triple of 

g-valued functions corresponding to a different basis of s. Also, he uses the coordinate 
x = — log t on E, which gives a slightly different appearance to the differential equation 
(3.9a) and the "evaluations" E(t) «*> EQ and E(t) ~> E(Q). 

The QR-valued function |iJ(t) is the logarithmic derivative of a C00 function g(t) 
with values in GR - in other words, 2g(t)~1g,(t) = H(t). Since 

(3.10) |(Ad5(t)(^(*)))  = Adg(t){[g(t)-lg'(t), E(t)} + E'(t))  = 

Adg{t)($H{t), E(t)}+E'(t))  = 0, 

the curve E(i), for 0 < t < oo, stays inside a nilpotent GR-orbit O. The fact that E(0) 
and EQ = lim^oo^^W) ^e in the same orbit O is a consequence of Kronheimer's the- 
orem. Because of (3.8b) and (3.9c) - equivalently, because $0 belongs to MoTR,e(s,g) 
- EQ lies in the core C(0). In particular, then, E(0) *-► ^0 exhibits C(0) as the 
strong deformation retract of O. Via the isomorphism (3.7), 

(3.11a) C(0)  *  {$0 € MorR^(5,g) | $o(c) € 0} 

corresponds to the HomR^(s,g)-valued functions 

(3.11b) t ^  *(t)  =def SoCl + O"1. 

which satisfies the differential equation (3.6a) and takes the value $0 at t = 0. There 
are two simple operations on M(<&o) as defined in (3.6): for a G M"1" 

(3.12) {t h* $(*) } —■> 1{ * H> a$(a*) }, 

which corresponds to scaling on O under the isomorphism (3.7), and 

(3.13) {11-> $(*) } —> {t ^ a$(a(^ + 1) - 1) }, 

1 < a < 00, which induces the homotopy between the identity map IQ and the 
retraction O -> C((9); note that (3.13) does act trivially on the functions (3.11b). 

The instanton flow is a flow in HomR,*(s,0), the gradient flow of the function 
$ i-> ||$||2 on HomR^(5,g) [Kr]. Via the isomorphism M(0) = O, it corresponds to 
the retraction (3.13), which is not a gradient flow of a function on O or S(O), nor even 
the flow of a (time independent!) vector field. Curiously, the retraction is induced by 
a vector field on certain submanifolds of nilpotent orbits, namely those which arise 
from variations of Hodge structure [S]. 

The functions $( •) € M are real analytic: for any £0 £ (0,00), the coefficients of 
the Taylor series of $(t) at t = to are polynomials in $(£0) by repeated differentiation 
of the equation (3.6a), and the radius of convergence of this Taylor series can be 
bounded from below by a uniform multiple of ||$(£o)||-1- In particular, the condition 
(3.6b) can be replaced by the formally weaker condition 

(3.14) ||$(*)||   is bounded on  (0,oo), 
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as long as the remaining conditions are maintained. It implies the stronger condition 

(3.15) II^WII  extends real analytically to  [0, oo). 

In §5 we shall show that the <&(t) are real analytic even at infinity, as functions of the 
variable £~2. 

4. The normal bundle of the core. The core C(0) of a nilpotent GR-orbit 
O C QR is a i^R-orbit. This fact gives the normal bundle Tc(o)0 the structure of 
ifR-homogenous vector bundle. As such, it is associated to the representation of 

(4.1) (^K)C   —  isotropy subgroup at £, 

for any particular £ G C(0), on the quotient 

(4-2) [C,0R]/[C,*R] = (Tc(o)0)<. 

In this section, we shall construct a (K®)^-invariant linear complement to [C^R] in 
[CJ0R]- We shall need this construction in subsequent sections. 

We identify the base point £ with the morphism $0 € Mor ' (s,g) which cor- 
responds to £ via the isomorphism (2.19). To simplify the discussion, we use $0 to 
identify SR with a subalgebra of 0R. This physically puts the generators (2.17) into 
gR, with C = e. For emphasis, 

(4.3) e,/,/i€0R,    e = C,    0e = -/,    0h = -h. 

Since e = C and 6e = — f generate 5, 

(4.4) (KR)C   centralizes s. 

The commutation relations of the triple e, /, h imply that h acts semisimply with 
integral eigenvalues in any finite dimensional representation of s. Irreducible finite 
dimensional representations of 5 are uniquely characterized by their highest h-weight, 
which can be any non-negative integer; the irreducible representation of highest weight 
r has dimension r 4-1. We set 

0(r)   =  5-isotypic subspace of g of highest weight r  = 

(4.5a) linear span of all s-irreducible subspaces of heighest weight r; 

g(r, £)  = £-weight space of h in g(r). 

The irreducible s-module of highest weight r has /i-weights r, r — 2,..., —r, hence 

(4.5b) g    =    er>0 g(r)    =    er>0   0 _r<,<r    a(r,l)- 
~ e=r mod 2 

The first of these decompositions is s-invariant, 0-stable, and defined over E. 
Recall the notation (3.1). Because of (4.4), Hom(s,g) contains the Hom(s,g(r)) 

as (l^R^-invariant subspaces - invariant with respect to the trivial action on s and 
the natural one on g. Note that s has three natural actions on Hom(s,g): via the 
action on s, via its embedding in g, and diagonally. The decomposition 

(4.6) Hom(s,g)    =   er>0 Hom(5,g(r)) 

is s-invariant with respect to all three actions, (K®)^-invariant, 0-stable, and defined 
over E. The summand corresponding to r is s-isotypic of highest weight 2 with respect 
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to the first s-action, and of highest weight r with respect to the second action. Thus 

Hom(s,0(r))  = 
(4.7) Hom(s,0(r))(r-2) 0 Hom(fi,0(r))(r) 0 Hom(s,0(r))(r+ 2), 

with the outer index referring to the s-type with respect to the diagonal s-action. This 
decomposition is also (JRTR)^-invariant, 0-stable, and defined over E. Note that 

(4.8) Hom(s,0(r))(r-2)  = 0    unless  r > 2. 

We write Hom^(s, g(r)) for the intersection of Hom(s, ^(r)) with Hom6'(s, g), and anal- 
ogously in the case of the summands in (4.7). Our next statement describes the fiber 
of the normal bundle Tc(o)0 at C as (^R)c-module. 

4.9. Proposition.   The map Hom(s,0) 3 $ H- $(£) = $(e) is injective on 

1>(*o)    =def    ©r>2 Hom^(s5g(r))(r-2). 

The image D($o)(C) 0fV($o) under this map is a (K^)^-invariant linear complement 
to [C,i] in [CiQ], and is defined over M. 

Let .t>]R($o) = t)($o) H HomR(5,g) denote the space of real points in D($o)- 
Then [CSR] = DR(*O)(C) © [CM], and this identifies (Tc(0)e>)c ^ [C,0R]/[Cife] with 
^R(*O)(C) 

as (ifR)c-inodule. 
Proof of 4-9. The evaluation map $ i->> $(C) = $(e) sends Hom6'(s,g(r))(r - 2) 

to g(r). We can therefore argue one summand at a time. The decompositions (4.6) 
and (4.7) are defined over E, and C = e is real. This reduces the problem to showing 

(4.10a) {$(e)|*eHom'(s,0(r))(r-2)}  C  ad(e)g(r), 

i.e., the image of the evaluation map lies in the image of ad(£), and 

for each f G g(r), there exist $ G Hom^(s, g(r))(r - 2) and r] £ t so that 
(4.10b) 

$(e)   =   [e,$ + 77];   in this situation,   [e,$]   uniquely determines   $. 

For the first assertion, note that $, which is (r — 2)-isotypic relative to the diagonal 
action, has components only in the ft-weight spaces corresponding to weights between 
2 — r and r — 2. The evaluation map is s-equivariant and e has weight two, so $(e) 
cannot have a non-zero component in the (—r)-weight space. In particular, this forces 
$(e) to lie in the image of ad(e). 

We write £ = £e + £p with £e € £, £p E p, and combine £e with 77. This transforms 
(4.10b) into the equivalent assertion 

for each £ E p fl g(r), there exist $ E Hom^(s,g(r))(r — 2) and rj E t 

so that $(e) = [e,f+77]; in this situation, [e,£] uniquely determines $. 

The Casimir operator of s, 

(4.12) ft  = 2ef + 2fe + h2 

acts by the scalar k2+2k on any fc-isotypic s-module. For A in the universal enveloping 
algebra of s, we let >1$ denote the effect of A on $, acting via the diagonal s-action 
on Horn19(5, g(r)); A o $ and $ o A shall denote the composition of $ with the action 
of A on, respectively, the values and arguments. Then £$ = ad(f) o $ — $ o ad(f) if 
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A — £ G 5, hence 

^•13) - 4ad(e) o $ o ad(/) - 4ad(/) o $ o ad(e) - 2ad(A) o $ o ad(/i). 

Since (r - 2)2 + 2(r - 2) - [r2 + 2r] - [22 + 2 x 2] = -4(r 4- 2), 

for $ G Horn (s,g(r)) the following two conditions are equivalent: 

(4.14)        a)   $GHom^(5,g(r))(r-2)3 

b) (r + 2)$ = ad(e) o $ o ad(/)4-ad(/) o $ o ad(e) + -ad(/i) o $ o ad(h). 

To construct a particular $ G Hom^(s,g(r))(r — 2) amounts to specifying $(e) and 
$(/i) in g(r), subject to the following conditions. First, $(/i) must lie in p since /i G p, 
and secondly, the identity (4.14b) must hold when evaluated on either e or h. The 
0-equivariance of $ then forces $(/) = —0$(e). The validity of (4.14b) applied to / 
is automatic since Q commutes with 6. 

Let us suppose that $ G Hom6'(s,g(r))(r - 2), £ G p fl g(r), and ry G ^ are given 
subject to the condition in (4.11), i.e., 

(4.15a) $(c)  = ad(e)(£ + 77). 

This implies, and is implied by, 

(4.15b) $(/)  = ad^C-^ + T?), 

and furthermore, implies 

(4.15c)        ad(/i)77 = ad(e)($(/))-ad(/)($(e))-(ad(e)ad(/)+ad(/)ad(e))£. 

These identities allow us to express fir? in terms of $(e), $(/), £ and the action of s. 
Since $(e), $(/), £ lie in g(r) by assumption, Or? also lies in g(r). Thus rj = r]o -\- rji 
with 770 G g(0) = ker(n) and rji G g(r). Both ad(e) and ad(/) annihilate 770, so we 
may as well suppose that rj = 771 G g(r). For r = 0, the right hand sides of (4.15a,b) 
vanish, and Hom6'(5,g(r))(r — 2) = 0, which means that there is nothing to prove. 
Thus we may assume 

(4.16) r} G { fl g(r),     and  r > 0. 

From these hypotheses, we shall conclude 

a) $(ft)  =  -^ + ^ad(/i)^ + ^ad(/l)77, 
(4.17) 1 

b) 7/ =  -ad(/i)£. 
r 

That, in turn, will imply (4.11). 
To establish (4.17), we evaluate (4.14b) on h and use the commutation relations 

of e, /, h, as well as the identities (4.15a,b): 

(r + 2)*(/0 .= 2ad(e)($(/))-2ad(/)($(e))  = 

2ad(e)ad(/)(-£ + J7)  - 2ad(/)ad(e)(C + v)  = 

(4.18) -2(ad(c)ad(/)+ad(e)ad(/))(0  + 2(ad(e)ad(/) - ad{e)ad{f)){r,)  = 

-(n-ad(/i)2)(0 + 2ad(/i)(»j)  = 

-(r2 + 2r)e + ad(/i)2e + 2ad(/i)(7?), 
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which is the identity (4.17a). Next, we evaluate (4.14b) on e. We use (4.15a), the 
commutation relations of e, /, h, and (4.18): 

(r + 2)ad(e)(£ + »7)  =  (r + 2)$(e)  =  -ad(e)(*(/i)) + ad(/i)($(e))  = 
(4-19a) - ad(e)(-^ + ^ ad(/i)^ + ^ ^(h)v) + ad(/i)ad(e)(f + 77). 

Note that ad(/i)ad(e) = ad(e)ad(/i) + 2ad(e), hence 

(r + 2)ad(e)(e + 7?)  = 

(4'19b) ad(e) (rC - ^ ad(/l)^ - ^ ad(ft)77 + 2(£ + T?) + ad(/i)^ + T?)) . 

We bring all terms to the left and multiply through with r + 2, to conclude 

(4.20) (ad(/i)2 - (r + 2)ad(h)) £ +  ((r2 + 2r) - r ad(/i)) 77  G  ker(ad(e)). 

Recall the decomposition (4.5) and write &, ^ for the components of ^,77 in g(r,I). 
Since ft G p, the Cartan involution interchanges Q(r,l) and g(r, — £), and 

(4.21) ^ = -e(m),   u = fl(^), 

since ad(/i)77 e p and ad(ft)^ G 6. The kernel of ad(e) on g(r) is g(r,r). This makes 
(4.20) equivalent to 

(4.22) ((r2 + 2r) - r £) 77^  =  - (l2 - (r + 2)£) ^    if £ ^ r. 

The same identity for I — r follows from the case £ = —r and (4.21). Also, £ lies 
between r and —r, so (4.22) is equivalent to rrjt = £& for all £. That is the assertion 
(4.17b). 

On g(r)np, r > 0, ad(e) is injective, so [e, £] determines £. From (4.17a,b) and the 
original hypothesis (4.15a), we now conclude that [e, £] completely determines 3>(/i), 
$(e), and $(/) = —0$(e). Thus $ is indeed uniquely determined. As was pointed 
out earlier, the existence of $ comes down to knowing that $(h) and $(e) lie in g(r), 
that $(/i) G p, and that (4.14b) is satisfied when both sides are evaluated on h and 
e, respectively. The expression (4.17b) specifies 77 as element of g(r) fl £. Since ft G p, 
ad(ft) interchanges f? and p. Thus (4.17a) exhibits $(ft) as lying in g(r)np, as required. 
The containment $(e) G g(r) follows from (4.15a) and (4.16). The validity of (4.14b) 
when evaluated on ft and e amounts to the two identities (4.18) and (4.19); both hold 
by construction. This gives us the existence and uniqueness of $ - in other words, the 
validity of (4.11). 

5. The instanton flow at infinity. In this section we use the proof of the 5/2- 
orbit theorem of Hodge theory [S,CKS] to show that the flow lines of the instanton 
flow are real analytic at infinity. In effect, the proof of the 5/2-orbit theorem produces 
a real analytic isomorphism between a neighborhood of the core C(0) in a nilpotent 
orbit O and a neighborhood of the zero section in the normal bundle Tc(o)0- This 
isomorphism is closely related to Kronheimer's flow. We shall freely use the notation 
of the earlier sections, in particular that of section 4. 

The decompositions (4.5-7) depend on the embedding $0 • SR ^ QR given by 
any particular choice of $0 £ Mor^'^g); the morphism $05 in turn, was assumed 
to correspond to some £ G C(O) via the isomorphism (2.19). We shall now let £ vary 
over the core, and correspondingly $0 over the inverse image of C(O). In this way, 
we tacitly regard the decompositions (4.5-7) as depending on £, without putting this 
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dependence into the notation. Recall the definition (3.2) of the pairing Q. We shall 
need the notion of a Q-polynomial: a function 

($1, $2, •■•,**)  ^ P($i,*2,...,*fc)eHom'(s,fl), 
(5-1) a 

with arguments  $!,...,$&€ Horn (s, g), 

expressible as a finite C-linear combination of monomials in the $^, with Q serving 
as "multiplication". Note that a real Q-polynomial - i.e., a Q-polynomial with real 
coefficients - takes values in HomR^(s,g) whenever the arguments lie in this real 
subspace. 

5.2. Theorem. Every function §(i) in Ai has a convergent series expansion 
around oo, in powers oft~^. Specifically, 

a) m = Sor1 + Efc>2^r1-4      (o>0), 

with $o £ Mor^fog) and $A; € HomR^(s,g) /or A; > 2; £/iere ex^ universal1 Q- 
polynomials with rational coefficients Pk(...), A: > 2, s^cft ^/ia^ 

b) ^eHomR'9(s,flW)(^-2)       (£>2)) 

Pfc(^o, *!, $1, ■ • •, ^) e ©f<A-2,feft (2) HomK-e(B, gW). 

T/ie polynomial Pk is weighted homogeneous of weight k when the variable ^ is given 
weight £, and $o weight 0. Conversely, any series of this form has a positive ra- 
dius of convergence, and the resulting Horn ' (s,g) -valued function $(£) satisfies the 
differential equation (3.6a). 

Loosely paraphrased, the space 0^>2 HomR^(5,g(^))(£ — 2) parameterizes all 
functions $(£) defined for large positive values of t which satisfy the differential equa- 
tion (3.6a) and the limiting condition (3.6c). In the preceeding section, we had identi- 
fied this direct sum with the fiber of the normal bundle Tc{o)0 at £ when the leading 

coefficient $0 6 MorR,6,(s,g) corresponds to £ G C(0). Note that the power t~% gets 
skipped in the expansion (5.2) - this reflects (4.8). 

We shall verify the theorem together with the following companion statement. 
For any collection of data $0 € MorR^(5,g), §{ £ HomR^(5,g(^))(£ - 2) for £ > 2, 
and t > 0, let 

(5.3) $($<>, *!,..., *',..•;*) 

denote the value of the function $(£) in (5.2a,b), provided the analytic continuation 
of the series is defined at t. 

5.4. Theorem. The assignment ($0, $25 ■..,$!>••• ^^(^o, $h • • • > ^» • • • 5 l)(e) 
induces a well defined, real analytic, K^-equivariant isomorphism 

F  :  U  —>  F(W), 

between a connected open neighborhood U of the zero section in the normal bundle 
Tc(o)0 and ^(U), an open neighborhood of the core C(O) in the nilpotent orbit O. 

i.e., not depending on $0 nor even on g^, provided the dimension of g^ is bounded. 
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Proof of 5.2 and 5.4. We appeal to the results of [CKS, §6], specifically (6.8-24); 
these results already appear in [S], in somewhat different language. To begin with, 

a formal Horn(s,g)-valued series  $(t) = $0 ^~1 + Z)A;>O ^ £-1-2 

(5.5) is a formal solution of the differential equation   ^ = — Q(<b: $) 

if and only if the coefficients  $k  can be expressed as in (5.2b), 

with certain specific Q-polynormals Pk(.. .)• The terminology "Q-polynomial" is not 
used in [CKS]. Rather, the arguments there show that the differential equation trans- 
lates into the conditions 

(5.6) **  = *J+^ (Eo<*<* <?(*<>**-<))        (fc>0)' 
with $^ G Horn(5,g(&))(& — 2), and with A denoting a particular rational linear 
combination of projections to the various eigenspaces of the linear map 

(5.7) Homfas)  3 T ^ Q(*o,T). 

The eigenvalues of this linear map are rational [CKS, (6.14)], so each projection can be 
expressed as a rational linear combination of its powers. The coefficient $i vanishes 
because of (4.8) and (5.6). Thus, in (5.6), the range of summation is really 2 < £ < 
k - 2. Now, arguing inductively, one finds rational Q-polynomials Pfc(...), weighted 
homogeneous of degree k when weights are assigned as in theorem 5.2, such that 

(5.8) $* = ^ + P*(*O, *!,*!,...,*{;:!)    (k>o). 

The linear map (5.7) preserves the subspaces Hom(s,g(£)), and 

Q(Hom(s,0(fci)),Hom(s,0(A;2)))    C 

C     ©O<^1+fc2,fefc1+fc2(2)Hom(s,0W) 

[CKS, (6.21)]. Hence 

(5.10) Pfc(*o,*!,*!,...,*£:!) e©*<fc-2,fe*(2) Hom(s,g(*)), 

again by induction on k. This completes the verification of (5.5). For future reference, 
we note that 

for fixed $0? as function of $|, $3,..., ^-2 alone> 

-Pfc($o> 3>2> $!> • • • > ^k-l) ^as n0 linear and no constant term, 

as follows from the homogeneity property of Pk(...). 
The construction of the Pk readily implies a bound on their size: with $0 kept 

fixed, there exists a positive constant C such that 

(5.12) ||Pfc(*o,*i,^,...,*^)ll   <  C^max*^ ||**||)* 

[CKS, (6.24)]. That, in turn, implies 

a)  the series  $(*)  =  ^ot"1 + Y,k>o $k t'1'* 

converges if t* > C~l (maxA;>2 11*^1 
,-1 

(5.13) 
b)   ($2> • • •, $£, ...)»->' *(*o? ^2? • • •» ^» • • • 51) is a well defined, analytic 

map on some neighborhood of 0  in   0A.>2 Hom(5,g(A;))(fc — 2). 
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In particular, the map in the statement of theorem 5.4 is well defined, real analytic 
when restricted to a small neighborhood of 0 in any fiber (Tc(o)0)c 0^ the normal 
bundle; Kronheimer's theorem 3.7 implies that the map takes values in O. Because 
of (4.9), (5.8) and (5.11), this map sends any sufficiently small neighborhood of 0 
in (Tc(o)0)c isomorphically to a real analytic submanifold of 0, normal to C(0) 
at £. The definition (3.2) exhibits Q as ifR-equivariant pairing. We conclude that 
Q-polynomials are IfR-equivariant as functions of their arguments. The map F is 
therefore both (if^-equivariant on the fiber at £ and globally i^R-equivariant. Since 
K^. is compact and acts transitively on C((9), F has the properties asserted by theo- 
rem (5.4): i^R-equivariant, real analytic, and real analytically invertible from a small 
neighborhood of the zero section in Tc(o)® to some neighborhood of C(0) in O. 

We now consider a particular curve *(£) in M{$o).  Then, if a > 1, the curve 
Ca#, defined by 

(5.14a) (Ca9)(t)  = a^(a{t + 1) - 1), 

satisfies the three conditions (3.6a-c), with the same limiting morphism $o- In other 
words, Ca^ € M($o), hence 

(5.14b) Ca  : M{$o)  —+  M(*o)        (a>l). 

The condition (3.6c) implies 

(5.14c) lim C0*(t)  =  $o, 
a—>oo 

for any fixed t > 0 - recall: Ca\I/, like every curve satisfying (3.6a-c), extends real 
analytically to a neighborhood of 0. In particular, for a sufficiently large, 

(5.15) (Cfl¥)(0)(e)eW, 

with U having the same meaning as in the statement of theorem 5.4. Since this 
theorem has already been proved, there exist <&% G H.omR,d(s,g(k))(k — 2), k > 2, so 
that 

(5.16a) m =de{ $o r1 + Efc>2 (** + Pk(*o, *1, • • •, *k
kZl)) t-1-* 

converges for t 3> 0, extends real analytically to [1, oo), and satisfies 

(5.16b) $(l)(e)  =  (Ca*)(0)(e). 

Because of (5.5), 11->> $(t +1) belongs to Ai($o)- By construction, this curve has the 
same image under the Kronheiner isomorphism as Ca\I/, and thus must coincide with 
Ca^- We conclude that \I> can be obtained from $ by a linear coordinate change, 
and that $(£) has a convergent series expansion around infinity, in powers of f~2. 
Appealing once more to (5.5) and subsequent statements, we conclude that *(£) has 
the properties asserted in theorem 5.2. 

Theorem 5.4 can be strengthened, as follows. Recall (5.14). A short calculation 
shows that Ca o C& = Ca&, hence 

(5.17) a »-»•  Ca  induces an action of the multiplicative semigroup M>i, 

both on M{$o) and on O = M(C(0)). Using the identification (4.9), we define 

Da  ' Tc{o)0 —> Tc{o)0, 
(5.18a) . k   . 

Da($o)  =  $0,        Da(*
k

k)  = a-^l 
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where $£ € RomR'e(s,g(k))(k - 2). This makes sense for all a ^ 0; moreover, 

(5.18b) a »-»  Da   defines an action of the multiplicative group R*, 

as can be checked by direct calculation. The map F defined in theorem 5.4 is R>i- 
equivariant with respect to the two actions (5.17-18): 

5.19. Lemma.  For all a > 1,   F o Da  =  CaoF. 
Proof. If ($o>$2>-••>*£>• ••) corresponds to a point in the domain of F, the 

series (5.16a) converges for large t, extends real analytically to [1, oo), and 

F($o,*l,...,#i...)  = $(l)(e)  = $(0)(e), 
{0.20) 

where  $(t)  =def $(t + l). 

The curve $(t) then belongs to ^($0) an(i corresponds to ^($0, ^1? • • • ? *|J • • •) via 

the Kronheimer isomorphism (3.7). Hence 

(5.21) Ca{F(*o,*l--;*i,"-)) = (C«*)(0)(e) = a#(o-l)(e) = a*(a)(e). 

On the other hand, 

(5.22) (FoDa)(*o,*22,...,*li,---) = F^co-1*!....^-*^,...). 

When the $| in (5.16a) are replaced by a~2 $|) the series $(£) gets transformed into 
a $(a*) - this follows from the homogeneity property of the JP&(. ..). Thus 

(5.23) F^a"1^,...^-^,...)   -  (a$(at)|t=i)(e)   -  a$(a)(e), 

completing the proof of the lemma. 

5.24. Corollary. The map F~1 extends to a real analytic isomorphism between 
the entire nilpotent orbit O and an open neighborhood of the zero section in Tc(o)0' 

Proof. Given £ E O, we choose a > 1 so large that Ca£ lies in the domain of F-1, 
and set 

(5.25) F-'iO  = Da-iiF-^CaQ). 

This extension of F"1 is well defined and one-to-one by (5.17-19), and real analytic 
by construction. It is also locally invertible, again because of (5.17-19), hence an open 
map with real analytic inverse. 

6. Complex groups and symmetric pairs. In preparation for the next sec- 
tion, in which we discuss the Sekiguchi correspondence, we shall restate the earlier 
results for symmetric pairs and complex Lie algebras. 

There is not so much to say about the complex case - complex Lie algebras can 
be regarded as real Lie algebras, after all. Let g be a complex semisimple Lie algebra. 
As a matter of general notcitional convention, we set 

(6.1) Q
R
 =  g,   taken as Lie algebra over M. 

In the situation of interest to us, g will arise as the complexification of a real semisimple 
Lie algebra 0R, in which a Cartan decomposition g^ = fe©pR has been specified. The 
subalgebra 

(6.2) uR  =  eR©zpiR 
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is then a compact real form in gR, and 

(6.3) /  = uRezuR 

the Cartan decomposition determined by UR. Further notation: 

(6.4) r : g  -> g    is complex conjugation with respect to UR. 

In view of (6.3), 

(6.5) r is the Cartan involution on Q
R

. 

We normalize the Killing forms on g, gR, and g^ so that they coincide on ER. This 
will allow us to refer to all three by the same symbol B, without ambiguity. 

Extension of scalars identifies the space of E-linear maps from 5R to gR with 
the space of C-linear maps from s to g. Also, the Cartan involution on SR equals 
the restriction to SR of complex conjugation with respect to the compact real form 
5u(2) in s — 51(2, C). This results in the following "dictionary" between the spaces of 
homomorphisms defined in the preceeding sections and their analogues in the present 
setting: 

HomR(5,g)  ->  HomR(s,C<g>RgR)  s Hom(s,g) 

HomR'*(s,g)  ~>  Hom(5u(2),UR), 

and similarly in the case of Mor(s,g). The Lie algebra su(2) acts on these spaces, 
both via the action on the values and diagonally, so the decompositions (4.6-7) have 
obvious counterparts. Note that the evaluation map 

HomR^(s,g) 3 $0 ^ $o(e)        corresponds to 

Hom(5u(2),UR)3$o  ^  *o(t-£)-i*o(T + ¥) 

via the translation (6.6). We now let G denote the identity component of Aut(g), and 
C/R C G the compact real form determined by UR. Then 

(6.8) GR **> G,        .KR '^ [/R 

completes our dictionary: when the substitutions (6.6-8) are made, the results of 
the earlier sections - in particular lemmas 2.11 and 2.19, theorems 3.7, 5.2, and 5.4, 
propositions 2.21, 2.25, and 4.9, corollaries 2.22, 2.23, and 5.24 - hold in the setting 
of a complex Lie algebra. 

We return to the case of a real semisimple Lie algebra gR = £R0PR. As additional 
datum, we suppose that an involutive automorphism 

(6.9a) (j:gR  ->  gR (a2  =  10P) 

is fixed. It induces a pseudo-Riemannian "Cartan decomposition" of gR, 

(6.9b) gR  =  1)R © qR, [f)R,J)R]cte>     [^RJCIR] C qR,     [qR,qR]Cf)R, 

with J)R and qR denoting, respectively, the (+1) and (—l)-eigenspaces of a. We shall 
assume that the usual Cartan involution 6 preserves this decomposition - equivalently, 

(6.10) Boa  = a o0. 
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When this fails to be the case, it can be brought about by replacing the Cartan 
decomposition with an appropriate GR-conjugate. The involution a lifts to 

(6.11) GR  = Aut(gR)0. 

Let Hi& C GR be a subgroup lying somewhere between the fixed point group Gg and 
its identity component, 

(6.12) (G§)0  C HR GGg. 

Then H^ preserves the decomposition (6.9b), and thus acts on the set of nilpotents in 

The Lie algebra SR = 51(2, E) and its diagonal subalgebra CIR furnish the simplest 
non-trivial example of a symmetric pair: 

ra 1 o \ / \ J  •' for  77 G aR (6.13a) a5 : sR —> SR,        a5(rj)  =  \ 
for  77 e Re ' I -v 

is the involution, and 

(6.13b) SR  =  aR 0 (EeeE/) 

the non-Riemannian Cartan decomposition; note that as does commute with the Car- 
tan involution 65 - cf. (2.17a). The group SR = PS7(2,R) and its diagonal subgroup 
AR play the roles of GR and HR. The space Ee0E/ contains five nilpotent ^R-orbits, 
namely E>o e, E<o e, M>o/, E<o /, and {0}. 

In the present setting, the roles of the set MOI
R,0

(S,Q) and of the vector space 
HomK'6,(5,g) are played by 

MorR'^(s, g)  =  { $0 € Moi*>9{s, g) | a o $0 = ^0 o a5 }, 

HomM^'"(5, g)  =  { $ G HomR^(s, g) | a o $ = $ o as }. 

Note that the decompositions (4.6-7) induce decompositions of HomR'0'<r(s,g), because 
a5 acts trivially on the Casimir operator of s, and because a preserves the ^o-hnage 
of 5 in g. When $0 lies in MorR^,<7(s,g), we write Ma(<$>o) for the set of all those 
functions $(£) in M($o) which take values in HomR,6,'0'(5,g). 

In the following, OqR will denote a nilpotent i^R-orbit in qR; there are only finitely 
many such orbits, and they are invariant under scaling by positive scale factors [Se]. 
The GR-translates of OqR sweep out a nilpotent GR-orbit O C QR. We use O to 
normalize the Killing form, as in (2.9-10). The moment map (2.3) restricts to an 
(fZia fl i^R)-equivariant map 

(6.15) rn:Oqm   —>  l)R fl pR, 

the moment map associated to the i^R-action on OqR. As in the absolute case, the 
multiplicative group E+ acts, by scaling, on Oqm and on the set of critical points of the 
function £ y-t \\m(Q\\2] these actions commute with those of i^R fl KR. By definition, 

(6.16) G(e>qK)  =  { C G Oqw   I   C is a critical point for ||m||2, and ||C|| = 1} 

is the core of the nilpotent orbit Om. 

6.17. Proposition. The function ( i-> ||m(()||2 on S(OqK) is Bott-Morse. 
Its set of critical points coincides with the set minima, and consists of exactly one 
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(i?R fl K^)-orbit. In particular, the core C(Oqm) is non-empty, and Hu H Ku acts 
transitively on it.  The map $ H-> $(e) establishes a H^ fl K^-equivariant bijection 

{ $o € Mor^'^g) | $o(e) € O^ }  =  0(0^), 

and, at the point ( = $o(e) E C(OqR), identifies 

©,>2HomR^(0, £,(£))(£-2) 

(AR fl K^^-equivariantly with (Tc(oq ^q^C^ ^e ^er a^ C 0/ ^e normal bundle of 
the orbit Oqw along its core. There exists a real analytic, (H^ fl K^)-equivariant iso- 
morphism OqR ~Tc(o   )^qE- Lastly, the Kronheimer diffeomorphism (3.7) induces 

M°{C{0,w))   -   OqR; 

here M<T{C{Om)) refers to the union of the .M^X^o) parameterized by those mor- 
phisms $o which correspond to points in C((9qiR). 

These statements are analogous to (2.11), (2.19), (2.21), (4.9), (2.25), and (3.7), 
but not all them can be deduced directly from those results in the absolute case. We 
will indicate briefly how to modify the earlier arguments so that they apply in the 
present situation. As noted in the proof of proposition 2.21, the fact that ||m||2 is 
Bott-Morse on S((9qiR) is a general property of moment maps for linear actions. By 
(2.20) and the fact that the moment map m in (6.15) is the restriction of the moment 
map (2.3) from O to (9qp, we conclude that the critical set of ||m||2 : Oqw —> E>o is the 
intersection of Oqw with the critical set of ||m||2 in O. It follows that the core C{Om) 
is the intersection of the core C(0) with O^, and C(OqR) consists precisely of the 
minima of ||m||2 on S((9qE). Any Q £ C(OqR) can be embedded in a strictly normal 
5-triple, and by [Ma] or [Se, lemmas 1.4,1.5] such strictly normal 5-triples constitute 
an H^C\K^-oxb\t. This proves the analogues of (2.11) and (2.21). The proof of lemma 
2.19 can now be adapted to establish the bijection { $0 G MorR^,o'(s,0) | $o(e) G 

Let us explain next how to modify the proof of proposition 4.9 in the present 
setting. We denote the complexifications of [)R and q^ by f) and q, respectively. The 
evaluation map $ -> $(e) = $(£) sends 

(6.18) ©^2Hom^CT(S,0(£))(£-2)  —►  q. 

By (4.10a) the image of (6.18) lies in [C,0CO] and> because [q,(] C J), in [C,q]- This 
proves the analogue 

(6.19) {$(e)|*€Homfl>"(B,0(*))(*-2)}  C  [Cqnfltf)] 

of (4.10a). It remains to prove the analogue of (4.10b): 

for each f e \) n g(£), there exist $ E Horn0''7(5, %(t))(t - 2) and 77 € J) fl I 

so that $(e) = [e,£+77]; in this situation, [e,£] uniquely determines $. 

Statement (4.10b) implies the existence of such a $ G Horn61 (5,9(£))(£ — 2), an 77 G t, 
and the fact that [e, £] uniquely determines $. From (4.17b) we conclude that 77 G \)f\t. 
Using the defining property $(e) = [e,£+77] and formula (4.17b) for $(/i) one checks 
readily that $ G Home^(s,g(^))(£ - 2). 

With the appropriate changes in notation, the proof of proposition 2.25 carries 
over almost word-for-word, giving the isomorphism O^ ~ Tc{o^)0^:. 
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Vergne [Ve] observed that Kronheimer's isomorphism (3.7) restricts to an iso- 
morphism Maic(OqR)) ~ Oqm. Indeed, by definition, any $(•) G A^<7(C((!)qR)) 
intertwines a and as, hence $(0)(e) € O fl q^ - cf. (6.13b); here 0 again denotes the 
GR-orbit containing OqR. Since OqR is a union of connected components of O D q^, 
a continuity argument shows that Kronheimer's isomorphism (3.7) restricts to a one- 
to-one map 

(6.21) M'idO^))  ^Om. 

To see that it is onto, we consider a particular (* G OqvL and the corresponding $( •) G 
M(C{P)). The function t i->> cr o $(£) o cr5 also satisfies the defining conditions 3.6, 
and a o $(0) o crs(e) = -cr o $(t)(e) = £. By uniqueness, •$(•) = a o $(•) o (7S, hence 
$( •) G A^<T(C(Oqa)). Thus (6.21) is surjective, as was to be shown. 

7. The Sekiguchi correspondence. The Sekiguchi correspondence in its most 
general form establishes a bijection between nilpotent orbits attached to certain pairs 
of commuting involutions [Se]. The complete statement and its specialization to the 
case of interest to us involve substantial notational overhead. For this reason, we dis- 
cuss only the most important particular case; however, all statements and arguments 
extend readily2 to the general case. 

We use the notation and conventions of the previous section. In particular, g 
arises as the complexification of g^ = BR 0 PR. We let 6 denote both the Cartan 
involution of 9R and its extension to g, and r complex conjugation with respect to the 
compact real form UR C Q. Then, by construction of UR, 

(7.1) r<  = 0C  = ~K (<€0). 

Here C refers to the complex conjugate, relative to gR. The complexification I of 6R 

corresponds to a subgroup 

(7.2) K  C  G = identity component of Aut(g). 

The complex group G also contains 

(7.3) GR  =  (Aut(gR))0    and    UR  =  (Aut(uR))0, 

as noncompact and compact real form, respectively. 
We shall consider nilpotent if-orbits in p = G&RPR on the one hand, and nilpotent 

GR-orbits in i 0R on the other; Op will be the generic symbol for the former, and OR 

for the latter. To avoid trivial exceptions, we always exclude the orbit {0}. Recall the 
definition (2.17b) of the basis {e, /, h} of s. 

In the discussion in §2, we can make the trivial substitution of i gR for gR. Then, 
as is shown there, $0 ^ $0(2 e) induces a i^R-equivariant bijection 

(7.4a) { $0 <E Mor^'Cs, g) | *o(i e) G OR }  = C(0R), 

for every nilpotent GR-orbit OR ^ {0} in i gR. When we look at all nilpotent GR-orbits 
in igR simultaneously, (7.4a) sets up a natural bijection 

(7.4b) { nilpotent GR-orbits in igR }   -—>  { i^R-orbits in MorR'6(s, g) } 

2 Except for the orientation statements in theorem 7.20, which needs to be modified when there 
are no complex and symplectic structures to orient the orbits in question. 
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We shall argue shortly that the results in §6 imply an analogous statement for nilpotent 
if-orbits in p: when Op ^ {0} is a nilpotent K-oibit in p, the assignment $o >-* 
$o(f + y + ^) induces a i^R-equivariant bijection 

(7.5a) {$oeMorR>e(s^)\$o(h + ie + if)eOp}  (*  C(Op), 

which, in turn, determines a bijection 

(7.5b) { nilpotent If-orbits in p }   ^^  {i^irorbits in MorR^(0,g) }, 

in complete analogy to (7.4b). Combining (7.5b) with the inverse of (7.4b), we obtain 
the Sekiguchi correspondence 

(7.6) { nilpotent if-orbits in p }   -—>  { nilpotent GR-orbits in ig^ } 

[Se], which relates the if-orbit Op to the GR-orbit OR precisely when the inverse 
images of C{Op) and C(0R) in Mor^fog) coincide. 

We still need to establish (7.5a). For this purpose, we regard (g,6) as symmetric 
pair over E, with involution 9. We appeal to proposition 6.17, which needs to be 
translated into the present setting by means of the "dictionary" (6.6-8). To begin 
with, 

Mor*>9(8,g)    ~>    Mor(5u(2),UR)  £ 

£  Morr(s,g)   =def  { $o e Mor(5,g) | r o $o = ^o o rs }, 

as in (6.6); here rs : s —> s stands for complex conjugation with respect to su(2). By 
the same dictionary, 

(7.8) MorR'^"(5,g)  ~>  {$o € Morr(5,g) | 6o $0 = <f>0 o a5 }, 

since 9 : g -} g now plays the role of the involution cr. A short calculation in 5/(2, C) 
gives 

(7.9) ag  =  Adco9s o Adc""1,        with    c =   -p ( .    Z ] , 

and Adc commutes with rs, so (7.7) is equivalent to the assignment 

Mor^'^s, g)  ~» { $0 G Morr (s, g) | (9 o $o o Ad c = $o o Ad c o 95 } 

- { $o o Adc"1 | $o € Mor^r(5,g) }. 

These morphisms get evaluated on e, as in proposition 6.17. But Mor^r(s,g) = 
MorR^(5,g) by (7.1), and Adc-1(e) = i(| - f - ^). This gives the correspondence 
(7.5), with 2(| - f - ^) in place of f + y + ^. Note that nilpotent if-orbits in p 
are invariant under scaling by nonzero complex numbers - this is clear in the case of 
gM = s[(2,E), and follows in the general case by what has been said so far. Since i 
has absolute value 1, it maps the core of an orbit to itself, so we can drop the factor i. 
Finally, complex conjugation permutes the nilpotent if-orbits3 in p, and this allows 
us to replace f ~ y ~ 2   by its complex conjugate. 

3 There are two equally natural definitions of the Sekiguchi correspondence. They are related 
by complex conjugation on the side of K-orbits, or alternatively, by multiplication by —1 on the side 
of GR-orbits. Our choice of the correspondence is dictated by the application in [SV2]. 
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When the Sekiguchi correspondence relates Op to OR, various objects attached 
to the two orbits are naturally isomorphic - the cores because of (7.4a) and (7.5a): 

(7.11) C(Op) - C(OR),   $o(f + % + %)<* *o(ie)        (*o € Mo^^g)). 

This isomorphism is K^-equivariant by construction, so the isotropy subgroups of K^ 
at $0(2 + ^f ~*~ 2 ) an(^ ^o(^) coincide4. Proposition 4.9 identifies the normal space 
to C(OR) at the point §o(ie) G C(OR), 

(7.12) er>2MorM^(s,g(r))(r-2)  ~  (rc(OF)0R)$o(ie),        $ ^ $(ie), 

equivariantly with respect to the isotropy subgroup of K^ at $o(ie). The analogue 
of (4.9) in the symmetric pair case - which is part of proposition 6.17 - identifies the 
normal space to C(Op) at $o(| + f + f) 6 C(Op), 

(7 13) er>2MorK'Wr))(r-2)  ^  (rc(0p)^)*o(H- + ¥), 
$i->$(§ + ^ + ^), 

again equivariantly with respect to the isotropy subgroup of K^. The preceding state- 
ment involves the same "translation" that we just used to establish (7.5a). Because of 
(7.12-13), the fiber of the normal bundle Tc(op)Op at $(| + f + ^) is isomorphic to 
the fiber of TC(OR)OR at $(ie) - isomorphic as representation space for the common 
isotropy group. Thus (7.11) extends to a real analytic isomorphism of i^R-equivariant 
vector bundles 

(f-14) Tc(op)Op  ~ TC(OR)OR. 

Appealing to proposition 2.25 and its analogue for symmetric pairs, as stated in (6.17), 
we obtain 

(7-15) Op   ~   Om, 

a real analytic, i^R-equivariant isomorphism between the two orbits. 
Vergne [Ve] deduces the existence of a i^R-equivariant diffeomorphism Op ~ OgR 

from Kronheimer's description of nilpotent orbits, as follows. According to (3.7), 

(7.16) M(C(0R)) ^ OR,       $(•)•-> m(ie), 

is a KR-equivariant diffeomorphism. The analogous statement for symmetric pairs in 
(6.17), translated as in (7.7-10), gives the i^^-equivariant diffeomorphism 

(7.17) M(C(Op))  ^4 Op,        $(•)  M- $(0)(| + f+ f). 

Since OR and Op are related by the Sekiguchi correspondence, (7.11) implies 

(7.18) M(C(Op))  = M{C{OR)). 

The composition of (7.16-18) gives Vergne's interpretation of the Sekiguchi corres- 
pondence. 

In the proof of the Barbasch-Vogan conjecture in [SV2], we were lead to a quite 
different geometric description of the correspondence. We fix a nilpotent G-orbit O 
in g. Via the isomorphism g ~ g* induced by the Killing form, O can be viewed as 

4 This can be seen directly: if k € KR fixes $o(t + ^ + -£), it fixes the real and imaginary 
parts separately, which together generate &o(s)] similarly, if k fixes $o(ie), it fixes the ^o-image of 
0(ze) = — if and hence also the image of [e, /] = h. 
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a complex coadjoint orbit. As such, it carries a holomorphic symplectic form OQ', in 
particular, O has even complex dimension 2k. The intersection O fl p decomposes 
into a union of finitely many if-orbits, all Lagrangian with respect to cro, hence of 
complex dimension k [KR], Analogously, OD^R is a union of finitely many GR-orbits, 
Lagrangian with respect the real symplectic form Reoo, hence of real dimension 2k. 
We enumerate the two types of orbits as 

(7.19) ODp =  Op.i U ■ ■ ■ U 0p,d    and    O (Mu =  du U ■ • ■ U OR,* 

The complex structure orients the orbits Op j, which gives meaning to the [Opj] as top 
dimensional cycles, with infinite support, in On p. We had remarked already that ao 
restricts to a purely imaginary form on OfM^R. Thus jao defines a symplectic form on 
the GR-orbits ORJ - one can check that this gives the same symplectic structure as the 
identification of ORJ with a real coadjoint orbit via division by i and the isomorphism 
0R — 9R* induced by the Killing form. We use the symplectic structure to orient the 
Og^j, and to regard them as cycles [O0IR?j] in O fl igR. We let H*n^(... ,Z) denote 
homology with possibly "infinite supports" (Borel-Moore homology). Then, in view 
of (7.19), 

H^(Onp,Z) =  {^[Opj]  |  n^GZ}, 
(7-20) • , t^ 

H<n/(0nz0R,z) = {^MO^l | njezy 

There are no relations among the [Opj], respectively [ORJ], since we are dealing with 
top dimensional homology. This allows us to view the Sekiguchi correspondence as a 
specific isomorphism between the two homology groups. 

Our description of the Sekiguchi correspondence amounts to a geometric passage 
between the two homology groups in (7.20). We define a real analytic family of 
diffeomorphisms 

(7.21) ft:0 —► O,        MO  = Ad(exp(tReC))(C)       (t€R); 

this agrees with the definition in [SV2,§6], except for the change of variables s = t-1. 
The images (ft)*[Opj]i 0 < t < oo, of any [Opj] constitute a real analytic family of 
cycles in the complex orbit O. We argue in [SV2] that this family of cycles has a limit 
for t -> H-oo for a priori reasons, and that the limit is a cycle in OfUgR. The existence 
of the limit may seem surprising, since ft has exponential behavior for large t. At the 
end of this section, we shall say a few words about the notion of limit of a family of 
cycles, and about the argument for the existence of the limit in our situation. 

7.22. Theorem. The assignment c i-> lim^-foo {ft)* c induces the Sekiguchi 
correspondence, as map from H^ (Onp,Z) to H^ (O fl igR,Z). In other words, 

limt-H-oo (/4M0p]    =    PflpJ 

whenever the K-orbit Op in O fl p and the GR-orbit OR in O Pi Z^R are related by the 
Sekiguchi correspondence. 

This theorem plays a crucial role in our proof of the Barbasch-Vogan conjecture 
in [SV2], where it is stated as theorem 6.3. Its proof splits naturally in two parts. One 
establishes the existence of the limit and reduces its computation to two geometric 
lemmas about nilpotent orbits [SV2,§6]. The second part consists of the proofs of 
the two lemmas; these proofs occupy the last section of this paper and use the tools 
developed in the preceding sections. 
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We had mentioned earlier that our description of the Sekiguchi correspondence 
carries over to its most general version, which relates nilpotent orbits attached to 
symmetric pairs defined by commuting involutions [Se], The statement and the various 
steps of the proof apply in the general case after minimal changes, with one exception: 
in the absence of complex and symplectic structures, the orbits no longer carry natural 
orientations and - as far as we know - need not even be orientable. One can deal with 
this problem by considering the orbits as cycles with values in the orientation sheaf; 
the isomorphism (7.15) identifies the orientation sheaves of any two orbits related by 
the Sekiguchi correspondence. When that is done, theorem 7.22 remains correct as 
stated. 

Let us comment briefly on the meaning of the limit in theorem 7.22 - for a more 
detailed discussion of limits of cycles in general, see [SV1]. When we restrict the family 
of cycles { (ft)*[Op] } to some finite interval 0 < t < a, we obtain a submanifold with 
boundary in [0, a] x 0, and the boundary consists of the fibers over 0 and a; in this 
situation, it is natural to think of the fiber over a as the limit of the family as t tends to 
a from below. What matters here is not the smoothness of the family; it suffices that 
the total space and the map to the parameter interval [0, a] be Whitney stratifiable. 
In the case of real algebraic, or more generally, subanalytic families of cycles, Whitney 
stratifiability is automatic. The family { (ft)*[Op] } fails to be subanalytic at t = -foo. 
It does, however, belong to one of the analytic-geometric categories constructed by van 
den Dries-Miller [DM], using recent work in model theory [W, DMM]. These analytic- 
geometric categories generalize the notion of subanalyticity, and share most of the 
important properties of the subanalytic category, such as Whitney stratifiability. This 
implies the existence of the limit in theorem 7.22; in effect, one can argue as if the 
family were subanalytic even at infinity. By definition, the limit cycle is supported 
on FQO, the fiber over {-hco} of the closure of {(t,ft{()) \ 0 < t < oo,C € Op } in 
[0,+oo] x O. A fairly simple argument identifies FQO as O fl igR [SV2, §6]. Thus, 
according to (7.19), the limit cycle can only be an integral linear combination of the 
ORJ. A normal slice to ORJ in (9, at a generic point of ORJ, intersects (ft)*[(Op)], 
for t close to -foo, with an intersection multiplicity rrij not depending on £; here 
"generic" is to be taken in the sense of the analytic-geometric category to which the 
family of cycles belongs. Essentially by definition, the intersection multiplicity rrij is 
the coefficient of OR J in the limit cycle. We argue in [SV2, §6] that the multiplicity 
rrij can be calculated even at "non-generic" points under certain circumstances. This 
argument reduces the statement of theorem 7.22 to the second of the two lemmas in 
the next section; the first lemma is a crucial ingredient of the proof of the second. 

8. Two Lemmas. We work in the setting of the complexified Lie algebra g = 
C0R QM, as in §§6-7. We keep fixed, once and for all, a nilpotent G-orbit O in g - {0}. 
Recall the family of real analytic maps 

(8.1) ft : O  —►  O,        ft(0 = Ad(exp(meC))(C)        (* G R), 

defined in (7.21); as was remarked earlier, this agrees with the definition in [SV2, §5], 
except for the change of variables t = s"1. Note that 

(8.2) Re (/t(C))  = ReC 

for all C € O. It follows that {ft} is a one parameter group of diffeomorphisms. 
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Because of (6.5) and (7.1), the definition (2.7) of the moment map translates into 

MC] (8.3) m:g-{0}  —► JuR,        m(C)  = 
IICII2 

in the present situation. This map is invariant under the action of the maximal 
compact subgroup UR C G. We are interested in the qualitative behavior of ||m||2 

along trajectories {ft(0 \ t > 0} through points £ G O fl p. Thus we consider a 
particular iiT-orbit Op in O fl p and a point £ G Op. With this choice of £ kept fixed, 
we write 

™>(M0)  - m(*)  - rni(t)+m2(t)+mz(t),    with 

mi(*) G R • Re C,    m2(t) G PR fl (Re C)"1,    m^(t) G ilR. 

This can be done because iu^ = Z6R © PR. Our first statement is [SV2, lemma 6.28], 
phrased in terms of the new variable t = s_1. 

8.5. Lemma. For ( G Op as above and t G K, ||mi(t)||2 + ||m3(t)||2 > 
|M0)||2. 

Before embarking on the proof of the lemma, we state the second one. Besides 
the If-orbit Op in O fl p, it involves a GR-orbit OR in O fl i 0R, which may or may not 
be related to Op by the Sekiguchi correspondence. We fix a point z/ G C(OR), which 
can be represented as 

(8.6) i/ = 2$o(e),        with  $o € MorR^(s,0), 

as in (7.4). The choice of <I>o gives meaning to the decomposition (4.5) of g. The space 

(8-7) q(i/)   =  ©^e^flM) 

is a linear complement to Kerad(z/) = Kerad(e) in g, and is defined over E. Thus, 
for a > 0 sufficiently small, the map 

{K^)eflRXflR  |  f,ryeq(i/)nflR, ||f||,|y <o}    —>   O 
(£,*!)    '—►    Ad(exp^expr/)(i/) 

sends its domain isomorphically to an open neighborhood of v in O. In particular, 
shrinking a further if necessary, we can make 

(8.9) N(u,a)  =  {A^expiOM   |  ^q{u)naR, \M < a} 

a normal slice to OR in O at the point v - in other words, a submanifold of O that 
intersects OR at the single point z/, where the intersection is transverse. We remarked 
in §7 that the orbits Op , OR carry natural orientations: the former as complex man- 
ifold, the latter as coadjoint orbit via OR 3 i( t-t C £ QR — 9R*, hence as canonically 
symplectic manifold5. The orientation of Op in turn orients the diffeomorphic image 
ft{Op). Our next statement is a more specific version of lemma 6.29 in [SV2], again 
phrased in terms of the variable t = s-1. 

8.10. Lemma. For a sufficiently small andt sufficiently large in terms of a, the 
submanifolds N{y, a) and /^(OR) of O meet either exactly once or not at all, depending 
on whether or not OR is the Sekiguchi image of Op. In the former situation, the 
intersection is transverse and has intersection multiplicity +1 when the orientation 

' The orientation conventions are spelled out in detail in [SV1, §8] 
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of N(i/, a) and the sign convention for intersection multiplicities are chosen so as to 
make N(v,a) meet O^ with multiplicity +1 at v. 

Proof of 8.5. Let us record some observations about nilpotents in O fl p; they 
will be used not only here but also in the proof of the second lemma. We consider 
an arbitrary £ £ O fl p, which we express as £ = £ + iri with £, r) G PR. In particular, 
ad£ : 9R —>■ 0R is self-adjoint with respect to the complex extension of the inner 
product (2.2). Thus 

£ =  XICA  = £ + *X!7?A5    with A ranging over E, and 

rjx £ g^  =  A-eigenspace of ad£,        £A 
(8.11a) _   ^   A        x _= ^   ^ A       f£ + ^o    ifA = 0, 

Z77A if A ^ 0. 

The nilpotence of £ implies 0 = £(£,£) = B(Z + irj^ + irj) = ||£||2 - ||r;||2 + 2i(f,r/). 
Also, g^ _L g^ unless /i = A, hence 

(s.iib) ||£||2 = IM
2
 = Ell^ll2 = IHCII2,   (£,*) = fam) = o. 

Both £ and r] lie in pR, i.e., the (—l)-eigenspace of 8, hence 

(8.11c) Orix   =   -77_A, ||r7A||   =   \\fl-x\l 

All this applies to the point £ referred to in the statement of the lemma. 
We calculate m(t) = m(/t(£)), beginning with the definition (8.3) of the moment 

map: 

[Ad(exp(^))C,g(Ad(expftO)C)] 
U ||Ad(exp(iO)CII2 

=   K + ^EA^A^-^EA^VA] 
EA^IKAII

2 

EA,Me(A+M)t[^A,^]   -   iEA^^+e^)^ 

EA^IKAII
2 

The imaginary part of this expression equals ms(t), and irjx = £A if A / 0.   We 
conclude: 

m m EAA(eAt + e-^)CA 

(R12) EA^IICAII
2
      ' 

V   A2reAt + e-xt)2\\Cx\\2 

wm^r = ^A(e +e ) IICAI1 

(EA^IICAII
2
)
2
     • 

On the other hand, 

(RemftU) ^(Remft),0 
mi(i) = T^F- € = 2      IICII2      f 

IICII2 EA^IICAII
2
      ^ IICII2 EA^IICAII

2
      * 

EA^^T^-A) , = EAAe^ll^ll2 

IICII2 EA^IICAII
2
 

?        IICII2 EA^IICAII
2
 

?" 

In the numerator, only the summands corresponding to non-zero A matter, so we can 
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replace i7]\ by (\, giving us 

EA^HC A 
12 

||mi(i)||2  = 2 (E,Ae^||a||^ 
EAIICAIIMEA^HCAII

2
)
2
' 

in the second line, we have used the equality ^A ||CA||
2
 = ||Cl|2 = 2||C||2-   At £ = 0, 

m(0) is a positive multiple of — [£,#£]> which lies in Z6R. Thus 

m(0)  =  -2   ^^
ACA 

EAIICAII
2
' 

(8-14) r  A2liail2 

||m(0)||2  = 4 EAAICAIL 
(EAIICAII

2
)
2
' 

as follows from (8.12) with t = 0. 
To prove the inequality asserted by the lemma, we rewrite it in terms of the 

expressions (8.12-14) and clear the (positive) denominators. This transforms the in- 
equality into the following equivalent form: 

2(EA IICA||
2
)(EA Ae^HCAll2)2 + (EA IICA||

2
)
2
(EA AV* + e-^)2||CA||2) 

1   '      ) >   4(EAA2||CA||2)(EAe2Af||<A||2)2. 

The original inequality is homogenous in (. So is the inequality (8.15) when one 
allows only scaling by real numbers and gives A - which is a typical eigenvalue of 
ad£ = ad(ReC) - the same weight as ||CA||- Thus we are free to renormalize £, subject 
to the condition 2 = ||C||2 = EA IICA||

2
- We set ax = ||CA||

2
. Then EA 

aA = 2> and 

a0 = ||£||2 + ||^o||2 > 1 by (8.11); also, a_A = ax, again by (8.11). We note that 
(ext 4- e~xt)2 = e2Xt 4- 2 + e~2Xt, and replace 2t by t throughout. At this point, the 
inequality to be proved becomes 

(8 16) (EA AeAtaA)2  + EA A2(eAt + 2 + e^)ax >  (EA A2aA)(EA e^a,)2, 

subject to the conditions  aA = a-A > 0,   ao > 1,   EA 
aA — 2. 

There must be at least one pair of non-zero indices ±A; otherwise £ and 77 would 
commute, making ( semisimple - impossible, since ( is a non-zero nilpotent. One 
further reformulation of the inequality to be proved: we define 

(8.17a) h(t)  = EA 
aAeA*,        teR. 

This transforms the inequality into the form 

(8.17b) ti(t)2 + 2/i,,(*)  + 2/i,,(0)   >  ti'(0)h(t)2, 

with the ax still subject to the conditions listed in (8.16). 
The function h(t) has a globally convergent Taylor series. We can therefore verify 

(8.17b) by establishing the corresponding inequalities for all derivatives, at t = 0, of 
the expressions on both sides, including the 0-th derivative, of course. The conditions 
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on the ax imply, in particular, 

a) HO)  =  EA ^  = 2; 
b) 0<EA#O«A  <1; 

(8'18) c)   hM(0)  =  EA^oA2fcaA,       forA>0; 

d)   /i(2fc+1)(0)  =  0, forfc>0. 

This gives the inequality at t = 0, as an equality, in fact. We still must show that 

^- (h'(tf  + 2h"(t) + 2h"(0)) |t=o    >     ^- (h"m(t)2) \t=o 

for all k > 0, or equivalently, 

(8.19) '-0 

1=0 ^    ' 

When k is odd, both sides reduce to zero because of (8.18d). To deal with the even 
case, we replace A: by 2A:, omit the odd derivatives in the two sums, and separate out 
the summands involving ft(0) = 2. This reduces the problem to showing that 

k 

Y,(2l?*   )h(2/)(0)ft(2fc-2/+2)(0)   +   2h<2*+2>(0) 

(8.20) ^ 

>    ^^)/i(2)(0)/i^(0)/i^-2^(0)   +   4^2)(0)/i^(0), 

still for fc > 0. 
We shall reorganize the terms on both sides of (8.20) and then compare corre- 



ON THE GEOMETRY OF NILPOTENT ORBITS 263 

spending terms, using the Chebychev inequality. First the left hand side of (8.20): 

k 

+ Yi(
2k~1)h^+2Ho)h^k-2lHo) + 

1=1 
k-1 (8.21) ^ttk-l 

£=0 
k-1 

£=1 
k-1 

£=1 

+    2h^(0)h^(0)    +    2/i^+2)(0). 

Now the right hand side: 

kT(lkZ\h(2\o)hM(o)h(2k-2eHo) + 4hW(o)hM(o) 
t=i \2e' 

+   4hW(0)hW(0) 

= EQZJ)^^20^)^'-20^) + 
(8.22) 

k-1 

+  ^f2A;
2/)/i

(2)(o)/i^(o)/i^-^(o) + 
£=1 

+   4/i^(0)/i(2fc)(0). 

Matching up corresponding terms on the right in (8.21-22), we see that the inequality 
(8.20) can be reduced to 

(8.23) h^w\0)    >   hW(0)hM{0) 

for all £. This is equivalent to 

(8.24) EA2'+2aA > \Y,x2aM^Zx2eax 
A^O \A^0 /    \A^0 

because of (8.18c).   We now appeal to Chebychev's inequality as stated in [HLP, 
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(2.17.1)], for example: 

(8.25) ^oA2^aA    ^    /EA^O A2 ax\ fEx^o ^ax\ 

EA^O 
aA "      V    EA#0 

aA    J   \    EA^O 
aA     J ' 

But 0 < EA#oaA < 1 by (8.18b), so (8.25) implies (8.24), and hence lemma 8.5. 
Proof of 8.10. We express the point v as in (8.6) and use the morphism $o 

to identify s = 5[(2, C) with a 0-stable, conjugation invariant subalgebra of g. In 
particular, 

(8.26) z/ = ie. 

We must show: for a > 0 sufficiently small and £ > 0 sufficiently large, the equation 

(8.27) ft(C)  = Ad(expz/c)(ze),        with  (eOp,   ^€q(ze)ngR,   ||ft|| < a, 

has exactly one solution when Op and OR are Sekiguchi related, and no solution 
otherwise. 

It is easy to produce a solution when it is supposed to exist. Thus, for the 
moment, we assume that the two orbits are related. Note that the identity se2st = 1, 
with t > 0, 0 < s < 1, implicitly describes s = s(t) as a decreasing function of t, and 
lim^oo s(t) = 0. A simple calculation in 51,(2, C) shows: 

ft(sh + ise + isf)  =  Ad(exp(sth))(sh + ise + isf) 

(8.28a) =  sh + ie + is2f  = Ad(exp(2s/))(ie), 

and s(h -f ie + i/) lies in the if-orbit related to the G]R-orbit of ie; 

in other words, the relation (8.27) with £ = s(h + ze + i/) and K, = sf - which does 
lie in q(ie) fl g^, as required. With little more effort, one checks that 

in the case of (SR^R) = (BI(2,M),SO(2)), with t > 0, 

(8.28b) the above solution of the equation (8.27) is the only solution 

with the property that £ £ E/i and K G M/. 

In fact, for (gR,6R) = (s[(2,E),so(2)) and ^ > 0, it is the only solution, even without 
the additional hypotheses on f and K, as will follow from the arguments below. We 
shall need to know certain properties of the solution (8.28a): 

m(sh + ie + is2f)  =  (1 + s2)"^ (1 - s2) h - 2ise + 2isf), 

\\sh + ie + is2f\\  =  1 + s2, \\m(s h + i e + i s2 f)\\2  =  2; 

this follows from the description (8.3) of the moment map and another simple calcu- 
lation. 

In the general situation, let us suppose that (8.27) does have a solution, with a > 0 
sufficiently small and t > 0- the meaning of "sufficiently small" will be specified later. 
We write ( = f + irj, as in (8.11), and we define 

(8.30) s =  M 

The present meaning of s appears to be different from that in (8.28a); after the fact, 
we shall see that they agree. Inductively, we shall produce bounds 

(8.31) \\Z-sh\\  <  Cks\    \\K-sf\\  <  Cks\ 
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for all k > 1, with some positive constant C which is independent of both k and t. 
For a small and ||K|| < a, 

(8.32) 11(11  =  ||Re/,(C)||   <  ||/t(C) -te||  =  || Ad(expi/0(ie) - ie|| 

is small as well. Thus we can force Cs < 1, in which case (8.31) implies £ = sh G M/i 
and K, = sf G R/, hence £,«£$. But then 5 also contains ( — /_t(Adexp(zAc)(ie)); 
recall: {/*} is a one-parameter group of diffeomorphisms. Because of (8.28b), our hy- 
pothetical solution must coincide with the solution (8.28a) - in particular, no solution 
exists unless the two orbits are Sekiguchi related. 

At this point, we still need to establish the bounds (8.31) and to pin down the 
nature of the intersection of ft (OR) with the normal slice - transverse, with sign .4-1. 
The latter is a separate matter, and we shall deal with it last. 

To prepare for the verification of (8.31), we re-write the right hand side of (8.27). 
Since ad/(e) = -h and (ad/)2(e) = -2/, 

ii+i 
Ad(expi/c)(ie)  = ^>o — (sad/ 4-ad(/c - s/))  (e) 

= ie + sh 4- is2f 4- [e,K, — sf] 
(8.33a) i 

- - ((ad(/c - sf))2 + ad(« - sf)ad(sf) 4- ad(s/)ad(^ - sf)) (e) 

ii+i 

+ E/.2-7r(5ad/ + ad^-5/))^e)- '*>2     l\ 

We make a small enough to force s < 1 and ||AC — s/|| < 1. For k > 2, (a,df)k(e) = 0. 
Thus, when we expand (sad/ 4- ad(A>: — sf)) (e) as a sum of monomials, every non- 
zero term involves at least one power of ad(ft — sf). We can therefore choose D > 0 
so that 

(8.33b)        ll ^>2 ir (*ad / + ad(K - sf»e (e) ii 
< D\\K- sf\\ max(s2,||K-s/||2). 

Taking the real and imaginary parts of ft(Q — £ + i Ad(i^)(ry) = Ad(expiK)(ie), we 
find 

a) \\Z-8h-[e,K-sf]\\    <   D\\K-Sf\\mcix(s2,\\K-Sf\\2), 

b) \\Ad(tt)(r,)-.e-82f\\    <   D\\K-sf\\max(s,\\K-sf\\), 
(8-34) ,,     ,w , 2 

now with a possibly larger value of D. 
We remarked already that ||£|| and s are necessarily small when a is small. Also, 

the operator ade is injective on the space q(ie), which contains both / and K. Hence 
||[e, K — sf]11 can be bounded from below by a positive multiple of \\K — sf\\. Using 
(8.34a), we now conclude: 

(8.35) ||£ — sh\\    and    \\K, — sf\\    are mutually bounded 

when a is sufficiently small. In particular, this makes the two inequalities in (8.31) 
equivalent to one another. The first holds vacuously when k = 1, hence so does the 
other. 

For the inductive step, we assume that (8.31) is satisfied for some k > 1. Enlarging 
the constant D in (8.34) if necessary - independently of k - we can arrange 

(8.36) ||£ 4- iAd(tOfa) - sh - ie- is2f\\  < D\\K - s f\\  <  CkDsk. 
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But Z+i Ad(tQ(r)) = ft(Q, and {l + s2)-1{sh+ie+is2f) lies in the core C(0); indeed, 
according to (8.29), (1 + s2)~1(sh + ie + is2f) has unit length, and there the function 
||m||2, which is invariant under scaling of the argument, assumes the minimum value 
2. Thus (8.36) implies 

(8.37) distUl-s2)^ft(0, C(O))  <  || ^ - fZ^+lf! ||  <  c'Ds*. 
1 + sz 1 4- sz 

The function ||m||2 : §(0) -> M>o is Bott-Morse, with minimal value 2, assumed 
precisely on the core. Using (8.37) and the invariance of m under scaling of the 
argument, we find 

(8.38) \\m(ft(0)\\2  - 2  <  C2kD2s2k, 

possibly after increasing D, again independently of k. On the other hand, according 
to lemma (8.5), 

IH/t(C))||2    = UmiWII2  + \\m2(t)\\2  +  HmsWII2 

> IKWII2 + IKWH2  >  ||m(C)||2  > 2. 

Combining (8.38-39), we find 

(8.40) HmaWH   <  CkDsk. 

The moment map is differentiable, so (8.37) implies a bound on the distance between 
m(ft(Q) and m(sh + ie + is2f), 

(8.41) l|m(/t(C))  - m(sh + ie + is2f)\\  < CkDs\ 

with a larger D, if necessary. By definition of the mj(t), 

(8.42) unit)  = Re(mi(t) + m3(t))  = Re(m(/t(C)) - mzW). 

At this point, we can conclude that 

(8.43) ||mi(*)   -   l^hW   <  2CkDsk, 

by combining the formula (8.29) for m(sh + ie + is2/) with (8.40-42). 
Recall that rai(£) is a real multiple of ReC = f - a positive multiple, as follows 

from the explicit formula (8.13) in conjunction with (8.11): 

(8.44) z = n\mi{t) 

IKWII" 
In this formula, we can approximate m\{t) by (1 + s2)~1(l — 52)/i, at the expense of 
introducing an error term slightly larger than that in (8.43), multiplied by ||£||. Since 
the inner product was normalized by the formula \\h\\2 = B(h,h) = 2, 

(8.45) H -  ^h\\  <  SMWC'Ds', 

provided s is sufficiently small - which, we had seen, can be arranged by making a 
small. We substitute ||f || = \/2s - cf. (8.30) - and choose C at least as large as 3D\/2, 
giving us 

(8.46) U - sh\\  < Ck+1sk+1. 
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In view of (8.35) this completes the inductive verification of (8.31). We had remarked 
already that (8.31) implies the first part of the lemma. 

Now let OR, Op be orbits related by the Sekiguchi correspondence, and u a point 
in the core C(Ou). We use the notation (8.26-28); in particular, we again identify $ 
with a subalgebra of g and the point is with ie. To shorten formulas, we set 

(8.47) i/t  = s(h + ie + if) (0<£<oo), 

with s = s(t) determined implicitly by se2st = 1 as before. Then lim^oo s(t) = 0, 
5(0) = 1, and 

(8.48) ft(ut)  = ie + sh 4- is2f, 

as in (8.28). We regard tangent spaces to (real) submanifolds of g as vector subspaces 
of gR, i.e., of g considered as vector space over E. However, we shall not dwell on the 
distinction between g and gR from now on. We shall show: 

the limit of vector spaces    limt-^oo {ft)* (^Op) 
(8.49) . 

exists and equals    TieOu- 

Since OR and the normal slice N{ie, a) meet transversely at ie by construction, ft{Op) 
must then meet OR transversely at vt for t large, as asserted by the lemma. 

The point {2s)~1i't lies in the core C{Op). Since scaling by a positive number 
preserves Op, the tangent spaces to Op at i/t and {2s)~li/t are naturally isomorphic; 
indeed, they are equal as subspaces of gR. Appealing to (4.9) and (6.17), we find 

T„tOp  = TVt{KR-vt) © t>R(*o)(/i + *e + t/), 
(8.50) with    DR($O)  =  ©r>2HomR'*(5,g(r))(r-2). 

We shall apply the differential of ft separately to the various summands in this de- 
composition of TVtOp and then take the limit as t -> oo. 

The map ft is GR-invariant by definition. It follows that {ft)* maps the tangent 
space Tvt{KR • vt) isomorphically onto T^^KR • ft{vt))- Since ft{vt) -► ie, we can 
let t tend to infinity and conclude 

(8.51) lim^oo {ft), {TVt {KR • vt))  - Tie {KR • ie), 

provided the family of KR-orbits KR • ft{vt) = KR • {ie -f sh + is2/) depends smoothly 
on s — s{t) even at 5 = 0. To see this, note that any k G KR that fixes ft{vt) must fix 
the real and imaginary parts separately, but those generate s as Lie algebra. Similarly, 
if k G KR fixes ie, it must fix also if = — i6e, which together with ie generates 5. The 
constancy of the isotropy subgroups of (JKR)/^) = {KR)5 even at s = 0 implies the 
smooth dependence of the KR-orbits, hence (8.51). 

Recall the decomposition g = 0r^g(r,£) defined in §4. For 77 E g(r), we let rj£ 
denote the component of 77 in g(r,£). We shall need to know: 

a) the map  $ \-> $ h establishes an isomorphism 

HomR'*(5,g(r))(r-2)    ~   ©0</<r (g(r,£) + g(r, -£)) np^; 

(8.52) 
b) $<EHom(s,g(r))(r-2) => ($h)i  =  0  if i = ±r,    and 

(*e),+2  =  -ZLtc, (*/!),],     (*/),.2  =  -1^1/, (*fc),]. 
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The assertion b) is established in [S,§9], in the arguments6 leading up to (9.53) in 
that paper; alternatively, one can deduce b) directly from the identity (4.14b) in 
the proof of proposition 4.9. Because of b), the map $ *-* $ h is certainly injective 
on Horn ' (5,0(r))(r — 2), and $ h has no components in g(r, ±r). But any such 
$ respects the Cartan decomposition and real structure, so $ h lies in g(r) fl pR. 
The space g(r) fl pR is invariant under (ad/i)2, hence splits into the direct sum of 
the subspaces (Q(r,£) 4- Q(r,—£)) fl PR. Since ($h)±r = 0, the map $ i-> $ h in a) 
does take values in 0o<^r (£j(r,^) + 0(r, — £)). To see the surjectivity of the map, 
let us fix £ G (0(r, £) + 0(r,-£)) for some integer £, 0 < £ < r. The formulas in 
b) are compatible with the Cartan involution and real structure, and consequently 
determine a unique $ G HomR,6,(s, g(r)) such that the formulas in b) hold and $ h — £. 
The criterion (4.14b) and a short computation show that $, thus defined, lies in 
HomR^(5,g(r))(r - 2). This completes the verification of (8.52). 

The definition of the map ft, coupled with the formula for the differential of the 
exponential map - see [He,theorem 11.1.7], for example - leads to the formula 

/           fl — e~ s*ac^ 
(8.53)      (/0*C = Adexp(s^)   C +     ,  ^      (*ReC), s{h + ie + if) 

s tdidh 

We apply this to ( = $(h + ie-\-if), with $ G HomIR,6,(s,g(r))(r — 2) viewed as tangent 
vector to Op at vt, as in (8.50). To simplify the statement we are about to make, we 
assume 

(8.54) $h  G   (sM) +0(r,-*))npR        (0<£<r). 

In any case, B[omR'6,(5,g(r))(r —2) has a basis consisting of linear maps $ of this type. 
According to (8.52b), $e has a nonzero component in g(r,£ + 2) - unless $ = 0, of 
course - but no components in g(r,<7) with j > £ + 2; similarly, $/ has no components 
in ^(r,^) with j > £. The operator Adexip(sth) acts on g(r,£) as multiplication by 
e5** = s"^2, whereas the operator (adft)"^! - e-siad/l) acts by ^(l - e-sU) = 
£_1(1 — 5^/2) or st = — I logs, depending on whether £ > 0 or £ = 0. Looking at the 
leading terms, or equivalently the terms involving the lowest power of s, we find 

rz-s-i-!i+^)($e)     + ...   if£>o 
(8.55) (/t),U*(/i + te + i/)  = ^    ^    K+2 

[ illogsls-^^e   + ... if £ = 0 ; 

here ... refers to lower order terms, and we are using (8.52b) to express [($/i)^,e] as 
a multiple of ($e)^+2. 

Let us re-state the top line of the identity (8.55) in terms $e, rather than ($e)£+2- 
By (8.54) and (8.52b), if £ > 0, 

($e)M_2   =   7  [e, (Sfo)*] r + £v     'w (r-£)(r + £) 

=   -^[e, ($^] - -Lfe, ($/0_,] - ^[e, (M), - ($/i)_,] 

=  ($e)/+2  + (*e)-/+2  -  -^[e, ($/i)/ + fl(($ft)/)] 
r +1 

r +1 

6 The hypotheses "if r = n or r = n - 2, and if s = ±n, ±(n - 2)" in [S,(9.53)] are irrelevant in 
the present setting; in other words, one should argue as in [S], but with Xn = Yn = Zn=0. 
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In the next to last line, we have used the fact that 6 acts as —1 on <f>h and maps g(r, £) 
tog(r,-£). Thus 

r +1 
{$e)£+2   =   —— $e  -  [e, 77*], 

(8.56) 2r 1 

With   Tfr   =def   ^- (($/i)/ + 0((Qh)i))   G   fe. 

Combining (8.55-56), we get 

lim^oo (5
1+t (Z,),!^ $(ft + ie + ;/))   = 

(8.57) 2r£(r-l)        ^^  +      /(r -1)     ^ ie]    ^^^ 

s 
logs| limt-*oo    nirn(/t).!■'.*('» + « + */)     = *(te) if ^ = 0. 

In analogy to (8.50), we can describe the tangent space to OR at the point ie as 

TieOv, = Tie(KR-(ie)) © t>R(§o)(*e),      with 
(8'58) 5R($o)  =  er>2HomR^(S,0(r))(r-2),    TieOR  =  [tK, ie}. 

We have established (8.49); equivalently, there exists a basis {r]j(t)} of (ft)*(Tptop), 
depending continuously on the parameter £, such that the limits fjj = \imt->ooVj(t) 
exist and constitute a basis of TieOu. This follows from the analogous statement about 
the tangent spaces of the i^jR-orbits - which is equivalent to (8.51) - in conjunction 
with (8.50), (8.52a), (8.57-58), and the non-vanishing of the coefficients of <J>(ie) in 
(8.57). We have pointed out already that (8.49) implies the transversality assertion of 
the lemma. 

To pin down the sign of the intersection, it suffices to compare two orientations 
on TieO^ — limt-+oo((ft)*Tj/tOp) - on the one hand, the orientation introduced by 
the symplectic form ^cro, on the other, the orientation coming from the complex 
structure on Op ~ ft(Op) arid the limiting process; the sign of the intersection is the 
sign which relates the two orientations. We had remarked already that the tangent 
spaces TUtOp all coincide when we regard them as subspaces of gR. In particular, they 
all coincide with the tangent space at I/Q = h -h ie + if: 

(8.59) TUtOp =TU0Op = [*,!/(>]. 

For reasons of continuity, the real 2-form Imao is non-degenerate on {ft)*(TVtOp) for 
all large enough values of t. We must show that [ft)* is orientation preserving with 
respect to this symplectic structure on (ft)*(TVtOp) and the orientation of T^Op as 
complex vector space - equivalently, that Im^Vo), for t > 0, orients the tangent 
space T^Op = TUtO consistently with the complex orientation. In fact, we shall show 

a)   Imcro   is non-degenerate on  (ft)*(TUtOp)  for all  t > 0; 

(8.60) b)   5 =def  limt_)>o+ (^~1 ft(^mo'o)\Tuto)   exists, is non-degenerate, 
and orients  TVo O — TVt O  consistently with the complex structure. 

That suffices: the 2-forms /*(Im<7o), for t > 0, are then all nondegenerate on TUoO 
and therefore induce the same orientation. Because of b), this orientation agrees with 
the orientation determined by the complex structure. 
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We break down the verification of the statement (8.60a) into the following two 
separate assertions: 

a) the submanifolds  ft (Op)   of the complex orbit  O  are 

(8.61) Lagrangian with respect to the symplectic form   Reao] 

b) (fMTV0O)ni(ftUTU0O)  =0 for all t > 0. 

Let us assume this for the moment. If £ G (/t)*(TI/t0p) lies in the radical of the 
restriction of Imao to (ft)*(T^Op), (8.61a) allows us to argue 

Wo(<, (ftUTVtOp)) = 0     =*    voitAftMTv.Op))  = 0     =* 

*o(C,*(/«).Cr*0p)) = 0   =►   ao(C, (ftUntOp)(Bi(ftUTUtOp)) = 0; 

at the second step we are using the complex linearity of ao- But (8.61b) and a 
dimension count imply that (ft)*(TUtOp) and i(ft)*(TJ/tOp) span the tangent space 
of O at ft(vt)i so £ lies in the radical of the holomorphic symplectic form cro, forcing 
C = 0. Thus (8.61a,b) do imply (8.60a). At this point, only (8.60b) and (8.61a,b) 
remain to be proved. 

Recall the notation (8.47) and the formula (8.53) for the differential of ft. We 
apply this formula to a tangent vector C € TUtOp. Because of (8.59), we can write 
£ = [AC, z/0] for some K E £, so that 

(/i)*C  =   (/«)*[«» ^o]   = 

(8.62) 
Adexp(sth) f K -f- 

-stadh 

ad/i 
Re[«,Z/Q] ) , Adexp(sth) vt 

-i ft(vt), Adexp(sth)    K, + 
-st&dh 

ad/i 
ReC 

The holomorphic symplectic form ao is the canonical symplectic form of the complex 
coadjoint orbit that corresponds to O when we identify 9 2^ g* via the Killing form. 

Thus, for Cj = [Kjifo] e TUtOp, j = 1,2, 

(ft^o)(CiX2)  =  (^o)l/t(i/t)((/*)*[«i^o], (/t)*[«2,2/o])  = 

J5(/*(i/t), [(ad/tCi/t))-1^),^!,^]), (ad/tCi/t))-1^*),^,^])])   = 

,,-2 

B 

Bl 
^      1 

Bl 
<    1 

1  _ g—st&dh 

Kl   + 
ad/i 

1  _ p—sta.dh "I \ 

ReCi, ^2 +  ^ ReC2    j 

1-e — siad/i 

ad/i ■ReCi, 
1-e -s£ad/i 

«1, 

•1 _ p—stadh 

ad/i 
ReC2 

ad/i 

+ 

ReC2 + 

1-e -stad/i 

ad/i 
ReCi, K2 

Here, in the second line, (ad/t^*))  1((/t)*[«j, ^0]) is symbolic notation for any element 
of g whose image under ad/^z/*) is (/t)*[«j,i/o]; in passing from the second line to 
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the third, we are using (8.62), the identity ft(^t) — Adexp(s£adft)(i/t), and the Ad- 
invariance of the Killing form; the last step is justified by the perpendicularity of 
vt G p and [fti,/^] € £. Next, we use the infinitesimal invariance of 5, the relation 
vt = s VQ , and the relation between Q and Kj, to conclude 

(/^o)(Cl,C2)    =   (oro)|/t(i/t)((/t)*[/clJ
I/o], (/t)*[«2,^o])    = 

(8.63) 
=  s-lB[ i/o, 

1-e —stad/i 

ad/i ReCi, 
1-e -stad/i 

ad/i ReC2 

-i  _ p—st&dh \ / 1   p — st&dh 

.-mis. iw. \   ,   „-ID( ReCi,C2 s-1^    d, ad/i 
ReC2      + s-1^ ad/i 

We shall use this formula to verify (8.60b) and (8.61a). 
For t near 0, s(t) = 1 - 2t + ... and (ad/i)-1^ - e-stad/l) = st-l + ..., hence 

s-^ad/i)-^! - e-atadh) = M + .. -, and 

(8.64) /;(Im(70)(Ci,C2)  =  -tBQmb, ReC2) + ^(ReCi, ImC2) + ... • 

We conclude that 5 = limt^o+ i~1ft(Jmao) exists as E-bilinear, alternating form on 
T^ Op — [^, VQ] and is given by the formula 

(8.65) 5(Ci,C2)  -  -£(ImCi, ReC2) + B(ReCi, ImC2) 

Let {Cj} be a C-basis of [6,^o]> orthonormal with respect to the inner product (2.2). 
Since 0 acts as multiplication by —1 on [6, Z/Q] C p, 

(8.66) 
SiCjJCk) = B(ImCi,Ima) + B(ReCi,Rea) - Re(0,a) = <*,■,*, 

5(0,Cfc) = -^(Im0,Rea) + 5(Re0,Ima) = -MO, a) = o. 

In particular, the nondegenerate alternating bilinear form 5 orients [t, Z/Q], viewed as 
real vector space, in the same way as the complex structure. This establishes (8.60b). 

The formula (8.63) and its derivation remain valid if we replace vt — s VQ by an 
arbitrary point v € Op and sh — Rez/£ by Rei/. We take real parts on both sides, to 
conclude 

(Reao)|/t(,)((/t)*Ci,(/t)*C2) 

i _ p—tad Re v 

= B[ ReI/, 
(8.67) \ ad Rez/ 

ReCi, 
1-e -tad Rei^ 

ad Rez/ ReC2 

- B(ReCi, - 
D—tad Re 1/ 

ad Rez/ 
ReC2      + B 

1-e —tad Re v 

ad Rei/ ReCi,ReC2    , 
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for all Ci? C2 £ TuOp. On the other hand, because of the invariance of B, 

B( Re 1/, 
1-e —(ad Re 1/ 

ad Reu ■ReCi, 
1-e —iad Re 1/ 

ad Rez/ •ReC2 

/ 1  _ g—tad Rev i  _ p—iad Re u 

B   ad Re 1/0 — ReCi,  j-s ReC2 ]   = 
\ ad Re u ad Re u 

(8.68) 

B   (1-e- 

B 

-tad Re 1/ 
1 _ p—tad Rei/ 

)ReCi5 —T^B ReC2) = ad Rev 

(Wi, - 
— e -tad Rei/ 

ad Rez/ 
■Re6 

ptad Re v _ -j 

fifReCi,        ,p V ad Re v 
ReC^ 

The operator ad Ref is skew with respect to B, so (ad Rev)  1(1 — e ted Rei/) is the 
adjoint of (ad Rei/)-1(eiad ^^ - 1), and 

(8.69) B  ReCi, 
Dtad Re 1/ 

acl Re z/ 
ReC2     = B 

1-e —tad Re v 

ad Rei/ ReCi,ReC2   • 

Combining (8.67-69), we find that Re00 vanishes identically on ft(Op). Since Op has 
half the dimension of 0, this implies (8.61a). 

Only (8.61b) remains to be established.   Let us assume, then, that t > 0.  We 
consider two tangent vectors 

(8.70) CjeTt,tOp = [t,h + ei + if]cp,   such that  (/t)*Ci   = i(ft)*C2. 

We express the Q in terms of their real and imaginary parts, 

(8.71) Cj   = tj + iVj,        with  0: % ^ PK- 

Because (ad/*)"1^ - e-stad/l)[^,/i] = (e-siad/l - !)£,•, the formula (8.53) can be re- 
written as follows: 

(8.72) (/t)*0   =  ?j  + i Adexp(sth)   rjj + 
1-e — stad/i 

ad/i 
■fi,e + / 

Our assumption (8.70) on the (j is therefore equivalent to 

0—s tad /i 6    =    -^  + e + /, 
1-e — stad/i 

ad/i 

e-Stad/^2    ==   ^ 
1 - e-*t*dh 

e + f>   Ah ^ ad/i 

(8.73) 

We need to separate the components in £R and pR. For this purpose, we define 

(8.74) 

sinh(s£ad/i) .,        1,       , 7 xo 
5 =   ^^-r--—L  = st-1 +  -(sfad/1)2 + ... , 

ad h 6 
m        1 - cosh(stad/i) 1 17 1 ,   ,    17No 
T =   ^L i  =  --.tad* -  ^(-tadfc)' 
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Even powers of ad h or ad(e + /) commute with the Cartan involution, whereas odd 
powers anti-commute; also, 

(8.75) e-stadh = i _■ (s + rjoad/i = 1 - ad/io(5 + T). 

Equating pR-components in (8.73), we now find 

m   =  (1 - ad/i o r)& + ad(e + /) o T &, 
( '    a) m  =  -(1 - adhoTfa  + ad(e-f/) o T &, 

and the equality of the ^-components translates into 

ad/io5^i   = — ad(e +/) oS.&j 

^8'76b^ adhoS-fr  = ad(e + /)oS£i. 

The latter two equations can be combined into the single complex equation 

(8.77) [h + ie + if,S(€i - ife)]  - 0. 

We shall use these equations to show that the Q must vanish.. 
Both Q lie in [6, h + ie + if], hence in the image of ad (ft + ie + if) : g -> g, and 

5(^1 - ^2) lies in the kernel of ad(ft + ie + if) by (8.77). The image and the kernel are 
each other's annihilator, relative to the Killing form. Thus 

B(S(&-*&),Ci+tC2) = 0. 

Taking real parts, we find 

0 = B(S£i,fi -m) + B(S^2+rii) 

(8.78) = 5(56,6) + 5(56,(l-adftoT)6) - B(Sfi,axI(e + /) o r&) 

+ 5(56,6) + 5(56,(l-adftoT)6) + £(56,ad(e + /)oT6); 

at the second step, we have used (8.76a) to express the rjj in terms of the 6'.  The 
infinitesimal invariance of the Killing form and (8.76b) give 

(8.79a) 

and similarly 

(8.79b) 

5(56,ad(e + /)oT6)  =  -J3(ad(e +/) o 56,^6)  = 

- 5(adfto56,T6)  = 5(56,adftoT6), 

5(56,ad(e + /)or6)  =  -5(ad(e + /) 0 56,^6)  = 

5(adftoS6,T6)  =  -5(56,adftoT6). 

The operators 

(8.80) 1 - adftoT = cosh(s£adft),    adftoT =  1 - cosh(s£adft) 

are series in (adft)2, hence symmetric with respect to the Killing form. Thus, combin- 
ing (8.78-90), we find 

0 =5(56,6) +5((l-adftoT)oS6,6) -5(adftoToS6,6) 
( "    ) +5(56,6) +5((l-adftor)o56,6) - 5(adftoTo56,6). 

The inner product (2.2) agrees with the Killing form on pR. Relative to this inner 
product, adft is a symmetric operator, whose eigenspace decomposition diagonalizes 
5 and adftoT. For t > 0 - which also makes s strictly positive - the eigenvalues of 
5 and 1 - adftoT are strictly positive, and those of adftoT non-positive. Thus all 
terms in (8.81) vanish individually, and 6=6 — 0- The 77j, which can be expressed 
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in terms of the £j, must vanish also. We have shown that (8.70) forces £1 = £2 = 0- 
This completes the verification of (8.61b), and with it, the proof of lemma 8.10. 
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