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THREE CONSTRUCTIONS OF FROBENIUS 
MANIFOLDS: A COMPARATIVE STUDY* 

YU. I. MANIN+ 

Abstract. The paper studies three classes of Frobenius manifolds: Quantum Cohomology 
(topological sigma-models), unfolding spaces of singularities (K. Saito's theory, Landau-Ginzburg 
models), and the recent Barannikov-Kontsevich construction starting with the Dolbeault complex 
of a Calabi-Yau manifold and conjecturally producing the B-side of the Mirror Conjecture in arbi- 
trary dimension. Each known construction provides the relevant Frobenius manifold with an extra 
structure which can be thought of as a version of "non-linear cohomology". The comparison of 
these structures sheds some light on the general Mirror Problem: establishing isomorphisms between 
Frobenius manifolds of different classes. Another theme is the study of tensor products of Frobenius 
manifolds, corresponding respectively to the Kiinneth formula in Quantum Cohomology, direct sum 
of singularities in Saito's theory, and presumably, the tensor product of the differential Gerstenhaber- 
Batalin-Vilkovyski algebras. We extend the initial Gepner's construction of mirrors to the context 
of Frobenius manifolds and formulate the relevant mathematical conjecture. 

0. Introduction. 

0.1. Frobenius manifolds. Frobenius manifolds were introduced and inves- 
tigated by B. Dubrovin as the axiomatization of a part of the rich mathematical 
structure of the Topological Field Theory (TFT): cf. [D]. 

According to [D] and [M], a Frobenius manifold is a quadruple (M^T^^g^A). 
Here M is a supermanifold in one of the standard categories (C00, analytic, algebraic, 
formal, ...), T^ is the sheaf of flat vector fields tangent to an affine structure, g 
is a flat Riemannian metric (non-degenerate even symmetric quadratic tensor) such 
that TM consists of g-flat tangent fields. Finally, A is an even symmetric tensor 
A : 5

3
(7M) -> OM- All these data must satisfy the following conditions; 

a) Potentiality of A. Everywhere locally there exists a function $ such that 
A(X, Y, Z) = (XYZ)$ for any flat vector fields X, y, Z. 

b) Associativity. A and g together define a unique symmetric multiplication 
o : 7M ® TM -* 7M such that 

A(XXZ) = g(X oY,Z) = g(X,Yo Z). 

This multiplication must be associative. 
In other words, in flat coordinates the tensor of the third derivatives <l>a&c must 

constitute the set of structure constants of an associative algebra. 
If one excludes the trivial case when $ is a cubic form with constant coefficients 

in flat coordinates, the first large class of Frobenius manifolds was discovered by Kyoji 
Saito even before Dubrovin's axiomatization (see [SI], [S2] and [O]): 

(i) Moduli spaces of unfolding (germs of) isolated singularities of hypersurfaces 
carry natural structures of Frobenius manifold. 

Each such structure is determined by a choice of Saito's good primitive form. 
In [D] a more global variation of this construction is described (Hurwitz's spaces). 
Physicists call the relevant TFT the topological sector of the Landau-Ginzburg 

theory: cf. [C]. 
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The second large class of Frobenius manifolds was discovered by physicists (Wit- 
ten, Dijkgraaf, Vafa) and is called Quantum Cohomology. For an axiomatic treatment, 
see [KM1]. The correlators of this theory are called Gromov-Witten (GW) invariants. 
Their actual construction in the algebraic-geometric framework was carried out in [B] 
following [BM] and [BF]. 

(ii) The formal completion at zero of the cohomology (super)space of any smooth 
projective or compact symplectic manifold carries a natural structure of formal Frobe- 
nius manifold. 

The third large class of Frobenius manifolds was recently constructed by S. Baran- 
nikov and M. Kontsevich ([BK]). 

(Hi) The formal moduli spaces of solutions to the Maurer-Cartan equations mod- 
ulo gauge equivalence, related to a class of the differential Gerstenhaber-Batalin- 
Vilkovyski (dGBV) algebras, carry a natural structure of formal Frobenius manifold. 

As their main application, Barannikov and Kontsevich construct the dGBV- 
algebra starting with the Dolbeault complex of an arbitrary Calabi-Yau manifold, 
and conjecture that the resulting formal Frobenius manifold (.B-model) can be identi- 
fied with the quantum cohomology of the mirror dual Calabi-Yau manifold (A-model). 
S. Merkulov ([Me]) recently invented a similar construction applicable to any symplec- 
tic manifold satisfying the strong Lefschetz condition (cf. below, subsections 5.9, 5.10, 
6.5 and 6.6). Yet another possible source of dGBV-algebras (or rather their homotopy 
version) is provided by the BRST cohomology of certain chiral algebras: cf. [LZ]. 

The Mirror Conjecture is a part of the gradually emerging considerably more 
general pattern. Within the Calabi-Yau domain, it should be a consequence of the 
Kontsevich's conjecture about the equivalence of the Fukaya triangulated category 
associated to one member of the mirror pair and the derived category of sheaves on 
the other member. Furthermore, one expects the extension of the mirror picture to 
other classes of varieties, non-necessarily smooth, compact or having trivial canonical 
class. For some exciting recent results on mirrors, cf. [Giv] and [LLY]. 

Isomorphisms of Frobenius manifolds of different classes remain the most direct 
expression, although by no means the final one, of various mirror phenomena. 

From this vantage point, the three classes of examples considered above should 
be compared at least in two ways. 

First, one looks for isomorphisms between Frobenius manifolds (and their sub- 
manifolds) constructed by different methods. 

Second, one tries to generalize to other classes of Frobenius manifolds additional 
structures peculiar to each of the known classes. 

Consider, for example, Quantum Cohomology. Physically, quantum cohomology 
of a manifold V is only the tree level small phase space part of the topological sigma 
model with target space V. In particular, the correlators of this theory, which are 
essentially the coefficients of the formal Frobenius potential, can be mathematically 
defined in terms of the intersection indices on moduli spaces of stable maps of curves 
of genus zero to V. This set of the correlators of Quantum Cohomology of V can be 
extended to a much vaster structure involving, first, curves of arbitrary genus, and 
second, the so called gravitational descendants, mathematically expressible via Chern 
classes of certain tautological bundles on the moduli spaces of stable maps (cf. [KM2] 
for precise statements). 
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This leads to two natural questions. 

What is the differential geometric meaning of the arbitrary genus correlators with 
descendants in the framework of general geometry of Frobenius manifolds? 

Which Frobenius manifolds admit extensions of this type? 

Of course, Frobenius manifolds admitting such an extension include those that 
are isomorphic to Quantum Cohomology. Therefore a better understanding of this 
problem could shed some light on the Mirror Conjecture as well. In [KM2] it is shown 
that at least the correlators with gravitational descendants in any genus g can be 
reconstructed from the additional data consisting of two different parts. 

One part is the genus < g Cohomological Field Theory in the sense of [KM1] 
whose correlators take values in the cohomology of the moduli spaces of stable curves 
with marked points. At the moment it is unclear which abstract Frobenius manifolds 
can be extended to such genus < g geometry and how it can be done. 

Another part of the data concerns only genus zero correlators and therefore in 
principle can be formulated in terms of arbitrary Frobenius manifold. Its existence, 
however, poses non-trivial restrictions on the manifold which are axiomatized below 
in the notion of qc-type. 

This whole setup can be illuminated by comparison with the motivic philosophy. 
In principle, any natural structure on the cohomology of an algebraic manifold can be 
considered as a realization of its motive, and the question which abstract structures 
of a given type arise from cohomology ("are motivated") is a typical question of the 
theory of motives. 

Quantum Cohomology is a highly nonlinear realization of the motives of smooth 
projective manifolds. It is functorial, at least in the naive sense, only with respect 
to isomorphisms. Hence it cannot be extended to the category of the Grothendieck 
motives in an obvious way. Nevertheless, the natural monoidal structure of motives 
extends to Frobenius manifolds. Their tensor product in the formal context furnishing 
the Kiinneth formula for Quantum Cohomology was constructed in [KM] and [KMK]. 
R. Kaufmann (cf. [K] and paper in preparation) has shown that the tensor product of 
convergent potentials converges, and the resulting Frobenius manifold in a sense does 
not depend on the choice of the base points. This adds some flexibility to the motivic 
perspective. For example, Frobenius manifolds provide a context in which one can 
meaningfully speak about cohomology of fractional weight: cf. e.g. the treatment of 
An-manifolds in 2.3..1 and 3.5 below. It should be also compared with S. Cecotti's 
suggestion that the TFT's of Landau-Ginzburg type naturally give rise to mixed 
Hodge structures (see [C]). 

0.2. Plan of the paper. This paper is dedicated to the study of the Frobenius 
manifolds of the three classes (i), (ii) and (iii) from the perspective described above. 

In §1 we start with reminding the formalism of Gromov-Witten invariants and 
the structure of the potential of the Quantum Cohomology. In the treatment of [KM] 
its terms of degree < 2 were not fixed because of absence of stable curves of genus 
zero with < 3 marked points. However, the Divisor Axiom allows an unambiguous 
definition of these terms (Proposition 1.3.1). This simple remark is essential for the 
definition of < 2 point correlators for abstract formal Frobenius manifolds. We intro- 
duce the notion of the manifold of qc-type, which embodies a version of the Divisor 
Axiom, and show that it allows us to define for such manifolds the correlators with 
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gravitational descendants.   This is an elaboration of the picture sketched in §3 of 
[KM2]. 

In §2 we introduce the notion of the (strong) Saito framework. It axiomatizes 
those properties of the spaces of miniversal deformations of isolated singularities of 
functions which directly lead to the Frobenius structure. The most difficult and deep 
aspects of Saito's theory are thereby neatly avoided and become "existence theorems". 
(This illustrates the advantages of theft in comparison with honest work, as was justly 
remarked about the axiomatic method in the beginning of this century). 

This part is taken from my notes to a lecture course and is included here on 
suggestion of A. Givental. 

The main result of this section is summarized in the formulas (2.12), (2.13) which 
in the context of Saito's theory refer to the unfolding space of the direct sum of 
singularities, and in our axiomatic treatment are stated in terms of abstract direct 
sum diagrams. Another proof of these formulas using oscillating integrals was shown 
to me by A. Givental. 

In §3 we show first of all, using (2.12) and (2.13), that the direct sum of Saito's 
frameworks corresponds to the tensor product of the associated Frobenius manifolds. 

Looking then at the tensor products M of the Frobenius manifolds An (deforma- 
tion space of the singularity z71^1 at zero) and more general manifolds with rational 
spectra we find out that the integral part of their spectra define Frobenius subman- 
ifolds HM which look like quantum cohomology of a manifold with trivial canonical 
class, at least on the level of discrete invariants (cf. below). This argument exactly 
corresponds to the well known idea of D. Gepner ([Gel], [Gr], [C]) of building Calabi- 
Yau sigma models from the tensor products of minimal models. The numerology is 
also similar. 

Here is an example of our results. 

0.2.1. Claim. The manifold A®n+1 contains a (canonically defined) pointed 
Frobenius submanifold iJyl®n+1 whose spectrum looks formally like that of even- 
dimensional part of quantum cohomology of an (n - l)-dimensional algebraic (or 
symplectic) manifold V. 

More precisely, V must have Betti numbers 

h2m(V) := the number of (n,... ,Zn+i) G Z^J1, satisfying 

.    n+l 
(0.1) — V ik = m(n + 1), 0 < ik < n - 1 

k=l 

and vanishing (modulo torsion) ci(V). 

For example, even Betti numbers must be (1,19,1) for n = 3, and (1,101,101,1) 
for n = 4. 

The Poincare symmetry of them is generally established by the involution (ik) »-> 
(n — 1 — ik), m i->- n — 1 — m. 

0.2.2. Problem. Is there actually a manifold Vn whose Quantum Cohomology 
contains HA®n+lc? Is it at least true that HA®n+1 is Frobenius manifold of qc-type? 
(Notice that An itself is not of qc-type). 



FROBENIUS MANIFOLDS 183 

As was explained above, A®n+1 is the unfolding space at zero of the singularity of 
x^1 + ... + x™+l. An argument which I learned from [C] and (in a different version) 
from A. Givental then shows that HA®n+1 carries the variation of Hodge structure 
corresponding to the middle cohomology of the hypersurface x"+1 + ... + x™+{ = 0. 
More precisely, the volume form periods constitute the horizontal sections of one of 
the structure connections of the Frobenius manifold in question. 

Thus Problem 0.2.2 has the flavor of Mirror Conjecture, and of course Gepner's 
idea was a precursor of the modern studies of the mirrors. Hence at least the case 
n = 4 of the Problem 0.2.2 might be reducible to the Givental's treatment of the toric 
CY threefold (see [Giv] and the subsequent developments due to B.-H. Lian, K. Liu, 
S.-T. Yau in [LLY]). 

The Barannikov-Kontsevich construction [BK] conjecturally provides another, 
and quite general, class of Frobenius manifolds of Calabi-Yau .B-type. To describe it 
succinctly, notice that the space of vector fields on a Frobenius manifold is simultane- 
ously a Lie (super)algebra and a (super)commutative algebra. The classical example 
of such combination is the algebra of functions on a Poisson (super)manifold. So it 
would appear that Frobenius manifolds could come from Poisson structures. However, 
such a relation cannot be straightforward, because the Poisson identity between the 
bracket and the multiplication does not hold on Frobenius manifolds. The ingenious 
twist in [BK] consists in considering instead odd Poisson algebras with two differen- 
tials. Under appropriate conditions, the Frobenius manifold structure is then induced 
on the homology space of such Poisson algebra. 

The sections 4-6 of this paper constitute a completely self-contained account 
of the theory of [BK] in the axiomatic context of dGBV-algebras. Specifically, in 
§3 we supply direct elementary proofs of all results related to the formality and to 
the structure of Maurer-Cartan moduli spaces at their non-obstructed points. In 
§4 we collect a list of basic general properties of dGBV-algebras. Finally, in §6 we 
define the relevant formal Frobenius manifolds. We would like to stress the similarity 
of the formulas defining o-multiplication in the Saito's and Barannikov-Kontsevich 
constructions: compare (2.3) and (6.1). This supports the expectation that both 
construction might be special cases of a more general picture. 

As a comment to the title of Cecotti's paper [C], it is instructive to compare the 
extensions of the Calabi-Yau variations of Hodge structure (VHS) given by Saito's 
theory to the construction of [BK] and the equivariant theory of Givental ([Giv]). 

Barannikov and Kontsevich embed any Calabi-Yau VHS into a Frobenius super- 
manifold that has all discrete invariants perfectly matching those of the mirror dual 
quantum cohomology. Thus it has a good chance to be the correct jE?-model in the 
classical Mirror Conjecture picture. A drawback of this embedding is that the relevant 
Frobenius manifolds are not semisimple, and so the identification of them hardly can 
be achieved by formal calculations. 

To the contrary, whenever methods of Gepner, Saito and Givental are applicable 
(quasi-homogeneous singularities, anticanonical hypersurfaces in toric compactifica- 
tions), they embed (parts of) Calabi-Yau VHS into Frobenius manifolds that are 
generically semisimple or into families of manifolds with generically semisimple gen- 
eral fiber. This makes more accessible the direct check of mirror isomorphisms (cf. 
§3 below). But these techniques do not give the full dimension spectrum (e.g. odd- 
dimensional cohomology is skipped) and they are not directly applicable to those 
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Calabi-Yau manifolds which are not toric anticanonical hypersurfaces (or complete 
intersections). 

ACKNOWLEDGEMENTS. The first draft of this paper was written after stimulat- 
ing discussions of Gepner's work with V. Schechtman. It was read and extensively 
commented by A. Givental who corrected some mistakes and supplied illuminating 
explanations of the Saito theory. In particular, the whole §2 owes its existence to 
Givental's suggestion. In writing the last three sections, I have greatly benefited from 
M. Kontsevich's lectures at the MPI and his handwritten notes. 

1.  Quantum cohomology and Frobenius manifolds. 

1.1. Gromov-Witten (GW) invariants. We start with reminding some basic 
notation and facts from [KM1], [BM], [B]. 

Let V be a smooth projective algebraic manifold over an algebraically closed 
field of characteristic zero, B = B(V) the semigroup of effective one-dimensional 
algebraic cycles modulo numerical equivalence. For any /? G B(V), g,n > 0 we can 
define the Deligne-Mumford stack Mg,n(V, ft) parametrizing stable maps of curves of 
genus g with n labelled points, landing in class (3. This stack comes equipped with 
virtual fundamental class in the homological Chow group with rational coefficients 
Jgtn(V,P) e A8(Motn(V,l3)) where 

s = (1 - g) (dim V - 3) + (ci(V),/?) + n. 

Moreover, there are canonical morphisms ev : Mg^fy^P) —> Vn sending a stable 
map to the image of the family of labelled points. In the stable range, that is when 
2g — 2+n > 0, there is also a map st: Mg^n(V,(3) -> M^ forgetting V and stabilizing 
the curve. They can be used in order to define the Gromov-Witten correspondences 
in the Chow rings 

IgAV,P) := (ev,stMJgin{V,l3)) € As(V
n x M,,n). 

This family of Chow correspondences is the most manageable embodiment of motivic 
quantum cohomology forgetting just the right amount of geometric information en- 
coded in the rather uncontrollable stack of stable maps. For genus zero, the situation 
further simplifies. Since Vn and Mo,n are smooth, we can identify A* with A*. As 
S. Keel proved, A*{Vn x Mof„) = A*(Vn) 0 A*(Moin), and A*(Mo,n) is a finite- 
dimensional self-dual linear space. Hence one can identify Ioin(y,P) with the induced 
map A*(Mo,n) -> A*(Vn). The space A*(Mo,n) is spanned by the dual classes of 
the boundary strata M(r) indexed by n-trees. So calculating /o,n(V,/3) amounts to 
calculating a finite family of elements in A*(Vn) indexed by these trees. 

1.2. Frobenius manifolds. All our examples of Frobenius manifolds (see 0.1) 
will come equipped with two additional structures: a flat vector field e which is identity 
with respect to o, and an Euler vector field E expressing the scaling invariance of the 
Frobenius manifold M. More precisely, we must have Lie^g) = Dg for some constant 
D, and Lie#(o) — d^o for another constant do (in the context of Frobenius manifolds 
g means the metric, not the genus, which is zero for the relevant GW-invariants). If 
the first condition is satisfied, the second one is equivalent to 

£$ = (do -f D)$ H- a polynomial in flat coordinates of degree < 2. 

For any Euler field E we have [E^T^] C TJ^. Assume for simplicity that the 
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spectrum {da} of — adi£ on flat vector fields belongs to the base field. We understand 
{da} as a family of constants with multiplicities. The constant do introduced earlier 
is in addition the eigenvalue corresponding to e. The family D, {da} is called the 
spectrum of M. Since any multiple of E is an Euler field together with E, in the case 
d0 ^ 0 we can normalize E by the condition do = 1. 

We also put d — 2 — D and qa — 1 — da and call the family d, {ga} the d-spectrum 
of M. 

If M is the formal spectrum of the ring of formal series in flat coordinates, $ is a 
formal solution of the Associativity Equations, we call M formal Frobenius manifold. 
Formal Frobenius manifolds can be tensor multiplied. The underlying metric space 
of flat fields of the tensor product is the usual tensor product of the respective spaces 
of factors. The potential of the tensor product is defined in a much subtler way: 
see [KM1] and [M]. If the factors are additionally endowed with flat identities and 
normalized Euler fields, they can be used to produce a canonical flat identity and 
Euler field on the tensor product: see [K]. 

1.3.   From genus zero GW invariants to Frobenius manifolds. In the 
situation of 1.1, we can construct a formal Frobenius manifold #qUant(^) whose un- 
derlying linear supermanifold is the completion of H*(V, A) at zero, with obvious flat 
structure and Poincare form as metric. Here A is a Q-algebra endowed with the uni- 
versal character B(V) -» A : 0 \-> qP, with values in the Novikov ring A which is the 
completed semigroup ring of B(V) eventually localized with respect to the multiplica- 
tive system qP. It is topologically spanned by the monomials q^ = gf1 ... q^1 where 
13= (bi,..., 6m) in a basis of the numerical class group of 1-cycles, and (#1,..., gm) 
are independent formal variables. This is needed to make convergent the formal sums 

(LI) I9,n(V) ~  E A.nM/J) € A\(Vn X M,,n) 

For H* we can take any cohomology theory functorial with respect to Chow corre- 
spondences. The construction of the potential requires only the top degree terms of 
the genus zero GW invariants. To be concrete, choose a homogeneous basis {Aa | a = 
0,... r} of H*(V, Q). Denote by {a:a} the dual coordinates and by F = ^a xaAa the 
generic even element of the cohomology superspace. This means that Z2-parity of 
xa equals 0 (resp. 1), if Aa is even-dimensional (resp. odd-dimensional). Put for 
7ieH*(V) 

(1.2) (WVOHTI ®-'®ln) = (7i-.-7n)<?,n := / pr*(7i®---®7n) 
Jtg.n(V) 

where pr : Vn x M^n —> Vn is the projection. Then the quantum cohomology 
potential is 

(1.3) *{x) = (er)o :=       £      6(a) ^'"^ (Aai ... AflB )o,n 
n,(ai,...,an) 

where e(a) is the sign resulting from rewriting Yl^i^ai as e(a)YlxiY[^ai- Assume 
that the dual fundamental class AQ of V is the part of our basis. Then the flat identity 
is do — d/dxo. Moreover, the Euler field is 

(1.4) E = Z (l - ^ ^a +    £    rbdb, 



186 Y. I. MANIN 

where Aa 6 iflAal(y), and rb are defined by 

(i.5) dCrvH-i^^   Y,  rbAb' 
b:\Ab\=2 

Clearly, — adi£ is semisimple on flat vector fields. Let El(da) be the eigenspace corre- 
spondng to da. We have H(da) — H2qa(V). Hence the total spectrum is 

(1.6) D = 2 - dimF, do = 1, da = 1 - -^ of multiplicity dimfl^"'^) 

and the d-spectrum is 

(1.7) d = dim V, {q of multiplicity /i29(F)}. 

Quantum cohomology of the direct product of manifolds is the tensor product of the 
respective Frobenius manifolds. So the d-spectrum behaves as is expected. 

E itself is not flat, but it has the flat projection £1(0) to H(D) — H2 which is just 
the anticanonical class, if E is normalized as above by cfo = 1 and iJ*(Vr) is identified 
with the space of flat vector fields. This is evident from (1.3) and (1.4). 

The spaces H(da),H(di)) are orthogonal unless da + db = D, or equivalently 
Qa+Qb — d, and dual in the latter case. They also all have integral structure compatible 
with metric. If we work with a coefficient ring A, these subspaces are direct (free) 
sumbodules. Identity belongs to H(l) = H0(V). Especially important are H2(y) = 
H(D), ^(V) = iJ(0), and the semigroup B C if2,z of effective algebraic classes, in 
which every element is finitely decomposable, and zero is indecomposable. They are 
never trivial for projective smooth V of positive dimension. 

Returning to the potential $, we see that since Mo,n is empty for n < 2, the 
definition (1.3) specifies only its terms of degree > 3 in xa. The validity of the 
Associativity Equations is not sensitive to this indeterminacy. However, the missing 
terms can be uniquely normalized either geometrically, by integrating over Jo,n(^/3) 
in Mo,n(V, /3) for n < 2, or formally, by using the Divisor Axiom of [KM1]. Since 
this normalization is important for the future use, we describe it explicitly. Denote 
by S := Yla-.d =o xa^a the generic even element of H2. 

1.3.1. Proposition. There exists a unique formal function $ differing from 
(1.3) only by terms of degree < 2 which is representable as a formal Fourier series in 
q(3e((3,5)^ 0 £ B, with coefficients which are formal series of the remaining coordinates, 
having the following properties. Put $ = \I/ + c where c is the constant ((3 = 0) term 
of the Fourier series. Then, assuming do = 1 and denoting by E(0) the anticanonical 
class summand of E, we have: 

a,) £# = (£> + !)#. 

b) c is a cubic form with (E — £(0)) c = (D + l)c, the classical cubic self- 
intersection index divided by 6. 

In fact, if one puts formally q^ = 0 for ft ^ 0 in the structure constants of the 
quantum multiplication, one gets the classical cup multiplication on H*(V) which 
together with metric determines c starting even with non necessarily normalized po- 
tential. 

Proof. We use the properties of io)n(V,/3) stated axiomatically in [KM1] and 
proved in [B]. 
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The initial potential $ is expressed via Gromov-Witten invariants 

$(r):=EE^<Vw)>(r®n) 
n>3   (3 

where (io,n(y>/?)) is defined by the same formula as (1.2) only with integral taken over 

^o n(V, P)- The part of $ corresponding to ft = 0 is exactly c — - (F3). 
o 

The maps (Io,n(V,/?)) : H*(V)®n -* A are defined forn > 3 and satisfy 

</ofn(V,/3)>(a® J) = (/J,5)(/o,n-1(T/^))(a) 

for J € H2{y) (we write (/?, <5) for g((5,5)). This follows from the Divisor Axiom. It 
is easy to check that there exists a unique polylinear extension of (/o,n(^^)) to all 
n > 0 satisfying this identity. In fact, it suffices to put 

(Io,n(V,ma) = (f3,6)-m(Io,n+m(V,m<x®6®m) 
for any (m, S) with m + n > 3 and invertible (ft, 5). 

Now put 

*(r):=££^<JM0'''9)Kr®n) 

Clearly, \I> + c differs from the initial $ by terms of degree < 2. Moreover, c is a linear 
combination of xaxbxc with |Aa| + |A&| + |Ac| = 2 dim V so that (E-E(0)) c = (Z?+l)c. 
As for i£\I>, we have for T = 70 + (5 

i,fe>0/3^0 

(1.8) EESr"^11^^^?,)- 
i>0 (3^0 

Let us apply now E to any summand in (1.8). The i£(0) part acts only upon e^^ 
and multiplies it by (ci(V),/3). The E — E(0) part multiplies any monomial a;ai ... a;an 

in non-divisorial coordinates by Xw(l ~ l^ail/2). From (1.2) and (1.3) we see that ft 
can furnish a non-zero contribution to such term only if 

n   IA   I 
dim Jp,nCM) = dim V - 3 + (ciOO,/?) + n = E ^T' 

i=l 

Hence every non-vanishing term of (1.8) is an eigenvector of E with eigenvalue D + l = 
3 - dim V. 

This proves the Proposition. 

Notice in conclusion that q^e^^ is the universal character of B together with 
qP. We have introduced qP only to achieve the formal convergence. If it holds without 
qP, we can forget about it. Moreover, if the formal Fourier series actually converges 
for S lying somewhere in the complexified ample cone, ^(x) has a free abelian symme- 
try group: translations by an appropriate discrete subgroup in the space H2(V, zR). 
Conversely, in the analytic category this condition is necessary for the existence of the 
appropriate Fourier series. 
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1.4. Potentials of qc-type. Based upon the analysis above, we will introduce 
the following definition. Its first goal is to axiomatize a part of the structures of sec. 
1.3 which suffices for the construction of the coupling of a formal Frobenius manifold 
with gravity in the sense of [KoM2]. As we will recall below, this construction is 
divided into two steps: the construction of the modified gravitational descendants 
which can be done for any formal Frobenius manifold, and the construction of a linear 
operator T on the big phase space which requires additional structures. 

The second goal is to provide an intermediate step in the problem of checking 
whether a given formal Frobenius manifold is quantum cohomology. We must be able 
at least to detect the following structures. 

1.4.1. Definition. Let (M = Spf &[[#*]], #, 4>o) be a formal Frobenius manifold 
over a Q-algebra k with flat identity, Euler field E, and spectrum D, {da} in k as 
above. Here H is a free Z2-graded k-module of flat vector fields, and H1 is the dual 
module of flat coordinates vanishing at the origin. Put H2 = H(0),H2 = H(D). 

Assume that there exists a semigroup B C H2 with finite decomposition and 
indecomposable zero, and the cubic form c on H, such that by eventually changing 
terms of degree < 2 in $0 we can obtain the potential of the form 

$ = * + c, .E# - {D + 1)*, (E - E(0))c = (D + l)c, 

(1-9) *(7o + «J) = E    E    — ^^ 
i>0 peB\{o} 

such that all summands in the last sum are eigenvectors of E with eigenvalue D -\- 1. 
Here 7 is a generic even element of H, 5 its "divisorial" H2-part, 70 = 7 — S. The 
coefficient Ip^®1) is a form in non-divisorial coordinates. 

A formal Frobenius manifold satisfying these conditions will be called of qc-type. 

A flat identity e in this language is an element e G H which considered as a 
derivation satisfies 

e\I/ = 0, ec = g 

(see [M], p. 29 for the same expressions in coordinates). 

1.4.2. Correlators of qc—manifolds. Let M be a formal Frobenius manifold of 
qc-type. Recall that <&abc are the structure constants of the quantum multiplicarion. 
On qc-manifolds there are two useful specializations of this structure. 

a) The "small quantum multiplication" obtained by restricting $abc to 70 = 0. 
We will denote this multiplication by dot. 

b) The cup multiplication U obtained by putting formally e^'7) = 0 for all /? 7^ 0 
("large volume limit"). In other words, this is the multiplication, for which c can be 
written as 

c(7) = g £(7,7^7)• 

We now define correlators (...) : H®n -> k as 5n-invariant polylinear functions whose 
values are derivatives of $ at zero. In other words, for a basis {Aa} of H and dual 
coordinates {xa} as above, we have 

*—*' nl 
n,ai ,...,an 
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In the qc-case we can write 

(Aai...Aan>=     J2    (Aai...Aan)/? + (Aai...AaJo 
0eB\{o} 

where the first sum comes from ^ and the second, nonvanishing only for triple argu- 
ments, from c. 

Looking at (1.9) one sees, that small quantum multiplication depends only on the 
triple correlators of non-divisorial elements of the basis. 

1.4.3. Claim. The correlators of the Frobenius manifolds of qc-type satisfy the 
following Divisor Identity: if S G H2, (3 ^ 0, 

(<S7l...7n)/3 = (M)(7l---7n)/3. 

Reading backwards the proof of (1.8), one sees that this property follows from 
(1.9). 

This formula allows us to extend the definition of the correlators to n < 2 argu- 
ments. 

1.5. Gravitational descendants for the Frobenius manifolds of qc- 
type. Let now M be a formal Frobenius manifold as in 1.4.1 whose space we identify 
with the linear superspace iJ, At first we do not assume that it is of qc-type. Fol- 
lowing [KM2], we can define its modified correlators with gravitational descendants. 
They are polylinear functions on the big phase space (&d>oH[d\ where H[(I\ are copies 
of the space H identified with the help of the shift operator r : H[d\ -4 H[d -f 1]. To 
define them explicitly, we recall that any formal Frobenius manifold gives rise to the 
genus zero Cohomological Field Theory. Namely, there exists a unique sequence of 
linear maps I™ : H®n -» H*(Moin,k), n > 3, satisfying the folowing properties. 

a) Iff are 5n-invariant and compatible with restriction to the boundary divisors 
(cf. [KM1] or [M], p. 101). 

b) The top degree term of Iff capped with the fundamental class of Mo,n is the 
correlator of M with n arguments. 

Moreover, in the quantum cohomology case 

TM _ \^  p Tv 

P 

where Ionp are the genus zero Gromov-Witten invariants. 

Now let C -> Mo,n be the universal curve, Si : Mo,n -4 C, z = 1,..., n its struc- 
ture sections, uc the relative dualizing sheaf, ipi := CI(S*(CJC)) G A1(Mo,n- The the 
modified correlators with gravitational descendants for M are defined by the formula 

(1.10) (rdlAfll...r
d-Afln>:= /      iff (Aai 0 • • • 0 A.J^1 .. .^ 

lMo,n 

and the generator function for them, the modified potential, by the formula 

(1.11) GM(x)=      Y,     e(a)Xd"a'--;Xd-Q"(r^Aai...r
rf"Aan) 

n>3,{ai,di) 

where (xd^a) are coordinates dual to TdAa. 
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If we assume in addition that M is of qc-type, we can define also the (unmodified) 
two argument correlators (7^71 72) by the inductive formula (25) from [KM2]: 

d 

(Tdji 72> - X;(-i)i+1arfa-;7i s - (V-1 u 72))+ 
j=l 

(1.12) (-l)dd-{d+1)[(5 71 Sd U 72) - (6 71 5dU72>o]. 

Here 5 G i^2 is an arbitrary (say, generic) element such that (5, ft) ^ 0 for all 0 G 
B \ {0} and the operator d^1 divides (...)/? by (5, /3). 

Furthermore, put 

Vcb = Xc,b + JZ ^d.a^d-c-lAa A6). 
(a,d),p>c+l 

Then the big phase space potential of M is, by definition, FM{x) := GM(y), and the 
unmodified correlators with gravitational descendants of M are defined as coefficients 
of F: 

(1.13) F^Or) =      ^      c(a) ^^-^"^ (^ Aai ... rdn Aan) 

The main result of [KM2] is that if M is the quantum cohomology of V, this prescrip- 
tion provides the correlators with descendants of the topological sigma model with 
target space V. The latter are defined by the formula similar to (1.10) but with Mo,n 
replaced by Motn(V), I replaced by J, and the respective change in the meaning of 

In conclusion notice that the sigma model correlators satisfy, partly demonstra- 
bly, partly conjecturally, some additional identities, of which the most interesting are 
probably the Virasoro constraints. I do not know which of these identities might be 
valid for the more general qc-type manifolds. In any case, it would be interesting to 
determine differential equations at least for the modified potential with descendants 
for general formal Frobenius manifolds or particular examples like the manifolds An 

(see 2.3. below). 

2. K. Saito's framev/orks. 

2.1. Setup. Let p : iV -> M be a submersion of complex analytic or algebraic 
manifolds, generally non-compact, F a holomorphic function on iV. We consider F as a 
family of functions on the fibers of p parametrized by points of M. In local coordinates 
z = (za)^ = (tb) where tt are constant along the fibers of p we write F = F(z, t). 

Let dp : ON —> ^]V/M ^e ^e relative differential. Denote by C the closed analytic 
subspace (or subscheme) of the critical points of the restrictions of F to the fibers given 
by the equation dpF — 0. Its ideal Jp is locally generated by the partial derivatives 
XF where X are vertical vector fields on iV. Derivatives dFjdza of course suffice. Let 
ic : C -t N be the natural embedding, pc the restriction of p to C. 

Denote by fi^/^- the invertible sheaf of holomorphic vertical volume forms on iV, 

L := IC^I^M)- The Hessian Hess {F) G r(C, L2) is a well defined section of L2 which 
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in local coordinates as above can be written as 

Hess (F) = i*r   det     „    ^        (dzi A • ■ • A dzn)2   . 
L       \dzadzbJ 

We denote by Go C C the subspace Hess (F) = 0. Let 7M be the tangent sheaf of M. 
Finally, let a; be a nowhere vanishing global section of fijy/j^. 

2.1.1. Definition. The family (p : N -^ M,F,UJ) is called Saito's framework, 
if the following conditions are satisfied: 

a) Let the map s : 7M —>■ Pc*(^c) be defined by X ^ XFmod J/r, where X is 
any local (in N) lift of X. Then s is an isomorphism of (DM-modules. In particular, 
C is finite and flat over M. Assume moreover that Gc is a divisor, and pc : C —¥ M 
is etale on the complement to the divisor G = ic*{Gc) C M. 

b) Define the following 1-form e on M\G. Its value on the vector field X = s-1 (/) 
corresponding to the local section f of 7r*((9c) equals 

/(Pi) 
det((d*F/dzadzb)(pi)) 

where pi are the local branches of the critical locus C over M, (ZQ) is any vertical local 
coordinate system unimodular with respect to LJ. 

Then the scalar product g : S
2
(TM\G) ~* OM\G defined by 

(2.2) g{X,Y)~iXoY{z) 

is a flat metric. Both e and g (as flat metric) extend regularly to M. 

2.2.     The   (pre—)Frobenius structure  associated to the  Saito  frame- 
work.  Let (p : N —> M, F,(j) be a Saito framework. 

Denote by o the multiplication in 7M induced by the one in p^(Oc)' 

X o Y := s'1 (XF • YF) mod JF 

or equivalently 

(2.3) X o YF = XF • YF mod JF. 

Clearly, the vector field e := 5~1(lmod Jp) is the identity for o. Let T^ be the sheaf 
of vector fields flat with respect to g. Finally, put 

A(X, Y, Z) = g(X oY,Z) = g(X, Y o Z). 

The last equality follows from (2.2) and the associativity of o. The tensor A is sym- 
metric because o is commutative. Therefore we have: 

2.2.1. Claim. The data (T^^g^A) define on M the structure of pre-Frobenius 
manifold in the sense of [M], Ch. I, Def. 1.1.1. 

One can say more about this structure restricted to M\G. Call a connected open 
subset U in M \ G small if p^1 ([/) is the disjoint union of pi — dim M connected com- 
ponents Ui canonically isomorphic to U. For concreteness, we will arbitrarily number 
them by {1,... ,/i} as in (2.1). Then we have natural ring isomorphisms 

r(tf,pc.(0c)) = ®UnUi, Oc) = r(u, OMY- 
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This r([/, OM)-algebra has a basis of idempotents fi := 5ij on Uj. Defining ei £ 
r(C/, 7M) by s(ei) = fi, that is, eiFmod Jp = fi, we get a local C^M-basis of 7M 

satisfying e; o ej = SijCj and e = J2i e;. Denote by ul G T(U, OM) the restriction of F 
to Ui pushed down to U that is, put 

u1 = F(pi) 

in the notation of (2.1). Small subsets cover M \ G so that the structure group of 7M 

is reduced to 5^. Summarizing, we have: 

2.2.2. Proposition., The data (T^,<7,A) define on M \ G the structure of 
semisimple pre-Frobenius manifold in the sense of [M], Ch. I, Def 3.1 and 3.2. 
Moreover, we have eiUj = (%j so that (uj) form a local coordinate system (Dubrovin's 
canonical coordinates) and [e^ej] = 0 because e* = d/du1. 

Proof. Only the last statement might need some argumentation. We have 
p*(eiU^) = eip*^) for any lift e^ of e^. To calculate the right hand side we can 
restrict it to any local section of p since it is constant along the fibers. We choose e* 
tangent to Uj and restrict the right hand side to Uj where p*(ui) coincides with F. 
The result is 5ij by the definition of e;. 

For the future use, we can reformulate this as follows. Dualizing s we get the 
isomorphism s1 : 0]^ -> HomoM (PC*(OC),OM)- Then st{dui) : pc*{Oc) -> OM is 
the map which annihilates ^-components for j ^ i and coincides with the pushforward 
on the i-th component. 

2.2.3. Theorem. The structure (M, T^^g, A) associated to the Saito framework 
is Frobenius iff de = 0. 

Proof. To check the Frobenius property on M \ G we appeal to [M], Ch. I, 
Th. 3.3 (Dubrovin's criterium), both conditions of which, [e^ey] = 0 and de = 0 are 
satisfied. To pass from M \ G to M one can use a continuity argument, e. g. in 
the following form, again due to Dubrovin. Let Vo be the Levi-Civita connection of 
#, and VA the pencil of connections on 7M determined by its covariant derivatives 
Vx,x(Y) := Vo,xCO +XoY. Then M if Frobenius iff VA is flat for some A ^ 0, and 
so automatically for all A. Clearly, this is the closed property. 

We will now discuss when e is flat. 

On a small [/, we can define functions rjj by rjj = iei(e) = g(ej,ej). When 
ej = d/du^ the closedness of e — ^i rjidu1 means that r)j — ejrj for a local function 77 
well defined up to addition of a constant, or else e = drj. In the notations (2.1) 

(2.4) n, 

fied. 

The identity e is flat, iff for all i, era = 0, or equivalently, erj = g(e,e) = const. 
This holds automatically in the presence of an Euler field E with D ^ 2do (see 1.2 
above and 2.2.5 below). 

This is Prop. 3.5 from [M], Ch. I. 

det{{d^Fldzadzh){pi)y 

2.2.4.  Theorem.  Assume that the conditions of the Theorem 2.2.3.   are satis- 

One important remark about the identity is in order. Namely, in all examples I 
know of there exists a lift e of e to N such that eF = 1 identically, so that in the 
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appropriate coordinate system we have F = FQ + to where FQ does not depend on to 
which is lifted from M, and e = d/dto- 

It remains to clarify what Euler fields this structure can have. 

2.2.5. Theorem. Assume that the conditions of the Theorem 2. 2.3. hold. Let 
E be a vector field on a small subset U in M. 

a) We have Lie£;(o) = <i0o iff 

(2.5) E = doY2(ui + ci)ei 
i 

for some constants c1, where (dul) are 1-forms dual to (ej). 

In particular, for non-zero E we have do ^ 0 so that we may normalize E by do = 
1. Furthermore, if the monodromy representation of the fundamental group of M\G 
on Ho of the fibers of C —> M has only one-dimensional trivial subrepresentation, the 
global vector field E of this form with fixed do is defined uniquely up to addition of a 
multiple of e. 

b) For a field E of the form (2.5) and a constant D, we have Lie^-Q?) = Dg iff 

(2.6) Eri = {D- do)r) + const. 

In particular, if e is flat, adding a multiple of e does not change the validity of this 
property. 

This follows from [M], Ch. I, Th. 3.6. 

When M comes from the Saito framework, we have a natural candidate for the 
global Euler field with do = 1 suggested by our identification of local coordinates u\ 
Namely, put on any small U 

(2.7) EF:=J2F(K)ei = JLuiet' 
i=l i=l 

Assume that it is in fact an Euler field and that we are in the conditions when it is 
defined uniquely up to a shift by a multiple of e. Assume furthermore that there exists 
a point 0 in M to which Ep extends and at which it vanishes (0 may lie in G, and in 
the theory of singularities it does so). Since e cannot vanish, the choice of such 0 fixes 
Ep completely. 

2.2.6. Definition. Saito's framework (p : iV —> M,F,OJ) is called the strong 
Saito framework, if the structure (M, T^g^A) described above is Frobenius, with flat 
identity e and Euler field Ep • 

2.2.7. Remark. Since the definitions of the pre-Frobenius and Frobenius struc- 
tures, and also of the identity and Euler fields, are local, we can lift all these structures 
fromM\GtoC\Gc. 

2.3. Unfolding singularities. K. Saito's theory (cf. [SI], [S2], [O] and the 
references therein) produces (a germ of) a strong Saito's framework starting with a 
germ of holomorphic function /(zi,..., zn) with isolated singularity at zero. 

Namely, one can choose holomorphic germs ^o — 1, 01, • • • ,</v-i whose classes 
constitute a basis of the Milnor ring C{{z}}l(df ldza) in such a way that F := 
/ + Yj^i^i is the miniversal unfolding of /. Then iV = TV/, resp. M — Mf is a 
neighborhood of zero in the (z,£)-, resp. (t)-space, and F is defined above. 
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The crucial piece of the structure is the choice of u encoded in the Saito notion 
of a good primitive form. Generally its existence is established in an indirect way. 
For the singularities of ADE-type one can take u = dzi A • • • A dzn. Generally, if / is 
a quasi-homogeneous polynomial, most of the data constituting the Saito framework 
are algebraic varieties, rational maps and rational differential forms so that the whole 
setup has considerably more global character. 

In order to help the reader to compare notation, we notice that Saito's 5 is our 
M, and our function rj is denoted r on p. 630 of [0]. Starting with the germ of zn+1 

at zero, one obtains in this way the following Frobenius manifold. 

2.3.1. Example: manifolds An. Denote by N , resp. M, the affine space with 
coordinates (z; ai,..., an), resp. ai,..., an), and by p the obvious projection. Put 

F = F(z; ai,..., an) = 2n+1 + a^71'1 + • • • + an. 

Then C iz given by the equation F^z) = 0. We choose u = dpz. 

Making explicit the basic structures described above we get the following descrip- 
tion of An. Consider the global covering of M whose points consist of total orderings of 
the roots pi,..., pn of F'(z). On the semisimple part of it where F^z) has no multiple 
roots and ul := F(pi) are local coordinates we have the flat metric 

S-V {dui)'1 

ti F"^ 
with metric potential 

Qi    __     1    v-^        _ l       y^  2 

i<3 

Furthermore, e, E and flat coordinates xi,...,xn can be calculated through 
(ai,..., an) (which are generically local coordinates as well): 

e = d/dan, i. e., ean = 1, ea; = 0 for i < n. 

E=—— V(l + 1 ^iTT-i 
n + l^-i ddi 

Xi are the first Laurent coefficients of the inversion of w = n+j/p(z) = z + 0(1/z) near 
z = oo : 

z^vj+^ + ^ + .-.+ ^ + Oiw-"-1). 
w      wz wn 

For the direct proof of these statements, see e.g. [M], Ch. I, 4.5. 
71 + 3 i + 1 

The spectrum of An is D =  -, d^ =  -, 1 < i < n, more precisely, 
n+1 n+1 

i + 1 
Exi = Xi. Hence the d-spectrum is 

n + 1 

^) = ^,9i-) = -^T,i = o>...,n-i. 
n 4-1 n + 1 

Now, $ is analytic in xa and the spectrum of —adF is strictly positive. Therefore $ 
must be a polynomial in flat coordinates. One can check that its degree is precisely 
n + 2. Hence for n > 2 it cannot be of qc-type, and by the method described in §1 
we can define for An only modified correlators with gravitational descendants. 



FROBENIUS MANIFOLDS 195 

Comparing the spectrum of An with that of the quantum cohomology of projective 
spaces, one can somewhat imaginatively say that An represents "projective space of 

TI — 1                                                                                    i 
dimension , with rank one cohomology in each dimension , 0 < i < n — 1 

n + 1 n -f 1 
and with vanishing canonical class". 

2.3.2. Example: Gepner's manifolds V^fc.  Let n > 2, k > l,h = n + k. We 
will call Gepner's Frobenius manifold Vn^ the manifold which is produced from the 
Saito's framework obtained by unfolding the polynomial 

1    n—1 

fnAZli--iZn-l) := ^   Ylyi 
i=l 

where y and z are related by 

n—1 n—1 

3=1 1=1 

In particular, if one assigns to zi weight /, /nj& becomes quasi-homogeneous of weight 
h. Its unfolding space is spanned by the classes of appropriate monomials, and a Zariski 
open dense subset Vn>& of this space carries the structure of the Frobenius manifold 
as above. This subspace contains the point m corresponding to the fusion potential 

gn,k(zi, • • • j^n-l) -= /n+l,lfe-l(2lj • • • j^n-1,1)- 

As D. Gepner ([Ge2]) proved, the tangent space TmVnik with o-multiplication, that 
is, the Milnor algebra of gn,k, is isomorphic to the Verlinde algebra (fusion ring) of 
the su{n)k WZW model of the conformal field theory. Zuber in [Z] conjectured, and 
Varchenko and Gusein-Zade in [G-ZV] proved, that the lattice of the Verlinde algebra 
and the respective bilinear form can be interpreted in terms of vanishing cycles of /n^. 

The total Frobenius manifold Vn,k is thus a deformation of this fusion ring, in 
much the same way as quantum cohomology is the deformation of the usual cohomol- 
ogy ring. 

2.4. Direct sum diagram. We will consider now three Saito's frameworks 
(p : N -¥ M,F,CJ) and (pi : Ni -> Mi,Fi,uJi), i = 1,2. We will call the direct sum 
diagram any cartesian square 

Ni x iV2   —-^-> N 

(2-8) (PI,P2) 

Mi x M2     UM )  M 

with the following properties: 

(i) j/*(F) = F1mF2. 

Thus in a neighborhood of any point of iV lying over the image of I/M there exist 
local coordinates (zi ,2:^ ,ie) such that te are lifted from M, and (i) can be written 
as 

(2.9) F(zi1\z^;u*M(te))=F1(z^;t^)+F2(zi2);t(i)) 
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and similarly (ii) can be written as 

(2.10) w(zi1\zi2);u*M(te))=u1(zi
1^)Awi(zi2)-,t^). 

2.4.1. Properties of the direct sum diagrams. Clearly, z/-1(C) is defined 
by the equations dp1(Fi) EE3 dP2(F2) — 0. Both summands then must vanish so that 
v~l{C) = Ci x C2. Denote by vc ' Ci x C2 -> C the restriction of z/. From (2.9) one 
then sees that 

(2.11) i/£(Hess (F)) = Hess (Fi) B Hess (F2) 

and hence v]^~(G) — Gi x M2UM1 x G2. Let now m = Z/M(^I ,^2), mi e Mi. Choose 
small neighborhoods m £ U in M,mi eUi in Mj such that VM(UI X C/2) C f7. Number 

the connected components l^ ' of ^^(C/i), resp. [/j of ^^(^2), by some indices i, 
resp. j, as in (2.1). Then the connected components of PQ

1
(U) are naturally numbered 

by the ordered pairs / = (ij) in such a way that 

vc{U\l) x f/j2)) C UL 

From now on we will assume that all the frameworks we are considering are strong 
ones. Then one can define ej,i/,77/ etc as above, and from ( 2.3.), (2.4), (2.9)-(2.11) 
one immediately sees that 

(2.12) w/(m)=i£i(mi)+ii5(m2), mi™) = v\l)(mi)v?V2) 

where in the right hand side we have the respective local functions on Mi, M2. 

The following slightly less evident restriction formula will be also needed in the 
next section. 

2.4.2 Proposition. Let I = (ij),K = (kl),rjiK = CIVK = ^KVU 
and similarly 

^ik   = eirik    ^^  ^en we have in the same notations as in (2.12): 

(2.13) mK{m) = Sjl4l\m1)r1^(m2)+6ikr1^(ml)r]^(m,). 

Proof. Calculate v*M(dr)i) in two ways. On the one hand, we have 

(2.14) *Af(<%) = I>Mfajtf )«&(<*«*). 
K 

As at the end of the proof of Prop. 2.2.2, we can identify duK with a map from 
Pc*{Oc) to OM vanishing on all components except for the if-th one where it is the 
canonical pushforward. After restriction to Mi x M2 it may therefore be non-vanishing 
only on U^ x U( ' so that we can calculate v*M(riiK) by restricting ^(drji) to this 
product. 

On the other hand, in view of (2.12), 

V*M(dVl) = dv^m) = dir,^ H rjf') = dqW S vf + ^ El dr,™ = 

(2.i5) Y, iPw ® 1™ + E ^ s €)dw2- 
r s 

Only the A;-th summand in the first sum restricted to UJ^ x Uj; ' may be non-vanishing 

and considered as a map (cf. above) it equals Sjirj^ IEIT^.    times the pushforward map. 
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We have the similar expression for the Z-th summand of the second sum. Comparison 
with (2.14) furnishes (2.13) because v*M(duK) = duf EB dul

2. 

2.5. Direct sums of singularities. In the theory of singularities, we can 
compare the miniversal unfolding spaces M/, M^, M/+5 of the germs /, g and / + g. 
It so happens that they fit into the direct sum diagram (2.8) (the only choice that 
remains is that of the volume form to on the space of / + g which is natural to take 
decomposable as in 2.4 above). 

By iteration, we can consider arbitrary number of summands. In particular, the 
Frobenius manifold Anit..mtnk which is obtained by unfolding the quasi-homogeneous 
singularity at zero f(z) := z™1 -\ h z%k is related to the summands Ani in the way 
described above. We will show in the next section, that the formulas (2.12) and (2.13) 
imply a much neater description: Mf+g = Mf 0 M5, and in particular Aniimm,inh is 
the tensor product of Ani in the sense of [KMK] (in the context of formal Frobenius 
manifolds) and [K] (in the global context). 

3. Tensor products and their submanifolds. 

3.1. Tensor product of formal Frobenius manifolds. Let us first of all recall 
the general construction of the tensor product of formal Frobenius manifolds over a 
common coefficient ring k. Instead of (M = Spf fc[[iJ*]],p, <£) as in the Definition 1.4.1 
we will be writing (i7, #, $). We will not assume that our manifolds are of qc-type. 

Let (.ffMjpWj^M), i — 152, be two formal Frobenius manifolds. Then 

(H^\g(1\^)^(H^\g(2\^) = (H^^H^\g^^g^^) 

where the terms of $ of degree n are defined in the following way: reconstruct the 
Cohomological Field Theories In   for the two factors as in 1.5, put In := In   U In 
(cup product in iI*(Mo,n)) and cap In with the fundamental class of Mo,n- 

If the factors are endowed with flat identities and Euler fields, with d^ = 1 for 
both of them, one can define in a canonical way the flat identity and the Euler field 
for the product ([K]). Moreover, the d-spectrum of the product is 

d = d^+d^\  {qA} = {qa + qb} 

as a sum of families with multiplicities. Notice that if ad£ is semisimple for both 
factors, it is semisimple for the product, and for A = (a, b) one can identify (9AJ<ZA) 

with (da ®dh,qa + qb)- 

Since the tensor product potential is defined coefficientwise and involves multi- 
plication in all cohomology algebras iI*(Mo,n)j n > 3, it is practically impossible to 
calculate it directly. The problem becomes much more manageable if we deal with 
(germs of) semisimple analytic manifolds. 

The reason for this is that generally a germ of Frobenius manifold of a given 
dimension depends on functional parameters, even in the presence of a flat identity 
and Euler field. The semisimplicity condition puts sufficiently strong constraints in 
order to leave undetermined only a finite number of constants, and then it is reasonable 
to rxpect that the tensor product is calculable in terms of these constants. Below we 
review the relevant results following [M] and [MM]. 

3.2. Moduli space and tensor product of germs of semisimple Frobenius 
manifolds. Consider a pointed germ M of analytic Frobenius manifold over C, (or a 
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formal manifold with zero as the base point), as usual, with fiat e, Euler E and do = 1, 
and having pure even dimension. It will be called tame semisimple if the operator Eo 
has simple spectrum (UQ, ... ,^o) on the tangent space to the base point. We have 
the following general facts already partly invoked in the specific situation of Saito's 
framework in 2.2 above: 

a) In a neighborhood of the base point, eigenvalues (u1,... ,un) of Eo on 7M 

form a local coordinate system (Dubrovin's canonical coordinates), taking the values 
(UQ, ..., UQ ) at the base point. The potential $ is an analytic function of these coordi- 
nates. If the initial manifold was only assumed to be formal, from tame semisimplicity 
it follows that it is in fact the completion of a pointed analytic germ. 

b) Put ei = d/dul. Then e* o ej = Sij. In particular, e = ^ e*. It follows that the 
o multiplication on the tangent spaces is semisimple. 

c) We have gfe, ej) = 0 for i ^ j. Furthermore, there exists a function rj defined up 
to addition of a constant such that g(ei, e*) = e^ := rji. Moreover, we have eg = const, 
Eg = (D - l)rj + const. Finally, E = i2i ^e*. 

A very important feature of canonical coordinates is that a given tame semisimple 
germ can be uniquely extended to the Frobenius structure on the universal covering 
of the total (i^)-space with deleted partial diagonals. This follows from the Painleve 
property of the solutions of Schlesinger's equations: cf. [M], Ch. II, sec. 1-3. We will 
call this extension the maximal tame continuation of the initial germ. The qualification 
"tame" is essential. It may well happen that a further extension containing non-tame 
semisimple points or even points with non-semisimple multiplication on the tangent 
space is possible: e.g. points in An where F^z) has multiple roots have the latter 
property. 

3.2.1. Definition. Special coordinates of a tame semisimple pointed germ of 
Frobenius manifold consist of the values at the base point of the following functions: 

(3.1) («\ »&,«<; :=£(«'-«')?*) 
Here rjij := eiCji]. 

To avoid any misunderstanding, let us stress that the canonical coordinates are 
functions on a germ, whereas special coordinates are functions on the moduli space of 
germs. 

For a description of the necessary and generically sufficient conditions for a system 
of mumbers to form special coordinates of a Frobenius germ, see [MM], 2.7, pp. 26-27, 
and 2.6, p. 23, where some inaccuracies of [M] are corrected. The following Theorem 
summarizes the properties of special coordinates that we will use. 

3.2.2. Theorem, (i) Any tame semisimple pointed germ with labelled spectrum 
of Eo is uniquely (up to isomorphism) defined by its special coordinates. 

(ii) Let (u'1, TipV^j) for i G S and (utn, r)",v"j) for j G T be special coordinates 
of two pointed germs. If the family un + u"3 consists of pairwise distinct elements, 
then the tensor product of the two germs defined through their completions is again 
a tame semisimple pointed germ whose canonical coordinates are naturally labelled by 
the pairs I G S x T and have the following form: for I = (i^j), K = (&, /), 

(3.2) u1 = u'1 + u"j, T;/ = T^', vIK = Sflv'a + 6^. 
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(Hi) Let another two germs be obtained from the initial ones by analytic continu- 
ation and subsequent shifts of base points. Then their tensor product can be obtained 
from the initial tensor product by analytic continuation and the appropriate shift of 
the base point. In this sense, the tensor product does not depend on the choice of base 
points. 

The first statement is proved in [M] and [MM]. The second and the third ones 
are due to R. Kaufmann ([K]). Actually, the third statement is proved in [K] in the 
considerably more general context: Kaufmann uses flat coordinates and does not 
assume semisimplicity or absence of odd coordinates. The fact that the tensor product 
of two convergent germs is again convergent is proved in his paper in preparation, 
without semisimplicity assumption as well. 

Kaufmann remarks that in order to prove (3.2) it suffices to control the relevant 
potentials only to the fourth order in flat coordinates, and the necessary calculation 
can then be done directly. 

We can now deduce from (3.2) the following corollary. 

3.2.3. Theorem. Assume that we have the direct sum diagram of Saito's frame- 
works as in 2.4 above. Then the Frobenius manifold M is (canonically isomorphic to) 
the tensor product of the Frobenius manifolds Mi 0 M2 • 

Proof. In the notation of (2.12) we may assume that mi,777,2 and m are tame 
semisimple, because tameness is the open property. Then (2.12) coincides with the 
first two formulas of (3.2). The third one follows directly from (2.13) and the definition 
ofvij in (3.1). 

We will now prove that the integral part of the spectrum corresponds to a Frobe- 
nius submanifold. 

3.3. Proposition. Assume that we have an analytic or formal Frobenius man- 
ifold M with an Euler field E, do = 1, D £ Z, and flat identity. Let —adE be 
semisimple on flat vector fields with spectrum da, (xa) a flat coordinate system with 

E=     Y,    daXada+    Yl    rbdb' 
a:da^0 b:db=0 

and e — do. Define the submanifold HM C M by the equations 

xc = 0 for all c such that dc £ Z. 

Finally, assume that at least one of the following conditions is satisfied: 

(i) rb = 0 for all b with \Ab\ = 2. 

(ii) M is of qc-type, and ^2b:d =orbAb takes only integral values on B. 

Then HM with induced metric, o-multiplication, E and e is a Frobenius mani- 
fold. 

REMARK. From the proof it will be clear that one can replace integers in this 
statement by any arithmetic progression containing 0 to which D and do belong. 

Proof of the proposition 3.3. If dc is not integral, the functions Exc = dcxc, exc = 
0 vanish on HM. Hence E and e are tangent to HM and can be restricted to it. From 
the equation (da + cfo — D)gab = 0 ([M], p. 32, (2.17)) one sees that if da, D G Z, db £ 
Z, we have gab = 0. Therefore the restriction of g to HM is non-degenerate (it is 
obviously flat), and xa for da G Z restrict to a flat coordinate system on HM. The 
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o-product of two vector fields tangent to HM at the points of M does not contain the 
transverse components. In fact, we have E^^0 = (do - da — db + dc)$abc ([M], p. 32, 
(2.18)). Hence if da,(4 G Z, dc £ Z, then in the case (i) every monomial in the series 
$c

ab 
milst be an eigenvector of E with non-integral eigenvalue, and therefore it must 

contain some xe with de £ Z so that it vanishes on HM. In the case (ii) we apply 
the same reasoning separately to the generalized (involving exponentials) monomials 
contributing to the third derivatives of ^ in (1.9) and to the third derivatives of c. 

The same reasoning shows that the induced multiplication of vector fields on THM 

is defined by the third derivatives of the induced potential. 

3.4. Special coordinates of An. We return to the notation of 2.3.1. 

3.4.1.   Proposition.   Consider the points of An where ai,...,an_2 = 0,an_i; 

an arbitrary.   Choose a primitive root C of Cn = 1 and a root b of bn = ^—-. At 
n + 1 

these points we have: 

(3.3) 
n 

u1 = a„ +          Can-ib, 
n + 1 

(3.4) c 
11     n{n + 1) 6"-1' 

(3.5) 
1 

u'"-(„ + i)(i-C*-J)- 

REMARK. It is suggestive to compare these coordinates with those for the quan- 
tum cohomology of Pn_1 ([M], p. 71) on the plane spanned by the identity (coordinate 
xo) and the dual hyperplane section (coordinate xi)\ 

(3.3a) u1 - XQ +nCie^', 

(3.4a) 7fc = -e"^1^1, 

(3.5a) vjk = 1 _ ^^ . 

Proo/. At our subspace F(z) = zn+1 + an_i2; + an. Hence 

F'(z) = (n + l)(^ + ^) 

has roots pi = C*6. But for An-manifolds we have universally ul — F(pi), rji = ———-. 
■F    \Pi) 

This furnishes (3.3) and (3.4). 

The proof of (3.5) is longer. We have to calculate the values of functions 

(3.6) I(u*_ui)M 

restricted to the plane of our base points. 



FROBENIUS MANIFOLDS 201 

At a generic point of An, we can calculate r]jk in the following three-step way: 

/o 7X _ 9rji _  A   3^ 9^ 5a^ 

Vj F"(z)      (n+im^ipi-pj)' 

dpm Pm - Pj ' 

dpj "^->» 

dpm 
dai -(n-lX-'-'ita- 

Since 

we have 

(3.8) 

if m / j, and 

(3.9) 

Moreover, 

(3.10) 

This can be checked by derivating the identity i?/(pm) = 0. 

Finally, according to [M], p. 47, (4.24), we have 

(3-ii) E^r'^*. 
z=i 

We will now restrict (3.8)-(3.11) to our plane. 

Using (3.3) and (3.4), we get consecutively: 

(3 12) ^L = _J I  
dpm      nan_i C™-'-1 

if m ^ j, and 

(3-13) pi = Jl^-, 
9/9 j      2nan_i 

(3.14) ^!!L=!__!LZ'    6-irmi. 
dai n(n + 1) 

Solving (3.11) for partial derivatives, we also find 

It remains to substitute (3.12)-(3.14) into (2.7) to get after some calculation 

2Cfc~"7 1 
(3'16) ^'W^^^Z' 
Finally, substituting (3.3), (3.4) and (3.16) in (3.6), we obtain (3.5). 



202 Y. I. MANIN 

3.5. Tensor products of An's. We want to describe (ni,...,njv) with non- 
trivial H(Ani (g) • • • ®AnN). We can assume rii > 2 because Ai is identity with respect 
to the tensor multiplication. The first necessary condition, following from (1.20) is 

(3,7) d:=|ST€Z' 
If it is satisfied, the full d-spectrum of the tensor product consists of certain rational 
points between 0 and d. Multiplicity of 0 and d is one. Generally, the multiplicity of 
some m < d is 

h2m(H(®iAni)) := the number of (zi,... ,ipf) G Z>0 satisfying 

N 

(3.18) T -^-r = m, 0 < ik < nk - 1. 

The d-spectrum of H(®Ank) consists of the part of (3.18) for all integer m. Clearly, 
(0.1) is a particular case of (3.18). 

The flat part of E in the total tensor product and in the iJ-part of it vanishes 
because it vanishes on all factors (cf. [K], Theorem 6.3). 

Let us show that (g)& Ank admits a tame semisimple base point which is the "sum" 
of the points the special coordinates of which we have calculated. Choose base points 
on all Ank as in Prop. 3.4.1. For our purpose, we may even assume that ank = 0 on 
each Ank. Therefore, slightly changing notation of (3.3), we will assume that canonical 
coordinates of the base point of Ank are of the form ul = Ckck, where (k is the primitive 
root of unit of degree n& and 0 < i < rik — 1. Then in view of the Theorem 3.2.2 for 
/ = (zi,... ,ijv), J = (ji,... ,JN) we have a pair of canonical coordinates u1\uJ on 
the full tensor product whose values at the base point of this product are 

k=l k=l 

One easily sees that with generic choice of c& these coordinates are distinct for all 

3.6. Involutive pairs of Gepner's manifolds. In the notations of 2.3..2, 
consider a pair of Frobenius manifolds Vn+i,k and Vk-\-i,n> They contain respectively 
points producing Verlinde's algebras of su(n+l)k and su(k + l)n which are isomorphic 
according to the reasoning of [G-ZV] (the level-rank duality). This reasoning runs as 
follows. Assume for concreteness that n > k + 1. Consider the function 

n 

(3.19) /n+l,fc(^lj---j^n) := /ife+l,n(^lj---j^fe) +    ^   zizn+k-i+l- 
i=k+l 

Then /n+i,A; and fn+i,k are quasi-homogeneous polynomials of the same degree, de- 
pending on the same set of weighted variables, and having an isolated critical point 
at the origin. Hence they belong to a connected family of polynomials with the same 
property, and whatever structures can be derived from their lattices of vanishing cycles, 
they can be identified. On the other hand, fn+i,k is obtained from fk+i,n(zi, • • •, Zk) 
by adding a sum of squares which again does not change the structure of vanishing 
cycles, except for that of the intersection form which changes in a controlled way. 



FROBENIUS MANIFOLDS 203 

In fact, adding a sum of squares does not change the respective Frobenius man- 
ifolds: this agrees with the fact that Ai is the tensor identity. Hence V^+i^, or at 
least its germ at the origin, is deformable to (the germ of) Vk+i^n- 

Perhaps, these Frobenius manifolds, or at least their appropriate coverings, are 
themselves isomorphic. To check this, it would suffice to identify their special coordi- 
nates at an appropriate pair of tame semisimple points. The Gepner-Verlinde points 
m € Vn,k (cf. 2.3..2 above) are certainly not tame because the potential has only n, 
not n -f k different critical values at m. 

4. Maurer—Cartan and master equations. 

4.1. Maurer—Cartan equations. Fix a super commutative Q-algebra k. All 
our structures are Z2-graded, notation like x means the parity of a homogeneous 
element x. Let g = go © gi be a Lie superalgebra over k, supplied with an odd 
differential d satisfying d[a, b] = [da, b] + (—l)a[a, db]. 

Put Z = Z(g,d) := Kerd.B = B(g,d) := lmd,H := H(g,d) = Z/B. Clearly, Z 
is a Lie subalgebra, and B its ideal, so that H with induced bracket product is a Lie 
superalgebra. 

The differential d can be shifted. 
For 7 G <7i, put d7(a) := da + [7,a]. Clearly, d7[a, b] = [d7a, b] + (—l)a[a, d7b]. 

4.1.1. Claim,  a) We have d* = 0 if 

(4.1) d7+^7,7]=0. 

b) Let 7' = 7 -\- e(5, (3 G g, e an even or odd constant with e2 = 0 such that e/3 is 
odd. Assume that 7 satisfies (4-1)•  Then 7' satisfies (4-1) as well iff 

(4.2) dy(j8) = d)9 + [7,/3] = 0. 

This is straightforward. 

If if is another supercommutative fc-algebra, we define QK = if && #, dx — 10 d 
We will always work with K flat over k so that Z^ := Ker dx — K®k Z, and similarly 
for B and ii. Claim 4.4.1 is of course applicable to (gKidx) as well. 

We want to produce from this setting a non-linear version of the homology H(g,d) 
or rather of the diagram g D Z -> H. 

The most straightforward is the case when, say, g is free of finite rank over k. 
We then replace g by the linear superspace Q := SpecA;[n<7*], where 11 is the parity 
inversion functor, Z by the closed subspace Z C G defined by the equations (4.1). 
In order to understand what should be the non-linear version of B, we interpret the 
Claim 4.1.1 (ii) as saying that dy-cycles form the Zariski tangent space to the point 
7 of the Maurer-Cartan space (4.1). It then contains the subspace of dy-boundaries, 
and we can construct the distribution B generated by the boundaries. If the quotient 
space H = Z/B in some sense exists, it can be regarded as the non-linear cohomology 
of (g,d). 

In more down-to-earth terms, choose a (homogeneous) basis {7*} of g and a 
family of independent (super) commuting variables t1 such that tl = 7* + 1. Then 
F := Y^i^li 'ls a generic odd element of g (or rather of k[tl] 0 p), and the equation 
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dT + -[F, F] = 0 is equivalent to the system of equations 

(4.3) Vfc :     ^(-l)¥Z)f + \ Vt1 t?'(-l)<a+1)^i* = 0. 

Here we define the structure constants by dnfa — ^Zj^D^jk and [71,7^-] = ^Z^Li^^k 
and use the following shorthand for the signs: (—1)*^+1) means (—1)^(^+1) etc. 

These equations define the coordinate ring R of the affine scheme which we called 
Z. Obviously, Z represents the following functor on the category of supecommutative 
/.-algebras K: 

(4.4) K i-> {solutions to (4.1) in (K 0 #)i}. 

Similarly, if we have any odd dp-cycle eft — X)a £sala with coefficients in K 0 i^, 
the statement 4.1.1 b) means that the map Xp : ta —> sa descends to the derivation 
of K 0 R over K that is, to a vector field on QK of parity ?. Of course, the adequate 
functorial language for derivations is that of the first order infinitesimal deformations 
of points, because generally the vector fields implied by 4.1.1 b) are defined only in 
the infinitesimal neighborhood of 7. 

We will stop now discussing the case of finite rank g because in most interesting 
examples this does not hold, and only H(g,d) is of finite rank. 

So we step back and try to produce a formal section of Z passing through 7 = 0 
and transversal to the distribution B. We want it to be of the same size as iJ, or 
rather IIJEZ", and we will assume henceforth that H is free of finite rank. From now on 
in this section, we denote K := kHUH1]] — &[[£;]] where xi are coordinate functions on 
Ilil dual to a basis of nif. Any element F € QK can be uniquely written as X!n>o ^n 

where rn is homogeneous of degree n in xi. Such an element can be naturally called 
a formal section of Z, or a generic (formal) solution to (4-1)•> if it has the following 
properties: 

a) F G (^ic)i,To = 0, Fi = ^ XiCi where dci = 0 and classes of c; form a basis of 
H odd dual to {xi}. 

b)d*r + i[r,r] = o. 
The necessary condition for the existence of F is the identical vanishing of the Lie 

bracket induced on H{g, d). In fact, the equation dT+ -[F, F] = 0 implies (assuming a) 

above) dT2 4- -[F^Fi] = 0. Hence [c^Cj] G B. However, generally it is not sufficient. 

In fact, the next equation reads dT^ + [Fi^] = 0, but since T2 may be non-closed, 
we cannot conclude that [Fi^] is a boundary. The manageable sufficient condition 
is stronger: {g^d) must be quasi-isomorphic to the differential Lie algebra H{g1d) 
with zero bracket and zero differential. For a considerably more general treatment see 
[GoM]. Our direct and elementary approach is self-contained and produces slightly 
more detailed information in the cases essential for the theory of Frobenius manifolds. 

4.2. Theorem, (i) Assume that there exists a surjective morphism of differential 
Lie superalgebras <j) : (#, [, ],d) —> (iJ, 0,0) inducing isomorphism on the homology. 
Then there exists a generic formal solution F to (4-1)• 

Moreover, F can be chosen in such a way that for any n > 2, rn G K ®Ker<^. In 
other words, (id 0 <^)(r) = ^£i[ci]. Such a solution will be called normalized. 
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(ii) If (i) is satisfied, then for any generic solution F, non necessarily normalized, 
the map (J)K = id 0 0 : QK -> ^^ ^ ^e surjective morphism of differential Lie 
superalgebras (gK,[,]K,dK,r) —* (HK,0,Q) inducing isomorphism on the homology. 

Proof, (i) Let n > 1. Assuming that F* for z < n are already constructed, and 
writing d instead of dx we must find rn+i from the equation 

(4-5) drn+1 = -i      £     [Ti.r,-]. 

First of all we check that the right hand side of (4.5) is closed in gx- In fact, since 
the components Fi,,.. , rn satisfy the similar equations by the inductive assumption, 
the differential of the rhs equals 

1    £    [[r^Lru 
i+j+k=n+l 

This expression vanishes because the Jacobi identity for odd elements reads 

[[Ti.r^rt] + [[r^r^r,-] + [[r^r^r,] = o. 

Hence the coefficients of the rhs of (4.5) (as polynomials in Xi) belong to Z D [g,g]. 
But [g,g] € Ker(/> and ZnKer</> = B because 0 is a quasi-isomorphism. Thus we can 
solve (4.5). 

We can add to any solution elements of ZK of degree n + 1. But Z 4- Ker 0 = g 
because 0 induces surjection on homology. Hence we can normalize rn+i by the 
requirement rn+i G K (8) Ker 0. 

(ii) Now fix F satisfying (4.5) for all n. We will write dr instead of dK,r and put 
Zr := Kerdp C gx, Br = drigK)- We have B C Ker^ and [gK,gK] C Ker 0^, hence 
Br C KevcpK- Therefore, (f)K is compatible with zero bracket and zero differential on 
HK- The natural inclusion Zr + Ker fa —> gx becomes surjection after the reduction 
modulo the ideal (x^ of K, because 0 is surjective. Hence this inclusion is surjective, 
and (j)K is surjective as well. It remains to show that C^K induces injection on homology, 
that is, 

(4.6) ZrCi Keifa C Br- 

Let c = Yln>o Cn € Zr- This means that dco = 0 and in general 

(4.7) dcn = -  Y, [Ti,^]. 
i+j=n 

(we keep writing d for dx)- Assuming that ^(c) = 0 we want to deduce the existence 
of homogeneous elements an of degree n in gx such that 

(4.8) cn+i = dan+1 +     ^    [Fi, a,]. 

We have dco = 0 and 0(co) = 0, hence Co is a boundary because 0 is the quasi- 
isomorphism. Assuming that ao,... , an are found, we will establish the existence of 
an+i satisfying (4.8), if we manage to prove that cn+i — X^i+j^n+i P^> ai] is ^-closed. 
In fact, this element also belongs to KevcpK and so must be a boundary. 
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The differential of this element is 

(4.9) Gfcn+;L+       J2      [r^daj}-       S      ^aj}- 
i+j=n+l i+j=n+l 

Replace in the first sum dcij by Cj — ^2k_^i=j[F^, ai] for j < n (this holds by induction). 
Replace in the second sum dTi by the sum of commutators from (4.5). The terms 
containing Cj will cancel thanks to (4.7). The remaining terms can be written as 

j;    [TiA^jM]^    E    [P^iW]- 2 
i+3+k=n+l i+j+k—n+l 

This expression vanishes because of Jacobi identity. 

4.2.1. Corollary. Define the map ip = ipr • HK ~> ^K ^ the K-linear extension 

H -> gK :  X ^ Xr 

it;/iere X acfc on K ® g as the right g-linear extension of the derivation on K acting 
as (HX, *) onUHK 

Then ip is a section of (J)K if F is normalized. 

Proof.   First of all, we have X(dT + -[r,r]) = 0 from which it follows that 

dr(Xr) = 0, that is, XT is a dr-cycle. Its image in HK is P^ri+^n>2 Xrn) modi?r- 
The first term is clearly X. The remaining ones are in K® Ker 0^3 if F is normalized. 

4.3. Odd Lie (super)algebras. As in 4.1, let now g = go (B gi be a A:-module 
endowed with a bilinear operation odd bracket (a, b) »-> [a • b] which satisfies the 
following conditions: 

a) parity of [a • b] equals a + b + 1, 

b) odd anticommutativity: 

(4.10) [a.b] = -(-iJP+W+^p.a], 

c) odd Jacobi identity: 

(4.11) [a • [6 • c]] = [[a • 6] • c] + (-1)(3+1W+1>[& • [a • c]]. 

Such a structure will be called an odd Lie (super)algebra. We consider such algebras 
endowed with an odd differential satisfying 

(4.12) d[a •b} = [da • b] + (-if+1
[G • db]. 

Physicists sometimes denote such multiplication {,} (see e.g. [LZ]). Our choice of 
notation allows one to use consistently the standard sign mnemonics of superalgebra, 
if • counts as an element of parity one. 

If (#, d) is the usual differential Lie superalgebra, the parity change functor g H-> 

IL? turns the usual bracket product [, ] into the odd bracket product, and defines an 
equivalence of the two categories (the differential changes sign). It seems therefore 
that there is not much point in considering odd brackets. However, in the context of 
GBV-algebras they come together with usual supercommutative multiplication, and 
parity change then turns this multiplication into odd one (see the next section). This 
is, of course, a particular case of the general operadic formalism over the category of 
superspaces, where any operation can be inherently even or odd. 
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In the next section we choose to work with even multiplication and odd bracket 
product. But we will use the results of this section, with appropriately modified 
parities and signs, for odd Lie super algebras. In particular, the odd Maurer-Cartan 
equation in the physical literature is called the master equation: 

(4.13) dr + i[r#r] = o. 

The Theorem 4.2 provides conditions of its solvability in &[[#*]] ® g rather than 
fc[[niJ£]] 0 g. Notice also that T in (4.13) must be even. 

5. Gerstenhaber—Batalin—Vilkovyski algebras. 

5.1. Gerstenhaber-Batalin-Vilkovyski algebras. Let A be a supercom- 
mutative algebra with identity over another supercommutative algebra k (constants). 
Consider an odd fc-linear operator A : A -> A, A(l) = 0, with the following property: 

\/a€A,        da:=(-lf([A,la}-lAa) 

(5.1) is the derivation of parity a + 1 over k. 

Here Za denotes the operator of left multiplication by a, and brackets denote the 
supercommutator. Explicitly, 

dab = (-1)"A(a&) - (-ir(Aa)b-aAb. 

The sign ensures the identity <9ca = c9a for any constant c. By definition of derivation, 

(5.2) [0a,l*] = ko6. 

The pair (^4, A) is called a GBV-algebra if, in addition, A2 = 0. There is an obvious 
operation of scalar extension. 

5.1.1. Lemma. In any GBV-algebra we have 

(5.3) [A,da] = dAa, 

(5.4) [da,db] = ddab 

Proof. From (5.1) we have 

[A)ao] = (-lf([AI[A,/a]]-[A,/Aa]). 

From the Jacobi identity for operators and [A, A] = 0 we find [A, [A, Za]] = 0 because 

[A)[A,J0]] = [[A,AU]-[A,[A,J0]]) 

Prom (5.1) with Ao replacing a we have [A,/AO] = (-l)a+1c'Aa- Hence 

[A,da} = (-lf+1[A,lAa] = d±a. 

To prove (5.4), we notice that since [c?0,9&] must be a derivation, in the intermediate 
calculations we are allowed not to register all the summands which are left multipli- 
cations: they will cancel anyway. So we have, denoting such summands by dots and 
using consecutively (5.1), (5.2), Jacobi and (5.3), and again (5.1) with dab replacing 
a: 

[da,db} = (-l)*[3a, [A, lb] - M = (-l)*[0a, [A, h]] + . . . = 
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(-l)W-s+i[A, [da,lb]] + ■■■ = (-l)'+5+1[A,^6] + . •. = daab. 

Define now the odd bracket operation on A by the formula 

(5.5) [a • b] := dab. 

5.1.2. Proposition. The pair of bilinear operations (multiplication and odd 
bracket) defines on A the structure of the odd Poisson algebra in the following sense: 

(i) The odd bracket satisfies the odd anticommutativity, the odd Jacobi and the 
odd Poisson identities: 

[a.b} = _(-i)(S+i)(S+i)[& • a],     [a • [b • c]] = [[a • b] • c] + (-i^+Dtf+^p, • [a • c]], 

(5.6) [a • be] = [a • b]c + (-1)^+1)& [a • c]. 

(ii) A is the derivation with respect to the odd brackets so that (A,*,A) is the 
differential odd Lie algebra. 

Proof. The anticommutativity can be checked directly. The Jacobi identity fol- 
lows from (5.4) written as [da,db] = c?[a»&]- The Poisson identity means that da is a 
derivation. The last statement follows from (5.1). 

Notice that with respect to the usual multiplication A is the differential operator 
of order < 2 and not necessarily derivation. 

5.2. Additional differential. Assume now that we have an additional A:-linear 
odd map S : A —> A which is the derivation with respect to the multiplicative structure 
of A satisfying 

(5.7) S2 = [5,A} = 5A + A5 = 0. 

We will say that (A, A, 5) is a differential GBV-algebra (dGBV). 

5.2.1. Lemma.   We have 

(5.8) [<J,0a] = a*a. 

Therefore 8 is the derivation with respect to the odd bracket as well. 

Proof. Since [ 5, <9a] is a derivation of A, we can calculate omitting the multipli- 
cation operators as above: 

[w = (-in<uA, *„]]+... = (-i?m£\M - [A,[M„]])+... = 
-(-IHA, fo,]+ ... = &„. 

Furthermore, 
5[a . b] = 5dj} = [5,da}b+ (-lf+1daSb = 

(5.9) = dsab + {-if+1daSb = [8a • b] + {-lf+1[a • 5b}. 

5.2.2. Shifted differential. Let 5 be a differential satisfying (5.7). For an even 
a € A put 

(5.10) Sa := 8 + da, 5a{b) = 8b + [a . b}. 

Then we have 8% = 0 if the odd Maurer-Cartan equation is satisfied: 

(5.11) Jo+-[o»o] = 0. 
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Furthermore, 

(5.12) [(Ja,A] = 0   if   Aa = 0. 

Therefore, from (5.11), (5.12) it follows that (A, A,5a) is a differential GBV-algebra 
(dGBV). In particular, 

(5.13) [8a,db] = dSe b> 

We can in the same way shift A. The essential difference is that, as A itself, the 
shifted differential generally will not be the derivation with respect to the associative 
multiplication. 

5.3. Homology of {A, 5). Since 5 is the derivation with respect to both multi- 
plications in A (associative one and the bracket), Ker 5 is the subalgebra with respect 
to both of them, and Im 5 is the ideal in this subalgebra with respect to both struc- 
tures. Therefore the homology group H{A,5) inherits both multiplications, satisfying 
the identities (5.6) and (5.7). 

This reasoning holds for H(A,5a) as well, if a satisfies the Maurer-Cartan equa- 
tion (5.11). 

5.4. Homology of (^4, A). The same reasoning furnishes only the structure 
of odd Lie algebra on H(A, A), because A is not a derivation with respect to the 
associative multiplication. However, if 5 and A satisfy conditions (A) and (B) below, 
we will have the natural isomorphism H(A, A) = H(A, 5). 

The Lemma below is well known, see e.g. [GoM]. 

5.4.1. Lemma. Let A be an additive group supplied with two endomorphisms 5 
and A satisfying 52 — A2 = 0 and 5A = a A5 where a is an automorphism of A such 
that a(ImA6) = IrnAS. Then clearly, Im 5A = Im A5 C ImJ.fl Ker A and similarly 
with 5 and A permuted. 

The following statements are equivalent: 

(i) The inclusions of the differential subgroups i : (Ker A, 5) C (A, 5) and j : 
(Ker (S, A) C (A, A) are quasi-isomorphisms (that is, induce isomorphisms of homol- 
ogy)- 

(ii) We have actually equalities: 

(A) Im<5A = ImA(S = Im(5nKerA, 

(B) lm5A = Im A5 = Im A n Ker 5. 

Assume that these conditions are satisfied. Then the both homology groups in (i) 
are naturally isomorphic to 

(Ker A n Kei5)/lm5A. 

Moreover, the natural map Ker A -+ H(A, A) induces the surjection of the differential 
groups (Ker A, 5) —> (H(A, A),0) which is a quasi-isomorphism, and similarly with 5 
and A interchanged. Hence the both differential groups (A, A) and (A, 5) are formal 

Proof. We have: 

(5.14) H(i) is injective  <^=> Ker A n Im<S = J (Ker A). 
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(5.15) H(i) is surjective <=> KevS c Ker A + ImS =» A (KevS) = ImSA. 

Here and below all kernel and images are taken in A. In the right hand side of (5.14), 
the inclusion D is evident, and the injectivity of H(i) supplies the reverse inclusion. 
The last arrow in (5.15) is obtained by applying A to the previous inclusion: this gives 
A (Ker S) C A (ImS) = Im<5A whereas the reverse inclusion is obvious. 

Interchanging S and A we find 

(5.16) H(j) is injective «=>  Ker 5 n ImA = A (Ker S). 

(5.17) H(j) is surjective <=$> Ker A C Ker S 4- ImA => S (Ker A) = ImSA. 

Taken together, (5.14) and (5.17) prove (A), and (5.15) and (5.16) prove (B), so that 
we have established the implication (i) =£> (ii). 

Conversely, assume that (A) and (B) hold. 

Then H(i) induces surjection on the homology, because if Sa = 0, we have Aa G 
Ker S fl Im A so that by (B), Aa = ASb, and then a — Sb € Ker A represents the same 
homology class as a. 

Moreover, H(i) induces injection on the homology, because if a G Ker A, a = Sb 
for some 6 G *4, then a G Ker A D Im S so that by (A), a = Sc for some c G Im A C 
Ker A. 

By symmetry, the same holds for H(j). 

The cycle subgroup for both differential groups (Ker S, A) and (Ker A, S) is (Ker S 
PlKerA), and if (i) and (ii) hold, the boundaries can be identified with ImSA, cf. 
(5.15) and (5.17). It remains to deduce formality, say, from (A) and (B). 

The natural map Ker A —> H(A,A) is compatible with differentials, because if 
a G Ker A, then Sa G ImS fl Ker A so that by (A), Sa — ASb for some 6, and hence 
the map is compatible with the zero differential on H(A,A). 

This map is surjective on the homology. In fact, consider the class of a, Aa = 0 
in H(A,A). Then Sa G ImciflKer A so that in view of (A), Sa = SAb, and the S-cyde 
a — Ab represents the same class as a. 

Finally, the map is injective on the homology. In fact, if a G Im A and Sa = 0, 
then in view of (B), a G Im<5A C S (Ker A). 

Thus we established the two-step quasi-isomorphism of (^4, S) with (H(A, A), 0) 
and by symmetry of (^4, A) with (H(A, S), 0). But the first two groups are also natu- 
rally quasi-isomorphic. So they are formal. 

5.4.2. Remarks. In the context of dGBV-algebras, we will apply this iden- 
tification to (A,A,Sa) with variable or formal generic a. Then we will be able to 
interpret the "constant" space H = H(A, A) as the flat structure on the family of 
algebras H(A,Sa) parametrized by the points of the generic formal section of the 
Maurer-Cartan manifold. The important technical problem will be then deriving the 
conditions (A) and (B) for the variable a. 

Notice that taken together, (A) and (B) are equivalent to 

(C) Im SA = Im AS = (Ker S n Ker A) n (Im S + Im A). 

To deduce, say, (A) from (C), one omits the last term in (C) and gets ImSA D 
Im^flKer A whereas the inverse inclusion is obvious. Similarly, (C) follows from (A) 
and (B) together. 



FROBENIUS MANIFOLDS 211 

Assume that A is finite dimensional over a field and 5 varies in a family, say {5a}. 
After a generalization, dimension of Im SA can only jump, and that of Ker S only drop. 
Hence if (B) holds at a point, it holds in an open neighborhood of it. In the case of 
the Dolbeault complex (cf [BK]), only the cohomology will be finite-dimensional. 
The validity of (C) for a particular S = 5Q follows from the Kahler formalism. The 
argument of the previous section (Theorem 4.2 (ii)) furnishes the same result for the 
generic formal deformation. 

5.5. Integral. Let (A, A, S) be a dGBV-algebra. An even fc-linear functional 
J : A —)■ k is called an integral if the following two conditions are satisfied: 

(5.18) Va, b e A,   f{Sa)b = {-l)z+l f a5b, 

(5.19) Va,beA,   f(Aa)b = (-if f aAb. 

Notice that (5.18) is equivalent to Va E A, J Sa = 0 because S is a fc-derivation. 
Applying (5.19) to b = 1, we see that Va £ A, J Aa = 0 as well. 

5.5.1. Proposition. Let J be an integral for (A, A, 5). 

(i) If a orb belongs to Ker A, we have 

(5.20) ( dab= Aa •&] = (). 

Hence if a satisfies (5.11) and (5.12), J is an integral for (A, A,£a) as well. 

(ii) J induces a linear functional on H(A, A) and H(A, Sa) for all a as above. 
These functionals are compatible with the identifications following from the condition 
(C). 

Proof. If, say, Aa = 0, we have 

j dab =  A(-l)"A(a&) - (-ir(Aa) b-aAb) = -faAb= -(-if f Aab = 0. 

The rest is straightforward. 

5.6. Metric. If J is an integral on (A, A, 5), we can define the scalar products 
on H(A,5a) induced by the symmetric scalar product (a, b) \-> f ab on A. For the 
construction of Frobenius manifolds, it is necessary to ensure that these scalar products 
are non-degenerate. 

Integral and metric are compatible with base extensions. 

5.7. Additional grading. Assume now that A as commutative A:-superalgebra 
is graded by an additive subgroup of k. Thus A = ©n^ln, k £ A0, ArnAn C Am+n, 
and each A1 is graded by parity. We write |a| = i if a £ A1. Various induced gradings 
and degrees of homogeneous operations are denoted in the same way. (In the main 
example of [BK], A is Z-graded, and each A1 is either even, or odd, but this plays no 
role in general). 

All base extensions then must be furnished by the similar grading or its topological 
completion. 

We will assume also that |A| = — 1. It follows that |[a • &]| = M + |&| — 1 which 
we interpret as | • | = —1. Moreover, we postulate that \5\ = 1. This means that the 
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shifted differential <57 can be homogeneous only for I7I = 2, and similarly for extended 
base. 

Homology space H in all its incarnations (cf. Lemma 5.4.1) inherits the grading 
from A. The dual space H* is graded in such a way that the pairing H1 0 H -» k 
has degree zero. This induces the additional grading (or more precisely, the notion of 
homogeneity) on K = A;[[ff*]] (which might be the product rather than the sum of its 
homogeneous components).. 

Integral is supposed to have a definite degree, not necessarily zero (and usually 
non-zero). 

5.8. Tensor product of GBV-algebras. Let (Au A*), i = 1,2, be two GBV- 
algebras over k. Put A := Ai (8) A2, A := Ai ® 1 + 1 ® A2 : A ->• A. 

5.8.1. Proposition.  (^4, A) is a GBV-algebra.  We have for a*,^ G Ai 

(5.21) dai®a2 = dai 0 (-lf2la2 + lai 0 9a2, 

or equivalently 

(5.22) [01 0 a2 • h 0 62] = (-ir2(*1+1)[ai • 61] 0 a262 + (-l^^+^aifti 0 [a2 • 62]. 

Proo/. (5.21) is established by a straightforward calculation which we omit. From 
(5.21) it follows that dai(g>a2 are derivations. Hence da are derivations for all a G A so 
that (A, A) is a GBV-algebra. (5.22) is a rewriting of (5.21). 

Clearly, tensor product is commutative and associative with respect to the stan- 
dard isomorphisms. 

If Si : Ai —> Ai are odd derivations of (Ai, Ai) satisfying (5.7), then 5 := Si 0 1 + 
1 ® ($2 is an odd derivation of Ai <S> A2 satisfying (5.7). 

If Ai are furnished with additional gradings having the properties postulated 
above, then the total grading on Ai 0 A2 satisfies the same conditions. 

5.8.2. Decomposable solutions to the Maurer-Cartan equation.  In the 
notation of the previous subsection, let (A, A, S) be the tensor product of (Ai, Ai,Si),i 
= 1,2. Assume that ai G Ai satisfy the Maurer-Cartan equation (5.11). Then from 
(5.22) it follows that a :— ai (S> 1 +100,2 satisfies (5.11) as well. Moreover, if A^a; = 0, 
then Aa = 0, so that (A,A,Sa) is the differential GBV-algebra. Such structures will 
be called decomposable ones. 

5.9. Example:   dGBV algebras related to the Calabi-Yau manifolds 
([BK]). Let W be a compact complex Kahler manifold with the property fijyax = Ow 
("weak Calabi-Yau"). Choose once for all a nonzero holomorphic volume form ft on 
W. Consider the C-algebra 

(5.23) Aw :=  0 ^-(W, A«(T*M) <8> AP(TW)) 
P,Q>0 

with Z2-grading (p + q) mod 2. 

The map 7 *-» 7 h Q identifies Aw with the complexified de Rham complex of 
W. Let A correspond to d with respect to this identification. One can directly check 
that A satisfies conditions of the first paragraph of 5.1 (Tian-Todorov lemma), hence 
claims 5.1.1 and 5.1.2 as well.   Furthermore, since A*(IV) is a holomorphic vector 
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bundle, Aw can be endowed with the differential d which we identify with S. Again, 
(5.7) can be checked directly so that (Aw, A,<5) is a dGBV. 

The key property is the validity of Lemma 5.4.1: this is essentially the <9<9-lemma 
from [DGMS]. Notice that only the existence of Kahler structure on W is needed for 
its validity, concrete choice does not matter. 

The homology space is 

(5.24) H(Aw,6) = ff*(W,A*(rw)). 

Clearly, using 0, one can identify it with fl'*(VF,n^) as well. 

Define the integral by 

J Jw 
(5.25) / 7 := /   (7 I- fi) A ft. 

J Jw 

It does not vanish only on the component q — p — dim W. Properties (5.18) and (5.19) 
follow from the Stokes formula. 

The algebra Aw possesses the additional Z-grading by q 4- p satisfying all the 
conditions of sec. 5.7. 

5.10. Example: dGBV algebras related to the symplectic manifolds sat- 
isfying the strong Lefschetz condition ([Me]). Let now (U,UJ) be a real manifold 
of dimension 2m endowed with a symplectic form u. Denote by (,) the pairing on 
ft*([/) induced by the symplectic form. Put 

(5.26) 0Bc,A,<S) := (ft*(r/),(-l)*+1*d*,d) 

where • : Vtk(U) -> ft2m-fc([/) is the symplectic star operator defined by 

(5.27) /?A(*a) = </?,a> —. 

Z2-grading is the degree of the diferential form mod 2. Calculating A in local 
coordinates, one sees that it is the differential operator of second order satisfying 
(5.1), whereas (5.7) follows from (5.27). Thus (Sc/, A,<$) is a dGBV-algebra. 

5.10.1. Proposition. Assume that (U,u) satisfies the strong Lefschetz condi- 
tion, that is, the cup product 

{ujk) U : Hm-k (U) -> Hm+k (U) 

is an isomorphism for each k < m. Then (Bu, A, 5) satisfies Lemma 5.4-1. 

S. Merkulov [Me] proves this, completing some earlier results from [Kos], [Br] and 
[Mat]. 

From now on, we will assume that the strong Lefschetz condition holds, so that 
U is compact. Then we can define the integral on Bu'- 

(5.28) /7:=/7- 

Properties (5.18) and (5.19) follow from the Stokes formula combined with the iden- 
tities •(•a) = a and /? A (*a) = (•/?) A a. 

The standard Z-grading of ft*(VF) then satisfies all conditions of sec. 5.7. 

6. From dGBV—algebras to Frobenius manifolds. 
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6.1. Normalized formal solution to the master equation. In this section, 
we fix a dGBV fc-algebra (A,A}8) and the derived odd bracket [•] on it. We will 
assume that this algebra satisfies a series of assumptions which will be introduced and 
numbered consecutively. 

ASSUMPTION 1. (A, A, 5) satisfies conditions of the Lemma 5.4.1. Moreover, the 
homology group H = H(A, 5) (and any group naturally isomorphic to it) is a free 
k-module of finite rank. 

Choosing an indexed basis [ci],Ci G A of # and the dual basis (xi) of H1 we 
will always assume that CQ = 1. As in 4.1, but now conserving parity, we put K := 
&[[#*]] = fc[[a;i]]. We will denote by Xi = d/dxi the respective partial derivatives 
acting on K and on K 0 A, K <g) H etc via the first factor. 

6.1.1. Proposition. If (A, A, 5) satisfies Assumption 1 above, then there exists 
a generic even formal solution Y — Y^i Fi £ K 0 Ker A to the master equation 

<$r + i[r.r] = o 

with the following properties: 

(i) TQ = 0, Ti = YJ 
xicu rn G K 0 Im A for all n > 2. Here a G Ker A n Ker S, 

and rn is the homogeneous component ofT of degree n in (xi). 

(ii) Moreover, this T can be chosen in such a way that XQF = 1. 

Such a solution will be called normalized. 

Proof The first statement follows from the Theorem 4.2 (i) applied to the odd 
differential Lie superalgebra (Ker A, [•],£). 

We must only check that the conditions of the applicability of this theorem are 
satisfied. To facilitate the bookkeeping for the reader, we register the correspon- 
dences between the old and the new notation: Ker d becomes Ker A fi Ker 5, Ker (j) 
turns into Im A, Imd corresponds to Im<5A. All of this forms a part of Lemma 5.4.1. 
From the second formula in 5.1 it follows that Ker A is closed with respect to [•] : 
[a • b] — (—l)aA(a6). This formula shows as well that [•] induces zero operation on 
#(Ker A, 8) : if a, b G Ker l\ H Ker 5, then [a • b] G Im A n Ker 5 = Im <5A. 

It remains to check the assertion (ii). Clearly, our choice CQ = 1 assures that 
XoFi = 1. Assume by induction that IV... ,rn do not depend on XQ. Clearly, 
[c0 • a]=0 for any a, so that in the (odd version of the) equation (4.5) the right hand 
side is independent of XQ as well. Since the argument showing the existence of rn+i in 
the proof of 4.2 can be applied to each coefficient of the monomials in xi separately, 
we may find rn+i independent of XQ. The final normalization argument can be also 
applied coefficientwise. 

6.2. The (pre)-Frobenius manifold associated to (A, A, 8). Consider the 
formal manifold M, the formal spectrum of K over k. The flat coordinates will be by 
definition {xi) so that the space of flat vector fields can be canonically identified with 
H. We fix a normalized F as above. 

6.2.1. Lemma. The bi-differential group (AK^K^T) satisfies the conditions 
and conclusions of Lemma 5.4-1- 

Proof. Clearly, 8% = A2
K = [AK,Sr] = 0 (the latter follows from (5.3)). From the 

Assumption 1 and the proof of 6.6.1 above we see that we can apply the Theorem 4.2 
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(ii) to (K®Ker A,5r) instead of {QK^KX)- The inclusion (4.6) reads in this context: 

Im AK D Ker 5Y C Im 8Y&K 

which implies the condition (B). 

To check (A), consider the inclusion map 

Im^rAx -> Im<5r H Ker A^. 

It becomes an isomorphism after reduction modulo (xi) in view of the Assumption 1. 
Hence it is an isomorphism. 

6.2.2. o-multiplication on tangent fields. We will define now the iiT-linear 
o-multiplication on the if-module of all vector fields 7M — K ^ H — HK> 

To this end we first apply Theorem 4.2 (ii) to the odd differential Lie algebra 
(Ker A,(5r). It shows that the homology of this algebra is naturally identified with 

In view of Lemmas 5.4.1 and 6.2.1 we know that the injection (Ker A^,^) —► 
{AKI$T) induces isomorphism of homology HK — KerJr/ImJr- But KerJp is a com- 
mutative i^-subalgebra of AK and ImJr is an ideal in it. Hence HK inherits the 
multiplication which we denote o. We record the following "explicit" formula for it. 
Interpreting any X E HK as the derivation X of K 0 A acting through the first factor 
(cf. Corollary 4.2.1), we have: 

(6.1) X o YT = XT • yrmodlm 5r 

(dot here means the associative multiplication in AK)- This follows directly from 
the Corollary 4.2.1 applied to our situation. Notice that whereas XT and YT lie in 
Ker A/^ fl Ker^r? their product generally lies only in the larger group Ker Jp- 

Directly from the initial definition one sees that e := XQ is the flat identity for o. 

In order to complete the description of the pre-Frobenius structure, it remains to 
choose a fiat metric on M. 

ASSUMPTION 2. There exists an integral J for (A, A, 5) such that the bilinear 
form on H = H(A,S) induced by (X,Y) *-> J XT • YT is non-degenerate. 

Denoting this form g we clearly have the invariance property defining the sym- 
metric multiplication tensor A: 

(6.2) g(X, YoZ)=g(Xo y, Z) := A(X, y, Z). 

We will check now that this structure is actually Frobenius. Since the o-multiplication 
is associative, we have only to establish its potentiality. 

To this end we will check Dubrovin's criterium: the structure connection VA on 
TM is flat (cf. [M], Ch. I, Theorem 1.5). 

To be more precise, let Vo be the flat connection on TM whose horizontal sections 
are H. Clearly, Vo,y (Z) = Y(Z) where this time Y means Y acting on K 0 H via K. 
By definition, 

(6.3) VA,y (Z) - Y(Z) + \YoZ 

where A is an even parameter. 

We have the canonical surjection Ker A^ -» HK and the two lifts of X both 
denoted by X are compatible with this surjection, and also with embedding Ker AK C 
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AK> Therefore the section of Ker A^ -> HK denoted tp in the Corollary 4.2.1 sends 
Y(Z) to Y(ZT), and V\,Y(Z) lifts to Y(ZT) + XYT • ZT in view of (6.1) and (6.3). 

Our preparations being now completed, we can prove 

6.2.3. Theorem. The connection VA is flat. Hence the pre-Frobenius structure 
defined above is potential. 

Proof. Applying (6.3) twice, we find 

(6.4) VA,X VA,y (Z) = X(Y(Z)) + XX(Y o Z) + \X o Y(Z) + X2X o Y o Z. 

We may and will consider only the case when X,Y supercommute (e.g. X,Y G H). 
In order to establish flatness, it suffices to check that 

(6.5) X(Y oZ)+Xo Y(Z) = {-l)X?(Y(X oZ)+Yo X(Z)). 

We will see that already the ^-lifts of both sides of (6.5) coincide up to Im 5r. In fact, 
X(Y o Z) lifts to X(Fr • ZT), X o Y(Z) lifts to XT • Y(ZT) so that (6.5) becomes 

X{YT) • ZT + (-1)^YT • X(ZT) + XT • Y(zr) = 

(-i)*?F(Zr) • zr + Xr • F(zr) + (-i)^?Fr • x(zr). 
This finishes the proof. 

6.3. Euler field. Assume now that A is endowed with a grading satisfying the 
conditions of 5.7. All the previous discussion makes sense, and the results hold true, if 
we add appropriate grading conditions at certain places, the most important of which 
is |r| —2 implying | o | = 2 in view of (6.1). 

Denote by E the derivation of K defined by the following Euler condition: 

(6-6) V/ €K,Ef= ||/|/, 

where | | is the grading induced on if* from A via H. In cooordinates as in 6.1 we 
have 

(6-7) E = I £ Xi   cCiyxj. 

ASSUMPTION 3. Assume that the integral is homogeneous and denote its degree 
by 2D - 4. 

For the general discussion of spectrum cf. [M], Chapter I, §2, cf. also 1.3 above 
for spectrum of quantum cohomology. 

6.3.1. Proposition. E is an Euler field on the formal Frobenius manifold de- 
scribed in 6.2. Its spectrum is {D\ di with multiplicity &\mH~2di), and do = 1. 

Proof. Comparing (6.7) with the notation of [M], we see that the spectrum of 
—ad.E on H = T^ is di with multiplicity dimH~2di where 

(6.8) di = ^M = ~l*i|- 

Since XQ O X = X and | o | = 2, we have do = 1. 
We must now check the formula 

(6.9) E(g(X, Y)) - g([E, X],Y) - g(X, [E, Y)) = Dg(X, Y). 
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It suffices to do this for the case when X, Y are flat vector fields having definite degrees. 

Then [E,X] = ^X. Since g(X,Y) e *, (6.9) becomes 

(|x| + |y| + 2D)p(x,y) = o. 

But Q{X, Y) = /Xr • Fr vanishes unless IB - 4 + \X\ + 2 + |r| + 2 = 0 which proves 
(6.9). 

Furthermore, from (6.1) we infer that \X o Y\ = \X\ + \Y\ + 2. Hence if Xi o Xj = 
J2kAijkXk, we have 

EAij" = \ |^fc| • Mf = I (M + IXjl - \Xk\ + 2) V- 

Comparing this with the formula (2.18) of [M], Chapter I and taking into account 
(6.8), we see that E satisfies the Definition 2.2.1 of [M], loc. cit. This finishes the 
proof. 

Notice that the Euler field (6.7) contains no flat summand: Xi with di = 0 do 
not contribute. Hence if this construction furnishes a Frobenius manifold which is 
quantum cohomology of some V, then ci(V) must vanish (modulo torsion). 

6.3.2. Remark. Comparing the Frobenius manifold produced from a dGBV- 
algebra with grading as above to a quantum cohomology Frobenius manifold, one must 
first shift the dGBV-grading by two. Then XQ and o acquire the degree zero. 

6.4. Explicit potential. The direct way to establish potentiality is to find an 
even series $ G K such that for all X, Y, Z G H we have A(X, Y, Z) = XYZ<$> (from 
now on, we write X instead of X in order to denote derivations on various i^-modules 
acting through K). Moreover, it suffices to check this for X = Y = Z. We will give 
here the beautiful formula of Chern-Simons type for $ discovered in [BK]. 

Extend the integral to the if-linear map / : AK -> K- For a fixed normalized F 
put F = Ti + AJ5 where BQ = Bi — 0 and A means A^. 

6.4.1. THEOREM.   The formal function 

(6.10) *:=|Qr3-^BA£). 

is a potential for the Frobenius manifold defined above. 

Proof. We have to prove that for any X G H 

(6.11) A(X,X,X) = f{XTf = X3$. 

We supply below the detailed calculation consisting of the series of elementary 
steps, each being an application of one of the identities (5.18), (5.19), Leibniz rule for 
(super)derivations and the fact that J, A,X pairwise supercommute. Moreover, we 
use the master equation in the form AF2 = — 2 8T following from AF = 0. Finally, 
flTi = Xnri = 0 forn > 2 so that 5T = SAB, XnT = XnAB. 

We start with treating the first summand of the right hand side of (6.10). The 
derivation X is interchangeable with integration, so we have by the Leibniz rule 

(6.12) X3 (- f rA =  [(XT)3 + f f{2 + (-l)*)r • XT • X2T + i F2 • X3
T\ . 



218 Y. I. MANIN 

The second summand of (6.10) is added in order to cancel the extra terms in (6.12). 
First, we rewrite it: 

(6.13) ±j6BAB = ±JB6&B = ±jB6r = -]ijBA(T2) = \J&B-r2. 

(We could have chosen the last expression in (6.13) from the start). 

Now, again by Leibniz rule, 

i X3 f AB • T2 = j f (x3(A£) r2 + (2 + (-lf)X2(AB) • x(r2) 

(6.14) +(2 + (-1)X)X(AB) - X2(r2) + AB • X3(r2)) . 

The first two summands in (6.14) can be directly rewritten in the same form as in 
(6.12): 

X3(A5) • T2 + (2 + (-1)X)X2(AB) ■ X(T2) = 

(6.15) x3r • r2 + (2 + (-i)^)x2r • X(T
2
). 

The third summand takes somewhat more work: 

f X(AB) ■ X2(T2) = - f XB ■ X2(AT2) = 2 f XB ■ X2(ST) = 

2 f XB ■ S(X2r) = 2 fXB- 5A(X2B) = -2 f SAXB ■ X2B = 

-2 f X6T ■ X2B = f XA(r2) ■ X2B = f X(r2) - X2AB = 

(6.16) fx(r2)-x2r. 

Finally, the fourth summand is calculated similarly, but in two steps. We start 
with an expression of the second order in X: 

f AB ■ X2{T2) = - f B ■ X2(AT2) = 2 f B ■ X2(ST) = 

2 f B-6(X2r) = 2 f B-5A{X2B) = -2 I 8AB-X2B = 

-2 [ 5T- X2B = f A(r2) • X2B = f F2 ■ X2AB = 

(6.17) fr2x2r. 

Apply now X to the first and the last expressions of (6.17). We get 

(6.18)        f X{AB) ■ X2(T2) + f AB ■ X3(r2) = f X{r2) ■ X2T + l T2 ■ X*T. 
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Comparing this with (6.16), one gets 

(6.19) f AB • x3(r2) = f r2 • x3r. 

Putting all of this together, one obtains finally (6.11). 

6.5. Example: Frobenius manifolds of B—type, related to the Calabi— 
Yau manifolds. Returning now to the examples of 5.9, one sees that all assumptions 
of this section hold so that we get a class of Frobenius manifolds, which we may call 
BK-models of Calabi-Yau manifolds W. In particular, we can easily calculate the 
d-spectrum which is: 

(6.20) (w; d with multiplicity     ^   hp'w-9(W)), w := dimc(W). 
q+p=2d 

6.6. Example: Frobenius manifolds related to the symplectic manifolds 
satisfying the strong Lefschetz condition. Similarly, in the situation of 5.10 we 
obtain the Frobenius manifold with the d-spectrum 

(6.21) (m;d with multiplicity dimH2d(W)). 

Notice that in this case as well the anticanonical component of the Euler field vanishes. 

It would be interesting to establish isomorphisms between these examples and to 
understand when they furnish Frobenius manifolds of qc-type. Notice that if W, U 
are mirror dual Calabi-Yau manifolds, then the spectra of Aw and Bu coincide. 
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