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APERIODICITY IN QUANTUM AFFINE gl

G. LUSZTIGH

0. Introduction. In [BLM], the quantized enveloping algebra corresponding to
gl, was studied using the geometry of pairs of n-step filtrations in a vector space. (For
earlier related work see [J], [DJ].) Soon after [BLM] was written, I, and independently
[GV], noticed that some aspects of [BLM] can be extended to the case of quantum
affine gl,, using the geometry of pairs of infinite periodic chains of lattices in a vector
space over a power series field.

The purpose of this paper is to point out a major difference between the finite
and affine case. Namely, in the finite case, the geometric approach gives a sequence of
larger and larger algebras which are quotients of the quantum gl, with parameter g,
which are realized as the spaces of invariant functions on a set of pairs of filtrations in
a vector space over a finite field with ¢ elements. The analogous geometrically defined
algebras in the affine case are still receiving homomorphisms from the quantum affine
gl, with parameter ¢, but this time the homomorphisms are not surjective, contrary
to what is asserted in [GV, Sec.9]. This non-surjectivity statement is established in
two ways, an elementary one (see 3.8) and a less elementary one, based on the theory
of characteristic varieties (Sec. 6). '

Most of this paper is concerned with the problem of describing the images of
these homomorphisms. It turns out that these images are spanned by ”intersection
cohomology elements” indexed by certain matrices which are aperiodic in a suitable
sense. (See Theorem 8.2.) These elements form a basis at infinity, or a crystal basis
(up to signs) for these images. (See Theorem 8.4.)

1. The Q(v)-algebra Ap , n-

1.1. Let n > 1 and D > 0 be integers. Let &p , be the (finite) set of all
a = (a;)iez with a; € N such that

(a) a; = aj_, for all i € Z;

(b) for some (or any) ig € Z we have a;, + @jo—1 + -+ - + Gijg—ny1 = D.

1.2. Now let n' be another integer > 1. Let Gp , n+ be the set of all matrices
A = (a; ;) (i,j)ezxz With entries a; ; € N such that

(a) aij = @i—n,j—n for alli,j € Z;

(bl) for any ¢ € Z, the set {j € Z|a;; # 0} is finite;

(b2) for any j € Z, the set {i € Z|a;; # 0} is finite;

(c1) for some (or any) ip € Z we have @iy« + Gig—1, + -+ + Gig—nt1,« = D;

(c2) for some (or any) jo € Z we have a, j, + ax jo—1 + - + Qs jo—n'41 = D.

Here,
Qix = E Qijy, Qx5 = E Qij -
JEZ i€Z

Note that, in the presence of (a), conditions (b1) and (b2) are equivalent and conditions
(c1),(c2) are equivalent. For A € Gp , v We set

r(A) = (aix)icz € pn, c(4) = (ax,j)jez € Gp,w,
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148 G. LUSZTIG

(d) da =) aijag,

where the sum is taken over a set of representatives = for the orbits of the permutation
(0,5, k,0) » (i = n,j —n',k — n,l —n') of the set

{G,5,k, 1) € Z*i >k, j<lI}.

From (a) it is clear that the sum in (d) is independent of the choice of =. But we must
check that only finitely terms in the sum are non-zero. It is enough to do this for a
particular choice of Z, for example

=E={(,4,k1)€Zi>k j<l, ie[l,n]}.

Let Z' be the set of elements of = such that the corresponding term in the sum (d) is
non-zero. If (¢, j, k,1) € Z', then i € [1,n] and, since a; ; # 0, we see from (b1) that j
is forced to lie in a fixed finite subset of Z. To show that k,[ are also forced to lie in
fixed finite sets we note that

{(k,1) € Z2|ag, # 0,k < ig,l > jo}

is a finite set for any fixed (io, jo) € Z2. (This follows easily from (a),(b1),(b2).) This
proves the desired finiteness statement.

1.3. We fix a field k, a prime number [ invertible in k and an algebraic closure
Q; of Q;. In the case where k is of characteristic p > 0, we assume chosen a square
root /p of p in Q;. If, in addition, k is finite with ¢ = p® elements for some integer
s > 1, we set /g = (/p)® and ¢™/? = (,/g)™ for any m € Z.

We shall write dim instead of dimy.

Let V be a free k[e,e~!]-module of rank D > 0; here € is an indeterminate. Let
G be the group of automorphisms of the k[e,e~!]-module V. Let g be the set of all
endomorphisms of the k[e,e™!]-module V. A lattice in V is, by definition, a k[e]-
submodule L of V such that there exists a k[e]-basis of L which is also a k[e, e ~!]-basis
of V.

Let F" be the set of all collections L = (L;);ez where each L; is a lattice in V, such
that L;_; C L; and L;_,, = eL; for all i € Z. Then G actson F" by g: L — g(L) =L
where L; = g(L;) for all i € Z. For L € F" we set define |L| € &p ,, by

|IL| =a,a; =dimL;/L;—; Vi.

We sometimes write |L|; instead of a;. For a = (a;) € &p p, we set

Fa ={L € F*||L| = a}.

Then F, for a € &p , are exactly the G-orbits on F". Now G acts on F" x F n' by
g (L, L) - (g(L),g(L")). For L € F", let Gy, = {g € Gg(L) = L}.

LEMMA 1.4. Given (L,L') € F*xF™ , we can find k-subspaces M; ; of V indexed
by (i,j) € Z x Z such that

V =@;;M;,

GMi’j = Mi—n,j—n’ fO’I" all i,j,

L; = @i',j;i’SiMi’,j for all 1,

L"] = @i,j’;j’SjMi,j’ fO'I” all]

We omit the proof.

LEMMA 1.5. Let us associate to (L,L') € F™ x F™ the matriz A = (aij)ijez
given by
L;nL;

N.
LianD+LinD_ ©

Qi; = dim
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(a) We have A € Gp pp-

() (L, L") = A defines a bijection between the set of G-orbits in F™ x F™ and
the set Gp nn-

We prove (a). If M;; are as in 1.4, we have a;; = dim M;; for all 4,j. In
particular, a;; = a;_p, j_n for all ¢, 7.

Clearly, L;/L;—1 = ®jezM; ; hence dim(L;/L;—1) = Z]‘ez a;j. (In particular,
> jez @ij < 00 so that A satisfies condition 1.2(b1).) Hence, if i is as in 1.2(cl), the
sum in 1.2(cl) is equal to

dim(LiO /Lio—n) = dim(Lio/ELio) =D.

This proves (a). We prove (b). Clearly, (L,L') — A induces a well defined map
¢ from the set of G-orbits in F™ x F" to Sp,n,n. We show that ¢ is injective.
Assume that (L, L’) is another pair in F” x F" with associated matrix equal to A.
Let M; ; be associated to (L,L’) as in Lemma 1.4 and let Mi,j be associated in a
similar way to (L, L’). From our assumption we have dim M; ; = dim M; ; for all , .
We can define isomorphisms of k-vector spaces g;; : M;; — M;; for all i,j such
that gi—nj—n (1) = egi,j(e‘lu)for all p € M_pj—w. Then g = @;gi; : V =V
belongs to G. Also, g(L) = L,g(L’) = L’. This shows that ¢ is injective. We
show that ¢ is surjective. Given A € Gp v, we can find a direct sum decomposition
V = @;,;M; ; as a k-vector space where M; ; are k-subspaces such that dim M; ; = a;;
and eM; j = M;_p j_n for all 4,j. We then define L, L’ in f",]-'"l by

L; = ®i’,j;i’§iMi',j for: € Z,

L; = EBi,j’;j'SjMi,j' for JE Z.
It is clear that the matrix associated to (L,L’) is just A. The lemma is proved.

1.6. For any A € Gppn,n, we denote by O4 the G-orbit on F™ x Fn' corre-

sponding to A as in 1.5. Note that, if (L,L") € Oa, then L € F,(4), L' € Feu
and

(a) dim Ly = Z ars, dim L = Z Qrs-

LN L; r<hasl LN L;

Let a € Spp,b € &pn,L € Fu. The action of G, on Fyp (restriction of the
G-action) has orbits

X% ={L' € R”|(L,L") € 04}

indexed by
(b) {A € Bppnlr(A) =a,c(A) =b}.

1.7. Assume now that k is finite with ¢ elements. Let n" be another integer > 1.
Let A € Gppp,A' € Sp i piry A" € Bp v be such that 7(A) = r(A”) = a,c(4) =
r(A") =b,c(A") = ¢(A"”) = c. We denote by v4 as,41;4 the number of elements in the
(finite) set

{L' € Fp|(L,L') € O4,(L',L") € Oy}

where (L,L") is fixed in O4». Clearly, va,4/ 47,4 is independent of the choice of
(L, L") € Ogn.

If A € Gp,n,n then the matrix A, whose (i, j)-entry is a; ;, belongs to Sp ns .
Moreover, if (L, L") € Oy4, then (L',L) € O: 4. It follows easily that

(a) VA,A",A";q = VtA t AL A q
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for any A, A’, A" as above.

1.8. Let A = Z[v,v™!] where v is an indeterminate.
For A, A’, A" as above, we can find v4 4/,4» € A such that

I/A,AI,AII;q = I/A,AI7A” lv=ql/2

for any prime power ¢g. (This is a well known property of affine Hecke algebras of type
A). More precisely, v4, 4/ 4 is necessarily a polynomial in v2. From 1.7(a), we deduce

(a) VAAT A = Vigrtpatar.

1.9. Let Ap n,n be the Q(v)-vector space with basis {es|A € Gp nn}. This
vector space has a second basis

{[Al]A € Gpan}, [4] =v %eq.
We define a Q(v)-bilinear pairing Ap n n' X Ap nr n — Ap,n,n bY

€p €7 = ZA” VA,A' AEAN if C(A) = T'(A’),

eqa-ea =0if c(4) #r(A).
The sum is taken over all A” € &p , ,» such that 7(A) =r(A"),c(A") = c(A"). (The
sum has only finitely many non-zero terms.)

For any A € Ap nn', A’ € Up p .y, A" € Up pov p we have from definitions

(ea-ea)-ean =es-(ear -ean).
For a = (a;) € Gp,n, the set of all pairs (L,L') with L = L' € F, is equal to Oy4
where A € Gp p r is defined by a;; = d;ja;. We denote this A by i,. Clearly,

d;, =0 and e;, = [ia].
From the definition we have

éi. -ea = ey for any A' € G, v such that r(A4') = a,

ear - €, = eqr for any A" € G, , such that ¢(A"”) = a.
In particular, the above multiplication defines on 2Ap ,n a structure of associative
algebra (over Q(v)). This algebra has a unit element, namely »°_ e;, = >__[ia], where
a runs over the finite set &p ,. Similarly, the above multiplication defines a left
Ap n,n-module structure on Ap n,» and a right Ap ' »--module structure on Ap n ns-
These module structures commute with each other.

1.10. Let Ap n n:;4 be the A-submodule of Ap , v spanned by {e4|A € Sp nn}
or equivalently by {[A]|A € &pn,n}. Clearly, Ap n n;4 is an A-subalgebra of Ap
and Ap n,n;4 is @ Ap p,n;a-submodule of Ap n n-

For any prime power g, let 2p » n.qg = Qi ® 4 Ap n,nr;.4, Where Q; is regarded as
A-algebra via v — ¢'/2. Then Ap n,n;q 18 @ Q;-algebra in a natural way and AD n,nsq
is a left Ap p n;g-module in a natural way.

The element 1®ey4 (resp. 1® [A]) of Ap,n,n;q is denoted again by ey (resp. [A]).
Note that {e4|A € Gpnn} and {[A]|A € Gp,nn} are bases of the Q;-vector space
QlD,n,n’;q~

We may identify 2p n ;g With the vector space of functions f : F™ x F* — Q
(in the case fk = ¢) that are constant on the orbits of G and are 0 outside a finite set
of G-orbits, in such a way that e4 corresponds to the function which is identically 1
on O4 and is zero on Oy for any A’ # A. Then the multiplication on 2p , n;q can
be interpreted as the conveolution of functions fi, fa — fi - fa:

(fi- )LL) = > ALL)f(L,L")

L'eFn
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for L,L" € F™.

LEMMA 1.11. The Q(v)-linear involution ¥ : Ap nn — Apnn given by [A] —
[tA] for all A € Gpnn is an algebra anti-automorphism.

We have

[A] - [A'] = 5 o 0940+ 1y g g A7) i c(4) = r(A'),

[A]- [A] = 0if c(A4) #r(A").
In the sum over A” we may restrict ourselves to A" such that 7(A") = r(4),c(4") =
¢(A"). Using 1.8(a), we see that it is enough to prove that

(a) —dg—dg +dar = —degr —dep + di g
whenever
(b) c(4) = r(4'),r(A") =1(4),c(A") = ¢(4").

By definition,

da= Zai,jak,l, dey = Zaj,ial,lc
where the sum is taken over
(c) {G,5,k,1) € Z*i >k, j<lI, i€ll,n]}
or equivalently over
(d) {G,5,k,1)€Zi>k, j<l, kel[l,n]}.

It will be convenient to take the sum over (c) for d4 and over (d) for d: 4. In (d) we
make the change of variable (¢,7,k,1) — (I,k,j,7) and we see that deg = > a; jax,,
sum over

{G, 5,k 1) €Z%i >k, j<I, jell,n]}.
Therefore

da—dia=Y 'aijoes— Y "0k

where X' is sum over {{(i,j,k,l) € Z*i = k € [L,n], j <[,} and £" is sum over
{{G,5,k,1) € Z*|i > k, j=1¢€ [1,n]}. The first sum equals

1 2
5 > mgag— Y iy
i,5,l;i€[1,n] 1,5;1€[1,n]
the second sum equals
1 2
B} E Qi,j0k,j — Z ajj-
i,5,k;5€[1,n] 1,5;3€(1,n]
2 _ 2
Note that 32, jiie(1,n] %5 = Lijijel,n) %, Hence

dp —dig = % Z az?,* - E af,j'

i€[1,n] j€[1,n]

DN | =



152 G. LUSZTIG

We now use this identity for A, A’, A" and we find

1 1
da—datdy —diy —dp +dan =5 Y al. -5 Y al
i€[1,n] Jj€[1,n]
l 12 _l rog 1 neg 1 " 2.
+2 Z Gie — 35 Z Aej ~ 3 Z Qi x +§ Z Qg s
i€(1,n] JjE€[1,n] i€[1,n] JjE€[1,n]
this is zero since, by (b), a.; = @} ,,a], = aix,a); = a; for all i. The lemma is

proved.

LEMMA 1.12. Let L,L' € F™. Let g} : Ly/(Lg N L;c) — Lg_1/(Lg—1 N L;c—l)
be k-linear maps defined for k € Z such that gx—, = egre~! for all k € Z and such
that jr—19x = Gr+1jk for all k, where ji : Ly/(Lr N L) = Ligg1/(Li41 NLjy,) is the
canonical map. Then there exists e € g such that e(L) C Ly—1, e(L},) C L},_; for all
k and such that e induces (gg).

Let M; ; be attached to L,L’ as in 1.4. Giving (gi) is the same as giving linear
maps ge;r,s;r,s' : Mrs = My ¢ defined for r <k < s and r' <k —1 < s’ such that

Jk—nisr—n,s—n;r'—n,s'—n = ng;r,s;r’,s’e_la

k+1;r,550 8" = Jhsrssr s, L K,k +1 € [r,s—1]and k- 1,k € [, s' — 1],

Ghsrsyrt,s =0if Kk +1€[r,s—1landk—1=7r" <4,

Gkirsr s =0ifk—1, ke[, —1Jandr < s=k+1.

In particular, if g,y s, is defined and either ' > r or s’ > s, then g,y 5,5 = 0.

We define linear maps e, s, s : My s = My o for any r,s,7',s" as follows. If
there exists k such that r < k < sandr' <k —1< s, we set e, s;r,5 = Ghir,sir,s'-
(This is independent of the choice of k.) Otherwise, we set ey s, s = 0. Then

€r—n,s—n;r’'—n,s'—n = €€ s;r! ,s’e_ly

ersrs =0 unless ' < rand s’ <s.

We define e € g so that its (r, s; 7', s") component with the decomposition V' = @; ; M; ;
is ey 5;, ¢ = 0. Clearly, e has the required properties. The lemma is proved.

We shall also need the following variant of Lemma 1.12.

LEMMA 1.13. LetL,L’' € F"*. Assume that L), C Ly, for all k. Let uy : Ly, /Lj —
Ly/L} be k-linear isomorphisms defined for k € Z such that up_, = eure™! for all
k € Z and such that jrur = ugs1jr for all k, where jy, : Ly/L}, — Lgy1/Ly, is the
canonical map. Then there ezists e € G, N GL: such that e induces (uy,).

Let M; ; be attached to L,L’ as in 1.4. Giving (u) is the same as giving linear
maps Ug;r,s.r,s' : Myps = My o defined for r <k < s and v’ < k < s’ such that

Uk—nyr—n,s—n;r' —n,s' —n — €Uk 50! '€

Uk+1;r,8;0" 8" = Ukyr,s;77 8 ifk,k+1€ ['I‘,S - 1] and k,k+1¢€ [T‘I,SI - 1],

Ukrsrs =0 kk+1€[rs—1andk+1=1" <¢,

Ukirsir,e =0f kk+1€[r,s —1]andr < s=k.

In particular, if ug,r s, ¢ is defined and either ' > r or s’ > s, then ug;p 5, = 0.

We define linear maps e, 5.pv s : My s = My o for any r,s,7/, s" as follows.

If there exists k such that r < k < s and v’ < k < s, we set er s,/ 58 = Upsp, 550,57 -
(This is independent of the choice of k.) Otherwise, we set e, ;1. = 0. Then

€r—n,s—n;r'—n,s'—n = €er,s;r’,s’€_1a

ersy,s = 0 unless r' <7 and s’ <s.

We define e € g so that its (r,s;7r’,s’) component with respect to the decomposition
V = &;;M,;;is e s s = 0. Then e € g and it induces (u;). Applying the same
construction to (uj ') instead of (ux) we obtain e’ € g which induces (uz!). From the
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definitions we have ee’ = e'e = 1. Thus, e € G. More precisely, e € Gy, N Gr:. The
lemma is proved.

2. The algebra Up.

2.1. Clearly, &1 n o consists of the matrices Ekl = (ef]l) € Gy1nn (with k,1 €
Z) where

k’l_l ifi=Fk+sn,j =1+ sn' for some s € Z,

ekl = (0, otherwise.

Note that Ekl = phtnilen’

2.2. Let &, be the set of all b = (b;);cz with b; € Z such that b; = b;_,, for all
i € Z. We regard S,, as an (abehan) group with addition component by component.
WehaveGDnCGn ForabEG we set

a-b=> ab; €Z,

where the sum is taken over a set of representatives for the residue classes modulo n
in Z. This is a non-singular pairing on &,,. For any b € &,, we set

Ko=) v*"li].
a€Gp,n

This may be regarded as an element of Ap pn pn, Or Ap non;d, O Ap nnyq (in the last
case we substitute v = ¢/2.)

2.3. In the remainder of this section we assume that ”’,.: n > 2. Let 1 € Z. Let
a,a’ € Gp,. We say that a —; a’ if iy =i, + E*T1"1 — E» or equivalently, if
(12_‘_1 =a;41 + 1,0,2 =a; — 1,

aj = a; for j such that j #7 modn and j #i+1 mod n.

In this case,
{(L,L') € Fa x Fur|L; = L; if j#24 modn, L;CL;} =04,

where
A=i,— E" + Bt € GD,n,n'

Note that dim(L;/L}) = 1 for (L,L') € O4. In particular, if L € Fa, then X% is in
natural bijection with the set of hyperplanes in L;/L;—;. Moreover,

da=a;—1=4da, [A]= v %ey.
We set ,enr = A. On the other hand,
{(L,L') € Fa x Fa|L; = L} if j#¢ modn, L;CL;}=0u,

where
A = a’fa — ia/ _ E1+1,2+1 + EH—LZ € 6D,n,n~

Note that dim(L}/L;) = 1 for (L,L') € O4. In particular, if L € For, then X% is in
natural bijection with the set of lines in L;;1/L;. Moreover,

da = a;_,_l -1=a;, [A'] =y %tley.
We set ofa = A’. From the definitions we have *(,e.) = arfa, hence

(a) Ulaea] = [arfal-
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2.4. Let i € Z. We set,

B = Z[aea']’ F; = Z[a'fa}’

where the sums are taken over all a,a’ in &p , such that a —; a’. (Note that each one
of a,a’ determines uniquely the other.) We may regard E;, F; as elements of 2p ,, , or
Ap,n,n;A OF Ap n.niq- Note that E;, F; depend only on the residue class of i mod n.
If (for k finite with g elements) we regard E;, F; as functions on F™ x F™, as in 1.10,
we have
E(L,L) = g IV1i/2
if L; C Li,dim(L;/L}) = 1 and L} = L; for j # i mod n; E;(L,L') = 0, otherwise;
Fy(L, L) = g IWle/2
if L; C Lj,dim(L;/L;) =1 and L} = L; for j #i mod n; F;(L,L') = 0, otherwise.
From 2.3(a) we deduce

(a) \I’(El) = Fi, \I’(Fl) = Ei.

PROPOSITION 2.5. Forb,b' € &, and i € Z we have

(ﬂ) Kb . Kb/ = Kb+b’;

(b) K - B; = vb =P E, Ky, Ky - Fy =07 %0 F L K
The proof is immediate.

The following result can be deduced from [BLM, 5.6(e)]; but we will give a self-
contained proof.

PROPOSITION 2.6. For any i € Z we define a € Sn bya;=1,a;41 = —-1,a; =0
for j #14,i4+1 mod n. We have

K,—K_,
v—v-1’
For i,k € Z, i # k mod n, we have E; - Fy, — Fy, - E; = 0.
It suffices to prove the analogous equalities in Ap n n;q- Therefore in the rest of
the proof we assume that k is finite with g elements. We write

Ei-Fy=) Nyea, Fi-E;=) Njea
A A

where N';, N'{ are scalars. Let Ny = Ny — N4. Let (L,L') € O4 C Far x Fan.

We have Ny = ¢ /?4X" where ¢ = —(a; = 1) — a,, and X' is the set of all
L' € F™ such that

E:j =1L; folrj;é’i n}odn, [,;; =L;‘for];;£{c mod n,

L, c L;, L, - L, dim(L;/L}) = dim(Ly /L)) = 1.
We have Nj = ¢°'/2§X" where ¢’ = —(a},; — 1) —a! and X" is the set of all L € F™
such that

L} =Ljfor j #k mod n, L] = L} for j # i mod n,

Ly Cc £}, L; c £}, dim(L}/Ly) = dim(L} /L}) = 1.
Assume first that ¢ # & mod n. Note that X', X" are empty (hence N4 = 0) unless

(a) Lj = L); for j # 4,k mod n,

L, C L; cL;C L2+1’ L;c—l CL;C L;c C Lk+1a

dim(L;/L}) = 1,dim(L},/Lg) = 1.
On the other hand, if (a) is satisfied, then both X', X"’ consists of exactly one point
and ¢’ = ¢, hence again Ny = 0.

Ei-Fi-F-E =
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Assume next that ¢ = k. If L; # Lj for some j such that j # i,k mod n, then
clearly both X', X" are empty hence N4 = 0. Assume now that L; = L for all j
such that j # i,k mod n. We consider two cases: L; # L} and L; = L.

First case: L; # L. Then either both X', X" are empty or both have exactly one
element. Indeed, assume for example that X' is non-empty and let £’ € X'. Since
L} has codimension 1 in both L;, L} (which are distinct), we must have £} = L; N Lj;
hence X' has exactly one element. But then £ = L; + Lj together with £} = L}
for j #4 mod n defines an element of X". Similarly, if X" is non-empty then it has
exactly one element and X' must be non-empty. Our claim follows. Note also that, if
X', X" are non-empty, then ¢’ = ¢’. We see that in this case we have N4 = 0.

Second case: L; = L. Then A =iy. Now §X’ is the number of codimension one

subspaces in L;/L;_1, hence it equals 9—;—_—‘1—1 and §X" is the number of one dimensional

a!
. . i+l 1
subspaces in L;1/L; hence it equals Lq—_l—, Hence

1 ! 1 1
EX X" = g% —1 ¢ —1 g% —g%in
qg—1 qg-—1 qg-—1
. (aj—eiy1)/2_(~aj+ai  )/2
In this case, ¢’ = ¢" = —aj —aj,; + 1. Hence Ny = 1 ql/g_fIL_l,g . The

proposition follows.

2.7. Let Up be the subalgebra of Up . generated by the elements E;, F; for
various ¢ and by the elements K}, for various b € S

Let U’ be the subalgebra of Ap ., n generated by the elements E;, F; € Up p.n
for various ¢ and by the elements i, for various a € &p .

LEMMA 2.8. Up =U),.

Clearly, Ky, € U, for all b € S,. Hence Up C U’,. We now prove the reverse
inclusion. From

Ko = Tacop., v*"lia] € Up
for all b € &,,, we deduce, by a Vandermonde determinant argument, that [i.] € Up
for all a € Sp . It follows that Uy C Up. The lemma follows.

2.9. Let Up 4 be the A-subalgebra of Up = U’, generated by the elements i,
for various a € &p , and by the elements E/[s]!, F¥/[s]! € Ap n,n for various ¢ and

various s € N. Here
s t

vt —v~
=TT =
[s]! tI;[l F—
3. An example.

3.1. In this section we assume that n > 2 and n' > 1. For A € Gp v and
i,p € Z, we set

i, >p = Zj;jzp Qij,  Qi>p = Zj;j)p Qij,

Gi,<p = Djijcp Gids  Bi<p = Djijcp G-

3.2. Let AE ., be the Q(v)-vector space of all formal (possibly infinite) Q(v)-
linear combinations of elements e4, A € Gp . For i € Z we define Q(v)-linear
maps T;,0; . QlD,n,n' — le,n,n: by

,U2a.~'2;,+2 _ ,U2111',>p

Ti(ea) = Z 02 —1 CALEiP_Eitlp,
P€Zjai41,p2>1
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,;, p2%i+1,<p 2 _ g2ai41,<p

Ui(eA) = y ’Uz 1 €A_EiP4Ei+lp.

PEZa;,p>1

Here E*! are defined as in 2.1, in terms of n,n’.

For i € Z we define Q(v)-linear maps 7;,0; : A%, . = AF . .. by

() zaea) =Y zatilea), oi(D_waea) =) waci(ea),
A A A A

where A runs over Gp v, £4 € Q(v) and

'Uzai+lySp — 1)2af+1,<z>

! — . .
Ti(ea) = E 2 —1 €A+ EiP—Ei+1p,
PEZ
2a,~,> — 2a~,>
dilea) =S L T mieigie
ilea) = 21 A—Eip{Eitlp.
pEZ

Note that, if p is such that (4 — E*P + E**1:P) has some entry < 0, then a; , = 0, hence
ai,>p = ai,>p and the coefficient of e4_gipy pi+1.» in (eq) is zero. Thus, o}(ea) is a
well defined element of A%, ... Similarly, 7/(e4) is a well defined element of 2%, ...

We show that the infinite sum ), z40j(eq) is well defined. It is enough to
show that, for any A’ € &p ., there are only finitely many A € Gp p s such that
the coefficient of e4: in of(es) is non-zero. It is also enough to show that, for any
A' € 6p n,n, there are only finitely many p € Z such that A'+ E*? —E+LP € Gp 4, 0.
The last condition implies that a +1,p > 0 and this is satisfied only by finitely many
D.

Similarly, we see that the infinite sum ) , z47{(e4) is well defined. Hence the
linear maps 7}, 0} are well defined.

3.3. Let (,) : UAp,pm X AF .. = Q(v) be the Q(v)-bilinear form given by
(O waea, Y yaea)=> zaya.
A A A

(The first sum is finite, the second sum is possibly infinite, the third sum is finite.)
LEMMA 3.4. For £ € Upnn,& € AF, . we have

(Ti(£)>€l> = (67 a;(fl»: (0'1'(5)»5/) = (f) T;(&l»
We may assume that £ = eq, & = eys where A, A' € 6p nnr. We have

v2a;,2p+2 — 'U2ai‘>p

<Ti(A)7AI) = Z 02 — 1

where the sum is taken over all p € Z such that A + E®? — E#*1P = A'. (For such p
we automatically have a;y1,, > 0.) For each p in the sum we have a; >, +1=a;,

and a;>p = a; -, Hence

7 7
205 >p _ 92%i,5p

(r(A), A) = 3

where the sum is taken over all p € Z such that A’ — E®? 4+ E**1P = A or equivalently
(ri(A), A" = (A,0}(A")). This proves the first equality in the lemma. The proof of
the second equality is entirely similar. The lemma is proved.
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The following result, which is an affine analogue of [BLM, 3.2] relates the opera-
tors 7;,0; with the left 2Ap , ,-module structure of Ap , . (see 1.9).

PROPOSITION 3.5. Leti € Z.

(a) Let A € Gp pn and let a' = r(A). If there existsa € Gp , such thata —; a’
(that is, if aj,, > 0), then e(e_)-ea = Ti(ea). If no such a ewists, (that is, if
aj., =0), then 7;(ea) = 0.

(b) Let A' € Gpnn and let a = r(A'). If there exists a' € Gp , such that
a—; a', (that is, if a; > 0), then e(_s,) - ear = oi(ea). If no such a’ exists, (that is,
if a; = 0), then 1;(eq) = 0.

We prove (a). The second assertion of (a) is immediate. Hence we may assume
that there exists a € &p , such that a —; a’. We have

€laey) €A = ZNBCB
B

where B runs over &p , »» and Np € A. We assume that k is finite with ¢ elements
and we compute N = Np|,—g/2. Let (L,L') € Op. Let Z be the set of all lattices
U in V such that L;—; C U C L; and dim(L;/U) = 1. For U € Z, let LY € F™ be
defined by L,(cj =Ly for k#¢ mod n and Ly = ¢~ tU for k = i +nt. Then U — LY
is a bijection between Z and the set of all L € F™ such that (L,L) € Olaen)-

For each p € Z, let Z, be the subset of Z defined by the conditions

LinL; =UNL, for j <p, LiNL; #UNL; for j > p
or equivalently by the conditions

Li+ L #U+ L} for j <p, Ly + L, =U + L), for j > p.
The subsets Z, form a partition of Z. Let U € Z,. If (LY,L') € O4, then B =
A+ Eb? — 1P Conversely, if B= A+ E% — E"1P and U € Z then U € Z, and
(LY,L') € O4. We see that

N =14Z,, if B= A+ E" — E*+LP for some p,

NJ =0, otherwise.
We have

tZp = f{U[Li—1 + (LiN Ly_y) CU} = §{U|Li—1 + (L N Ly,) C U}
— (q _ 1)——1(qdim(Li/(Li_1+(LmL;,_l))) _ qdim(Li/(Li_1+(Lir‘\L;,))))

qbi:ZP — qbi.>p qaiv2p+1 — q[“v>P

- g-1 g-1
This proves (a). We prove (b). The second assertion of (b) is immediate. Hence we
may assume that there exists a’ € &p , such that a —; a’. We have

e(yta) ear =) Npes
B

where B runs over &p , » and Ny € A. We assume that k is finite with ¢ elements
and we compute Np°® = N, /2. Let (L,L') € Op. Let Z' be the set of all lattices
U in V such that L; C U C L;y, and dim(U/L;) = 1. For U € Z', let LU € F™ be
defined by LY = Ly, for k #i mod n and Ly = ¢ ‘U for k = i + nt. Then U — LY
is a bijection between Z’ and the set of all L € F" such that (L,L) € AL
For each p € Z, let Z,, be the subset of Z' defined by the conditions
LinLy=UnLjforj<p, LinL;#UNLforj>p
or equivalently by the conditions
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Li+ Ly #U+ L) forj<p, Li+Ly=U+L, forj > p.
The subsets Z, form a partition of Z'. Let U € Z,. If (LY,L') € Og4/, then B =
A' — E¥P 4 ELP. Conversely, if B = A' — E“P + E"1? and U € Z' then U € Z,,
and (LY,L') € O4/. We see that

Np® =42, if B = A' — E*P + E**1? for some p,

N® =0, otherwise.
We have

82, = H{U|U C Li + (Lit1 N L)} = #{U|U C Li + (Liy1 N Ly _;)}
— (q _ 1)—1(qdim(L;/(L;-i-(L,‘_'_;ﬂL;,))) _ qdim(Li/(Lg+(Li+1ﬁL;_1))))

gi+r<e — gbi<r qa2,5p+1 — qa's.<p

qg—1 qg—1
This proves (b). The proposition is proved.

3.6. We now assume that n = n' = D = 2. Let i € {0,1} and let p € Z. For
each s € Z, we consider the element E*P~% + E*t1.p+stl ¢ G, 55 and we form the
(infinite) linear combination

Pip = Z(—l)seEi.p—a+E\'+l.P+a+l € A% 5.
s€EZ
Note that p1,p+1 = po,p for any p.
LEMMA 3.7. For any j € Z we have Tjp;p = 0,05pip = 0.
From the definitions, we have
Tipip = Zs(_l)seEi,p—s+Ei,p+s+l =0,
Til+1pi,p = Zs(—1)56E6+x,p+s+1+Ee+1.p-,+2 =0,
ng,’,p = Es(_1)seE€+1,p—s+Ei+l,p+s+l = O,
Tit1Pip = 2os(—1)°€pin-sqpipts-1 = 0.
The lemma is proved.

3.8. Let %5 , , be the subspace consisting of all vectors £ € 2z 5,2 that satisfy
(&,pip) =0forallie {0,1} and all p € Z.

This is a proper subspace of ;2 2 (an intersection of countably many hyperplanes).
From Lemmas 3.4 and 3.7 we see that

(a) Ti(Ag00) C Ay g0, 0i(A549) CTAs g,

Consider the subspace Uj of Y3 2 2 defined in 2.7. Using Lemma 3.5, we see that Uj
is spanned as a Q(v)-vector space by elements of the form

(b) T\Ts...Tn(a)

where a is one of the elements egooyg1.1,e3500,e351.1 and T is either 7; or o; for
some 1.

We show that any element of the form (b) belongs to @5 , ,. We argue by induction
on N. For N = 0 our assertion is obvious. Assume now that NV > 1. Then our element
is of the form 7;£ or 03¢ where £ is known by induction to belong to 25 , ,. We then
use (a) and our statement is proved.

We see therefore that Uy C 245 ,,. In other words (see Lemma 2.8), we have
U, C 21'212,2 and the algebra 2z 5 o is not generated by the elements E;, Fy, Ky € U 2 2.

Exactly the same argument shows that the algebra s 2 2.4 is not generated by
the elements E;, F}, Kp € 3 2,2.4-
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Thus, the surjectivity statement in [GV, Thm. 9.2] is false.
4. The elements {A}.

4.1. In this section we assume that k is algebraically closed. Let a € &p ,,,b €
Sp.n,L € Fa. For ig,jo € Z, the subsets

{L’ S fblepLio C L.,io - E_pLiD}

of 7, (with p = 1,2,3,...) are naturally projective algebraic varieties, each one
included in the next; they are all G -stable and their union is F,. For each A in
the set

(a) {A € Gpnnir(A) =a,c(d) =b},

we can define X% as the closure of X% in one of these projective varieties for large
enough p. This is a well defined Gi.-stable projective variety, independent of the
choices of ig, jo,p. Let

(b) dy = dim(X%) = dim(X%).
For A, A; in the set (a), we write 4; < A if Xl{l C X}{; we then define P to be the

simple perverse sheaf on X% whose restriction to X% is Q;[d'] and we define H*' be
the s'-th cohomology sheaf of P. Let ’H;’ be the stalk of ' at a point y € X‘{;I. Let

() Ta, =Y dimHy 1 (P’ € 4,
sEZ
(d) {A}y= > Ta,alAi] € Apnm.
A1;A1SA
Note that
(e) IMpa=1and Ia, 4 € v_1Z[v'1] if A; < A.

(We write A; < Aif A; < A and A; # A.) Hence the elements {A} with A € Gp .
form a Q(v)-basis of Ap,,,» and an A-basis of Ap n nr;A-

4.2. Let A; € Gp nn, A2 € Gp p v be such that r(A4;) = a,c(4;) =r(42) =
b,c(A2) = c. Let L € F,. Then

Z={(L',L") € Fp x Fe|L' € X% ,L" € X%}

is naturally an irreducible projective variety (it is a closed subset of the projective
variety

{(L’,LH) € Fp x fCIEPLiO C L;’a C 6_pLi0, EpLiO C LZO C E_pLio}
for large enough p, where 1y, jo, ko € Z are fixed). Moreover,
Zo = {(L',L") € T x F|L' € X}, 1" € X}

is an open smooth dense subvariety of Z. Note that Gy, acts on Z and Zy by conju-
gation on both factors.
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Let Z' be the image of Z under the second projection Fy, X Fo = F.. Then Z'
is a projective subvariety of F stable under the action of Gy,. Let 7 : Z — Z' be the
natural morphism (restriction of the second projection).

For each A in the finite set

(a) {A€6Bppnir(A) =a,c(4) =c, Xf{ cZz'}

we denote by P4 the simple perverse sheaf on Z' with support equal to X% and
whose restriction to X% is Q;[d4]. Any simple Gr.-equivariant perverse sheaf on Z'
is isomorphic to a unique P4 as above. (Note that G, acts on Z' through a quotient
which is an algebraic group hence we can talk about Gr-equivariant perverse sheaves
on Z'.)

Let Z be the simple perverse sheaf on Z whose restriction to Zy is Q;[d] where
d = dim Z = dim Z,. By the decomposition theorem [BBD], the direct image complex
m«Z on Z' is isomorphic to a direct sum of simple perverse sheaves on Z' (with shifts),
which are necessarily Gr-equivariant. Thus, we have

mL = @A;éPA {6]®NA'6

where A runs through the set (a), d runs over the integers and N4 5 € N. We set

YA1,A2,4 = ZNA’5U6 e A.
J

It is clear that 4, 4,,4 is independent of the choice of L € F,. In the case where
A € Gp . satisfies r(A) = a,c(A) = c and X% ¢ Z', we set v4,,4,.4 = 0.

Let ~: A — A be the ring involution defined by v™ = v=™ for all m € Z.
This extends to a field involution of Q(v) denoted again by~ From the relative hard
Lefschetz theorem of Deligne [BBD, 5.4.10], it follows that

(b) YA;,42,A € Ais fixed by : A — A.

The following result is an afine analogue of [BLM, 2.2].

LEMMA 4.3. For any A € &p nn we have dy = d/y. Here dy is as in 1.2(d) and
d'y is as in 4.1(b).

We fix L € F, where a = r(A). Note that G, acts transitively on X% and if
L' € X%, then the stabilizer of L' in Gy, is G, N Gr/. For N > 1, let Hy be the set
of all g € Gy, such that g = 1 on Lo /e Lo; this is a normal subgroup of Gy, such that
GL/Hy is a connected algebraic group. We can choose N large enough so that Hy
acts trivially on X%; in particular, we have Hy C Gr N Gr.. We see that X% may
be identified with the space of cosets of the algebraic group Gr/Hy by the closed
subgroup (G N GL/)/Hy. Hence

dim X% == dim(Gr/Hx) — dim((Gr N Gr/)/HN).

Let X be the set of all T € g such that T(L;) C L; for all i. Let X' be the set of
all T € g such that T(L;) C L; and T(L}) C L} for all i. Let Xy be the set of all
maps T in X such that T(Ly) C €V Ly. Then X is a Lie algebra with respect to the
commutator of endomorphisms, X' is a Lie subalgebra of X and X is an ideal of X
contained in X'. Moreover, X/ Xy is naturally the Lie algebra of G1,/H,, and X'/ Xy
is naturally the Lie algebra of (G, N Gr/)/Hy. It follows that

dim(XY) = dim(X/Xy) — dim(X'/Xy) = dim(X/X").

Let M; ; be associated to I, L’ as in 1.4. Then X consists of all collections (T5 ;)
where T} j x4 : Mi; — My, are k-linear maps defined for (4,7, k,1) € Z* with i > k,
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such that Tj—p, j—n' k—n,j—n' = €T} j k€ . On the other hand, X' consists of all collec-
tions (T5,j k1) where T j k1 : M; j — My, are k-linear maps defined for (i, j, k,1) € Z*
with ¢ > k,j <, such that T;_, j_n' k—nj—n = €L ;16 *. Hence X/ X' is the space
consisting of all collections (T5 j ) where T jx; @ M;; — My, are k-linear maps
defined for (i, j, k,1) € Z* with i > k,j > [, such that T;—p j_n' k—n,j—n' = €T5 j k1€
Hence dim(X/X') = d4. The lemma is proved.

4.4. The varieties X% are very closely connected with the affine Schubert varieties
for the group GLp(k[e,e]). More precisely, for any A there exists a fibre bundle
over X% with smooth fibres (isomorphic to a suitable flag manifold in a product of
groups GL,,(k)) whose total space is an affine Schubert variety for GLp(k[e,e™1]).
It follows that the results in [KL2] on the stalks and eigenvalues of Frobenius for
the intersection cohomology of affine Schubert varieties (in our case, of type A) imply
analogous results for X§. Moreover, the elements 74, 4,,4 can be interpreted in terms
of multiplication of suitable elements in an affine Hecke algebra. Using these facts as
well as Lemma 4.3, we see that the following properties of v4,,4,,4 hold.

(a) The relation A; < A is independent of the field k; IT4, 4 are independent of
the field k and of L.

(b) Y4,,4,,4 are independent of the field k and of /.

—dg, —d —d
(C) E HCl,Alncz,sz A0 00 =07 5_ , HA,B’YAl,Az,B
C1,Ca B;A<B
C1<A;
Ca<Az

for any Aj, A2, A as in 4.2. (The last sum has only finitely many non-zero terms.)

In establishing the properties above we also use the following fact. In the case
where k is an algebraic closure of the finite field with p elements, the coefficient of v*
in v4,,4,,4 is naturally the dimension of a Q-vector space with a natural action of
the Frobenius map.

All eigenvalues of this linear map are equal to p/?.

The proof is essentially the same as that of [L4, Thm. 5.4].

4.5. For A1 € Gp p,n, A2 € Gp p n Wwe have

{Al} : {AZ} = ZA 7A1,A2,A{A}: if ¢(4;) = T(A2):

{A1}- {42} =0, if c(Ay) # r(42).
The sum is taken over all A € Gp , n» such that (A1) = r(A),c(A2) = c¢(A). (The
sum has only finitely many non-zero terms.) This follows from 4.4(c).

4.6. Let S, ,, be the set of all B € &p,n,n such that b;; =0 for all i > j. Let
&} n.n be the set of all B € &p 5 such that b; ;=0 for all i < j.

LEMMA 4.7. Let B € Gp nn and let (L,L") € Op.

(a) We have B € &1, ., if and only if L; C L; for all i.

(b) We have B € G‘E’n’n if and only if L; C L, for all i.

This follows immediately from definitions.

4.8. Let A€ 6p,pn- We define A~ € 65, ., AT € 6}, . by
a;; =05 ifi<jja;; =0ifi>j5a;;, =3 cq,>; 0
af; =ai;jifi>j;af; =0t < j5 af, = Vpegpe; Wi

Note that 7(A4) = 7(A7),c(A) = c(AT),c(A7) = r(AT).

LEMMA 4.9. We have dg = da- + da+.
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Using the definitions we have

dy- +dg+ = Z a0, + Z a;’;azl

hJskal ijkl
i>kij<i i>kij<i
= E aijak + E Qijag + E aijak + E QijQkl
4,5,k,l u,3,k,0 1,5,k,1 L
i<gik<l i>j3k<l i<jik>1 i>7k>1
i>k;j<l i>k;i<l i>k;j<k i>k;i<k
+ E a;jag + E a;jag + E aijag + E a;jag
i,5,k,0 i,5,k,0 i,5,k,1 4,3,k,0
i>5ik>1 i<jik>1 i>j;k<1 i<jk<l
i>k;j<l >k;i<l i>k;j<k i>k;i<k

where the four indices in the sum are taken modulo simultaneous translation by a
multiple of n. Among the last eight sums, the third, fourth, sixth and eighth are
empty. Hence

—
dg- +da+ = z aijak + Z aijak + ) aijak + Z QijQkl

1,5,k,l 1,5,k,l i,5,k,l i,5,k,l
k<i<j<l J<I<k<i i<i<i j<i<i
E<i k<l

= E AijAkl = dA.

ikl
i>kii<l

The lemma is proved.

4.10. Let (L,L") € O04. We define LeFbyL=L;n L} for all i. From the
definitions we have that

(a) (L,i:) € Oy-, (iv,L”) € Og+.

ProposITION 4.11. {A~}-{A"} = {A} plus an A-linear combination of elements
{A;} with A; < A.

Let a = r(A). Let L € Fa. Let Z,2',Zp,m : Z — Z',T be as in 4.2 with
A = A_,Az = AT,

Clearly, Z is irreducible and by Lemma 4.3, it has dimension d4- + d4+, that is,
dim Z = da (see Lemma 4.9). From 4.10(a) we see that X§ C Z’. Hence X% C Z'.
Now X’I{ is irreducible, projective, and by Lemma 4.3 it has dimension d4. Since Z'
is projective, irreducible of dimension < dg4, it follows that Z’' = )_(}4‘. Let Y be the
inverse image of X% under 7 : Z — X%. Note that Y is an open dense subset of Z.
Hence it is an irreducible variety of dimension d4. Now G, acts naturally on Y and
X% compatibly with 7' : Y — XY (restriction of 7). Since Gy, acts transitively on X},
and dimY = dim X}", it follows that G, acts transitively on Y. Hence, the stabilizer
GL NG of any point L' € X% acts transitively on the fibre of n’ at L’ (a finite set).
This finite set must then be a single point, since the action of G, N Gy is through a
quotient which is a connected algebraic group. Thus, 7’ is bijective. Since both Zj
and Y are open dense in Z and G, acts on Zy and acts transitively on Y, it follows
that Y C Zo. The arguments above show that the restriction of 7,7 from X% to X%
is just Q;[da]. It follows that the simple perverse sheaf on X% which equals Q;[d4] on
Xf,‘ appears with multiplicity one and without a shift in 7.Z. The proposition follows.

PROPOSITION 4.12. The anti-automorphism ¥ : Up nn — Apnn (see 1.11)
carries {A} to {tA} for any A € Gp nn-
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We must prove that
(a) ey, 04 =104, 4 for any Ay, A in Sp pp.

(When A; £ A we set II4, 4 = 0.) Since II4, 4 are (up to normalization) special
cases of the polynomials P, ,, of [KL1] (where y, w are elements of a Coxeter group
or, rather, an extension of a Coxeter group), it is enough to apply the property

Py w = Py-1 -1

of those polynomials, which follows easily from the definition in terms of Coxeter
groups.

4.13. Let™: Ap nn = Up n,n be the (involutive) group homomorphism defined
by
f{A} = f{A} for all A€ Bp nn,f € Qv)

where f ~ f is the field involution of Q(v) such that = v~!. This is a ring
homomorphism, by 4.2(b). It keeps fixed each of the elements [A] where A is either
in asin 1.9 or sea,afa as in 2.3. (These A are minimal for < hence they satisfy
[A] = {A}.) Hence it keeps fixed E;, F; and, more generally, Ef/[s]!,F;/[s]! for
various 7 and various s € N. Hence it restricts to involutions ~: Up — Up and
“:Up,a = Up,a.

5. Cyclic quivers.

5.1. In this section we assume that k = C.

Let L, £ € F™. Let B be such that (L, L) € Op. Assume that £; C L for all k.
We define a representation of a cyclic quiver as follows. The vertices of the cyclic quiver
are the elements of Z /nZ. To the vertex corresponding to the residue class of & mod n
we associate the vector space Ly /L. (We identify canonically Ly /Ly, L / Ly for k, k'
in the same residue class via the isomorphism e*=¥)/7: L, /£, = Ly /L) To have
a representation of the cyclic quiver we need also a linear map Ly/Lyr — Lg+1/Lr+1
for each k. These are just the maps induced by the inclusion Ly C Lj41. These linear
maps are compatible with the identification above.

For any p > 1 we consider the kernel K} , of the p-fold composition

Lk/ﬁk - Lk+1/£k+1 — = Lk+p/£k+p

We have K, = (Lr N Liyp)/ L and its dimension is

dim Lg /(L N L) — dim L /(L N Lip) = Y bra— > bra= > by
r<k r<k r<k
s>k s>k+p k<s<k+p
(See 1.6(a).) Note that for large enough p, the composition above is zero (that is,
Ly C Li+p); in other words, our representation of the cyclic quiver is nilpotent.

5.2. The indecomposable nilpotent representations of our cyclic quiver are clas-
sified up to isomorphism by pairs (¢,m) where ¢ is an integer defined up to translation
by a multiple of n and m € {1,2,...}. The representation corresponding to t,m is
denoted by V; .. It has a basis e;, €41, . .., €t4m—1 With e; of degree j mod n and we
have e; — et41 — -+ = €44m—1 — 0 in the representation. Let p; ,, be the number
of summands of the representation in 5.1 that are isomorphic to V; p,.



164 G. LUSZTIG

PROPOSITION 5.3. For any k € Z and any p > 1 we have by y+p = Lk p.
For Vi, m, the kernel of the p-fold composition starting at degree k, (analogous to
the one in 5.1) has dimension

fu €t,t+m—1jlu=k modn,t+(m—1)—u<p).

Hence
dim Ky, = Z fuelt,t+m—1)lu=k modn,t+ (m—1)—u < p)ut,m
te[0,n—1]
m>1

so that

z brs = z Kt,m-

r<k te[0,n—1];m>1;u€lt,t+m—1];u=k mod n,t+(m—1)—u<p

k<s<k+p

This holds for any p > 1. But it also holds for p = 0: both sides are 0. We write this
for p and p — 1 (where p > 1) and substract one equality from the other:

(a) Z brs = Z Ht,m = Z Mt p+u—t-

r<k te[o,n—1];m>1 tefo,n—1)
s=k-+p u€[t,t+m—1];u=k mod n u>t;u=k mod n
t+(m—1)—u=p—1

Replacing here k by £ — 1 and p by p + 1 we obtain

Z brs = Z Ht,p+u—t+1 = Z Kt pt+u' —t-

r<k—1 te(0,n—1] te(o,n—1)
s=k+p u>tu=k—1 mod n u' >t;u'=k mod n

Substracting from (a), we get

bii4p = Z Htptu—t = Hk,p-
te[o,n—1]
u=t;u=k mod n

The proposition is proved.

5.4. Let (Wk) be a collection of finite dimensional k-vector spaces indexed by
k € Z/nZ. Let E4} be the set of all of all nilpotent representations

(a) Wi 2 Wit1)kez/nz

of our cyclic quiver.

In the remainder of this subsection and in 5.5 we assume that n > 2. We say
that the representation (a) is aperiodic (cf. [R], [L1]) if for any m > 1 there exists
t € Z/nZ such that Vi, does not appear as a direct summand of the representation.

The following condition is equivalent to the aperiodicity of (a). (See [L1] for a
proof.)

(b) If gk : Wy, — Wy_1 are linear maps defined for k € Z/nZ such that yr—19x =

Ge+1yk for all k, then for any k there exists p > 1 such that the composition Wi, 2%

Gk— Gk —p+1 .
Wio1 — Wiy — ... —2 Wi—p is zero.

An element A € Sp,,,, is said to be aperiodic if for any p € Z — {0} there exists
k € Z such that agxp = 0. Let &3, . be the set of aperiodic elements in &p,pn,.
Clearly,
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(c) the condition that A is aperiodic is equivalent to the condition that A~ and
A* are aperiodic.
The definition of aperiodicity of A is justified by the following result.

COROLLARY 5.5. The representation of the cyclic quiver described in 5.1 is ape-
riodic if and only if for any p > 1 there exists k € Z such that bg k+p = 0, that is, if
B s aperiodic.

5.6. Let v = (v) be a collection of natural numbers indexed by k € Z such that
Vg—n = vy for all k. Let X, be the set of all tableaux (u¢,p)¢,pez,p>0 With entries in N
such that

Bt,p = Ht—n,p for all ¢, p, Z wep = vy for all k € Z.
t,pit<k<t+p

Let (W}) be as in 5.4 with dim(W}y) = vy, for all k € Z/nZ. The group

Gw= [[ GLW)
kEZ/nZ

acts naturally on E{}i,' with finitely many orbits. It is well known that the set of orbits
is in natural bijection with the set ¥,. The orbit of a point in E}' corresponds to
(ut,p) where p; p is the number of indecomposable summands of the representation of
the cyclic quiver that are isomorphic to V; p.

COROLLARY 5.7. Leta € 6p pn,L € Fa. Let v be as in 5.6. Let

X = {,C € falﬁk C Lk,dim(Lk/Ek) = Vg Vk‘}

Note that, if L € X then the k-vector space Ly /Ly is isomorphic to Wy for any
k € Z/nZ hence we may transport (via such an isomorphism) the representation of
the cyclic quiver on (Ly/Ly) to a representation on (Wy). This defines a map

1:{BE€GpnnXECX} >3,

(v carries B where L € X% to the parameter of the corresponding Gw -orbit in E%}.)
¢ 1s injective. Its image is the set of all (utp) € X, such that

e+ pee + ez o < ag for all t.

Assume that (u:p) = ¢(B). Using 5.3, we have

ar =bp e =bgy + b1 b0 ppr - =bgp e F o 3.

Thus, a; — (pe,1 + pe2 + ez +...) = by > 0.

Conversely, assume that (p;,) € X, is such that ps 1 + pe2 + pes + -+ < a; for
all t. We define B € &p ., by

bij = pij—i fori <j,

bey =ar — (e + pe2 +pez +..0)

bi’j =0fori>j.
We have r(B) = a. Hence there exists £ € F" such that (L,£) € Og. By 4.7 we
have £y, C Ly, for all k. It is clear that X§ C & and that «(B) = (u:) € %,. The
corollary is proved.

In the remainder of this section we assume that k is algebraically closed.

LEMMA 5.8. Let Uy, be the subset of ER} consisting of those representations such
that the corresponding (u¢p) € L, satisfies py1 + pre,2 + pe,3 + -+ < ag for all t. Then
Ua is open in ER.

A representation (yi) as in 5.4(a) belongs to U, if and only if



166 G. LUSZTIG

dim coker(y;_1 : Wi—1 = W) < a4
for all t. This is clearly an open condition. The lemma is proved.

LEMMA 5.9. Let B € 6, ,a = r(B). Assume that (L,L') € Op (hence
L}, C Ly for all k), and dim(Ly/L},) = vy for all k, where v = (vi) s as in 5.6. Let
G' be the group of all g € GL such that g € Gr' and g induces the identity map on
Ly /L, for all k. Then dim(GL/G') = Zie[l,n] a;v;.

Arguing as in the proof of Lemma 4.3 we see that dim(Gy,/G’) = dim(X/X")
where X is as in that proof and X" is the set of all T € g such that T'(L;) C L} for all
i. Let M;; be associated to L,L’ as in 1.4. We have M; ; = 0 unless ¢ < j. Then X
consists of all collections (75 j,x;) where T; j x4 : M; j — My, are k-linear maps defined
for (i,4,k,1) € Z* with | > k < i < j such that Ti—p j—n' k-nj-n = €L} ki€ "
On the other hand, X" consists of all collections (Tj ;) where Tjjx; : M;; —
My, are k-linear maps defined for (i,j,k,1) € Z* with k < 1 < i < j such that
Tinj—n' k—n,j—n' = €15 j k1€ L. Hence X/X" is the space consisting of all collections
(T,5,k,0) where T; j 1 : M; j = My, are k-linear maps defined for (3,7, k,1) € Z* with
k<i<j,i<l, such that T;_pn j—n' k—n,j—rn = €5 k1€ . Hence

dim(X/X") = Y bigbra= Y binbe,

i,5,k,1 i,k,l
iE[l,n] iE[l,n]
k<i<lj k<i<l

i<l

For each i € [1,n] we have

Z b= D (bew—bus)= Y (dim(L,/L,_;) = dim(Ly/Lu_1))

uu>i u;u>1
k<1.<l
= Y (=dim(Lu/L}) + dim(Lu-1/L},_;)) = dim(L;/L}) = v;.
usu>1

Hence dim(X/X") =3 a;v;. The lemma is proved.

i€(1,n]

5.10. Leta € Gp,, L € Fa. Let v and (W) be asin 5.6. Let X be the set of all
pairs (£,$) where £ € X (see 5.7) and ¢ = (@k)rez/nz is a collection of vector space
isomorphisms ¢y : Li/Lr — Wy. (As in 5.1, we may regard Li/Ly as depending
only on the residue class of k¥ modulo n.) We can regard X as an algebraic variety in
a natural way. We have a diagram of algebraic varieties

x & xb5u, 2 BB

here a(L,$) = L, Uy is as in 5.8, v is the inclusion U, C EB and B(L,¢) = (yx)
where y;, is the composition

—1

Wk Lk/ﬁk — Lk+1/£k+1 -—) W k41

(the middle map is induced by the inclusion Ly C Lg+1). Now G x Gw acts on X
by (g,91) : (£,9) — (L', ¢") where L = g(L£) and ¢j, is the composition

Lk/[.' —>Lk/£k—>Wk Wk

This action is compatible under «,~, with the action of G, x Gw on X (§rivial on
Gw and already known on Gp,) and with the action of G1, x Gw on U, EBY! (trivial
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on G, and already known on Gw). Note that « is in fact a principal bundle with
group Gw. On the other hand, from 5.7 we see that (3 is surjective and that

(a) o, B establish bijections between the set G,-orbits on X, the set of G, X Gw-
orbits on X and the set of Gy -orbits on U,.

Although S is not in general a locally trivial fibration, we have the following.

LEMMA 5.11. The morphism 8 : X — Uy is smooth with connected fibres.

We will verify the following statement:

(a) the fibres of B are ezactly the orbits of the Gy-action on X and they are all
connected of the same dimension.

The fact that the G-action on X is fibre preseving has been already noted (and
is obvious). Now let (£, ), (L', ¢') be two points in the same fibre of 3. We want to
show that there exists g € Gy, which carries (£,9) to (£',¢'). From 5.10(a) we see
that some element of Gy, carries £ to £'. Hence we can assume that £ = £'. Since
B(L,¢) = B(L,¢"), the compositions

-1

Wi e, Ly/Lk = Lig41/Lrtr RSN W1
-1 ’

Wi K23 L /Ly = Lgy1/Lis1 BLLZN Wit1
coincide. Hence if ur = ¢}, '@, then (uz) satisfies the assumptions of Lemma 1.13.
By that lemma, we can find e € G, N G/ such that e induces (ux). We then have
e (L, 9) = (L, 4"). 3

Thus, any fibre of 8 is a homogeneous space for Gr,. If (£, ¢) € X, the stabilizer
of (£, ¢) in Gy, is the group of all g in G, N G such that ¢g induces the identity map
on Ly /Ly, for all k. Using Lemma 5.9, we see that the dimension of the Gy-orbit of
(£,¢) (hence the dimension of the fibre containing (£,¢)) is equal to 3 .y ,) aivi,

which is independent of (£, ¢). Finally note that G, acts on X through a quotient
which is a connected algebraic group, hence all its orbits are connected. This proves
(a). The lemma is proved.

5.12. In the remainer of this section we assume that n > 2. In the setup of 5.10,
we consider a sequence of integers

(a‘) e = (ilaiZa" aZN)
such that

(b) H{s € [1,N]|is =k mod n} =y, forall k € Z.
To this sequence we associate a morphism p : EX! — E&! in the following way (a
special case of [L1, 1.5]).

EB! consists of all collections W§,yx : Wi — Wiy, (k € Z/nZ,s € [0, N]) where
W} is a vector subspace of Wi and we have

WP =W, WN =0,

W =W;! for k # i, modn,s € [1,N],

W Cc Wt dim(WE™! /W) = 1 for k = i; mod n,s € [1,N];
Yk is a linear map such that ys (W) C Wi, for k € Z/nZ,s € [0, N].
We define p by (W¢,yx) + (yx). This is a proper morphism and ER! is a smooth
irreducible variety. The direct image of Q; under p is denoted by K, .

Similarly, to i, we associate a morphism & : X — X as follows.

X consists of all collections (L?) sefo,N] Where L® € 7™ and we have

L% =1L,

L{ =L{! for k #i, modn,s € [1,N],

Li c L{ !, dim(L{™'/L3) = 1 for k =i; mod n,s € [, N].
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We define & by (L°) = LV. Then X is either empty or a smooth irreducible variety
and & is a proper morphism. Let K;, be the direct image of Q; under x. (If X is
empty, then K;, =0.)

5.13. Next, to te We associate a morphism A : /'l; — X as follows.
X consists of all collections (L%)sefo,n)y ¢ = (#r)kez/nz where (L°) € X and
ér : Ly /Ly, = W}, are vector space isomorphisms.

We define X by ((L*), #) — (LV,¢). Then X is either empty or a smooth irre-
ducible variety and A is a proper morphism. Let K be the direct image of Q; under

A (If X is empty, then Kj' =0.) We define a commutative diagram

(vBY

PRI JUCLIN
Lol ol
X 2 x 22, ppi
as follows. We set &(L°, ¢) = (L°) and (8v)(L°, ¢) = (W}, yx) where W is the image
of L /LY under ¢y, : Ly, /LY = Wy and (yx) = B(LY, ¢).
One checks easily that both squares in the diagram are cartesian. It follows that
(a) o’ Ki, = Ki, = (V)" Kj,

5.14. For each

(a) B € 6}, , such that Xf e X
we denote by op the corresponding G -orbit in EB. Note that op is contained in
the open subset Ua of E.

Let Pp be the irreducible Gp-equivariant perverse sheaf on X whose support is
the closure of X§. Let P4 be the irreducible G1, x Gw-equivariant perverse sheaf on X
whose support is the closure of a~*(X%). Let Pj be the irreducible Gy -equivariant
perverse sheaf on EB whose support is the closure of og.

By the decomposition theorem [BBD], we have

K! = ®psPp[0]®Me s 9 K

Ki, = ®p,sPp[6]®Mp.ivs

K} = @pgPy[6]® i s
where B runs through the set (a), § runs over the integers and

Mp;, 6o MBi..6, Mg ;, 5 € N;
K is a direct sum of perverse sheaves (with shifts) on E{}Ii,l with support in the closed
subset EB — U, of EBl. Restricting to the open subset U, C EW! we obtain

K Ju, = ©5,6(Pp)lu,[5]2MB e 5.

Since 8 : X — Uy is smooth with connected fibres, we have 8*((Pg)|u.) = Paldi],
where d; is independent of B. (See [BBD, 4.2.5].) Since « is a principal fibration, we
have o*(Pp) = Pj[d2] where d is independent of B. Using these equalities together
with 5.13(a), we deduce that

BB PalS + d1]|PMBies = @5 Pa[S]PMEies = G s Pa[S + do]®MB e,

Hence
(b) MBi, 6—dy = Mb,i.,&—dl for all B, 4.
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5.15. We set
X(ie) = [s1]![s2]!...[s/]' € A
where s1, s2,... are defined by

1 =iy =+ =ig 757:51+1="'=isl+S2 #isl+$2+1""

5.16. Assume now that B in 5.14(a) is aperiodic. Then, by 5.5, op consists of
aperiodic points. By [L2, 5.9] and [L1, 7.3], there exist sequences i¥ as in 5.12(a),(b),
with v =1,2,...,h and elements f, s € A such that for B’ in 5.14(a),

Y fusx(@) T Mpy, 50
u€[l,h],0€Z

equals 1 if B’ = B and 0 if B’ # B. (All but finitely many f,s are 0.) Moreover,
x(i¥) "' Mp,, ix 5 € A for all u. Using now 5.14(b), we deduce that

-1 s
Z f&,&X(Z:L) MII’B:,i’_‘,év
u€[l,h],6€Z

equals 1 if B’ = B and 0 if B' # B; here f{h& equals f, s times a power of v depending
on u but not on 4.

This can be interpreted as follows: the element {B} € p,, , is an A-linear
combination of products

X(i')_lE'iNEiN—l s Ei1 [ia]

for various 7, as in 5.12(a),(b). Thus, we have the following result.
PROPOSITION 5.17. Assume that B € &}, . is aperiodic. Then {B} € Up, 4.
Using 4.12 and the fact that ¥ : Ap pn = Ap n.n, maps Up to itself and Up 4
to itself, we deduce from 5.17 the following result.
PROPOSITION 5.18. Assume that B € 6}, is aperiodic. Then {B} € Up 4.

6. Singular supports.

6.1. In this section we assume that n > 2 and that k = C.

For any L € F™, let Ey, be the set of all f € g such that f(L) C Li_; for all
k € Z. This is naturally a k[e]-module.

For b € 6p,, let T*F, be te set of all pairs (L, e) where L € F, and e € Ef,.

We will think of T*Fy, as the ”cotangent bundle” of F,. This can be justified by
the fact that although 7, is an infinite dimensional object, it is in a sense (explained
in [KT]), a limit of smooth algebraic varieties. (The discussion in [KT] applies to any
affine flag manifold.)

We fix a € 6pn,L € F,. For any A € 6p . n such that r(4) = a,c(4) = b, we
set

Ca={L')e) e T*Fu|l' € X%, e € ELN Epn}.

We will think of C 4 as the ” conormal bundle” to the Gr.-orbit X f; in Fp. This is again
justified by the discussion in [KT].

6.2. We consider a sequence 1,12, ..., ip+, of integers and a sequence
0 1 +1 +r
(a) a’,a,...,aP,aP", ..., aP

in Gp , such that
0 1,1 2 -1
a’ i a,a i, a ""aap vip apy
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+1 R +2 , +1 T . r—1
aPtl —; | af,aPt? —;  aPtl ..  aPtr o,  aptrl

We assume that a = a. We set aP™" = b.
Consider the following condition for A € &p , , such that r(A) = a,c(A) = b:
(b) {A} appears with cofficient # 0 in the product

{aoeal} . {aleaz} Caeest {ap—leal’} . {apfap+1} teet {ap+1‘—l ap+r}

expressed in Ap nn 6s a linear combination of elements {A'}.
Condition (b) can be expressed geometrically as follows.
Recall that we have fixed L € F,0. We consider the set Y of all sequences

(LO,LI,...,LP+T) € Fuo X Far X oo X Faptr
such that L® = L,
(c) Lt = L’,i_l for k #4; mod n,t€[l,p+7],
(d) Lt ¢ Lit, dim(LE /L) = 1 for k= i; mod n,t € [1,p],
(e) L™t c Lt,dim(Lt /L") = 1 for k =iy mod n,t € [p+1,p+7].
Then Y is a smooth projective variety (an iterated projective space bundle over a
point.) Let 7 : Y — Fy, be defined by

o(LO, L, ..., LPHT) = LPT7,
Consider the direct image 7.(C[d]) where d = dim Y. Then A satisfies (b) if and only
if some shift of the Gy,-equivariant simple perverse sheaf supported by X% appears as

a direct summand in 7. (C[d]). (This follows from 4.5.) In that case, the ”conormal
bundle” C4 is contained in the ”singular support” of m.(C[d]) (a subset of T*Fy).

6.3. The cotangent space of Y at (L°,L!,...,LP*") is naturally the cokernel of
the map
(BroNE)® (Epi NE) ®...0 (Epptr-1 N Eppir) —0) Eii®...0 Epp+r
given by
(601’ €02y, ep—}-'r‘—l,p—}-r)
> (€01 — €12,€12 — €23, -+ Eptr—2,ptr—1 = Eptr—1,p+rs Eptr—1,p+r)-

Now 7 induces a linear map from the cotangent space to 3 at LP*" to the cotangent
space to Y at (LO,L!,...,LP*7) given by

(a) Eyp»+r — coker(d), e (0,0,...,0,e).
The kernel of this linear map consists of those e € FEjs+- such that there exists
(€01, €02, - - -y Eptr—1,p+r) 88 above with
€01 = €12 = €23 = *** = €p4r—1,p+r = €ptr—1,p+r = €.
Thus, the kernel of the linear map (a) is the image of the obvious imbedding
EyoNEpiNEL2N---N Epptr = EBpptr.

We shall apply the estimate [KS] for the singular support of a direct image to 7, (C[d])
(even though Fy is infinite dimensional, see the remarks in 6.1). We see that the
singular support of 7, (C[d]) is contained in the set of all pairs (L', e) where L' € Fy,
and

(b) e € Epo N Epi N Egz - - N Eppir for some (L0, LY, ..., LP7) € Y with LP+" =
L'
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LEMMA 6.4. LetL' € Fy, and assume thate € Ey,NEyL satisfies condition 6.3(b).
Then for any k € Z there exists s > 1 such that the compositions

Li/(Ly N LL) = Ly—1/(Lk—1 N L4 ) = .. S Ly /(Lik—s N L)),

Ly/(LeN L) = Ly /(Le—1 N L) = oo = Ly /(Le—s N L),
are zero.

Let (L% LY,...,LP*") be as in 6.3(b). Let k € Z. From 6.2(c),(d),(e) we see that:

(a) for t € [l,p], at least one of Li™'/LL,LE1/Lt | is zero, hence
e: L' /Lt — LE7Y /Lt | is zero; hence e(Li™") C LE_,;

(b) for t € [p+ 1,p + 7], at least one of Lt/Li™' Lt | /Li~% is zero, hence
e: Lt /L™ — Lt | /LL7! is zero; hence e(Lt) C L.
From (a),(b) we deduce

(c) eP(LY) C Lh_,, e (Ly") cLi_,
respectively. From 6.2(c),(d) we deduce L, C L}, and L, C LEF". Taking k' =k—p
or k' = k—r, we deduce L¥_ C Ly _, NI and L} _ C L}_, N LE*". Hence (c)
implies

e’(L}) C Ly, NLEY,, e (L) c LY, nL}T].
The lemma follows.

PROPOSITION 6.5. Assume that A € Gp ,,  satisfies 6.2(b). Then A is aperiodic.

We choose L' € Fy. Let £ € F™ be defined by £; = L; N L for all i € Z.

Let gr : Lg/Ly — Lg_1/Lk—1 be k-linear maps defined for £ € Z such that
gk—n = €gre~! for all k € Z and such that jx_19x = gr+1jx for all k, where ji :
Ly/Ly — Liy1/Lg+1 is the canonical map.

By 1.12, we can find e € Er, N Ey, such that e induces (gi). We have (L', e) € C4.
Hence, from 6.3, 6.4, we see that the conclusion of Lemma 6.4 holds for (L',e). In
particular, the maps (gx) form a nilpotent representation of the opposite of the cyclic
quiver in 5.1. By the criterion 5.4(b), it follows that the representation of the cyclic
quiver given by the maps (j;) is aperiodic. We can apply 5.5 to L, £, A~ instead of
L,L,B and we deduce that for any p > 1 there exists £ € Z such that a;,,, =0
(hence ag k+p = 0).

Now let g; : Ly /Ly — Lj_,/Lr—1 be k-linear maps defined for £ € Z such
that g;_, = egje™! for all k € Z and such that j;_,g; = g}, ,J; for all k, where
Jr s L/ Lr — L} y1/Lk41 is the canonical map.

By 1.12 (with L, L’ interchanged) we can find e € Eg, N Ey, such that e induces
(9;)- We have (L', e) € C4. Hence, from 6.3, 6.4, we see that the conclusion of Lemma
6.4 holds for (L',e). In particular, the maps (g;,) form a nilpotent representation of
the opposite of the cyclic quiver in 5.1. By the criterion 5.4(b), it follows that the
representation of the cyclic quiver given by the maps (j}) is aperiodic. We can apply
5.5 to L', L£,t A% instead of L, L, B and we deduce that for any p > 1 there exists
k € Z such that ak++p,k = 0 (hence agypr = 0). Equivalently, for any p < 0 there
exists k € Z such that aj r4p = 0. The proposition is proved.

COROLLARY 6.6. Up is contained in the subspace of Up n.n spanned by the ele-
ments {A} with A € 63, . (see 5.4).

From 2.6, it is easy to see that the Q(v)-vector space Up = U, is spanned by
the various products as in 6.2(b). The corollary follows.
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7. Inner product on Ap 5 -

7.1. For any integer ¢ > 0 we set

=TI, 1-v"2) e A
Assume now that k is finite with ¢ elements. We set c”q = culv:ﬁ € Q;. We define a
bilinear form

(): AD,n,n'q X AD,n,nrig — Ql

by

(£, /)= )f(L,L)

L,L’ 1,€[1,n

for f,f € AUAp n,nr;q regarded as functions F™ X Fr 5 Q (as in 1.10); in the sum,
L runs over a set of representatives for the G-orbits in ", L' runs over ™. For
A, A" € Gp pn, we have

(ea,ear) =da,a (X5,
161[;[,1 ILI)

where L € F,(4), hence

(a) ([AL[A]) = 64,40
oA EH”] (1L}

In particular, the form (,) is symmetric.
LEMMA 7.2. Leti € Z andlet f,f € Ap nniyq.- Leta be as in 2.6 and letb € G,,.
We have

g~ (X%

(E:(f), ) = (, VaKaFi(f),  (Fi(f), f) = (f, VAK-aEi(f)),
(Ku(£), ) = (£, Kn(f)).

To prove the third equality we may assume that f = ey, f = ea. Then the
desired equality is immediate from 7.1(a). The second equality follows immediately
from the first and third equality. It remains to prove the first equality.

Let F™ be the set of all collections I’ = (L;) where L; are lattices in V defined
for any j € Z such that j # ¢ mod n and such that Ly C L; for all j' < j with
j#1i modn,j #i modn and Lj_, = eL; for all j # 7 mod n. We fix a set of
representatives = for the orbits of the obvious action of G' on Fr. Let ¢ : F — Fn
be the map defined by attaching to L = (L;) the collection obtained by forgetting all
L; with j =i mod n. For L € F., the number of L € F, such that ¢(L) =¢(L) is

N LD —Lleos (1Ll N
[Lli (¢ [Lligrp, ¢ = (va) ILL: (1Ll +1) = L4 (1L]e+ +1)—u'—11’
=1 (@t — D L2 (et - 1) (ILl:)q(|L]i+1)q

where N = HLI__'I{+|L|i+1 (¢¢ = 1). Hence, for f, f € Ap s n11q, we have

(£, )

. . #
> I (/@) H L) Ll (Ll +1) (L5l

L,L'eF" je[1,n] (|L|J')q
¢(L)eE

F(L, L) f(L,L).
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We have )
(E:)L,L) = (Vo ™l L, 1)

sum over all L"” such that {(L"”) = {(L) and L;—; C L} C L;, dim(L;/L}) =1,
(\/EJ_KaFif)(L, L') = Z(\/&)—l—2|L”|i+1+|Lu|;]Z"(L//, L')

sum over all L" such that (L") = ¢(L) and L; C L] C Ly, dim(L}/L;) = 1. It
follows that

E(), )
|L] (ILli+1)+|Lligr (1L +D) = (1Ll =1) £ L) -
-y 17 ¢ TELL) 1,1,
AL V(LR
§#i i1
mod n

sum over all L, L/, L"” € F™ such that {((L) = {(L") € E and L;—y C L C L;,
dim(L;/L}) = 1. Similarly,

(f, VaKaFi(f))
JL[: (1L +1) +H L1 (D41 4+1) =1 =2|L" [ 41 +|L"|; .
-y W2 : FL L)AL, L)
jel1,n] N(ILlj)q
J#Li+1
mod n

sum over all L,L',L"” € F™ such that ((L) = ¢(L") € £ and L; C L} C L;,
dim(L{ /L;) = 1. Interchanging here L, L" we obtain

(f, VaKaFi(f))
(Ll =D)L+ (L4 +1) (L i 414+2) =1 =2|L]i41+([L[: .
IR : L, L)F(L, L)
i€t N(|Ll)q
J#ii+1
mod n

sum over all L,L',L" € F™ such that ((L) = ¢(L") € E and L;—; C L} C L;,
dim(L;/LY) = 1. It remains to observe that

IL:(1Lli + 1) + [Llepa (1B + 1) = (L = 1)

= (1Ll = DILl + (1Lliva + (I Llirr +2) = 1= 2|Lligs + L.
The lemma is proved.

7.3. From the definition we have
(a) BXR) = va, ko gayia-
Hence it is natural to define a Q(v)-bilinear form
() : Appm X Ap p o = Q(v)

by

(b) [A] [AI (SA Al H (lLl —2d4 VA,‘A,i,(A)
i€[l,n
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for any A, A' € Gp nn. Here L € F,(4). This specializes, for any prime power g, to
the bilinear form in 7.1, under v = /3.

LEMMA 7.4. (a) For A € Gp nn we have ([A],[A]) € Q(v) N (1 + v~ Z[[v71])).

(b) For A# A" in &p,nmn we have ([4],[4"]) = 0.

(b) holds by definition. We prove (a). Note that v=2441, . Ajinay € A. Since,
for k an algebraic closure of the field with ¢ elements, XY is irreducible of dimension
da (see Lemma 4.3), we see from the Lang-Weil estimates [LW] that the number of
points of X% over the field with ¢° elements divided by ¢°?4 tends to 1 as s — oo.
Using 7.3(a) it follows that

v2da VAt Ajinay € 1+ U_lz[v_l]'

It remains to use the fact that m € Q)N (1+ v 'Z[[v7]]) (where L € Fy(4))-
The lemma is proved.
LEMMA 7.5. (a) For A € 6p . we have ({A},{A}) € Q)N(L+v71Z[v1]]).
(b) For A# A’ in Gppnn we have ({A},{A'}) =0.
This follows from 7.4 using 4.1(d),(e).

From Lemma 7.2 we deduce the following ”generic” version. ~
LEMMA 7.6. Leti € Z and let f, f € Ap.nn- Let a be as in 2.6 and let b € &,,.
We have

(Ei(f), f) = (fvKaFi(f)), (Fi(f),f) = (f,vK_aEi(f)),

(Kou(f), f) = (f, Ku(f))-

7.7. In the remainder of this section we assume that n > 2.

Consider the root datum (cf. [L3, 2.2]) consisting of the free abelian groups
Y = X = &, with the non-singular pairing ¥ x X — Z described in 2.2 and with
the (equal) imbeddings [ = Z/nZ — Y, I = Z/nZ — X given by 7 — a (a as in
Proposition 2.6). (A root datum of affine type A,,_1 which is degenerate in the sense
that the image of I — Y = X is linearly dependent.)

Let 'U be the Q(v)-algebra associated to this root datum in [L3, 3.1.1]. Thus,
U’ is the associative algebra with generators

Ei(i€l),F;(i € I),Kpn(b € 6,)
subject to the relations given in 2.5, 2.6. Let U be the quotient of ‘U by the two-
sided ideal generated by the quantum Serre relations in the E; and in the F;. (A
Drinfeld-Jimbo quantized enveloping algebra.)

Now 2.5, 2.6 imply that we have a unique algebra homomorphism 'U — Up
which takes E;, F;, Ky, in 'U to the elements with the same name in Up. The left
Ap,nn-module Ap n s (see 1.9) will be regarded by restriction of scalars as a (left)
U p-module or as a 'U-module.

(a) This 'U-module is integrable
since EiD ,FiD are zero on UAp n n'; the existence of a weight decomposition is clear.
(The notion of integrability of "U-modules is defined in the same way as the analogous
notion for U-modules, see [L3, 3.5.1].)

From (a) it follows that the 'U-module 2 p n .- factors through a U-module. (The
fact that the quantum Serre relations hold on Ap , - can be also verified by a direct
computation, similar to the one in [BLM, 5.6]). In particular, we see that Up is
naturally a quotient algebra of U.

7.8. Let A = Q(v) N Q[[v™]].
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Let M be an integrable U-module. Let E; : M — M,F; : M — M be the
Kashiwara operators. (See [L3, 16.1.4].)

A signed basis at co or a signed crystal basis of M is a pair consisting of a free
A-submodule Ma of M such that M = Q(v) ®a Ma and a signed basis B of the
Q-vector space Ma /v~'Ma such that properties (a) ( ) below hold.

(a) Ma is stable under E,,F for all i; thus, E;, F; act on Ma /v~

(b) E;(B) c B U {0} and F;(B) C B U {0} for all 5.

(c) M4 is the sum of its intersections with the various weight spaces of M and each
element of 9B is contained in the image of one of these intersections in Ma /v~ Maj4.

(d) Given 3,' € B and i € I, we have E;(3) = ' if and only if F;(8') = 3.
(This definition reduces to Kashiwara’s definition of a crystal basis if B is assumed
to be a basis instead of a signed basis. Recall that a signed basis of a vector space
consists of £+ the elements of a basis.)

7.9. Let Ap nn;a be the A-submodule of /p  spanned by the elements
[A],A € 6pnn, or equivalently by the elements {A},A € Gp . Let B be the
basis of the Q-vector space Ap 5 n;a /v Ap,n,n;a formed by the images of the ele-
ments [A] (or equivalently {A}) with A € Gp 5 n.

THEOREM 7.10. (Ap n,n;a,xB) is a signed basis at infinity (or signed crystal
basis) of the integrable U-module Ap n n'.

We apply the results in [L3, 16.2] to the basis {[A]|A € Gp,nn} of Up o and
to the form (,) on Ap n,n. These results are applicable in view of Lemmas 7.4, 7.6.

8. A basis of Up. In this section we assume that n > 2.

PROPOSITION 8.1. Assume that A € 65, . (see 5.4). Then {A} € Up, a.

Our hypothesis implies that A~ and AT are aperiodic. If A is a minimal element
for the partial order <, then from 4.11 we have {A™}-{A"} = {A}. By 5.17, 5.18 we
have {A~} € Up, 4,{A*} € Up,4 hence {A} € Up, 4.

Thus we may assume that A is not minimal for < and that the proposition holds
for any A; € GD n.n Such that A; < A, A; # A. By 4.11 we have

(A7} {4 = {4+ D cafdr)

A;A1<A

where c4, € A. Since, by 5.17, 5.18, we have {A~} - {A*} € Up, 4, we see from 6.6
that c4, # 0 implies A; aperiodic. By the induction hypothesis, for all such A; we
have {A1} € Up 4. It follows that {A} € Up 4. The proposition is proved.

Combining 6.6 and 8.1 we obtain the following result.
THEOREM 8.2. The elements {A}, with A € 6%’,71’”, form a Q(v)-basis of Up
and an A-basis of Up, 4.

8.3. Let Up,a be the A-submodule of U spanned by the elements {A}, A €
6%’n o Let B be the basis of the Q-vector space UD,A/U_lUD,A formed by the
images of the elements {A},A € 67, .

THEOREM 8.4. (Up a, +B) is a signed basis at infinity (or a signed crystal basis)
of the integrable U-module Up.

We apply the results in [L3, 16.2] to the basis {{A}|4 € 67, .} of Up and to

the restriction to Up of the form (,) on Ap n n. These results are applicable in view
of Lemmas 7.5, 7.6.
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9. Stabilization.

9.1. In this section we assume that n > 2.

One can show that there is a unique homomorphism ¢p4n,p : Upyn — Up of
algebras such that

¢D+n,0(E;) = E;, for all 4,

¢D+n,p(F;) = Fy, for all 1,

¢D+n,p(Kb) = vPPo/2 Ky, for all b € G,,,
whereb? = (...,1,1,1,...) € S,. The existence of this homomorphism will be proved
elsewhere. The uniqueness is obvious.

It is clear that @pin,p(§) = ¢pin,p(€) for all € € Upyp. (Here™is as in 4.13.)

CONJECTURE 9.2. Let A € 83, . .. Let A’ be the matriz defined by a} ; =
a;; — 6;; for alli,j € Z.

(a) If a;; > 0 for all i, then ¢pyn,p({A}) = {A'}.

(b) If a;; = 0 for some i, then ¢pin,p({A}) =0.

(Note that in case (a), we have A’ € ng,n-) From the definition it is clear that
the conjecture holds at least if A is either i, as in 1.9 or sear, afa as in 2.3.

9.3. Let S3P be the set of all matrices A = (a;;)(i,j)ezxz With entries a;; € Z
such that

(a) aj; > 0 for all i # j;

(b) ai,j; = Gi—n,j—n for all 4, j € Z;

(c1) for any i € Z, the set {j € Z|a;; # 0} is finite;

(c2) for any j € Z, the set {i € Z|a;; # 0} is finite;

(d) for any p # O there exists k € Z such that ag x4+, = 0.
Note that, in the presence of condition (b), conditions (c1),(c2) are equivalent.

For A € §2P and p € Z we define ,A € S2P so that its (¢, ) entry is a; j, if § # j
and its (¢,4) entry is a;; + p for any 4.

If A, A’ € S2P, we write A ~ A" if A" = pA for some p € Z. This is an equivalence
relation on S2P. Let S2P/ ~ be the set of equivalence classes.

Let K be the Q(v)-vector space with basis elements indexed by S2P/ ~. For any
D € N we define a Q(v)-linear map ¢p : K — Up by the following requirement. If a
basis element of K is indexed by an element which can be represented by an element
A € 6p p,n (necessarily unique), then that basis element is mapped to {A}; otherwise,
it is mapped to 0.

This linear map is well defined and surjective by Theorem 8.2. We have

¢D+n,D¢D+n = ¢D .

We conjecture that there is a unique structure of associative algebra (without 1)
on K so that ¢p is an algebra homomorphism for any D € N. We also conjecture that
the algebra K with its basis indexed by S2P/ ~ is naturally the modified quantized
enveloping algebra of affine sl,, type with its canonical basis (see [L3, Ch. 23, Ch.
25]).

9.4. The results of this paper have analogues for the case of quantum (non-affine)
gln. These analogues can be proved in the same (or easier) way as the results in the
affine case; they can be also deduced from the results in the affine case.

One should replace V' by a vector space of dimension D over k and F by the
space of n-step filtrations of that vector space (as in [BLM]). The analogues of the
results in Sec. 4 continue to hold, but one should use ordinary Schubert varieties
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instead of affine ones; those of Sec. 5 continue to hold if we use linear quivers instead
of cyclic quivers. The aperiodicity condition plays no role in this case. The analogue
of Conjecture 9.2 is again expected to be true and in fact it can be proved for n = 2,
thus providing a support for the general conjecture.
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