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APERIODICITY IN QUANTUM AFFINE g^t 

G. LUSZTIG* 

0. Introduction. In [BLM], the quantized enveloping algebra corresponding to 
gin was studied using the geometry of pairs of n-step filtrations in a vector space. (For 
earlier related work see [J], [DJ].) Soon after [BLM] was written, I, and independently 
[GV], noticed that some aspects of [BLM] can be extended to the case of quantum 
affine gln using the geometry of pairs of infinite periodic chains of lattices in a vector 
space over a power series field. 

The purpose of this paper is to point out a major difference between the finite 
and affine case. Namely, in the finite case, the geometric approach gives a sequence of 
larger and larger algebras which are quotients of the quantum gln with parameter q, 
which are realized as the spaces of invariant functions on a set of pairs of filtrations in 
a vector space over a finite field with q elements. The analogous geometrically defined 
algebras in the affine case are still receiving homomorphisms from the quantum affine 
gln with parameter q, but this time the homomorphisms are not surjective, contrary 
to what is asserted in [GV, Sec.9]. This non-surjectivity statement is established in 
two ways, an elementary one (see 3.8) and a less elementary one, based on the theory 
of characteristic varieties (Sec. 6). 

Most of this paper is concerned with the problem of describing the images of 
these homomorphisms. It turns out that these images are spanned by "intersection 
cohomology elements" indexed by certain matrices which are aperiodic in a suitable 
sense. (See Theorem 8.2.) These elements form a basis at infinity, or a crystal basis 
(up to signs) for these images. (See Theorem 8.4.) 

1. The Q(i;)-algebra SljD.n.n. 

1.1. Let n > 1 and D > 0 be integers. Let &D,n be the (finite) set of all 
a = (ai)iez with ai G N such that 

(a) ai = di-n for alH £ Z; 
(b) for some (or any) IQ £ Z we have a;0 + a;0_i H + aj0_n+i = D. 

1.2. Now let n' be another integer > 1. Let $5D,n,n' be the set of all matrices 
A = {aij)(ij)ezxz with entries aij £ N such that 

(a) aij = ai-nj-ni for all i, j £ Z; 
(bl) for any i £ Z, the set {j £ Z|a;j ^ 0} is finite; 
(b2) for any j £ Z, the set {i £ Z\aij ^ 0} is finite; 
(cl) for some (or any) IQ £ Z we have ai0,* + a^-i,* H h a^-n+i,* = D] 
(c2) for some (or any) jo £ Z we have a* j0 + a*^-! H h a* j0_n/+i = D. 

Here, 

jez iez 

Note that, in the presence of (a), conditions (bl) and (b2) are equivalent and conditions 
(cl),(c2) are equivalent. For A £ ©D^n' we set 

r(A) = (ai,*)i€z € S^.n,    c(A) = {a*j)jez £ &D,n', 
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(d) dA-^2aijak,h 

where the sum is taken over a set of representatives £ for the orbits of the permutation 
(i,j,k,l) •-)■ (i — n, j — n', k — n, I — n') of the set 

{(z,i,A:,/)GZ4|z>A:,    j < I}. 

From (a) it is clear that the sum in (d) is independent of the choice of £. But we must 
check that only finitely terms in the sum are non-zero. It is enough to do this for a 
particular choice of 5, for example 

Z = {(iJ,k,l)eZ4\i>k,    j<l,    i€[l,n]}. 

Let E/ be the set of elements of E such that the corresponding term in the sum (d) is 
non-zero. If (i,j,k,l) £ £', then i G [1,TI] and, since a^j ^ 0, we see from (bl) that j 
is forced to lie in a fixed finite subset of Z. To show that k, I are also forced to lie in 
fixed finite sets we note that 

{(k,l)'£Z2\akti ^0,k<io,l>jo} 

is a finite set for any fixed (io,jo) £ Z2. (This follows easily from (a),(bl),(b2).) This 
proves the desired finiteness statement. 

1.3. We fix a field k, a prime number / invertible in k and an algebraic closure 
Qz of Q/. In the case where k is of characteristic p > 0, we assume chosen a square 
root y/p of p in Q/. If, in addition, k is finite with q = ps elements for some integer 
s > 1, we set -yfq = (y/p)s and q771/2 = (y/q)m for any m G Z. 

We shall write dim instead of dimk. 
Let V be a free k[e, e_1]-module of rank D > 0; here e is an indeterminate. Let 

G be the group of automorphisms of the k[e, e_1]-module V. Let g be the set of all 
endomorphisms of the k[e, e_1]-module V. A lattice in V is, by definition, a k[e]- 
submodule L of V such that there exists a k[e]-basis of L which is also a k[e, e-1]-basis 
of V. 

Let J7™ be the set of all collections L = (Li)iez where each Li is a lattice in V, such 
that Li-i C Li and Li-n = eLi for alH G Z. Then G acts on J771 by g : L \-¥ g(L) = L 
where Li = g{Li) for all i G Z. For L G Tn we set define |L| G QD^U by 

|L| = a, en = dimLj/L-i-i    Vi. 
We sometimes write |L|; instead of a;. For a = (a^) G &D,ni we set 

^a-{LG^n||L| = a}. 
Then T^ for a G <E>D n are exactly the G-orbits on J771. Now G acts on J771 x J7™  by 
g : (L,L') H+ ^(L),^))- For L G F*, let GL = {g G G\g(L) = L}. 

LEMMA 1.4. Given (LjL7) G FxJ771 , we can find k-sub spaces Mij ofV indexed 
by (hj) G Z x Z such that 

V = QijMij, 
eMij = Mi-nj-n> for all i,'j, 
Li = ®i',j-ti'<iMi'j for all i, 
L'j = ®itj'',j'<jMiji for all j. 
We omit the proof. 
LEMMA 1.5. Let us associate to (L,!/) G J771 x J771 the matrix A = (aij)ijez 

given by 
Li H L' 
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(a) We have A G &D,n,n' • 
(b) (L, I/) H^ A defines a bijection between the set of G-orbits in Tn x Tn and 

the set ©D,/!,?!'- 
We prove (a). If Mij are as in 1.4, we have a^- = dim Mij for all i,j. In 

particular, a^- = ai-nj-n> for all z, j. 
Clearly, Li/Li-i = (BjezMij hence dim(Lj/Li_i) = J2jeza^' (^n Particular, 

S7GZ a*i < oo so that A satisfies condition 1.2(bl).) Hence, if ZQ is as in 1.2(cl), the 
sum in 1.2(cl) is equal to 

dim(Lio/Lio-n) = dim(Lio/eLi0) = D. 

This proves (a). We prove (b). Clearly, (L,!/) i-> A induces a well defined map 
</) from the set of G-orbits in !Fn x jrn to &D,n,ri- We show that 0 is injective. 
Assume that (L,!/) is another pair in J771 x J771 with associated matrix equal to A. 
Let Mij be associated to (LjL') as in Lemma 1.4 and let Mij be associated in a 
similar way to (L,!/). From our assumption we have dim Mij = dim. Mij for all i,j. 
We can define isomorphisms of k-vector spaces gij : Mij -^ Mij for all i,j such 
that ^_nj_n/(/x) - egij{e~1ii) for all // G Mi_n>j_n#. Then ^ = QijQij : V -> V 
belongs to G. Also, g(L) — ^^(L7) = L'. This shows that (f) is injective. We 
show that 0 is surjective. Given A G Sj^n.n7? we can find a direct sum decomposition 
V rr QijMij as a k-vector space where M;j are k-subspaces such that dim Mij = a^ 
and eMij = Mi-nj-n> for all i, j. We then define L,!/ in Tn.T71 by 

i* = ^i>,3\i><iMi<j for i G Z, 
Lj- = ®i,j';j'<JMiJ'  for i ^ Z- 

It is clear that the matrix associated to (LjL7) is just A. The lemma is proved. 

1.6. For any A G 6£>,n,n'> we denote by O^ the G-orbit on J771 x J771 corre- 
sponding to A as in 1.5. Note that, if (L,!/) G CU, then L G T^A)^' ^ ^(A) 
and 

(a) dim ^ =    E   «-    dim Z^LJ =    E   ^- 
L        r<k]s>l l        r>k]s<l 

Let a G 6£>}n,b G B^^/jL G J7^. The action of GL on ^b (restriction of the 
G-action) has orbits 

X*i = {L'eTh\(L,L')eOA} 

indexed by 

(b) {A G eD^n/ \r(A) = a, c(A) = b}. 

1.7. Assume now that k is finite with q elements. Let n" be another integer > 1. 
Let A G eD,n,n>,Af G 6D,n',n",A" G &D,n,n" be such that r{A) = r(A") = a,c(A) = 
r(^4/) = b,c(i4') = c(A//) = c. We denote by I^A.A'.A"^ the number of elements in the 
(finite) set 

{L'eFh\(L,L')eOA,(L',L")eOA.} 

where (LjL") is fixed in OA"-   Clearly, VAA
1
 A"-q is independent of the choice of 

(L,L")€OA". 
If A G ©£>,n^n' then the matrix tA, whose (i,j)-entry is a^f, belongs to ©D^'jn- 

Moreover, if (L,!/) G OA, then (L'jL) G 0*A- It follows easily that 

(a) ^AjA'.A";? = ^'A/,'i4,'A,,;g 
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for any A, A', A" as above. 

1.8. Let A = Z[i;,i;_1] where v is an indeterminate. 
For A, A', A" as above, we can find ^A',^" € A such that 

^AiA
,
1A

,,]q = VA,A,,A"\v=qi/2 

for any prime power q. (This is a well known property of affine Hecke algebras of type 
A). More precisely, VA^A^A" is necessarily a polynomial in v2. From 1.7(a), we deduce 

(a) VA^^A" = VtA'SASA"- 

1.9. Let %lD,n,n' be the Q(v)-vector space with basis {eyi|A G ©z^r^n'}- This 
vector space has a second basis 

{[A]\Ae6D,n,n'},    [A]=v-dAeA. 
We define a Q(t;)-bilinear pairing %lD,n,ri x ^D,n',n" -± ^D,n,n" by 

eA ' e* = Y,A" VA,A\A"^A" if c(>l) = r(yl/), 
e^-e^ =0if c(A) /r^7)- 

The sum is taken over all A' G 6£>,n,n» such that v{A) = r(^//),c(^,) = c(,4"). (The 
sum has only finitely many non-zero terms.) 

For any A G Sl^.n.n'»^ ^ %>D1n'1n"iAn G Si^^'Sn"' we have from definitions 

(CA -SA')- eA" = ^A • (e^/ • e^")- 
For a = (a^) G &D,n, the set of all pairs (LjL') with L = L' G ^a is equal to OA 

where A G &D,n,n is defined by a;j = (J^-ai. We denote this A by ia. Clearly, 
dia = 0 and eia = [ia]. 

From the definition we have 
eia • CA' = eA' for any A' G 6n,n' such that r(>l') = a, 
eA" ' eia = eA" for any A" G Sn',n such that c(yl//) = a. 

In particular, the above multiplication defines on %lD,n,n a structure of associative 
algebra (over Q(v)). This algebra has a unit element, namely ]Caeia 

= SaPa]? where 
a runs over the finite set 6jr),n. Similarly, the above multiplication defines a left 
2lD,n,n-module structure on %lD,n,n' and a right Sljo.n'.n'-module structure on 2li}in>n'. 
These module structures commute with each other. 

1.10. Let 2li})n?n';A be the ^4-submodule of 2li>}njn' spanned by {e^|A G ©jD.n.n'} 
or equivalently by {[A]|i4 G ©D^n'}- Clearly, %lD,n,n]A is an ^4-subalgebra of %lD,n,n 
and VID^U'^A is a 2tD>njn;^-submodule of 2l^,n>n/. 

For any prime power g, let Slj^n.n'jg = Qz <S)^. Slzp^.n';^? where Q/ is regarded as 

^4-algebra via v.\-> q1/2. Then %lD,n,n]q is a Q/-algebra in a natural way and ^D.n.n'-.q 
is a left SljD.n.njg-raodule in a natural way. 

The element 1 <g>e^ (resp. 1 ® [A]) of 2l£)>n>n/;g is denoted again by e^ (resp. [A]). 
Note that {e^A G ©D.n.n7} and {[A]|J4 G ©D,n,n'} are bases of the Q^-vector space 

^D,n,n'\q- 
We may identify ^D^n^n'-q with the vector space of functions / : Tn x T71 -> Qz 

(in the case jjk = q) that are constant on the orbits of G and are 0 outside a finite set 
of G-orbits, in such a way that e^ corresponds to the function which is identically 1 
on OA and is zero on OA

1
 for any A' ^ A. Then the multiplication on 2l.D,n,n;g can 

be interpreted as the convolution of functions fi, f2 *-> fi ' fz- 

(/1-/2)(L,L")=   £  ^(L,LO/ad/.L") 
L'e:F" 
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forL,L" e^n. 
LEMMA 1.11.  The Q(v)-linear involution $ : %lD,n,n -> %lD,n,n given by [A] H> 

^A] for all A E ^.0,71,71 w an algebra anti-automorphism. 
We have 

M ' [A'} = YIA- v-dA-d*'+d*"VAtA'MA"\ if c(A) = r(A'), 

In the sum over A" we may restrict ourselves to A'1 such that r(A") — r(A),c(A") — 
c{A'). Using 1.8(a), we see that it is enough to prove that 

(a) — (IA ~ dj^' + dA" = —dtj^i — dtj^ -f- dt A>> 

whenever 

(b) c{A) = r(A'), r(A") = r(A), c(A") = ciA1). 

By definition, 

dA = 2^ai>Jak>h    ^A = / ,a>j,ia>i,k 

where the sum is taken over 

(c) {(*, j,M) e Z4|i > fc,    j < J,    t E [l,n]} 

or equivalently over 

(d) {(i,i,*,0 G Z4|2 > fc,    j < /,    A; E [l,n]}. 

It will be convenient to take the sum over (c) for dA and over (d) for dt^. In (d) we 
make the change of variable (i,j,kj) *->■ (l,k,j,i) and we see that dtA = Ylai,jak,h 
sum over 

{(ij,k,i)ez4\i>k,   j<i,   je[i,n]}' 

Therefore 

dA - dtA = 22'aiJak>1 ~ z2"aiJak,l> 

where £' is sum over {{(i,j,k,l) E Z4|i = k E [l,n], j < /,} and E7' is sum over 
{{(*>Jj^>0 € Z4|i > fe,    j = I € [1,^]}- The first sum equals 

2      Yl     aijCLij-     Y^    ay 
*.i»';«€[l,n] i,j;iG[l,n] 

the second sum equals 

2      H      ai,3ak,j-     Yl     alj' 
ij»fc;j€[l,n] *iJ;jG[l,n] 

Note that Eijjieli.n] aij = Eij;i6[i,„] o?,,- Hence 

dA-dtA = -  J2 al*-2   ^  0»J- 
*€[l,n] je[l,n] 
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We now use this identity for A, A', A" and we find 

dA - dtA + dA> - dtA> - dA" +dtAn = -   ^  a?^ - -   ^   a2^ 

ie[l,n] i€[l,n] 

+ \ E a^2 -1 E </ -1 E <*2 +1 E </; 
ie[l,n] je[l,n] ie[l,n] je[l,n] 

this is zero since, by (b), a*^ = af
i^,a(-^ = ai^.a'l^ — a^ for all i. The lemma is 

proved. 
LEMMA 1.12. Let L,I/ G J771. Let gk : ^/(L^ n L'k) -> Lfc-i/^.i n L^J 

6e k-linear maps defined for k G Z s^c/i ^/iai ^-n == e^e-1 /or all k € Z and such 
thatjk-igk = gt+ijk for all k, where jk : Lk/(Lk PlL^) ->- Lk+1/(Lk+1 nZ4+1) w tte 
canonical map. Then there exists e G g 5wc/i ^/ia^ e(LA;) C Lfc-i; ^(LJ.) C i^! /or a// 
fc and 5wc/i ^/iai e induces (gk). 

Let M^j be attached to L^ as in 1.4. Giving (#&) is the same as giving linear 
maps gk>r,s;r' ,5' • ^r,s —>" Mr/jS/ defined for r < k < 5 and r' < k — 1 < s' such that 

9k — n\r—n,s—n',r'—n,s'—n — €9k;r,s;r' ,s' €      5 

5rA;+l;r,S;r',S'   = ^;r,S;r',5', if fc, fc + 1 G  [r, S - 1]  and fc - 1, fc G  [r', s' - 1], 
9k;r,s-y,s' = 0 if A:, A: + 1 G [r, s — 1] and /c — 1 = r7 < s', 
9k;r,s;r',3' = 0 if fc — 1, fe G [r', s' — 1] and r < 5 = k + 1. 

In particular, if gk-r,s;r',s' is defined and either r' >r 01 sl > s, then gk-r^r'.s' — 0. 
We define linear maps er5S;r/5S/ : MriS -> Mr/)S/ for any r^s^r'.s' as follows. If 

there exists A: such that r < k < s and r' < A: — 1 < s', we set er)S;r/)5/ = gk-r,s',r',s'> 
(This is independent of the choice of A:.) Otherwise, we set er^r^s' = 0. Then 

er—n,s—n;r'—n,s'— n ^^ ^'r,s',r',s'^      ? 

^r.s-y.s1 — 0 unless r' < r and s' < s. 
We define e G g so that its (r, s; r', 5') component with the decomposition V = (BijMij 
is er)S;r/jS/ = 0. Clearly, e has the required properties. The lemma is proved. 

We shall also need the following variant of Lemma 1.12. 
LEMMA 1.13. LetL,U e J7*1. Assume that L'k c Lk for all k. Letuk : Lk/L'k -> 

LklL'k be li-linear isomorphisms defined for k G Z such that uk-n = eiz^e-1 for all 
k G Z and swc/i £/ia£ jfcUfc = uk^ijk for all k, where jk : Lk/L^ -> Ljfc+i/LJ.+1 zs ^/ie 
canonical map.  Then there exists e G GL H GL' 5?xc/i ^/ia^ e induces (uk). 

Let M^j be attached to LjL' as in 1.4. Giving (uk) is the same as giving linear 
maps UA;;r)S;r')S/ : MrjS —> Mr/)5/ defined for r < k < s and r' < k < s' such that 

'U'k—n]r—n,s — n]r' — n,s'—n — ^^A^rjSjr',^ ^      5 

^ik+ijr.sjr'^' = wjfe;rjS;r/,s/, if fc, A: + 1 G [r, s - 1] and fc, k + 1 G [r^s7 — 1], 
Uk;r,s;r',s' = 0 if A:, A; + 1 G [r, s — 1] and A: + 1 = r' < s', 
u^r^-y ,8' — 0 if A:, k + 1 G [r7, s7 — 1] and r < s = k. 

In particular, if u&;rjS;r/iS/ is defined and either r7 > r or sl > 5, then uk.r,s.y ,s> = 0. 
We define linear maps er}S;r/}S/ : Mr)S -> Mr^si for any r, s,r7,s7 as follows. 
If there exists fc such that r < k < s and r' < k < s7, we set er^r^si — uk.^^r>^. 

(This is independent of the choice of fc.) Otherwise, we set er>s;r/}S/ = 0. Then 
^i—n,s—n;T'—n,s'— n :=~ ^r,s;r' ,s' ^      5 

^r^s-y^' — 0 unless r' <r and s7 < 5. 
We define e G g so that its (r,s]r',s') component with respect to the decomposition 
V — (BijMij is er^yy — 0.  Then e G g and it induces (uk).  Applying the same 
construction to (u^1) instead of (uk) we obtain e' G g which induces (u^1). From the 
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definitions we have ee' = e'e — 1. Thus, e G G. More precisely, e G GL fl GL'- The 
lemma is proved. 

2. The algebra U^. 

2.1. Clearly, 6i,n,n' consists of the matrices Ekil = (e^'-) G 6i,n,n' (with k,l G 
Z) where 

e^'- = 1, Hi = k + sn,j = I + sn' for some 5 G Z, 

e-'- = 0, otherwise. 

Note that Ek>1 = Ek+n>l+n'. 

2.2. Let 6n be the set of all b = (biji^z with ^ G Z such that bi — bi-n for all 
i G Z. We regard 6n as an (abelian) group with addition component by component. 
We have &D,n C ©n- For a, b G &n we set 

a • b = 2_\ai^i ^ ^' 

where the sum is taken over a set of representatives for the residue classes modulo n 
in Z. This is a non-singular pairing on 6n. For any b G 6n, we set 

tfb=   £   t;a-b[ia]. 
a€6D,n 

This may be regarded as an element of 2l£>,n,n> or ^D^MA, 
or ^D,?!,/!;^ (in the last 

case we substitute v = Q'1/2.) 

2.3. In the remainder of this section we assume that n' — n > 2. Let i G Z. Let 
a, a' G 6£>,n. We say that a ^ a' if ia/ = ia + El+ljl+1 — E1'1 or equivalently, if 

a-+1 = ai+i + l,aj = a* - 1, 
a^- = a^ for j such that j ^ i  mod n and j ^ i + 1   mod n. 

In this case, 

{(L, V) efax T* IL,- = L) iij^i    mod n,    L', C LJ = OA, 

where 
A = ia - E1'* + E^1  e&D,n,n- 

Note that dim(Li/L^) = 1 for (L,!/) G OA- In particular, if L G Ta, then X^ is in 
natural bijection with the set of hyperplanes in Li/Li-i. Moreover, 

dA-ai-l-a'^     [4] = v"~a,«eA. 

We set a^a' = A. On the other hand, 

{(L, L') G .Fa' x T^Lj = LJ if j ^ z    mod n,    Li C L^} = OA' , 

where 
A' = a'fa = ia' - L;i+1'i+1 + E*1* G 6D,n,n. 

Note that dim(L^/Li) = 1 for (LjL') G OA'> In particular, if L G ^a', then X\ is in 
natural bijection with the set of lines in Lj+i/L^. Moreover, 

d* = a'i+i - 1 = ai+i,     [A7] = u-^+^A'. 

We set a/fa = A'. From the definitions we have *(aea') = a'fa, hence 

(a) *[aea/] = [a'fj. 
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2.4. Let i e Z. We set 

Ei — /^[aGa'],      Fi —  / ja'^a], 

where the sums are taken over all a, a' in <5D,n such that a ^ a'. (Note that each one 
of a, a' determines uniquely the other.) We may regard Bi, Fi as elements of %lD,n,n or 
2lJD,n,n;.A or %lD,n,n;q' Note that Ei,Fi depend only on the residue class of i mod n. 
If (for k finite with q elements) we regard Ei, Fi as functions on !Fn x J*n, as in 1.10, 
we have 

Ei(L,L')=q-\v\</2 

if LJ C Z/j,dim(L;/Z^) = 1 and Lj = Lj for j ^ i  mod n; £?i(L, L') = 0, otherwise; 

F;(L,L')=<r|LW2 

if Li C LJ,dim(LJ/Li) = 1 and L^- = Lj for j ^ i  mod n; ^(LjL') = 0, otherwise. 
From 2.3(a) we deduce 

(a) *(Ei)=FiMFi) = Ei. 

PROPOSITION 2.5. For b^h' e 6n and i eZ we have 
(a) Kh - Kh> = Kh+h>, 
(b) Kb-Ei^ v^-^Ei • irb,     K^-Fi^ v-bi+b^Fi • Kh. 
The proof is immediate. 

The following result can be deduced from [BLM, 5.6(e)]; but we will give a self- 
contained proof. 

PROPOSITION 2.6. For any i e Z we define a e 6n by a* = l,aj+i = —1,0/ = 0 
for j ^ i,i + I  mod n.  We have 

Ei - Fi — Fi - Ei = 
-7,-1 v — v 

For i, k e Z, i ^ k mod n, we have Ei • Fk — Fk • Ei — 0. 
It suffices to prove the analogous equalities in 2l£>,n,n;g- Therefore in the rest of 

the proof we assume that k is finite with q elements. We write 

Ei.Fk = YlNAe^    Fk.Ei = J2NleA 
A A 

where N'^N'JL are scalars. Let NA = N'A - N'X- Let (L,L') € OA C T^ x T*,. 
We have iV^ = qc'l2iX' where d = -(aj - 1) - <+1 and X' is the set of all 

C e Tn such that 
£j = Lj for i 7^ z  mod n, £j = L^- for j / A:  mod n, 
£i C L^ 4 C L^ dimtoACO = dim(L;/£'fc) = 1. 

We have AT^ = g
c"/2jix" where c" = -K+1 -1) -< and X" is the set of all £" G •F1 

such that 
£" = I/j for j ^ fc  mod n, £" = L^- for j ^ i  mod n, 
I* C 4', ^ C 4, dim(£'fc'/Lfc) = dim(4'/L0 = 1. 

Assume first that i / k  mod n. Note that X' 1X" are empty (hence iV^ = 0) unless 
(a) Lj — Lj for j ^ i,k  mod n, 
Li_i C L't C Li C L'i+1,    L^ C Lk C L'k C L^+ii 
dim^/L7,) = l,&m{L'kILk) = 1. 

On the other hand, if (a) is satisfied, then both X1\X" consists of exactly one point 
and d = c", hence again NA = 0. 
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Assume next that i — k. If Lj 7^ L'^ for some j such that j ^ i^k mod n, then 
clearly both X',X" are empty hence JV/i = 0. Assume now that Lj — L'j for all j 
such that j ^ z, k  mod n. We consider two cases: Li ^ L^ and Li = L^. 

First case: Li ^ L^. Then either both X',X" are empty or both have exactly one 
element. Indeed, assume for example that X' is non-empty and let C G X'. Since 
£J- has codimension 1 in both L^, L^ (which are distinct), we must have C^ — Li Pi Z^; 
hence X' has exactly one element. But then C" = Li + L^ together with C" = C'j 
for j ^ i mod n defines an element of X". Similarly, if X" is non-empty then it has 
exactly one element and X' must be non-empty. Our claim follows. Note also that, if 
X'jX" are non-empty, then c' = c". We see that in this case we have NA = 0. 

Second case: Li = L^. Then A = ia'. Now JX' is the number of codimension one 

subspaces in Li/Li-i, hence it equals q 1_~1 and jt-X"" is the number of one dimensional 
a;.+ 

subspaces in Li+i/Li hence it equals -——^—F Hence 

tt-y' - It^" 
- 1      g^+i - 1       qa'i - qa'i 

q-l q-l q-l 
(a'.-a'     1)/2_    (-a^.+a'     1)/2 

In this case, d = c" = —a^ — a^+1 4- 1.  Hence NA = 5—-—-—i/2lg-i/2—* •  The 
proposition follows. 

2.7. Let U^ be the subalgebra of 2iD,n,n generated by the elements E^Fi for 
various i and by the elements K^ for various b G 6n. 

Let UJQ be the subalgebra of 2lD,n,n generated by the elements Ei,Fi € ^tr^n,™ 
for various z and by the elements ia for various a G ©DI- 

LEMMA 2.8.   UD = Ujrj. 
Clearly, ifb G U^ for all b G 6n. Hence Up C U'D. We now prove the reverse 

inclusion. From 

^b = Eaee^ ^'b[ia] 6 VD 

for all b G &m we deduce, by a Vandermonde determinant argument, that [ia] G Up 
for all a 6 SD,n- It follows that U^ C UD- The lemma follows. 

2.9. Let UD,A be the ^4-subalgebra of UD = U^ generated by the elements ia 

for various a G 6jD,n and by the elements E*/[s]\,F*/[s]\ G 2lD,n,n for various i and 
various s G N. Here 

s     t       —t v  — v 
XX   71 _ 7,     1 v — v~ 
t=l 

3. An example. 

3.1. In this section we assume that n > 2 and n' > 1.   For A G &D,n}ri an(i 
2,p G Z, we set 

ai»<P ~" /-jj;j<pai,3i      ai,<p — Z-^j; Q>i.- j;j<p    i>3' 

3.2. Let WLD^^, be the Q(^)-vector space of all formal (possibly infinite) Q(v)- 
linear combinations of elements CA, A G S^.n,^-   For i G Z we define Q(v)-linear 
maps TijCTi : %lD,n,n'  -> %lD,n,n'  by 

Ti(e^) = 2^  j— CA+J^.P-tfH-i.P, 
pGZ;ai+i,p>l 
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,—^ v2ai+i)<p+2 _ v2ai+1><p 

(7i(eA) = S  9 1 eA_Ei,p+Ei+i,p. 

pGZ;ai)P>l 

Here Ek'1 are defined as in 2.1, in terms of n,n'. 
For i G Z we define Q(i;)-linear maps r/,^ : 2lg,

)n)n/ ->• ^D,n,n' by 

where A runs over &D,n,n'i XA € Q(^) and 

^^ ?;2ai+1)<p _ v2ai+i,<p 
ri(eA) = 2^  2~rT eA+Ei,p_Ei+i,p, 

pez 

Ey^ai,>p   — y2ai,>p 
 = eA_Ei,p+Ei+i,p. 

vz — 1 

Note that, if p is such that (A — El>p + El+1'v) has some entry < 0, then a^p — 0, hence 
ai,>p = a>i,>p and the coefficient of eA_Ei,pjrEi+\,p in cr^(e^) is zero. Thus, cr^e^) is a 
well defined element of 21^ /. Similarly, ^(e^) is a well defined element of 2tg)

n n/. 
We show that the infinite sum XM^^K

6
^) 'ls we^ defined. It is enough to 

show that, for any A' G ©D.n.n'? there are only finitely many A G &D,71,71' such that 
the coefficient of e^/ in cr^(e^) is non-zero. It is also enough to show that, for any 
A' G 60,71,71' J there are only finitely many p G Z such that Af+EhP-Ei+1>p G 6^^^/. 
The last condition implies that ^_f_ljP > 0 and this is satisfied only by finitely many 

P- 
Similarly, we see that the infinite sum J2A XATKCA) is well defined.  Hence the 

linear maps r4',cr^ are well defined. 

3.3. Let (,) : %D,n,n' x 21^\i n' ~^ Q(v) ^e ^e Q(w)-bilinear form given by 

C^XAeA.^VA'eA') = J^^i^. 

(The first sum is finite, the second sum is possibly infinite, the third sum is finite.) 
LEMMA 3.4. For £ G ^D^n1^1 € ^D,n,n' we have 

We may assume that £ = e^,^ = e^ where A, ^l7 G &D,n,n'' We have 

/y2a{)>p+2 _ v2ai<>p 

(Ti(A),A') = J2- v2 -1 

where the sum is taken over all p G Z such that A + i^p - E2+1'p = ^4/. (For such p 
we automatically have ai+i5p > 0.) For each p in the sum we have ai^>p + 1 = a^>p 

and a^>p = a^ > . Hence 

(rM),A') = Y: ^1  

where the sum is taken over all p G Z such that A' - Eip + E1^1^ = A or equivalently 
(ri(i4), A7) = (A, cr^A7)). This proves the first equality in the lemma. The proof of 
the second equality is entirely similar. The lemma is proved. 
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The following result, which is an affine analogue of [BLM, 3.2] relates the opera- 
tors Ti,(Ti with the left 2l£>jnjn-module structure of %lD,n,ri (see 1.9). 

PROPOSITION 3.5. Leti e Z. 
(a) Let A G (S^n,^ and let a' = r(A). If there exists a G <5jD,n such that a ^ a' 

ft/iat is, z/ a^+1 > OJ, tten e(ae ,) • CA = ^(e^). // no swc/i a exists, (that is, if 
(li+i — OJ, then T^A) = 0. 

^J Le/; A' G ©D,?!,^ and let a = r(A/). // there exists a! G @D,n swc/i ^^ 
a ^^i a!, (that is, if at > 0), then e( ^ • eA' = ^(e^). // ^o swc/i a' exists, (that is, 
if di = 0^); tten r^e^) = 0. 

We prove (a). The second assertion of (a) is immediate. Hence we may assume 
that there exists a G <5D,n such that a ^ a'. We have 

eUea,) -CA = Y2NBeB 

B 

where B runs over &D,n,n' and iV^ G A. We assume that k is finite with q elements 
and we compute Ng = NB\v-qi/*- Let (LjL7) G OB- Let Z be the set of all lattices 
U in V such that L^i C U C U and dim(Li/?7) = 1. For U G Z, let L^7 G ^n be 
defined by L^ = Lj* for fc 7^ i mod n and L/c = e^U for A; = z + nt. Then C/ f-> L^7 

is a bijection between Z and the set of all L G F71 such that (L, L) G 0(ae ,)• 
For each p G Z, let Zp be the subset of Z defined by the conditions 
U n L) = U H LJ for j Kp.LinL'^UH L'j for j > p 

or equivalently by the conditions 
L, + L;. ^ [/ + L'j for j <p,Li + L'3=U + LJ for j > p. 

The subsets Zp form a partition of Z.   Let [7 G Zp.   If (L^L') G OA, then 5 = 
^ + Ei* _ £;i+i,P. Conversely, if B = A + E** - Ei+1»p and J7 G Z then (7 G Zp and 
(L^jL') G 0,4. We see that 

iV° = jJZp, if B = A + £** - Ei+1'P for some p, 
Ng = 0, otherwise. 

We have 

ttZp = it{C/|Lt-i + (£i n L;.!) C c/} - m\Li-i + (Li n Lf
p) c [/} 

= (g - l)-l(gdim(L,/(L,_1 + (L,nL;_1))) _ ^dim^"/^.^^^)))) 

qbi,>p _ qbi,>p       qai,>p+i _ qai,>P 

q-1 q-1 

This proves (a). We prove (b). The second assertion of (b) is immediate. Hence we 
may assume that there exists a' G &D,n such that a ^ a'. We have 

e(a'fa) 'eA' =J2NBeB 

B 

where B runs over ©D^n' and Ng G A. We assume that k is finite with q elements 
and we compute A^0 = N,

B\v=.qi/2. Let (LjL') G OB- Let Z' be the set of all lattices 
U in V such that Li C U C Li+i and dim(t//Li) = 1. For U G Z', let L^7 G F* be 
defined by L^ = L^ for fc ^ z mod n and LA- = e-f[/ for fc = z + nt. Then U ^ ~LU 

is a bijection between Z' and the set of all L G J-n such that (L,L) G O^^^y 
For each p G Z, let Z^ be the subset of Z7 defined by the conditions 
Li H L7. ■= U n LJ for j < p, Li n L^ [7 H L7- for j > p 

or equivalently by the conditions 
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Li + LJ # tf + L;. for j <p,Li + L'j = U + LJ for i > p. 
The subsets Z^, form a partition of Z'.   Let U € Z^.  If (L^jL') G C?A', then JB = 
A' - E** + E1*1*. Conversely, ]f B = A' - E** + Ei+1'P and U e Z' then 17 G Z'p 

and (L^jL') G OA'. We see that 
N'B

0
 = JZ^, if JB = A' - E*^ + E**1** for some p, 

AT^0 = 0, otherwise. 
We have 

tfZ; - ft{tf |tf C Lt- + (Li+1 n Lp} - i{U\U C Li + (Li+i 0 L^)} 

= (g - IJ-l^dim^/fLi+^+inL;))) _ ^dimfLi/fLi+^+xnL^^JJj 

g^ + l,<P - ^.<P gai,<P + 1 - g0i.<P 

This proves (b). The proposition is proved. 

3.6. We now assume that n = n' — D = 2. Let i G {0,1} and let p G Z. For 
each 5 G Z, we consider the element E*'*"8 + Ei+1>p+8+1 G 62,2,2, and we form the 
(infinite) linear combination 

PhP - 2j(-l)*eJE;i,p-*+jg.-+i,p+« + i € ^2,2- 

Note that pi,p+i — po,p for any p. 
LEMMA 3.7. For any j G Z we have rjp^p = OjCr'p^p = 0. 
From the definitions, we have 

Ti+lPhP " Es(""l)SeJS?«+1'P+-+1+-Bi+1'p-a+2 — 0, 

The lemma is proved. 

3.8. Let 212,2,2 t)e ^e subspace consisting of all vectors f G 212,2,2 that satisfy 
(f, pijP) = 0 for all z G {0,1} and all p G Z. 

This is a proper subspace of 2(2,2,2 (an intersection of countably many hyperplanes). 
From Lemmas 3.4 and 3.7 we see that 

(a) n(2l^2,2) C 21^2,    ai(%t2t2) C 2l^2j2. 

Consider the subspace U2 of 212,2,2 defined in 2.7. Using Lemma 3.5, we see that U2 
is spanned as a Q(v)-vector space by elements of the form 

(b) T1T2...Tiv(a) 

where a is one of the elements eEO^+E1*1 > e2E0'01 ^E
1

*
1
 and Ts is either Tj or cr^ for 

some i. 
We show that any element of the form (b) belongs to 21^2,2- We argue by induction 

on N. For N = 0 our assertion is obvious. Assume now that N > 1. Then our element 
is of the form Tj£ or a^ where £ is known by induction to belong to 21^2,2- We then 
use (a) and our statement is proved. 

We see therefore that U2 C 212 2 2- ^n other words (see Lemma 2.8), we have 
U2 C 2I2 2 2 and the algebra ^2,2,2 w not generated by the elements E^Fi, K^ G 2(2,2,2• 

Exactly the same argument shows that the algebra 2(2,2,2;q is not generated by 
the elements Ei,Fi,Kh G 2(2,2,2^. 
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Thus, the surjectivity statement in [GV, Thm. 9.2] is false. 

4. The elements {A}. 

4.1. In this section we assume that k is algebraically closed. Let a G &D,n,b £ 
<5D,n',L £ -^a- For io, jo € Z, the subsets 

{L'e^le^cL^Ce-^J 

of Fb (with p = 1,2,3,...) are naturally projective algebraic varieties, each one 
included in the next; they are all GL-stable and their union is J7^. For each A in 
the set 

(a) {A e ©D.n.n'\r{A) = a, c(A) = b}, 

we can define X^ as the closure of X^ in one of these projective varieties for large 
enough p. This is a well defined GL-stable projective variety, independent of the 
choices of io, jo,p. Let 

(b) d'A = dim(X^) = dim(X^). 

For A,Ai in the set (a), we write Ai < A if XAi C XA; we then define P to be the 

simple perverse sheaf on X^ whose restriction to X^ is Q/[d^] and we define 7{s be 
the s'-th cohomology sheaf of P. Let Hy be the stalk of Hs  at a point y € XAi. Let 

(c) TLAl ,A = J2 dim ^^"^ ^vS e A> 
s€Z 

(d) {A}=   Yl   nMAA^eviD^n*. 
Ai;Ai<A 

Note that 

(e) nA,A = 1 and UA^A € ^"-^[v""1] if Ai < A. 

(We write Ax < A if Ai < A and Ai ^ A.) Hence the elements {A} with A G 6^^,^ 
form a Q(i;)-basis of STD^TI' and an A-basis of %lD,n,n']A' 

4.2. Let Ai G 6D,n,n', A2 G &D,n',n" be such that r(Ai) = a,c(Ai) = r(A2) = 
b,c(A2) = c. Let L G F*. Then 

Z = {(L',L") G fh x ^IL7 G X^.L" G X^} 

is naturally an irreducible projective variety (it is a closed subset of the projective 
variety 

{(L'.L") € K x ^c|ePLio C L'Jo C e-PLioi€PLio C L'fc'o c e""^} 

for large enough p, where ZQ, jo? &o € Z are fixed). Moreover, 

Zo = {(L',L") G ^b x ^IL7 G X^^L" G X^} 

is an open smooth dense subvariety of Z. Note that Gx acts on Z and ZQ by conju- 
gation on both factors. 
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Let Z* be the image of Z under the second projection T\> x TQ, —>■ Tc. Then Z' 
is a projective subvariety of T^ stable under the action of GL- Let TT : Z -> Z1 be the 
natural morphism (restriction of the second projection). 

For each A in the finite set 

(a) {A e &DW> HA) = a, c{A) = c,     X^ C Z7} 

we denote by P^ the simple perverse sheaf on Z' with support equal to X\ and 
whose restriction to X\ is Qz[d^]. Any simple GL-equivariant perverse sheaf on Z' 
is isomorphic to a unique PA as above. (Note that GL acts on Z' through a quotient 
which is an algebraic group hence we can talk about GL-equivariant perverse sheaves 
on Z'.) 

Let X be the simple perverse sheaf on Z whose restriction to ZQ is Q/[(i] where 
d = dim Z = dim ZQ. By the decomposition theorem [BBD], the direct image complex 
7r*l on Z' is isomorphic to a direct sum of simple perverse sheaves on Z' (with shifts), 
which are necessarily GL-equivariant. Thus, we have 

TT+l = ®A;5PA[SfNA<5 

where A runs through the set (a), 8 runs over the integers and NA,5 £ N. We set 

7AltA2tA = ^2NAi6v
d eA. 

d 

It is clear that 'YA1,A2,A is independent of the choice of L G Ta. In the case where 
A 6 &D,n,n" satisfies r(A) = a,c(-4) = c and X^ <£ Z1, we set ^A^.A^A — 0. 

Let " : A —> A be the ring involution defined by v™ — v~m for all m G Z. 
This extends to a field involution of Q(v) denoted again by". From the relative hard 
Lefschetz theorem of Deligne [BBD, 5.4.10], it follows that 

(b) JA1,A2,A £ A is fixed by": A -> A. 

The following result is an afine analogue of [BLM, 2.2]. 
LEMMA 4.3. For any A G &D,n,ri we have CIA — df

A. Here dA is as in 1.2(d) and 
d'A is as in 4-1(b)- 

We fix L G Tg, where a = r(A). Note that GL acts transitively on X\ and if 
L' G X\, then the stabilizer of L' in GL is GL ft GL'. For TV > 1, let HN be the set 
of all g G GL such that g = 1 on Lo/eNLo; this is a normal subgroup of GL such that 
GL/^/V is a connected algebraic group. WTe can choose N large enough so that HN 

acts trivially on XA) in particular, we have HN C GL H GL'. We see that XA may 
be identified with the space of cosets of the algebraic group G^/HN by the closed 
subgroup (GL nGj,')/HN. Hence 

dimX^ = dim(GL/#Ar) - dim((GL n Gv)/HN). 

Let X be the set of all T G g such that T(Li) C Li for all i. Let X' be the set of 
all T G g such that T(Li) C Li and r(L/

i) C L- for all i. Let XN be the set of all 
maps T in X such that T(Lo) C eNLo. Then X is a Lie algebra with respect to the 
commutator of endomorphisms, X' is a Lie subalgebra of X and Xjy is an ideal of X 
contained in Xr. Moreover, X/X^ is naturally the Lie algebra of G^/Hn and X'/Xjy 
is naturally the Lie algebra of (GL H G-L^/HN- It follows that 

dim(X^) = dim{XIXN) - d]m(X'/XN) = dimiX/X'). 

Let Mij be associated to L,!/ as in 1.4. Then X consists of all collections (Tij^j) 
where Tij^j '• Mij —>• Mk,i are k-linear maps defined for (i,j,k,l) G Z4 with i > k, 
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such that Ti-nj-n^k-nj-n' = eTij^.i^1 • On the other hand, Xf consists of all collec- 
tions (Tij^k,i) where Tij^i : Mij -> Mk,i are k-linear maps defined for (i,j,k,l) G Z4 

with i > k,j < /, such that Ti-nj-ni7k-n,j-n' — eTi^jye-1. Hence X/X' is the space 
consisting of all collections (Tij^i) where Tij^j • Mij -> Mkj are k-linear maps 
defined for (i, j,M) ^ Z4 with i>kij>l, such that ri_nj_n/jA;_n)j_n/ = eT^^/e-1. 
Hence dim(X/X/) = d^. The lemma is proved. 

4.4. The varieties X^ are very closely connected with the affine Schubert varieties 
for the group GLJc)(k[e,e~1]). More precisely, for any A there exists a fibre bundle 
over X\ with smooth fibres (isomorphic to a suitable flag manifold in a product of 
groups GLm(k)) whose total space is an affine Schubert variety for GLJD(k[e,e~1]). 
It follows that the results in [KL2] on the stalks and eigenvalues of Frobenius for 
the intersection cohomology of affine Schubert varieties (in our case, of type A) imply 
analogous results for X^. Moreover, the elements 7^1,^2,A can be interpreted in terms 
of multiplication of suitable elements in an affine Hecke algebra. Using these facts as 
well as Lemma 4.3, we see that the following properties of ^A^.A^A hold. 

(a) The relation Ax < A is independent of the field k; n^l5^ are independent of 
the field k and of /. 

(b) 7Ai,i42,A are independent of the field k and of I. 

(c) Y, ncllA1nca>A2v-
dci-^i/c1,c2lA = v-dA  J2 RA^M^B 

CI,C2 B,A<B 
CI<J4I 
C2<A2 

for any Ai, A2, A as in 4.2. (The last sum has only finitely many non-zero terms.) 
In establishing the properties above we also use the following fact.  In the case 

where k is an algebraic closure of the finite field with p elements, the coefficient of vl 

in JAI^JA is naturally the dimension of a Q/-vector space with a natural action of 
the Frobenius map. 

All eigenvalues of this linear map are equal to pll2. 
The proof is essentially the same as that of [L4, Thm. 5.4]. 

4.5. For Ax G 6D,n,n',^2 € 6jD,n',n" we have 
{Ax\ • {A2} = EA TALA^A}, if c(Ax) = r(A2), 
{A1}-{A2} = 0,ifc(A1)^r(A2). 

The sum is taken over all A G 6D,n,n" such that r(Ax) — r(^l),c(A2) = c(A). (The 
sum has only finitely many non-zero terms.) This follows from 4.4(c). 

4.6. Let 6^ n n be the set of all B G &D,n,n such that b^j — 0 for all i > j. Let 
6 J n n be the set of all B G ^D^n.n such that bij = 0 for all i < j. 

LEMMA 4.7. Let B e &D,n,n and let (L.V) G OB- 

(a) We have B G (3^ n n if and only if L^ C Li for all i. 

(b) We have B G 6 J n n if and only if Li C L^ for all i. 
This follows immediately from definitions. 

4.8. Let A G ©£>,„,„. We define A" G e^^n, A+ G <5t),n,n by 
a7,j = ahjif i < i; a7,j = 0 if i > r, ali = Tsjez^j a^i5 
atj = aiJ if i > 3\ afj = 0 if i < j; a^ = J2keZ;k<i ak,i- 

Note that r{A) = r{A'),c{A) = c(A+),c(A-) = r(A+). 
LEMMA 4.9.   We have cU = d^- + d^+. 
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Using the definitions we have 

dA- +dA+=    J2   %aki +    Y.   atAi 
ij,k,l ijkl 

i>k\j<l i>k\j<l 

—    2-J   aijUki +    2^   a>ijO>ki +    /^    aija>ki +    2^    ciijaki 
i,j,k,l i,j,k,l i,j,k,l i,j>k,l 

i<j;k<l i>j]k<l i<j;k>l i>j;k>l 
i>k'J<l i>k]i<l i>k]j<k i>k;i<k 

+     Z^     aiJaM +     Z^     aijakl +     2^,     aiJakl +     Z^     a2JaA;Z 
i,j,k,l hj,k,l i,3,k,l i,3,k,l 

i>j]k>l i<j\k>l i>j]k<l i<j',k<l 
i>k;j<l i>k;i<l i>k;j<k i>k]i<k 

where the four indices in the sum are taken modulo simultaneous translation by a 
multiple of n. Among the last eight sums, the third, fourth, sixth and eighth are 
empty. Hence 

dA-+dA+=     22    aijaki+    22    aijaki +  2_^ aijaki +  22 ai3akl 

= E 

i,j,k,l                            i,j,k,l                         id,k,l i,j,k,l 
k<i<j<l                       j<l<k<i                       3<i<l 3<l<i 

k<i k<l 

Ikl = dA. 

i,j,k,l 
i>k]j<l 

The lemma is proved. 

4.10. Let (L,L") e OA- We define L G F by Li = Li n L'j for all i. From the 
definitions we have that 

(a)(L,L)e0A-,    (L,V,)eOA+. 
PROPOSITION 4.11. {.4 }-{A+} = {A} plus anA-linear combination of elements 

{Ax} with Ai < A. 
Let a = r(A). Let L G F*. Let Z,Z',Zo,7r : Z -> Z',! be as in 4.2 with 

Ai =A-,A2=A+. 
Clearly, Z is irreducible and by Lemma 4.3, it has dimension dA- + dA+, that is, 

dimZ = dA (see Lemma 4.9). From 4.10(a) we see that X% C Z'. Hence X% C Z'. 
Now Xjj is irreducible, projective, and by Lemma 4.3 it has dimension dA. Since Z' 
is projective, irreducible of dimension < dA, it follows that Z' = X^1. Let y be the 
inverse image of XA under TT : Z —> XA. Note that Y is an open dense subset of Z. 
Hence it is an irreducible variety of dimension dA. Now GL acts naturally on Y and 
XA compatibly with TT' : Y —)• X^1 (restriction of TT). Since GL acts transitively on XA, 
and dimF — dimX^, it follows that GL acts transitively on Y. Hence, the stabilizer 
GL H GL' of any point L' G XA acts transitively on the fibre of TT' at L' (a finite set). 
This finite set must then be a single point, since the action of GL H GL' is through a 
quotient which is a connected algebraic group. Thus, TT' is bijective. Since both ZQ 

and Y are open dense in Z and GL acts on ZQ and acts transitively on Y, it follows 
that Y C ZQ. The arguments above show that the restriction of 7r*X from XA to XA 

is just QZ[GU]. It follows that the simple perverse sheaf on XA which equals QZ[GU] on 
XA appears with multiplicity one and without a shift in TT*!. The proposition follows. 

PROPOSITION 4.12. The anti-automorphism # : 2lD,n,n ->• ^D,n,n (see 1.11) 
carries {A} to ^A] for any A G <QD,n,n • 
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We must prove that 

(a) ntAl)M = rU^A for any A1,Am &D^n. 

(When Ai £ A we set H^^^ = 0.) Since H^^^ are (up to normalization) special 
cases of the polynomials PyjW of [KL1] (where y^w are elements of a Coxeter group 
or, rather, an extension of a Coxeter group), it is enough to apply the property 

■Ly,w — -Ly-1^-1 

of those polynomials, which follows easily from the definition in terms of Coxeter 
groups. 

4.13. Let": ${D n n ->• %lD n n be the (involutive) group homomorphism defined 
by '__ 

f{A} = f{A} for all A G eD,n,nJ G Q(i;) 

where / H->- / is the field involution of Q{v) such that v = v-1. This is a ring 
homomorphism, by 4.2(b). It keeps fixed each of the elements [A] where A is either 
ia as in 1.9 or aea/,a/fa as in 2.3. (These A are minimal for < hence they satisfy 
[A] — {A}.) Hence it keeps fixed E^Fi and, more generally, Ef/[s]!,F//[s]! for 
various i and various s G N.   Hence it restricts to involutions " : UD —> \JD and 

5. Cyclic quivers. 

5.1. In this section we assume that k = C. 
Let L,£ G T™. Let B be such that (L,£) G OB- Assume that Ck C Lj- for all fe. 

We define a representation of a cyclic quiver as follows. The vertices of the cyclic quiver 
are the elements of Z/nZ. To the vertex corresponding to the residue class of k mod n 
we associate the vector space LulCk- (We identify canonically Lfc/A, Lk'/Ck' for &, k' 
in the same residue class via the isomorphism e^-^ ^n : Lk/Ck ^ Lk> /Ck' •) To have 
a representation of the cyclic quiver we need also a linear map Lk/Ck —> Lk+i/Ck+i 
for each k. These are just the maps induced by the inclusion Lk C Lk+i. These linear 
maps are compatible with the identification above. 

For any p > 1 we consider the kernel Kk,p of the p-fold composition 

Lk/Ck —> Lk+i/Ck+i —>••••-> Lk+Vl'Ck+p 

We have Kk,p = (Lk fl Ck+p)/Ck and its dimension is 

&imLkl{Lkr\Ck) -&imLkl(LknCk+p) = ^brs-   ^   brs =     ^     &rs. 
r<A;       r</i; r<A; 
s>k s>k+p k<s<k+p 

(See 1.6(a).) Note that for large enough p, the composition above is zero (that is, 
Lk C Ck+p)] in other words, our representation of the cyclic quiver is nilpotent. 

5.2. The indecomposable nilpotent representations of our cyclic quiver are clas- 
sified up to isomorphism by pairs (t, m) where t is an integer defined up to translation 
by a multiple of n and m G {1,2,...}. The representation corresponding to t,m is 
denoted by Vt,m. It has a basis et, et+i,..., et+m-i with ej of degree j mod n and we 
have et —> et+i —>•••—)• et+m-i -> 0 in the representation. Let /i^m be the number 
of summands of the representation in 5.1 that are isomorphic to T^.m- 
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PROPOSITION 5.3. For any k E Z and any p > 1 we have bj^k+p = ^k,p' 
For Vt,mj the kernel of the p-fold composition starting at degree k, (analogous to 

the one in 5.1) has dimension 

i(u E [t,t + m — l]\u = k    mod n,t + (m — 1) — u < p). 

Hence 

dimifj^p—     22    Ku €[t,t + m — i\\u = k    mod n, t + (m - 1) - u < p)/J,t,m 
t€[0,n-l] 

m>l 

so that 

52       brs= Y^ IM,', 
r<k te[0,n-l];m>l]ue[t,t+m-l]]u=:k   mod n,t+(m-l)-u<p 

k<s<.k-\-p 

This holds for any p > 1. But it also holds for p = 0: both sides are 0. We write this 
for p and p — 1 (where p > 1) and substract one equality from the other: 

(a) 2-^   brs ~ Z-^ ^'m = Z-^ VttP+u-t- 
r<k t6[0,n-l];m>l tG[0,n-l] 

s=A;+p wE[t,t+m—l];u=:fc   mod n n>t;n=A;   mod n 
i-\-(m—1)—u=p—1 

Replacing here A: by A: — 1 and p by p + 1 we obtain 

/ ^    ^rs = 2^ /^t,p+ii-t+l = /.^ ^t,p+u'-t' 
r<k-l te[0,n-l] t€[0,n-l] 
s=/i;4-p n>t;ti=A; —1   mod n u'>t;u'=k   mod n 

Substracting from (a), we get 

bk,k+p — 2^ Vtyp+u-t = Mfc,?- 
t€[0,n-l] 

u=t;u=k   mod n 

The proposition is proved. 

5.4. Let (Wfc) be a collection of finite dimensional k-vector spaces indexed by 
k E Z/nZ. Let Eyft be the set of all of all nilpotent representations 

(a) (Wk-^Wk+1)keZ/nZ 

of our cyclic quiver. 
In the remainder of this subsection and in 5.5 we assume that n > 2. We say 

that the representation (a) is aperiodic (cf. [R], [LI]) if for any m > 1 there exists 
t E Z/nZ such that V^m does not appear as a direct summand of the representation. 

The following condition is equivalent to the aperiodicity of (a). (See [LI] for a 
proof.) 

(b) If gk : Wk —> Wk-i are linear maps defined for k E Z/nZ such that yk-iQk — 
Qk+iyk for all k, then for any k there exists p > 1 such that the composition Wk —> 
TTr 9k-l       -rx-r ^fc-p + 1        TTr Wk-!  > Wk-2 ->►... > Wk-p is zero. 

An element A E &D,n,n is said to be aperiodic if for any p E Z — {0} there exists 
k E Z such that ak,k+p = 0. Let 62>

nn be the set of aperiodic elements in <SD,n,n- 
Clearly, 
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(c) the condition that A is aperiodic is equivalent to the condition that A~ and 
A~*~ are aperiodic. 
The definition of aperiodicity of A is justified by the following result. 

COROLLARY 5.5. The representation of the cyclic quiver described in 5.1 is ape- 
riodic if and only if for any p>l there exists k € Z such that bk,k+p = 0, that is, if 
B is aperiodic. 

5.6. Let v — (z/fc) be a collection of natural numbers indexed by k £ Z such that 
Vk-n = Vk for all k. Let E^ be the set of all tableaux ((J>t,p)t,p€Z,p>o with entries in N 
such that 

lj,t,p = m-n,p for all t,p, ^^       Mt,p = fk for all fe G Z. 
t,p]t<k<t-\-p 

Let (Wife) be as in 5.4 with dim(WA;) = Vk for all A; G Z/nZ. The group 

A;GZ/nZ 

acts naturally on Eyft with finitely many orbits. It is well known that the set of orbits 
is in natural bijection with the set E^. The orbit of a point in i£jyl corresponds to 
(fJ't.p) where /i^p is the number of indecomposable summands of the representation of 
the cyclic quiver that are isomorphic to Vt,p. 

COROLLARY 5.7. Let a G ©D^L £ jr
8i. Let v be as in 5.6. Let 

X = {CeJr
aL\CkcLk,dim(Lk/£k) = vk    \fk}. 

Note that, if C G X then the k-vector space Lk/Ck is isomorphic to Wk for any 
k G Z/nZ hence we may transport (via such an isomorphism) the representation of 
the cyclic quiver on (Lk/jCk) to a representation on (Wife).  This defines a map 

t:{Be &D,n,n\X% CX}^ E,. 

(i carries B where C G Xjj to the parameter of the corresponding Gw-orbit in E^}.) 
i is injective. Its image is the set of all (fit^p) G E^ such that 

Mu + Mi,2 + l^t,3 H < at for all t. 
Assume that (/^£,p) = ^{B). Using 5.3, we have 

o>t = h^ — bt,t + hj+i + bttt+2 H = h,t + ^,i + Ht,2 + /i^3 +  

Thus, at - (/i*,! + fJitt2 + A*t,3 + ...) = ^t.t > 0. 
Conversely, assume that (^,p) G E^ is such that fit,! + A^,2 + A^,3 + • • • < at for 

all t. We define B G SD,n,n by 

Kj - Vij-i for i < 3 ' 
6t,t = at - 0^,1 + AAt,2 + ^,3 4-...) 
62 j = 0 for i > j. 

We have r(B) = a.  Hence there exists £ e J771 such that (L,£) G OB-  By 4.7 we 
have £k C L^ for all k. It is. clear that X^ C rY and that L(B) — (fit^p) ^ ^v The 
corollary is proved. 

In the remainder of this section we assume that k is algebraically closed.   . 
LEMMA 5.8. LetL(a be the subset of Eyft consisting of those representations such 

that the corresponding (fit,p) G E^ satisfies //^i + /it,2 + l^t,3 + - • • < at for all t. Then 
tig, is open in Eyfi. 

A representation (yk) as in 5.4(a) belongs to 11^ if and only if 
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dimcoker(2/i_i : Wi_i -> Wi) < at 
for all t. This is clearly an open condition. The lemma is proved. 

LEMMA 5.9. Let B e SB,n,n>a - r(^)- Assume that (LjL') G Os (Tience 
L^ C Ljfc /or a// &,), anc? dim(LA;/L/

A.) = i/& /or a// A;, w;/iere 1/ = (i/jk) Z5 as in 5.6. Let 
G' be the group of all g G GL such that g G GL' fl^c? p induces the identity map on 
Lk/L'k for all k.  Then dim(GL/G/) = Z)iG[i,n] ai^- 

Arguing as in the proof of Lemma 4.3 we see that dim(GL/G/) = dim(X/X//) 
where X is as in that proof and X" is the set of all T G g such that T{Li) C L^ for all 
i. Let Mj5j be associated to L,L' as in 1.4. We have M^j = 0 unless i < j. Then X 
consists of all collections (Tij^j) where T^^.i '- Mij -¥ Mkj are k-linear maps defined 
for (i,j,A;,/) G Z4 with I > k < i < j such that Ti-n,j-n>,k-n,j-n' = eTij^je'1. 
On the other hand, X" consists of all collections (Tij^.i) where Tij^j ' Mij -> 
MA;5/ are k-linear maps defined for (i,j,k,l) G Z4 with k < I < i < j such that 
Ti-nj-n'^-nj-n' = eT^jfe^e-1. Hence X/X" is the space consisting of all collections 
{Tij:k,i) where T^j^.i : Mij -> Mfe^ are k-linear maps defined for (z, j, fc,Z) G Z4 with 
k <i <j,i <l, such that Ti-.nj-nf^-n,j-n' = eT^^/e-1. Hence 

dim(.X/X,,) -   ^   ^&M =   ^  ^,*^,z. 

For each z G [l,n] we have 

i,j,k,l i,k,l 
i€[l,nl i€[l,n] 
fe<i<i k<i<l 

t<Z 

^2 bk>1 =  Yl (6*^ ~ 6w»*) =  X] (dim(Ln/Lu-i) - dim(Lli/Ln_i)) 
k,l U]U>i u;u>i 

k<i<l 

=  ^ (- dim(Lu/L^) + dimCLtx-i/L^i)) = dim^/Z/J = i/^. 

Hence dim(X/X") = Ylieli n] ailfi- The lemma is proved. 

5.10. Let a G 6D,n5 L G JFa. Let i/ and (Wk) be as in 5.6. Let A? be the set of all 
pairs (£,0) where C G # (see 5.7) and 0 = ((f>k)kez/nZ is a collection of vector space 
isomorphisms (f)k : Lk/Ck —> Wfc. (As in 5.1, we may regard L^/Ck as depending 
only on the residue class of A: modulo n.) We can regard X as an algebraic variety in 
a natural way. We have a diagram of algebraic varieties 

A' i— X —> Lla —y Eyy; 

here a(£, 0) = £, Ua is as in 5.8, 7 is the inclusion Ua C Eyft and f3(C,(j)) — (yt) 
where yk is the composition 

Wk ^ Lk/Ck -> Lk+i/Lk+i -^ Wfc+i 

(the middle map is induced by the inclusion Lk C Lk+i)- Now GL X GW acts on ^ 
by {g,9i) : (£,0) '->■ {£' A') where £' = ff(£) and $. is the composition 

Lfc/4 -^ ifc//:fc ^> Wfc A Wk- 

This action is compatible under a,7,/3 with the action of GL X GV^ on X (trivial on 
Gw and already known on GL) and with the action of GL X GW on £/a, E^ (trivial 
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on GL and already known on Gw)-   Note that a is in fact a principal bundle with 
group Gw- On the other hand, from 5.7 we see that /3 is surjective and that 

(a) a, 13 establish bijections between the set Girorbits on Af, the set of GL 
X
 Gyy- 

orbits on X and the set of GvK-orbits on L{a. 
Although P is not in general a locally trivial fibration, we have the following. 

LEMMA 5.11.   The morphism (3 : X —► Ua, is smooth with connected fibres. 
We will verify the following statement: 
(a) the fibres of (3 are exactly the orbits of the G^-action on X and they are all 

connected of the same dimension. 
The fact that the GL-action on X is fibre preseving has been already noted (and 

is obvious). Now let (£,</>), (£', (/>') be two points in the same fibre of /?. We want to 
show that there exists g G GL which carries (£,0) to (£', (/)'). From 5.10(a) we see 
that some element of GL carries £ to C. Hence we can assume that C — C. Since 
(3{C^(j)) = (3(C,(j)'), the compositions 

Wk ^ Lk/Ck -> iWA+i ^ Wk+1 

Wk -^> Lk/Ck -> Lfc+i/A+i -^±!> Wfc+i 
coincide. Hence if Wjfc = (j)'k~

l(j>k^ then (u^) satisfies the assumptions of Lemma 1.13. 
By that lemma, we can find e G GL fl GL' such that e induces (uk)-  We then have 

e-1(A0) = (A0')- 
Thus, any fibre of /? is a homogeneous space for GL- If (£, </>) G A', the stabilizer 

of (£, 0) in GL is the group of all g in GL H GC such that ^ induces the identity map 
on LkICk for all k. Using Lemma 5.9, we see that the dimension of the GL-orbit of 
(£,(f)) (hence the dimension of the fibre containing (£,0)) is equal to X^efi nl ^^i? 

which is independent of (£,(/>). Finally note that GL acts on X through a quotient 
which is a connected algebraic group, hence all its orbits are connected. This proves 
(a). The lemma is proved. 

5.12. In the remainer of this section we assume that n > 2. In the setup of 5.10, 
we consider a sequence of integers 

(a) i. = (u,i2,...,^jv) 
such that 

(b) fl{s € [1, N]\is = A;  mod n} = vk for all k € Z. 
To this sequence we associate a morphism p : Eyfi —> Efy in the following way (a 
special case of [LI, 1.5]). 

Efy1 consists of all collections W^yk : Wk -» Wk+i, {k G Z/nZ,5 G [0, N]) where 
Wg is a vector subspace of Wk and we have 

^ = ^,^ = 0, 
W£ = W*'1 for A: ^ is   mod n, 5 G [1, N], 
W£ C W^-^dimiW^/W^) = lfork = is   mod n,5 G [1, N]; 

yk is a linear map such that ys(W£) C Wj!+1 for A; G Z/raZ, s G [0, iV]. 
We define p by (Wjfe,2/A;) »-> (y^).   This is a proper morphism and ^{y1 is a smooth 
irreducible variety. The direct image of Qj under p is denoted by K^ . 

Similarly, to i9 we associate a morphism K, : X —>• A^ as follows. 
A' consists of all collections (Ls)sG[o AT] where Ls G T71 and we have 
L0 = L, 
L| = L^-1 for k ^ is   mod n, s G [1, iV], 

L£ C LJ-1,(iim(LJ-1/Llb) = 1 for * = *«   mod n>5 ^ t1'^]- 
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We define K, by (Ls) i-» L^. Then A' is either empty or a smooth irreducible variety 
and K is a proper morphism. Let Kim be the direct image of Q/ under K. (If X is 
empty, then Ki9 = 0.) 

5.13. Next, to i* we associate a morphism A : X —t X as follows, 

^f consists of all collections (Ls)s€[0jiv], </> = (^k)k^z/nz where (Ls) G A' and 
<^jfe : Lk/Ck -^ Wk are vector space isomorphisms. 

We define A by ((I/),0) i-> (L^,^).  Then ^ is either empty or a smooth irre- 
ducible variety and A is a proper morphism. Let K" be the direct image of Q/ under 

A. (If X is empty, then K" =0.) We define a commutative diagram 

X ^— X ^^ E® _ (iff)- 

K[     4 
X ^— X -^ E<$ 

as follows. We set a(Jjs,4>) = (Ls) and {(i^)(Ls,<j>) = (Wfc,j/fc) where W^ is the image 
of LJ/Lj^ under ^ : L^/Lf ^4 Wfc and {yk) = P(LN,<I>). 

One checks easily that both squares in the diagram are cartesian. It follows that 
(a) a'Ki. = K'l = (7/?)*^. 

5.14. For each 

(a) B e ^D^n such that XB 
e x 

we denote by OB the corresponding GV-orbit in Eyft- Note that OB is contained in 
the open subset Ua of E^}. 

Let PB be the irreducible GL-equivariant perverse sheaf on X whose support is 
the closure of Xg. Let Pg be the irreducible GL X GV-equivariant perverse sheaf on X 
whose support is the closure of a~1(X^). Let Pg be the irreducible GV-equivariant 
perverse sheaf on Eyft whose support is the closure of OB - 

By the decomposition theorem [BBD], we have 

where B runs through the set (a), 5 runs over the integers and 
MBtu,6>MBti.,6,MZii9t5 eN; 

K is a direct sum of perverse sheaves (with shifts) on Eyfi with support in the closed 
subset E$ — Ua of Eyft- Restricting to the open subset Ua C E^} we obtain 

K'im\u. = ®BAPB)\uM9M'B-t~'- 

Since (3 : X —>> Ua is smooth with connected fibres, we have P*((PB)\U&) = ^BI^I], 

where di is independent of B. (See [BBD, 4.2.5].) Since a is a principal fibration, we 
have a*(Pjg) = P'sfa] where cfe is independent of B. Using these equalities together 
with 5.13(a), we deduce that 

Hence 
(b) MB,i.,s-d, = M'BtittS_dl for all B,S. 
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5.15. We set 
X{i.) = [siV.[S2V:..[BrV.eA 

where si, 52,... are defined by 

H   — i>2   —   ' • '  — is!   / tsi+l   —   - '  — is1+S2   / ^Sl+S2 + l — 

5.16. Assume now that B in 5.14(a) is aperiodic. Then, by 5.5, OB consists of 
aperiodic points. By [L2, 5.9] and [LI, 7.3], there exist sequences z^ as in 5.12(a),(b), 
with u = 1,2,..., h and elements fuj e A such that for Bf in 5.14(a), 

ue[i,h],5ez 

equals 1 if B' = B and 0 if B' / B.   (All but finitely many fu^ are 0.)  Moreover, 
x(^)_1MpB/5iu5(5 G A for all u. Using now 5.14(b), we deduce that 

wG[l,/i],(5€Z 

equals 1 if B' — B and 0 if B1 ^ B] here /^ 5 equals fuj times a power of v depending 
on u but not on 8. 

This can be interpreted as follows: the element {B} € VLD,n,n is an .4-linear 
combination of products 

for various i# as in 5.12(a),(b). Thus, we have the following result. 
PROPOSITION 5.17. Assume that B G 6^ n n is aperiodic. Then {B} G VD.A' 

Using 4.12 and the fact that ^ : Slo.n.n -> %lD,n,n maps U^ to itself and TJD^A 

to itself, we deduce from 5.17 the following result. 
PROPOSITION 5.18. Assume that B e 6^ n n is aperiodic.  Then {B} G U^,^. 

6. Singular supports. 

6.1. In this section we assume that n > 2 and that k — C. 
For any L G J771, let EL be the set of all / G 0 such that f(Lk) C Lk-i for all 

k G Z. This is naturally a k[e]-module. 
For b G ©z^n, let T*^, be te set of all pairs (L, e) where L G Th and e G EL. 

We will think of T*!F\> as the "cotangent bundle" of jrb. This can be justified by 
the fact that although ^ is an infinite dimensional object, it is in a sense (explained 
in [KT]), a limit of smooth algebraic varieties. (The discussion in [KT] applies to any 
affine flag manifold.) 

We fix a G 613,715 L G ^a- For any A G &D,n,n such that r(A) = a, c(A) = b, we 
set 

CA = {(L',e) G T^blL' G X^e G ELnEL/}. 

We will think of CA as the "conormal bundle" to the GL-orbit X^ in Th- This is again 
justified by the discussion in [KT]. 

6.2. We consider a sequence u, 22,..., ip+r of integers and a sequence 

(a) a , a ,..., a , a      ,..., a 

in &D,n such that 
d     ^-^Zl   d   , d     ^-^   d   , . . . , d ^lp   «-   5 



170 G. LUSZTIG 

3- ^p + l   a    5 a lp+2   a 5 * * * 3 a lp + r   d 

We assume that a0 = a. We set ap+r = b. 
Consider the following condition for A G 6D,n,n such that r(A) = a, c(A) = b: 
(b) {^4} appears with cofficient ^ 0 in the product 

{aoeai} • {ai^a2} ' • • • ' {aP-^ap} * {apfaP+1} ' • • • * {aP+^-ifaP+^j 

expressed in 2ljD,n,n as o, linear combination of elements {A1}. 
Condition (b) can be expressed geometrically as follows. 

Recall that we have fixed L £ TQQ . We consider the set Y of all sequences 

(L0, L1,..., I/+r) G ^ao x ^ai x ... x FaP+r 

such that L0 = L, 
(c) Ll = Ll'1 for k -£ it  mod n,t € [l,p + r], 
(d) Ll C 4-1,dim(4-1/^) = 1 for k = it  mod n,* G [l,p], 
(e) Lj,"1 C L^dim^/L^"1) = 1 for A; = U  mod n,t G [p+ l,p + r]. 

Then Y is a smooth projective variety (an iterated projective space bundle over a 
point.) Let TT : Y —> T^ be defined by 

7r(L0,L1,...,Lp+r) = L|,+p. 

Consider the direct image 7r*(C[d]) where d = dimF. Then A satisfies (b) if and only 
if some shift of the Gx-equivariant simple perverse sheaf supported by X\ appears as 
a direct summand in 7r*(C[<i]). (This follows from 4.5.) In that case, the "conormal 
bundle" CA is contained in the "singular support" of 7r*(C[d]) (a subset of T*^). 

6.3. The cotangent space of Y at (I/^L1,... ,Lp+r) is naturally the cokernel of 
the map 

(E^O   fl ELl)  ©  (£L1   H EL2)  ©  ...  ©  (£Lp + r-l   D ELP + r)   -4   ELI   0 . . .  © ELP + r 

given by 

(601,602, • • • , Cp+r-i^+r) 

*-* (e01 — 612, 612 — 623, • • • , 6p-f.r-2,p+r-l — ep+r-l,p+r j ^p+r-l^+r)- 

Now TT induces a linear map from the cotangent space to Th at Lp+r to the cotangent 
space to Y at (L0, L1,..., Lp+r) given by 

(a) ELp+r -> coker((9),    e H^ (0,0,..., 0, e). 

The kernel of this linear map consists of those e G E^p+r such that there exists 
(eoi, e02, • • •, ep+r-i,p+r) as above with 

601 — 612 = 623 = • ■ • = Cp+r-i^p+r = Cp+r-i^+r = e. 

Thus, the kernel of the linear map (a) is the image of the obvious imbedding 

ELo n ELI n EL2 n • • • n £LP+r -»ELp+r. 

We shall apply the estimate [KS] for the singular support of a direct image to 7r^(C[d\) 
(even though J^b is infinite dimensional, see the remarks in 6.1). We see that the 
singular support of 7r*(C[d]) is contained in the set of all pairs (L^e) where L/ G Fh, 
and 

(b) e G £Lo nELi nEL2 .. -nEip+r for some (L^L1,... ,1^+0 G Y with I/+r = 
L'. 
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LEMMA 6.4. LefL' G Fh o.nd assume thate G E^nEi,/ satisfies condition 6.3(b). 
Then for any k G Z there exists s > 1 such that the compositions 

Lk/(Lk H L',) A Lt^/iLk-! n L^J A ... A L,_S/(L,_S n L',_s), 
L'fc/(L, n Li) A L'^JiLk-! n Lj^) A ... A L'k_s/(Lk-_s n Li_s); 

are zero. 
Let (L0,^,... ,Lp+r) be as in 6.3(b). Let k G Z. From 6.2(c),(d),(e) we see that: 
(a) for   t    G    [l,p],   at   least   one   of  L^.-1 /Lt

k1L
t

f^}1/Lt
k_1   is   zero,   hence 

e: ifc'Vi* -> iJl-V^-iis zero;hence e^l"1)c L*-i; 
(b) for t G [p 4- l,p + r], at least one of L\/Lt

I^
1,Ll,_1/Lij~}1 is zero, hence 

e : Ll/L1-1 -> L^JL1-^ is zero; hence c(L*) C L^. 
From (a),(b) we deduce 

(c) eV{Ll)cLl_p,    er(Ll+r)cLl_r 

respectively. From 6.2(c),(d) we deduce L^, C L®, and L^, C I/^r- Taking k' = k—p 
ovk' = k-r, we deduce Lp

k_p c L0
fc_p n L^ and Lj_r C it, D !£.*. Hence (c) 

implies 

ep(L0
k) C Ll_p n L^,    e'(L?r) C L0

fc_r n L^. 

The lemma follows. 
PROPOSITION 6.5. Assume that A G &D,n,n satisfies 6.2(b). Then A is aperiodic. 
We choose L' G Fy,. Let C G Tn be defined by A = L* n LJ for alU G Z. 
Let ^ : Lk/Ck —> £fc-i/£fc-i be k-linear maps defined for k G Z such that 

gk-n = e^e"1 for all fe G Z and such that jk-igk = ^+ii)fc for all fe, where j^ : 
LklCk —> Lk+i/Ck+i is the canonical map. 

By 1.12, we can find e G E^DEi,' such that e induces (gk). We have (L',e) G CA- 

Hence, from 6.3, 6.4, we see that the conclusion of Lemma 6.4 holds for (L',e). In 
particular, the maps (gk) form a nilpotent representation of the opposite of the cyclic 
quiver in 5.1. By the criterion 5.4(b), it follows that the representation of the cyclic 
quiver given by the maps (jk) is aperiodic. We can apply 5.5 to L,£,^4~ instead of 
L,£,B and we deduce that for any p > 1 there exists A: G Z such that ak k+p = 0 
(hence ak,k+p = 0). 

Now let gk : L'kICk -» L'k_lICk-i be k-linear maps defined for k G Z such 
that g,

k_n = £Q'k£~l for all k G Z and such that jk_igk — g'k+ij'k, for all fc, where 
j'k : L^lCk -¥ Z4+1/£fc+i is the canonical map. 

By 1.12 (with LjL7 interchanged) we can find e G E^, fl Ev such that e induces 
(#&)• We have (L^e) G CA- Hence, from 6.3, 6.4, we see that the conclusion of Lemma 
6.4 holds for (L'je). In particular, the maps {g^) form a nilpotent representation of 
the opposite of the cyclic quiver in 5.1. By the criterion 5.4(b), it follows that the 
representation of the cyclic quiver given by the maps (j'k) is aperiodic. We can apply 
5.5 to L''iC^A^ instead of L,C,B and we deduce that for any p > 1 there exists 
k G Z such that CLk+ k = 0 (hence ak+v,k — 0). Equivalently, for any p < 0 there 
exists k G Z such that akik+p = 0. The proposition is proved. 

COROLLARY 6.6. U^) is contained in the subspace of%D,n,n spanned by the ele- 
ments {A} with A G &^n n (see 5-4)- 

From 2.6, it is easy to see that the Q(i;)-vector space XJD = U^ is spanned by 
the various products as in 6.2(b). The corollary follows. 



172 G. LUSZTIG 

7. Inner product on 2lD,n,n'« 

7.1. For any integer c > 0 we set 

c» = rLc=i(i-«-2t)eA 
Assume now that k is finite with q elements. We set cjj = c$\v=y/q G Q/. We define a 
bilinear form 

by 

(/•/) = £   11   7J?7Tr/(I',L')/(L)L') 
L,L'i€[l,n] U^liJ? 

for /»/ ^ ^,71,72';^ regarded as functions J771 x J771 -> Qi (as in 1.10); in the sum, 
L runs over a set of representatives for the G-orbits in J771, L' runs over !Fn . For 
A, A1 G ©D.n.n'j we have 

(eA,eA') = SA,A'   IJ   /IT. NKH^A)^ 
te[i,n] vlLu)<z 

where L G JV(A)J hence 

(a) ([A],[A']) = 8AtA.   IJ   TiTTur^*^)- 
ie[i,n] \\LU)<i 

In particular, the form (,) is symmetric. 
LEMMA 7.2. Leti G Z and let f, f G %lD,n,n',g- Let a. be as in 2.6 and letb G 6n- 

(W), /) = (/, y/qK^Ftif)),      mi), f) - (/, y/qK-Mf)), 

(Kb(f)J) = (f,Kb(f)). 

To prove the third equality we may assume that / = e^,/ = e^. Then the 
desired equality is immediate from 7.1(a). The second equality follows immediately 
from the first and third equality. It remains to prove the first equality. 

Let j771 be the set of all collections L~= (Lj) where Lj are lattices in V defined 
for any j G Z such that j ^ i mod n and such that Lj' C Lj for all j1 < j with 
j ^ i mod n^j' ^ i mod n and Lj-n = eLj for all j ^ i mod n. We fix a set of 
representatives E for the orbits of the obvious action of G on !Fn. Let £ : J771 -> ^*n 

be the map defined by attaching to L = (Lj) the collection obtained by forgetting all 
Lj with j = i  mod n. For L G J7^ the number of L G Fc such that £(L) = C(L) is 

: ^  = ( ^-iLlidLli+lJ-lLl.'+idLh+x+l) ^  

nSitf - ijnSrw -1) (ii-ioSdLii+or 
where A^ = n[=i+|L|'+1(9* " ^^ Heilce' for /> / e ^,n,n';^ we have 

= E n (vfl|L|<(|L|1^^^ 
C(L)€H 
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We have 

(Ei/)(L,L/) = X)(V5)-|L"I7(L//,LI) 

sum over all L" such that £(!/') = ^(L) and Li_i C LJ' C Li, dim(Li/L•,) = 1, 

(Vsir*2*/)(L,L') = ^(Vg)-1-2'1'"'^^11'"1'-/^,^) 

sum over all L" such that C(L") = C(L) and Li C L-' C Li+i, dim(L'!/Li) = 1.  It 
follows that 

_V-   TT    (V5)|L|i(|L|i+1)+|L|i+l(|L|i+1+1)-(|L|»-1)/(L",L')^T  T. 

i6[l,n] ^nWJa 

mod n 

sum over all L,L',L" S ^■n such that ((L) = C(L") € E and Lj_i  C L? C ij, 
dimCLi/Lj') = 1. Similarly, 

My/qKaFiif)) 

= F    TT    ^^ i f(L,L')f(L",L') 

mod n 

sum over all L,!/,!/' G J^71 such that ((L) = C(L//) € H and L^ C LJ' C Li+i, 
dim(L"/Li) = 1. Interchanging here L, L" we obtain 

(/,V9^a^(/)) 
^^     „      f  ;^\(|L|i-l)|L|i + (|L|i + 1 + l)(|L|i + 1+2)-l-2|L|i+1 + |L|i 

= y    TT    ^^ s /(L",L')/(L,L') 

mod n 

sum over all L,L',L" € J"" such that ((L) = C(L")  € S and Lj-i  C L^' C Li, 
dim(Lj/L") = 1. It remains to observe that 

(LlidLji + 1) + |L|i+1(|L|i+1 + 1) - ((Lli - 1) 

= (jLli - IJlLli + (|L|i+i + l)(|L|i+1 + 2) - 1 - 2|L|i+1 + (Lji. 

The lemma is proved. 

7.3. From the definition we have 

(a) KXA) = "AMMA)*- 

Hence it is natural to define a Q(v)-bilinear form 

by 

(b) {[A],[A'])=SAtA.   H   TjiTTir^2^^^.!^, 
*€[l,n] U    U) 
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for any A, A' G &D,n,n'- Here L € ^>(A)- This specializes, for any prime power q, to 
the bilinear form in 7.1, under v = ^/q. 

LEMMA 7.4.  (a) For A e <BD,n,n> we have ([A], [A]) € Q(v) n (1 + v^ZHy-1}}). 
(b) For A ^ A' in &Dtn^ we have {[A], [A!]) = 0. 
(b) holds by definition. We prove (a). Note that v~2dAvAtA^{A) £ A. Since, 

for k an algebraic closure of the field with q elements, X^ is irreducible of dimension 
dA (see Lemma 4.3), we see from the Lang-Weil estimates [LW] that the number of 
points of X\ over the field with qs elements divided by qsdA tends to 1 as 5 ->• oo. 
Using 7.3(a) it follows that 

v-2dAVA*AMA) ei + t^zitr1]. 
It remains to use the fact that n-^.y G Q(v) D (1 4- v~1Z[[v~1]]) (where L £ Jv^)). 
The lemma is proved. 

LEMMA 7.5.  (a) For A £ &D,n,n> we have ({A}, {A}) £ Q(t')n(l + t'~1Z[[v-1]]). 
(b) For A ^ A' in 6^,^' iwe /iave ({A}, {A'}) = 0. 
This follows from 7.4 using 4.1(d),(e). 

From Lemma 7.2 we deduce the following "generic" version. 
LEMMA 7.6. Let i £ Z and Ze£ /, / £ Slo^n' • ^^ a ^e a5 zn ^-^ an^ ^ k ^ ^n- 

W^e /iave 

(^(/),/) = (f.vKaFitf)),    (FiiftJ) = (f^K^Eiif)), 

(Kb(f),f) = (f,Kh(f)). 

7.7. In the remainder of this section we assume that n > 2. 
Consider the root datum (cf. [L3, 2.2]) consisting of the free abelian groups 

Y = X = 6n, with the non-singular pairing Y x X -» Z described in 2.2 and with 
the (equal) imbeddings / = Z/nZ -» Y, I = Z/nZ -> X given by i i-> a (a as in 
Proposition 2.6). (A root datum of affine type An-i which is degenerate in the sense 
that the image of / -» Y = X is linearly dependent.) 

Let 'U be the Q(v)-algebra associated to this root datum in [L3, 3.1.1]. Thus, 
U' is the associative algebra with generators 

Ei(z£/),Fi(z£7),irb(b£6n) 
subject to the relations given in 2.5, 2.6.  Let U be the quotient of 'U by the two- 
sided ideal generated by the quantum Serre relations in the Ei and in the Fi.   (A 
Drinfeld-Jimbo quantized enveloping algebra.) 

Now 2.5, 2.6 imply that we have a unique algebra homomorphism 'U —> JJD 

which takes Ei,Fi,Kb in 'U to the elements with the same name in Up. The left 
2t£>,n,n-module %lD,n,n' (see 1.9) will be regarded by restriction of scalars as a (left) 
U^-module or as a 'U-module. 

(a) This 'U-module is integrable 
since EfiFf> are zero on StjD.n.n'; the existence of a weight decomposition is clear. 
(The notion of integrability of 'U-modules is defined in the same way as the analogous 
notion for U-modules, see [L3, 3.5.1].) 

From (a) it follows that the 'U-module %lD,n,n' factors through a U-module. (The 
fact that the quantum Serre relations hold on 2l£>>n,n' can be also verified by a direct 
computation, similar to the one in [BLM, 5.6]). In particular, we see that JJD is 
naturally a quotient algebra of U. 

7.8. Let A = Q(v)nQ[[ir1]]. 
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Let M be an integrable U-module. Let Ei : M ->• M,^ : M ->- M be the 
Kashiwara operators. (See [L3, 16.1.4].) 

A signed basis at oo or a signed crystal basis of M is a pair consisting of a free 
A-submodule MA of M such that M = Q(v) 0A -^A and a signed basis 05 of the 
Q-vector space MA/V~

1
MA such that properties (a)-(d) below hold. 

(a) MA is stable under Ei^Fi for all i; thus, Si,F^ act on MA/V~
1
MA- 

(b) JSi(?B) C 05 U {0} and Fi(B) C 05 U {0} for all i. 
(c) MA is the sum of its intersections with the various weight spaces of M and each 

element of 05 is contained in the image of one of these intersections in MA/V^MA- 

(d) Given /?,/?' G 05 and i € /, we have Ei{(3) = /?' if and only if F^') = /?. 
(This definition reduces to Kashiwara's definition of a crystal basis if 05 is assumed 
to be a basis instead of a signed basis.  Recall that a signed basis of a vector space 
consists of ± the elements of a basis.) 

7.9. Let 2l£>,n,n';A be the A-submodule of ^D.n.n1 spanned by the elements 
[A], A € &Dyn,n', or equivalently by the elements {^4}, A € &D,n}n'• Let 05 be the 
basis of the Q-vector space SID^^'JA/^

-1
^!)^,^^ formed by the images of the ele- 

ments [A\ (or equivalently {A}) with A G ©D^n'- 
THEOREM 7.10. O&D^n'jAji^B) is a signed basis at infinity (or signed crystal 

basis) of the integrable U-module ^D^n'- 
We apply the results in [L3, 16.2] to the basis {[A]|A G ©D^.n7} of SlD.n.n' and 

to the form (,) on %iD,n,n'' These results are applicable in view of Lemmas 7.4, 7.6. 

8. A basis of U^. In this section we assume that n > 2. 
PROPOSITION 8.1. Assume that A e &&D,n,n (see 5'4)-  Then {A} e ^D,A' 

Our hypothesis implies that A~ and A+ are aperiodic. If A is a minimal element 
for the partial order <, then from 4.11 we have {A~} • {A+} = {A}. By 5.17, 5.18 we 
have {A'} G Ujr,^, {A+} G Up,^ hence {A} G VD.A- 

Thus we may assume that A is not minimal for < and that the proposition holds 
for any Ai G &^nn such that Ai <A,Ai^ A. By 4.11 we have 

{A-}.{A+} = {A}+    £    CAAA!} 
A1;A1<A 

where c^i G A. Since, by 5.17, 5.18, we have {A"} • {A+} G UD^, we see from 6.6 
that c^1 / 0 implies Ai aperiodic. By the induction hypothesis, for all such Ai we 
have {Ai} G U^^. It follows that {A} G U^^. The proposition is proved. 

Combining 6.6 and 8.1 we obtain the following result. 
THEOREM 8.2. The elements {A}, with A G ©^n?n, form a Q(v)-basis ofX5D 

and an A-basis ofTJo^A- 

8.3. Let U^A be the A-submodule of U spanned by the elements {A}, A G 
&£)nn- Let ^B be the basis of the Q-vector space UJC>)A/'U~

1
U£>}A formed by the 

images of the elements {A},A€(3^nn. 

THEOREM 8.4. (U^AJ ±^B) is a signed basis at infinity (or a signed crystal basis) 
of the integrable U-module XJD- 

We apply the results in [L3, 16.2] to the basis {{A}\A G ©^n.n) of u£> and to 

the restriction to U^ of the form (,) on 2l^5rl?n. These results are applicable in view 
of Lemmas 7.5, 7.6. 
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9. Stabilization. 

9.1. In this section we assume that n > 2. 
One can show that there is a unique homomorphism (j)D+n,D '- U.D+n —► U^ of 

algebras such that 

<l>D+n,D(Ei) = Ei' for a11 h 
0D+n,D(^) =Fi,fOT alii, 
<l>D+ntD(Kh) = Vh'h0/2KhJoV all b G Sn, 

where b0 = (..., 1,1,1,...) € 6n. The existence of this homomorphism will be proved 
elsewhere. The uniqueness is obvious. 

It is clear that (j)D+n,D(0 = 0£>+n,D(f) for all ^ G VD+W (Here"is as in 4.13.) 
CONJECTURE 9.2. Let A e &D+n,n,n'   Let A! he the matrix defined by a-j = 

^ij — 5ij for all i,j G Z. 
(a) Ifa^i > 0 for all i, then <l>D+n,D{{A}) = {A'}. 
(b) If dij = 0 for some i, then (t>D+nyD{{A}) = 0. 
(Note that in case (a), we have A' G ©pn n-) From the definition it is clear that 

the conjecture holds at least if A is either ia as in 1.9 or aCaSa'fa as in 2.3. 

9.3. Let SnP be the set of all matrices A = (a>itj)(ij)ezxz with entries aij G Z 
such that 

(a) aij > 0 for all i / j; 
(b) aij = di-nj-n for all ij G Z; 
(cl) for any i G Z, the set {j G Z|aij 7^ 0} is finite; 
(c2) for any j G Z, the set {i G Z|aij ^ 0} is finite; 
(d) for any p ^ 0 there exists k G Z such that a&^+p = 0. 

Note that, in the presence of condition (b), conditions (cl),(c2) are equivalent. 
For A G S^p and p G Z we define ^ G 5^p so that its (i,j) entry is a^-, if i ^ j 

and its (i,i) entry is a^^ +p for any i. 
If A, A' G «S^P, we write A ~ A' if A' = PA for some p 6 Z. This is an equivalence 

relation on 5^p. Let S^ j ~ be the set of equivalence classes. 
Let K be the Q(v)-vector space with basis elements indexed by S^ j ~. For any 

D G N we define a Q(^-linear map fyv : K —> U^ by the following requirement. If a 
basis element of K is indexed by an element which can be represented by an element 
A G ^D.n.n (necessarily unique), then that basis element is mapped to {A}; otherwise, 
it is mapped to 0. 

This linear map is well defined and surjective by Theorem 8.2. We have 

(f)D+n,D<t>D+n = ^D- 

We conjecture that there is a unique structure of associative algebra (without 1) 
on K so that (pD is an algebra homomorphism for any D G N. We also conjecture that 
the algebra K with its basis indexed by S^9/ ~ is naturally the modified quantized 
enveloping algebra of affine sln type with its canonical basis (see [L3, Ch. 23, Ch. 
25]). 

9.4. The results of this paper have analogues for the case of quantum (non-affine) 
g[n. These analogues can be proved in the same (or easier) way as the results in the 
affine case; they can be also deduced from the results in the affine case. 

One should replace V by a vector space of dimension D over k and T by the 
space of n-step filtrations of that vector space (as in [BLM]). The analogues of the 
results in Sec.   4 continue to hold, but one should use ordinary Schubert varieties 
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instead of affine ones; those of Sec. 5 continue to hold if we use linear quivers instead 
of cyclic quivers. The aperiodicity condition plays no role in this case. The analogue 
of Conjecture 9.2 is again expected to be true and in fact it can be proved for n = 2, 
thus providing a support for the general conjecture. 
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