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THE MODULI SPACE OF COMPLEX LAGRANGIAN 
SUBMANIFOLDS* 

N. J. HITCHINt 

1. Introduction. Developments in string theory over the past few years (e.g. 
[13], [5]) have focussed attention on a differential geometric structure induced on the 
base space of an algebraically completely integrable Hamiltonian system. This has 
been recently formalised by D.Freed [6] as a special Kdhler structure. 

The purpose of this paper is to provide an alternative approach to the geometry 
of special Kahler manifolds, one that is motivated by the desire to understand a more 
general situation than that afforded by integrable systems. We seek the natural ge- 
ometrical structure on the moduli space M of deformations of a compact, complex 
Lagrangian submanifold Y in a complex Kahlerian symplectic manifold X. In many 
respects what we do parallels the approach of an earlier paper [8] which began an 
investigation into the geometry of the moduli space of compact special Lagrangian 
submanifolds in a Calabi-Yau manifold. This was motivated by a desire to under- 
stand the geometry underpinning the Strominger-Yau-Zaslow [14] approach to mirror 
symmetry. We are essentially attacking here the special case where the Calabi-Yau is 
hyperkahler, though we shall not need the full force of the existence of a hyperkahler 
metric on X. 

Our viewpoint, as in [8], is to pay less attention to the holomorphic structure of the 
situation, and more to the symplectic one. Thus a complex Lagrangian submanifold 
of X can be characterized as a real submanifold on which the real and imaginary 
parts of the holomorphic symplectic 2-form vanish. Correspondingly, the differential 
geometric structure on the moduli space M is induced from a local embedding of M 
into H1 (Y*, R) x Hl (Y, R) which is Lagrangian with respect to two natural constant 
symplectic forms. We show that this "bilagrangian" condition for a submanifold of a 
product V x V of real symplectic vector spaces is equivalent to the structure of a special 
(pseudo-) Kahler metric on M. Moreover, it is easy to see from this point of view 
that a choice of symplectic basis of V yields the known fact that any special Kahler 
metric is generated by a single holomorphic function - the holomorphic prepotential. 

Finally, we derive from our formalism the hyperkahler metric introduced in a 
string-theoretic context several years ago by Cecotti, Ferrara and Girardello [2]. It 
can be seen as a special case of the Legendre transform construction of Lindstrom 
and Rocek [9], and yields, in the context of our moduli space, a hyperkahler metric 
on an open set of Markman's moduli space of Lagrangian sheaves [4]. 

Our approach offers a different perspective to special Kahler geometry, and in 
particular draws attention to a single naturally defined function (j) which plays an 
important role: it is the Hamiltonian for the fundamental vector field, a potential for 
the Kahler metric and, with respect to one of the complex structures, a potential also 
for the associated hyperkahler metric. 
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the Institute for Advanced Study for its hospitality. 
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2. Complex Lagrangian submanifolds. Let X be a complex symplectic man- 
ifold of complex dimension 2n. It has a holomorphic symplectic 2-form uc which we 
write in terms of its real and imaginary parts: 

U)C =r Ui -f- iU2 

These two closed forms are real symplectic forms and define the structure of a complex 
symplectic manifold on X. We see this as follows. Given a closed form u;c, we consider 
the distribution in E C T<8>C defined by the complex vector fields U with L{U)U

C
 = 0. 

If UJ
0
 satisfies the algebraic condition that E © E = T & C then it defines an almost 

complex structure. This is integrable because if L(U)UJ
C
 = 0, 

CULJ
0
 = d(L(U)LJc) + L(U)duc = 0 

so if U and V are sections of E, Cuwc = 0 and L(y)ujc = 0, so 

i([U,V])uc = CuMV)*0) - WKCuu*) = 0 

and hence [[/, V] is a section of E. 

Similarly we have the following 

PROPOSITION 1. A real 2n-dimensional submanifold Y C X is complex La- 
grangian if and only if (JJ

C
\Y = 0. 

Proof. If the submanifold Y is complex Lagrangian, then UJ
C
\Y = 0 by definition. 

Conversely, if U;
C
\Y = 0, we need to show that Y is a complex submanifold, that its 

tangent spaces are complex. Now the complex structure / on X is defined algebraically 
by the two real symplectic forms c^i,^- Instead of the description above, we can 
think of each giving an isomorphism ipi : TX = T*X and then / = (p^tfi- Since Y 
is Lagrangian with respect to both symplectic forms, then both (pi and (p2 map TY 
isomorphically to the conormal bundle N*Y C T*X. thus / = <^Vi preserves TY. 
Hence Y is a complex submanifold, U

C
\Y =0 and so Y is complex Lagrangian. 

We lose nothing therefore by focussing our attention on the symplectic aspects 
of complex Lagrangian submanifolds. We do, however, need to know that there is 
a good local moduli space of deformations of Y C X. In general deformations of 
compact complex submanifolds can be obstructed, but it follows from the paper of 
Voisin [15] that this is not the case when the submanifold is Lagrangian. In fact if 
X has a hyperkahler metric, this is also a consequence of the differential geometric 
argument of McLean [11]. There thus exists a local moduli space M, which is a 
complex manifold, and such that there is a natural isomorphism 

T^M^H^Y.N) 

from the tangent space at the point [Y] G M representing Y and the space of holo- 
morphic sections of the normal bundle N to Y C X. As Y is complex Lagrangian, u>c 

defines a holomorphic isomorphism from N to T*Y, so 

T^M sfr0(y,r*) 

From the holomorphic point of view this is the tangent space to the moduli of defor- 
mations of Y as a complex submanifold. The infinitesimal deformations as a complex 
Lagrangian submanifold correspond to those sections of the normal bundle for which 
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the corresponding 1-forms in H0(Y, T*) are closed. But if we assume that X has 
a Kahler form h so that Y is also Kahler, then any holomorphic 1-form is closed. 
Moreover the real dimension of M is then given by &i(y) = 2dimcH0(Y,T*). We 
make this Kahlerian assumption from now on. We shall investigate next the local 
differential geometry of M. 

3. The moduli space. Let Z be a local universal family of deformations of the 
complex Lagrangian submanifold YQ C X, so that Z is a complex manifold with a 
holomorphic projection TT : Z —> M and a holomorphic map F : Z —> X such that 

F(*-1(\Y])) = Y 

Consider the 2-form F*UJI on Z. If xi,..., X2n,yi> • • •, Z/2m are real local coordinates 
on Z with 2/1,..., 2/2m coordinates on M and 7r(xi,..., 2/2m) = (2/1»• • •»2/2m) then since 
each fibre F is Lagrangian with respect to CJI, F*u;i|y = 0 and so 

F*UJI = ^ a^dxi A dyj + ^ ftijdj/i A dyj 

Furthermore, since F*UJI is closed, 

(1) J^ -^-dxk Adxi=0 

We can see in concrete coordinate terms here that, for each j, the 1-form J2aijdxi 
on Y is closed. More invariantly, it says that if U is a tangent vector to M at [Y], 
then if U is a lift to a vector field along Y, the 1-form (L(U)F*LJI)\Y is closed and 
independent of the choice of lifting. 

From (1), integrating F*UJI over two homologous 1-cycles in a fibre of TT gives the 
same result. Now working locally in M, we assume that M is contractible, and so we 
can by homotopy invariance identify the homology of each fibre. Take a homology 
class A £ Hi(Z, Z) = Hi(Y, Z) and choose a circle fibration in TT : Z -> M such that 
each fibre is in the class A. Integrating along the fibres, we obtain canonically a closed 
1-form 

(Tr^FVen^M) 

and since M is assumed contractible, a smooth function fiA on M, well-defined up to 
an additive constant, such that dfiA — {^A)*^*^. Putting all the functions together 
gives a map 

HiM-t&iYtB) 

This function by definition has the property that d/x(f7) is the cohomology class of 
the closed form (L(U)F*UJI)\Y- 

PROPOSITION 2. /J, is a local diffeomorphism. 

Proof. We think in terms of the holomorphic fibration TT : Z -> M and a tangent 
vector U at [Y]. The 1-form (L(U)F*UJ

C
)\Y on Y is independent of the choice of lift 

and thus, taking local holomorphic lifts, is a well-defined global holomorphic 1-form. 
This is the canonical isomorphism T[y]M = iJ0(Y,r*). Now if d^U) = 0, by the 
definition of /i, the cohomology class of the real part of 6 = (L(U)F*UJ

C
)\Y is zero. 

But Y is a Kahler manifold so we have iJ^F, C) ^ ff1'0 © H0'1 and 0 + 0 cannot be 
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cohomologically trivial unless 6 = 0. This means that (I(U)F*LU
C
)\Y = 0 and U = 0. 

Thus by the inverse function theorem, /i is a local difi'eomorphism. 

Similarly, using the other symplectic form U2, we get a map 

i/: Af-frlT^R) 

and, put together, a smooth map 

w = (/i,i/) : M -> H^Y^R) x H^Y^R) 

Thus ^(M) is a smooth submanifold such that the projection onto each factor is a 
local diffeomorphism. 

The vector space H1 (F, R) has a real constant symplectic form defined by the 
restriction of the Kahler form h on X: 

(a, b) =      a n-l ApAh 
Y 

where a,/3 are representative 1-forms for a and b. This clearly only requires the 
cohomology class of the Kahler form h. We define two constant symplectic forms on 
H^Y^R) xH^Y.R): 

(2) fii((01,02), (61,62)) = (01,62) + (02,61) 

(3) fi2((oi,02), (61,62)) =■ (01,61) - (02,62) 

Take a basis for V, so that the skew form has matrix Uij, then in the corresponding 
linear coordinates 

(4) Hi = 2 ]K Uijdxi A dyj 

(5) ^2 = V^ajjjdrEj A dxj — 22uijdyi A dyj 

We now have 

THEOREM 1. w(M) C ^(Y.R) x ^(Y.R) is Lagrangian with respect to fii 
and fi2- 

Proof. The holomorphic symplectic form UJ
C
 is of type (2,0) so since F is holo- 

morphic, F*(LJ
C
)
2
 has type (4,0). If U is a tangent vector on M at [Y], then as we 

have seen, (L(U)F*LJ
C
)\Y is independent of the choice of lifting U, because LU

C
\Y = 0. 

Now 

L(U)I(V)F*(U>
C
)
2
 = 2{t{U)i{V)F*uc)(F^c)+2(L{U)F*Loc)(i{V)F*uj^ 

and restricting to F, 

(6) I(U)L(V)F*(UJ
C
)
2
\Y = 2(L(U)F*U

C
)\Y A (L(V)F*LJ

C
)\Y 

But the left hand side is of type (2,0), hence 

L(U)L(V)F*{U
C
)
2
\Y Ah71-1^ 
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is of type (n + l,n — 1) and so vanishes since Y is complex of dimension n. Hence 
from (6) 

/ L(U)F*U
C
 A L(V)F*U

C
 A hn-1 = 0 

JY IY 

but this means that 

((d/x + tdi/)(l7), (d/i + idi/)(V)> = 0 

and so equating to zero real and imaginary parts, 

(dfi(U),dfi(V)) - {dis(U),dv(V)) = 0 

(dv(U),diJ,(V)) + (dfi{U),du{V)) = 0 

These two conditions are precisely the vanishing of O2 and f^i respectively on w(M). 

REMARK. Theorem 1 demonstrates that the structure of the moduli space - de- 
fined as a submanifold on which two symplectic forms vanish - parallels the structure 
of the objects it parametrizes. This is also the philosophy behind the description in 
[8] of the moduli space of special Lagrangian submanifolds of a Calabi-Yau manifold. 

4. Special Kahler manifolds. We shall show that, as a consequence of the 
"bilagrangian" property of Theorem 1, M inherits a special Kahler structure. The 
definition, as given in [6], is the following: 

DEFINITION 1. A special Kahler manifold is a complex manifold M with 
• a Kahler metric g with Kahler form uo 
• a flat torsion-free connection V such that 
• Vcc; = 0 and 
• dv/ = 0en2(M,T) 

To clarify the last property, we think of the complex structure /, an endomorphism 
of the tangent bundle T, as a 1-form with values in T, i.e. / G Q1(M, T). The 
connection V defines a covariant exterior derivative dv : np(M,r) -> fip+1(M,T) 
and we require d^I = 0. This is weaker than V/ = 0 and indeed, since u and / 
determine g, the latter condition would say that V is the Levi-Civita connection, and 
all we would be looking at is a flat Kahler manifold. The reader should be warned that 
special Kahler manifolds do not form a very interesting class of global Riemannian 
structures - it has been shown by Lu [10] that any complete special Kahler manifold 
is flat. 

Now let V be a real symplectic vector space with skew form (,). As in (2),(3) 
we define two constant symplectic forms fii,^ on F x V. We can also define an 
indefinite metric g on V x V by 

p((a,6),(a,6)) = -(a, 6) 

Then we have the following 

THEOREM 2. Let M C V x V be a submanifold which is Lagrangian for fix and 
02, and transversal to the two projections onto V. Then g\M is a special pseudo- 
Kdhler metric. Conversely, any special pseudo-Kdhler metric on a manifold M is 
locally induced from an embedding in V x V for some V. 
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Proof. It will be convenient to use the nondegenemte form (,) on V to identify V 
with V*. Under this identification, Hi becomes essentially the canonical symplectic 
form on T*V = V x F*, by setting d& = J^^ijdyj in (4),(5). We then have the 
following expressions for fix and f^: 

(7) fii = 2 ^ dxi A d£i 

(8) (12 z= ^ Uijdxi A dxj + ^ ioljd^i A d^- 

To begin, we use the projection onto the first factor V to locally identify M with 
a flat symplectic vector space. This provides us with our flat connection V with 
Vo; = 0. If we use the coordinates xi,... ,X2n, then covariant derivatives using V are 
just ordinary derivatives. 

Now since M is Lagrangian with respect to the canonical symplectic form Oi on 
T*F and transversal to the projection to V, the embedding is defined by the graph 
of the derivative of a function on V so in coordinates 

u = d<j) 
dxj 

for some function tj>(xi,.-., £2n)- The tangent vector d/dxj of M then lies in V x V* 
as the vector 

x- = — + y ^— = — + y d2<p   d 
3
      dxj     ^ dxj d^k      dxj     ^-f dxkdxj d^k 

Since the metric on V x V* is defined by 

9((xt1i),M) = \(x,t) 

the induced metric on M is 

22,ykidxkdxj = 2J 9{Xki Xj)dxkdxj = ^ -—-^—dxkdxj 

In general this metric may not be positive definite. It is nondegenerate however, for 
if Yl9ijaj = O5 ^en YlajXj = Ylajd/dxj so th&t projection of this tangent vector 
onto the second factor in V x V is zero. By the transversality assumption this means 
each dj = 0. 

Consider now the second Lagrangian condition: ^2 vanishes on M. From (8) this 
says, using & = d(j)/dxk and gkj - d2^ldxkdxj1 

0 = ^(XkiXj) = ^ + Y^9kagjb^ab 

or, writing /^ = ^u^gak^ that /2 = — 1. This is the almost complex structure. Since 
ujjzj — —Wjk, I is skew adjoint with respect to g. Now let X be the Hamiltonian vector 
field for the function (j). We have 

v-     V^       d   _s^   ijdc/)   d 
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SO 

Hence I = dyX and so d^I = d^X = 0 since the connection is flat. Hence I satisfies 
the compatibility condition with the flat connection. 

It remains to show that / is integrable. But consider the complex functions 

(9) «-*-<iy*£ 
Differentiating, we obtain the 2n complex 1-forms 

dzj = dxj — i Y^ u^ -—-—dxi = dxj - i Y^ w^Qkidxi = dxj — i ^P tfdxt 

and these are clearly of type (1,0). We need to find n linearly independent ones. 
Let EGA1,0 be the distribution spanned by dzi,... ,<i^2n- Then for each j, 2dxj = 
dzj + dzj, and since dxi,..., dx2n forms a basis, E 0 E = A1 and the rank of E is n. 

Thus the metric g and the connection V satisfy all the conditions for a special 
pseudo-Kahler (i.e. possibly indefinite) metric. 

Now consider the converse. Let M be a special pseudo-Kahler manifold, and 
(zi,.. .,X2n) fiat local coordinates, so that the covariant derivative is the ordinary 
derivative and the coefficients of the symplectic form are constant. Consider the 
1-form 

ak = ^Ukiljdxj 

Now 

v-       dlli dak = 2_^ uki -^-dxm A dxj = 0 

since UJU is constant and d^I — 0. Thus locally there are functions f& such that 

ot-k = d£k. 

We map M to R2n x R2n by 

(a;i,...,X2n) •-> 0El5-..,£2n,£l,.--,&n) 

First we claim the image is Lagrangian with respect to the symplectic form Oi = 
2 ^2 dxj A d^j. But restricting Yl dxj A d£j gives 

dxj A OLJ = Yj dxj A Ujill
kdxk = /J d^ A Qjkdxk = 0 

since the metric tensor (^ is symmetric. 

Next consider the symplectic form 0,2 = YluijdxiAdxj + w^ d^i A d^j. Restricted 
to M this is 

2J Uijdxi A dxj + uabgaidxi A Qbjdxj 
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But since I2 — — 1 this too is zero. 

Hence taking V to be R2n with the skew form (jy, we obtain a local embedding 
of M in V x V, Lagrangian with respect to both forms. It is straightforward to see 
that the induced metric is g^. 

One of the features of the above approach is the fundamental role of the function 0. 
Here is another aspect of this: 

PROPOSITION 3.  The function 0 is a Kdhler potential. 

Proof. Consider 

d{ld4>) = J2 -fa-kW^
dXk A to* 

Now 

8-'] = ££<^> = £^   "* dxk 3     ^ dxk ^      dxadxjdxk 

so 

dm) = Y,"ia
dx tx%x^dXkAdXj+Ilid^dXkAdXj 

The first term vanishes by the symmetry in j, k and the second term is 

^ I)gikdxk A dxj = -^jT^Ukjdxk A dxj — -u 

where u is the Kahler form. 

We can now prove 

THEOREM 3. The moduli space M of deformations of a complex Lagrangian 
submanifold of a complex Kdhlerian symplectic manifold X has a naturally induced 
special Kdhler structure. 

Proof. We have to show firstly that w(M) C i^^R) x IJ^YjR) satisfies the 
transversality of the previous theorem, but this follows from Proposition 2 applied to 
fi and v. We also need the metric to be definite. But 

g(X,X) = (dfi(X),dis(X)) = ~((dtJL + idv)(X),(diA-idv)(X)) 

l- f i(X)LJC A L(X)U>C A h"-1 

2 JY 

which is definite. We should also show that the complex structure / coincides with 
the natural complex structure of the moduli space when considered as a moduli space 
of complex submanifolds. From (9), the functions 

■i-»S{ Zj = X-i — l  >    w 
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are antiholomorphic with respect to /. But ^ = d^/dxj, so Zj = Xj - ij^^^^k- If 
we return from V x V* to V x V using u we see that this function is obtained by- 
taking a class Aj G Hi (Y, R) and forming 

Zj = (fi - iv,Aj) 

Since d(jj, 4- iv)(U) = i{U)ujc is of type (1,0), dzj — (d/j, - idv,Aj) is of type (0,1) 
with respect to the complex structure of the moduli space of compact complex sub- 
manifolds, so the two complex structures coincide. 

Finally we should pass from the local to the global point of view on M, a point 
which is relevant in particular to the situation where M is the base space of a com- 
pletely integrable system. There is an additive ambiguity in the choice of the function 
/i but dfi gives an isomorphism between TM and the trivial bundle M x H1 (Y, R), 
and this is the flat connection V of the special Kahler structure. Globally on M, the 
cohomology of the fibres of Z -> M defines a flat vector bundle on M (homotopy 
invariance of cohomology defines the Gauss-Manin connection) and so the isomor- 
phism dfj, provides a flat connection on TM. The symplectic form is preserved by the 
Gauss-Manin connection, and since the complex structure on M is globally defined, 
so is the metric g, which is defined by / and u. 

REMARKS. 

1. One of the well-known features of special Kahler geometry is the fact that any 
special Kahler metric is derived from a single holomorphic function J7 of n variables. 
It is known as the holomorphic prepotential on M. This fact is rather easily seen 
using our bilagrangian formulism. For this purpose we choose a symplectic basis on 
V. The corresponding coordinates xi,..., X2n give 

u = yj dxj A dxn+j 

and so 

2n 

Hi = 2 2_\ dxj A d£j 
i 

n n 

^2 = /J dxj A dxn+j — 2_\ d^j A d^n+j 
1 1 

and then 

..n n 

0° = -fii 4-10,2 — /J d(xj + i£n+j) A d(^j + ixn+j) — >J dvj A dvjj 
2 i i 

We see that 0° can be identified with the canonical complex symplectic form on T*Cn. 
From Proposition 1, a submanifold on which Hi and f^ vanish is the same thing as 
a complex Lagrangian submanifold of T*Cn, but this is given by the graph of the 
derivative of a holomorphic function 

<10> "' - s; 
From Theorem 2 this is all we need for a special Kahler manifold. 
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2. In the standard presentation of the prepotential, its second derivative gives 
a holomorphic map from the base space of an integrable system to the Siegel upper 
half-space - the moduli space of polarized abelian varieties, expressed as symmetric 
matrices with positive definite imaginary part. Such a description involves choosing 
a symplectic basis for Hi(Y, Z) (the classical A and B cycles) which is what we 
have done to introduce the holomorphic function J7. By contrast the real function </> 
requires no such choice. All we have chosen is projection onto the first factor in V x V 
to define 0. We postpone the discussion of the relationship between (/> and J7 to the 
next section, where we study some associated hyperkahler constructions. 

3. In the bilagrangian picture of M C V x V we get another flat torsion-free con- 
nection by projecting onto the second factor. From the second Lagrangian condition 

0 = ft2\M = ^2^ijdxi A dxj - ]jP Uijdyi A dyj 

the pull back of the flat symplectic form under this projection is the same u. The 
function 0 is then replaced by its Legendre transform and the new flat coordinates 
dyj are related to the old ones by dyj = Idxj. From the point of view of the moduli 
space of complex Lagrangian submanifolds, all we Imve done here is to replace ui 
by ^2, or what is essentially the same, to replace the complex symplectic form UJ

C 

by iuj0. Clearly we can multiply UJ
C
 by e10 and still hsive the same moduli space but 

now a family of flat connections parametrized by the circle. This is one viewpoint to 
the study of Higgs bundles as in Simpson's higher dimensional approach [12]. In fact 
any special Kahler manifold can be thought of as having a Higgs bundle structure 
on T 0 T*. Recall that a Higgs bundle corresponding to a local system on a Kahler 
manifold M consists of a holomorphic vector bundle E with a unitary connection A 
and a section $ G H0(M, EndE 0 T*), the Higgs field, such that the connection 

cU + e^S + e-*'** 

is flat for all 9. In the case of a special Kahler manifold, the connection A is the 
Levi-Civita connection on T © T* and the Higgs field has the form 

0    0 
e   0 

where 0 G HQ(M, Sym3T*) is a holomorphic cubic form. Since Simpson's original 
approach to Higgs bundles was derived from variations of Hodge structure, this begins 
to take us back to the picture of a moduli space of complex manifolds which was the 
original motivation for this paper. 

5. Hyperkahler metrics. In [2] Cecotti, Ferrara and Girardello showed how 
to define naturally a hyperkahler metric on a certain bundle over a special Kahler 
manifold (see also [6]). As we have seen a special Kahler metric can be defined 
via a single holomorphic function, so we have a straightforward way of constructing 
hyperkahler metrics. We shall show here that this construction is in fact a special 
case of an earlier technique called the Legendre transform construction of Lindstrom 
and Rocek [9], [7]. 

Recall (see for example [1]) that a hyperkahler metric is determined by three 
symplectic forms LJI,UJ2,WS satisfying some algebraic conditions, namely that if ipi : 
T —> T* is the isomorphism determined by CJJ, and we define Ji = v?^1^?^ — 
(Pilipz, Js — ^^ij then Ji, J2, J3 obey the quaternionic identities Jf = Jf = Jf = 
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— 1. We work locally first and let M be a special Kahler manifold. On the product 
M x R2A; take the three symplectic 2-forms (Ji,uj2,wz defined by 

(11) u^Y^g^dxjAdy, 

(12) UJ2 + iu* = - 2 ^Vjkdixj + iyj) A d(xk + iyk) 

Then 

and 

A(|-) = E^^ = E'i^ 
So in block matrix form 

J3 = 

Similarly 

J2 = 

0 J 
1 0 

-7   0 
0     I 

so that Jf = Jl = —1 and J2J3 = —J^Jz-   Thus J2, J3 generate an action of the 
quaternions, with Ji = J^Js given by 

*-(-0i J 
and so the symplectic forms CJI,^,^ define a hyperkahler metric. 

PROPOSITION 4. 0 is a Kahler potential with respect to the complex structure J\. 

Proof. From (12) and the discussion in section 2, it is clear that Zj = Xi + iyj for 
1 < i < 2n are complex coordinates in this complex structure. But 0 is independent 
of yj so 

<9<90 = V^ -—-—dzj A dzk — -2iuJi 
(JXjC/Xfc 

from (11). 

REMARK. Note that the projection from M x R2n to M is holomorphic in the 
complex structure J2. Using the <9, <9 operators in that structure dd(j) gives the pull- 
back of the Kahler form on M, which is degenerate. 

Since Ujk is constant and 0 is independent of yj, each symplectic form is invariant 
by the vector field d/dyj. We thus have a triholomorphic action of R2n on M x R2n. 
The Legendre transform method is a canonical construction of hyperkahler manifolds 
X4n with a triholomorphic action of Rn, so in our case we have far more symmetry. 
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Strictly speaking (a point not emphasized in the literature on this method) to apply 
the method we need an action which also admits an equivariant hyperkahler moment 
map. Recall that if U is a triholomorphic vector field then for each i, i(U)ui — dfif for 
some function /if and putting the moment maps /if together we get the hyperkahler 
moment map 

fi: X -» Rn ® R3 

which, if equivariant, represents X as the total space of a principal Rn bundle over an 
open set of Rn 0 R3. The Legendre transform construction reduces the hyperkahler 
equations in this situation to finding a real-valued function i^xi,... ,xn) defined on 
Rn (g> R3 —>> R and which satisfies the 3-dimensional Laplace equation 

(13) AF(ciX,...,cnx) = 0 

for each (ci,...,cn) € Rn. Clearly if F is defined from a holomorphic function 
/(zi,...,zn) by 

F(xi,X2,...,xn) = Ref(ui +ivi,...,un + ivn) 

with Xj — (UJ,VJ,WJ) then it satisfies this equation. In fact this is essentially the only 
way to obtain a solution which is invariant under translation in one of the coordinates 
of each Xj 6 R3. 

PROPOSITION 5. The hyperkahler metric defined by (11),(12) is constructed by 
the Legendre transform method from F = Re!F where T is a holomorphic prepotential. 

Proof. Recall that the introduction of the holomorphic function J7 required the 
choice of a symplectic basis on V. We shall need the same to implement the Legendre 
transform method, because we need an equivariant moment map. To see this note 
that if Uj = —d/dyj, then from (11),(12) the hyperkahler moment map is 

_ d^_ 
dxj 

V>2 + ^3 = i Y^ Ujk (xk + iyk) 

and this (because of the ?/& terms) is not equivariant for the full group R2n of isome- 
trics. However, if we choose a symplectic basis so that v = Yui d^i A dxn+i and take 
the action of Rn generated by Ui,..., Un, we have for 1 < j < n the moment map 
for Uj 

"^arr* 

1^2 + i/is = -i(xn+j 4- iyn+j) 

and this is equivariant since 

rr dyn+k n Uryn+k = —^-=Q 

for 1 < j < n. The hyperkahler moment map is now: 

fx(x) = (£!,...,£n,-yn+i,...,-y2n,Zn+l,...5£2n) G Rn 0 R3 
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Since T is a holomorphic function of wj = £j 4- ixn+j, F = .Re^7 satisfies the equation 
(13). 

To find the hyperkahler metric for such an F, we follow [7] putting 

Zj = —yn+j + ix-n+j — i{xn+j 4" lyn+j) 

for 1 < j < n. These are holomorphic functions with respect to the complex structure 
Ji. According to [7], a Kahler potential for this complex structure is 

n 

i 

where for 1 < j < n 

dF 

But from (10) this means that Uj + Uj = Xj and 

n 

(14) K = F-yjriXkZk 
1 

To summarize, we have F(xn+i,..., a:2n5 ^i»■ • • > £n) and from the complex Lagrangian 
submanifold structure of M we obtain from (10) for 1 < j < n, 

_ dF OF 
(15) Xj — 7—, £n+j — ~ 

From the Hi-Lagrangian description of M we also have, for 1 < j < 2n, 

<-» « = £; 
so in particular we can write (14) as 

^     dxk 

Differentiating with respect to Xj for 1 < j < n we have 

OK     A OF dZk      dcj)      A        a20 — V^ ^ _ iiii _ V^ 
9XJ      ^ 9^ 9XJ     9XJ     ^     dxkdxj 

dxkdxj      dxj     ^     dxkdxj 

dcj) 
dxj 

using (15) and (16) and the fact that F is independent of x^ for 1 < j < n. Similarly 
for n + 1 < j < 2n, 

dK__^dF_d^L     9F_A        S20 
^r, ~ 2^ ^A. ^, + ^T,     2^Xk~- dxj     ^ d^k dxj     dxj     t-r*     dxkdxj 
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^      d2<f>      ,    A      d24> 
dxkdxj *-•'     dxkdxj 

d(j) 
dxj 

Hence K = -0 modulo an additive constant. Since 0 is a Kahler potential from 
Proposition 5, we have the same metric (taking into account a difference of sign 
convention). 

REMARKS. 

1. To globalise this metric presents some choice. One could, as in [6], define it on 
T*M. Its local structure is, however, that of a principal bundle with structure group 
a translation group. As such it has no geometrically distinguished zero section. In 
the context of complex Lagrangian submanifolds, it can be defined on the space of 
pairs of a complex Lagrangian submanifold together with a line bundle of fixed Chern 
class over it. In this context it is defined on an open set of Markman's moduli space 
[4] of Lagrangian sheaves, which is itself an integrable system. 

2. In [8] a Kahler metric on the moduli space of pairs consisting of a special 
Lagrangian submanifold of a Calabi-Yau manifold together with a flat line bundle 
was defined and conjectured to be itself Calabi-Yau. In the case that the Calabi-Yau 
is hyperkahler and the special Lagrangian submanifold is complex Lagrangian with 
respect to one of the complex structures, this metric is precisely the one defined above. 
Since it is hyperkahler it is a fortiori Calabi-Yau. 

3. From the point of view put forward in this paper we have travelled from a 
complex Lagrangian submanifold of C2n (Remark 1 of Section 4) to a hyperkahler 
metric. This is essentially the route followed by Cortes in [3]. 
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