CONJECTURAL ALGEBRAIC FORMULAS FOR REPRESENTATIONS OF GL_n^{\dagger}

SERGEI GELFAND* AND DAVID KAZHDAN‡

0. Introduction.

0.0. Let F be a non-archimedean local field. Due to the recent work of Harris and Taylor [HT], we know that the local Langlands conjecture is true. In other words, for any local field F we know the existence of the one-to-one correspondence $\phi_n \colon \Pi_n \to GL_n(F)$ between the set Π_n of n-dimensional representations of the Galois group $\mathfrak{G} = \operatorname{Gal}(\overline{F}/F)$ and the set $GL_n(F)$ of irreducible nondegenerate representations of the group $GL_n(F)$. In particular, one can associate an irreducible representation π_χ of the group $GL_n(F)$ to a pair (E,χ) , where E is a commutative semisimple algebra over F of degree n and χ is a multiplicative character of the group E^* . However, we do not know any explicit construction for the representation π_χ . In our paper we propose an explicit "algebraic" construction for the representation π_χ at least for n=4.

One can inductively characterize the correspondence ϕ_n in the following way. Suppose that we know the correspondence ϕ_{n-2} . Then for any $\sigma \in \Pi_n$ we can characterize the representation $\phi_n(\sigma)$ as the unique representation of $GL_n(F)$ such that for any representation $\rho \in \Pi_{n-2}$ we have

$$\Gamma(\phi_n(\sigma), \phi_{n-2}(\rho)) = \Gamma(\sigma \otimes \rho^*),$$

where $\Gamma(\phi_n(\sigma),\phi_{n-2}(\rho))$ is the Gamma function of Jacquet, Piateskii–Shapiro, Shalika [JPS] and $\Gamma(\sigma\otimes\rho^*)$ is the Gamma function of Langlands. More precisely, let $GL_n(F)_u^{\widehat{}}\subset GL_n(F)^{\widehat{}}$ and $\Pi_{n.u}\subset\Pi_n$ be the subsets of unitary representations. We denote by Γ_n the function on the set $GL_{n-2}(F)_u^{\widehat{}}\times\Pi_{n,u}$ defined by $\Gamma_n(\pi,\rho)=\Gamma(\pi,\phi_{n-2}(\rho))$. To any maximal torus T in $GL_n(F)$ and any character χ of T we may associate an n-dimensional representation $\sigma_\chi\in\Pi_n$ and therefore a representation $\pi_\chi=\phi_n(\sigma_\chi)\in GL_n(F)^{\widehat{}}$. Let (ρ_{n-2},Wh_{n-2}) be the Whittaker representation of $GL_{n-2}(F)$. The representation of $GL_{n-2}\times T$ in the space $Wh_{n-2}\otimes L^2(T)$ decomposes in the direct integral

$$(0.1) Wh_{n-2} \otimes L^2(T) = \bigoplus \int_{GL_{n-2}(F)_{\widehat{u}} \times T} (V_{\pi} \otimes \chi),$$

where V_{π} is the space of the representation π . Let A_{n-2}^T be the unitary operator in the space $Wh_{n-2}\otimes L^2(T)$ commuting with $GL_{n-2}(F)\times T$ that in the above decompositions is the multiplication by $\Gamma_n(\pi,\pi_{\chi})$. As follows from [JPS], one can write explicit formulas for all π_{χ} if one knows the operator A_{n-2}^T .

The goal of this paper is to propose an algebraic formula for this operator in the case n=4. More precisely, for any n we construct "algebraic" data $\mu_n=(\mathbf{Z},\mathbf{Y},\mathbf{p},\omega,\mathbf{f})$ that define an operator $A_{n-2}^{T_0}$ corresponding to the maximal split torus

[†] Received March 18, 1999; accepted for publication March 23, 1999.

^{*} American Mathematical Society, P.O.Box 6248, Providence, RI 02940, USA and Institute for Problems of Information Transmission, 19, Ermolova srt, 101447, GSP-4, Moscow, Russia (sxg@ams. org).

[‡] Department of Mathematics, Harvard University, Cambridge, MA 02139, USA (kazhdan@math.harvard.edu). The research of this author was partially supported by an NSF grant.

 T_0 in GL_n . In this case the representation π_χ is the induced principal series representation. Next, for n=4, we define an action of the symmetric group S_4 on μ_4 . Then for any maximal torus T in GL_4 we can define the corresponding twist $\mu_{T,4}$ of μ_4 and, therefore, an operator \widehat{A}_2^T on the space $Wh_2\otimes L^2(T)$. We conjecture that $\widehat{A}_2^T=A_2^T$. Moreover, we conjecture that for any n there exists an action of the symmetric group S_n on μ_n such that $\widehat{A}_{n-2}^T=A_{n-2}^T$ for any maximal torus T in $GL_n(F)$.

Note that for n = 3 this conjecture was proved in [K1].

The same formulas work for a real field F.

0.1. Algebraic measures and twisting. We start with the notion of an algebraic measure. For the rest of paper we choose a nontrivial additive character ψ_F of the field $F, \psi_F : F \to \mathbb{C}^*$. We will denote algebraic varieties over F by bold letters (say, \mathbf{X}) and the sets of F-point by the corresponding italic letters (say, $X = \mathbf{X}(F)$). Similarly, morphisms of algebraic varieties will be denoted by bold letters (say, $\mathbf{f} : \mathbf{X}_1 \to \mathbf{X}_2$) and the induced mappings of the sets of F-points by the corresponding italic letters (say, $f : X_1 \to X_2$). For a smooth algebraic variety \mathbf{Y} by $\mathcal{S}(Y)$ we denote the space of locally constant function on Y with compact support.

Let **Y** be an algebraic variety over F and μ a complex valued measure on Y. An algebraic presentation of μ is data $(\mathbf{Z}, \mathbf{Y}, \mathbf{p}, \omega, \mathbf{f})$, where **Z** is a smooth algebraic variety, $\mathbf{p} \colon \mathbf{Z} \to \mathbf{Y}$ a morphism, $\omega \in \Omega^r(\mathbf{Z})$, $r = \dim \mathbf{Z}$, a volume form (i.e., a differential form of the top degree) on **Z**, and **f** an algebraic function on **Z** such that the measure μ is equal to the distribution

$$p_*(|\omega|\cdot(\psi_F\circ f)),$$

where $|\omega|$ is the measure on Z corresponding to ω , see [W]. In other words, for a function $\varphi \in \mathcal{S}(Y)$ we have

$$\int_Y \varphi \, \mu = \int_Z \varphi(p(z)) \psi_F(f(z)) |\omega|(z).$$

One has to be careful since in cases we are interested in the integral in the right-hand side of the last formula does not converge absolutely. Therefore, we must specify the integration process. We choose the following scheme.

For $a \in F$ let $\mathbf{Z}_a \subset \mathbf{Z}$ be the level variety $\mathbf{Z}_a \stackrel{\mathrm{df}}{=} \{\mathbf{f} = a\}$. The volume form ω on \mathbf{Z} determined the volume form ω_a on \mathbf{Z}_a by the formula

$$\omega_a \stackrel{\mathrm{df}}{=} \operatorname{Res} \frac{\omega}{f - a}.$$

DEFINITION 1. Algebraic measure is data $\mu = (\mathbf{Z}, \mathbf{Y}, \mathbf{p}, \omega, \mathbf{f})$ such that the following conditions are satisfied.

(i) For any function $\varphi \in \mathcal{S}(Y)$ and for almost any $a \in F$ the integral

$$I_a(\varphi) \stackrel{\mathrm{df}}{=} \int_{Z_a} \varphi(p(z)) |\omega_a|(z)$$

converges absolutely.

- (ii) $I_a(\varphi)$ is a locally L^1 -function of a.
- (iii) The limit

$$I(\varphi) \stackrel{\mathrm{df}}{=} \lim_{n \to \infty} \int_{|a| < p^n} \psi_F(a) I_a(\varphi) |da|$$

exists.

(iv) There exists a complex valued measure μ on Y such that $I(\varphi) = \int_Y \varphi \mu$ for $\varphi \in \mathcal{S}(Y)$.

In the case μ is called the *realization* of μ and μ is called an *algebraic presentation* of μ .

 $\it Remark.$ In general, a measure μ can have several nonisomorphic algebraic presentations.

Let Γ be a finite group of F-automorphisms of \mathbf{Y} . A lifting of the action of Γ to μ is an F-action of Γ on \mathbf{Z} that commutes with \mathbf{p} and preserves ω and \mathbf{f} . If μ is the realization of a Γ -invariant data μ , then μ itself is Γ -invariant.

Given a lifting of the action of Γ to μ , we can construct twisted forms of μ as follows.

Let $\mathfrak{G} = \operatorname{Gal}(\overline{F}/F)$. Elements of $H^1(\mathfrak{G}, \operatorname{Aut} \mathbf{Z})$ correspond to homomorphisms $\alpha \colon \mathfrak{G} \to \Gamma$ modulo conjucation by elements of Γ . To any such α we associate the twisted form \mathbf{Z}_{α} of \mathbf{Z} . This is an algebraic variety over F, which is isomorphic to \mathbf{Z} over \overline{F} . The set of F-points of \mathbf{Z}_{α} is given by

$$Z_{\alpha} = \{ x \in \mathbf{Z}(\overline{F}) \mid \zeta z = \overline{\alpha}(\zeta)z \text{ for } \zeta \in \mathfrak{G} \}.$$

Similarly, to α we can associate the twisted form \mathbf{Y}_{α} of \mathbf{Y} . Since the action of Γ on \mathbf{Z} and \mathbf{Y} preserves ω and commutes with \mathbf{p} and \mathbf{f} , we get the twisted data $\boldsymbol{\mu}_{\alpha} = (\mathbf{Z}_{\alpha}, \mathbf{Y}_{\alpha}, \mathbf{p}_{\alpha}, \omega_{\alpha}, \mathbf{f}_{\alpha})$.

In the case where μ_{α} defines an algebraic measure (i.e., the integrals in Definition 1 converge and the limit exists), we define the measure μ_{α} on Y_{α} as the realization of μ_{α} . We emphasize that μ_{α} depends not just on μ and the action of Γ on Υ , but also on the lifting of this action to μ .

A measure on Y is a linear functional of the space of continuous function. We need a generalization to the case where the function are replaces with sections of a line bundle on \mathbf{Y} . More precisely, we consider the following situation. Let $\widetilde{\mathbf{Y}}$ be a variety with the free action $m \colon \mathbf{U} \times \widetilde{\mathbf{Y}} \to \widetilde{\mathbf{Y}}$ of a unipotent group \mathbf{U} , such that $\mathbf{Y} = \widetilde{\mathbf{Y}}/\mathbf{U}$, and let $\Psi \colon \mathbf{U} \to \mathbf{G}_a$ be a character of \mathbf{U} . Then we can consider the space $\mathcal{S}_{\Psi}(Y)$ of locally constant functions φ on \widetilde{Y} such that

$$\varphi(u\widetilde{y}) = \psi_F(-\Psi(u))\varphi(\widetilde{y}), \qquad u \in U, \quad \widetilde{y} \in \widetilde{Y},$$

and the function $||\varphi||$ on Y has a compact support.

A Ψ -measure is a linear functional on $\mathcal{S}_{\Psi}(Y)$ that extends to a continuous functional on a space of continuous Ψ -equivariant functions on \widetilde{Y} that are "compactly supported" (in the above sense). Let $\widetilde{\mathbf{Z}}$ be a manifold with a free action of \mathbf{U} , $\widetilde{\mathbf{p}} \colon \widetilde{\mathbf{Z}} \to \widetilde{\mathbf{Y}}$ an \mathbf{U} -equivariant map, $\widetilde{\omega}$ a \mathbf{U} -invariant volume form on $\widetilde{\mathbf{Z}}$, $\widetilde{\mathbf{f}} \colon \widetilde{\mathbf{Z}} \to \mathbb{A}^1$ a function such that

$$\mathbf{f}(u\widetilde{z}) = \Psi(u) + \mathbf{f}(\widetilde{z}).$$

Let us choose an invariant volume form du on U.

DEFINITION 2. We say that the data $\widetilde{\boldsymbol{\mu}} = (\widetilde{\mathbf{Z}}, \widetilde{\mathbf{Y}}, \widetilde{\mathbf{p}}, \widetilde{\omega}, \widetilde{\mathbf{f}})$ is an algebraic Ψ -measure if the following conditions are satisfied.

(i') For $\varphi \in \mathcal{S}_{\Psi}(Y)$ and $a \in F$ denote

$$\widetilde{Z}_{a,\varphi} = \{ z \in \widetilde{Z} : \widetilde{f}(z)\varphi(\widetilde{p}^*(z)) = a \}.$$

Then $\widetilde{Z}_{a,\varphi}$ is invariant under U. Let $Z_{a,\varphi}=\widetilde{Z}_{a,\varphi}/U$ and $|\omega_{a,\varphi}|$ the measure on $Z_{a,\varphi}$ induced by $\widetilde{\omega}/du$. We assume that for any $\varphi\in\mathcal{S}_{\Psi}(Y)$ and for almost any $a\in F$ the

integral

$$I_{a}(\varphi) \stackrel{\mathrm{df}}{=} \int_{Z_{a,\varphi}} \widetilde{f}(z) \varphi(\widetilde{p}^{*}(z)) |\omega_{a,\varphi}|$$

converges absolutely.

(ii') $I_a(\varphi)$ is a locally L^1 -function of a.

(iii') The limit

$$I(\varphi) \stackrel{\mathrm{df}}{=} \lim_{n \to \infty} \int_{|a| \le p^n} \psi_F(a) I_a(\varphi) |da|$$

exists.

(iv') There exists an (U, Ψ) -equivariant complex valued measure μ on \widetilde{Y} such that $I(\varphi) = \int_Y \varphi \mu$ for $\varphi \in \mathcal{S}_{\Psi}(Y)$.

As before, we call the data $\tilde{\mu}$ an equivariant presentation of μ and μ the realization of $\tilde{\mu}$.

Similarly to the above, we can define twisting of equivariant measures.

0.2. Γ -factors. Let U_{-} be the lower unipotent subgroup in GL_{ℓ} and $\Psi: U_{-} \to G_{a}$ the homomorphism given by

$$\Psi(u) = u_{21} + \cdots + u_{\ell, \ell-1}.$$

The Whittaker representation (ρ_{ℓ}, Wh_{ℓ}) of GL_{ℓ} is defined by the formula

$$\rho_{\ell} = \operatorname{Ind}_{U}^{GL_{\ell}}(\psi).$$

An irreducible representation π of GL_n is called *generic* if it occurs in the decomposition of ρ_n into irreducible components. It is known that any generic unitary π occurs in ρ_ℓ exactly once.

Let T be a maximal torus in $GL_n(F)$ and χ a unitary character of T. The pair (T,χ) determines an n-dimensional representation ρ_{χ} of \mathfrak{G} , and by the Langlands correspondence (see [HT]), a unitary nondegenerate irreducible representation π_{χ} of $GL_n(F)$. Let σ be a generic unitary irreducible representation of GL_{ℓ} . Jacquet, Piateskii–Shapiro, and Shalika [JPS], associated to the pair (π_{χ}, σ) the number $\Gamma(\pi_{\chi}, \sigma)$, $|\Gamma(\pi_{\chi}, \sigma)| = 1$. Using the direct integral decomposition similar to (0.1), we combine the numbers $\Gamma(\pi_{\chi}, \sigma)$ for all unitary characters $\chi \colon T \to \mathbb{C}$ and all generic unitary irreducible representations σ of $GL_{\ell}(F)$ in a unitary operator A_{ℓ}^T in the space $Wh_{\ell} \otimes L^2(T)$ commuting with the action of GL_{ℓ} on the first factor multiplication by elements of T in the second factor.

Define the action m of the unipotent subgroup $\mathbf{U}_{-} \subset \mathbf{GL}_{\ell}$ on the space $\widetilde{\mathbf{Y}} = \mathbf{GL}_{\ell} \times \mathbf{T}$ by left multiplication on the first factor. Let $\mathbf{U}^{(2)} = \mathbf{U}_{-} \times \mathbf{U}_{-}$ and let $\Psi^{(2)} : \mathbf{U}^{(2)} \to \mathbf{G}_{a}$ be given by

$$\Psi^{(2)}(u, u') = \Psi(u) - \Psi(u').$$

The action m determines the action $m^{(2)}$ of $\mathbf{U}^{(2)}$ on $\widetilde{\mathbf{Y}} = \mathbf{GL}_{\ell} \times \mathbf{T} \times \mathbf{GL}_{\ell} \times \mathbf{T}$. Define the $\Psi^{(2)}$ -measure $\mu(T,\ell)$ on \widetilde{Y} by the formula

$$\int_{\widetilde{Y}} f_1(t_1, g_1) \overline{f_2(t_2, g_2)} \, \mu(T, \ell) = (A_{\ell}^T f_1, f_2)_{Wh_{\ell} \otimes L^2(T)}.$$

The first result of the paper (Proposition 5.1) is the construction of an algebraic presentation $\mu_{T_0,n}$ of the measure $\mu(T,\ell)$ in the case where $n=4,\,T=T_0$ is the split torus in GL_4 , and $\ell=2$.

0.3. Twisting of the algeraic presentation. For a unitary character $\chi \colon T_0 \to \mathbb{C}^*$ let π_{χ} be the corresponding irreducible unitary representation of the principal series. As is well known, for $w \in S_n$ the representation π_{χ} and π_{χ^w} are equivalent. Therefore, the constructed $\Psi^{(2)}$ -measure $\mu(T_0, n-2)$ on Y is S_n -invariant.

Our second result (Proposition 5.2) is the construction of the lifting of the action of S_n on $\hat{\mathbf{Y}}$ to the presentation $\mu_{T_0,n}$ for n=4.

Let T be a maximal torus in GL_4 . Any such torus is obtained from the maximal split torus T_0 by an element of $H^1(\mathfrak{G}, \operatorname{Aut} T_0)$, i.e., by a homomorphism $\alpha \colon \mathfrak{G} \to S_n$. Using the lifting of S_4 we can define μ_{α} as the twisting of $\mu = \mu_{T_0,4}$.

Conjecture 1. The data μ_{α} define a $\Psi^{(2)}$ -measure μ_{α} on $\widetilde{Y}=GL_2\times T\times GL_2\times T$.

The second conjecture is that this measure coincides with the measure defined by the Γ -function. More precisely, let A_{α} be the operator on the space $Wh_{n-2}\otimes L^2(T)$ corresponding to the measure μ_{α} .

Conjecture 2. The operator A_{α} is unitary and in the direct integral decomposition (0.1) is given by the multiplication by $\Gamma(\pi_{\chi}, \sigma)$

In other words, $A_{\alpha} = A_{n-2}^T$ for the operator A_{n-2}^T described in 0.0.

Finally, we conjecture that all of the above remains true for an arbitrary n.

Conjecture 3. For an arbitrary $n \geq 4$ there exists a lifting of the action of S_n to the algebraic presentation $\mu = \mu_{T_0,n-2}$. For a maximal torus T in GL_n corresponding to a homomorphism $\alpha \colon \mathfrak{G} \to S_n$, the twisted data μ_{α} determine a $\Psi^{(2)}$ -measure μ_{α} on $\widetilde{Y} = GL_{n-2} \times T \times GL_{n-2} \times T$. The corresponding operator in the space $Wh_{n-2} \otimes L^2(T)$ is unitary and in the decomposition (0.1) it is the multiplication by $\Gamma(\pi_{\chi}, \sigma)$.

Acknowledgements. We are grateful to Jim Cogdell and Karl Rubin for helpful discussions.

1. Measures. In this section we present a general result about complex valued measures on vector bundles over smooth varieties over F. This result can be viewed as a formalization of the formula

$$\int_F \psi_F(xy) \, dy = \delta(x),$$

which is well known in the theory of distributions.

Let \mathbf{M} be an m-dimensional algebraic variety over F. By $\Omega^m(M)$ we will always denote the space of volume forms on \mathbf{M} . Let \mathcal{L} a one-dimensional vector bundle on \mathbf{M} , \mathcal{L}^* the dual bundle, L, L^* the total spaces of \mathcal{L} and \mathcal{L}^* , and $\pi\colon L\to M$, $\pi^*\colon L^*\to M$ the corresponding projections. Let also $\zeta\colon M\to L^*$ be the zero section of \mathcal{L}^* . For an open set $U\subset M$ we denote by L_U the total space of the restriction of \mathcal{L} to U. Similarly, L_U^* is the total space of the restriction of \mathcal{L}^* to U.

Let $\gamma \in \Gamma(U, \mathcal{L}^*)$ be a section of \mathcal{L}^* and let $N_{\gamma,U} = \{x \in U \mid \gamma(x) = \zeta(x)\}$ be the subvariety of zeros of γ in U. Let $\mathcal{T}_M(N_{\gamma,U})$ and $\mathcal{L}^*(N_{\gamma,U})$ be the restrictions to $N_{\gamma,U}$ of the tangent bundle \mathcal{T}_M and of the vector bundle \mathcal{L}^* . Denote by $T_M(N_{\gamma,U})$ and $L^*(N_{\gamma,U})$ the corresponding total spaces. Let x be a smooth point of $N_{\gamma,U}$, $y = \gamma(x)$ the corresponding point of L^* . The tangent space to L^* at y is canonically represented as the direct sum

$$(1.1) T_{L^*,y} = T_{M,x} \oplus F,$$

where F is the one-dimensional tangent space to the fiber L_x^* of \mathcal{L}^* over x. Therefore the composition of the differential of γ and the projection of $T_{L^*,y}$ to the second summand in (1.1) determines a morphism $\theta_x \colon T_{M,x} \to L_x^*$.

DEFINITION 1.1. (i) A section γ is said to be *generic* at a smooth point $x \in N_{\gamma}$ if θ_x is surjective.

(ii) A section γ of \mathcal{L}^* is said to be *generic in U* if $N_{\gamma,U}$ is smooth and generic at all points of $N_{\gamma,U}$.

If γ is generic at x, then we can identify $\operatorname{Ker} \theta_x$ and the tangent space $T_{N_{\gamma},x}$ to N_{γ} at x.

Let $U \subset M$ be an open set, $\gamma \in \Gamma(U, \mathcal{L}^*)$ a generic section. Our next goal is to construct a morphism $\eta(\gamma) \colon \Omega^{m+1}(L_U) \to \Omega^{m-1}(N_{\gamma,U})$.

Let γ be generic at a point $x \in N_{\gamma,U}$. Since $T_{L,x} = L_x \oplus T_{M,x}$, for the fiber of $\Omega^{m+1}(L_U)$ at x we have

$$\Omega^{m+1}(L_U)_x = L_x^* \otimes \Lambda^m(T_{M,x}^*).$$

The exact sequence

$$0 \to T_{N_x,x} \to T_{M,x} \xrightarrow{\theta_x} L_x^* \to 0$$

shows that

$$\Lambda^m(T_{M,x}^*) = \Lambda^{m-1}(T_{N_{\gamma},x}^*) \otimes L_x = \Omega^{m-1}(N_{\gamma,U})_x \otimes L_x,$$

so that we have

$$\Omega^{m+1}(U)_x = L_x^* \otimes \Omega^{m-1}(N_{\gamma,U})_x \otimes L_x.$$

Using the pairing $L_x^* \otimes L_x \to F$, we get the map

(1.2)
$$\Omega^{m+1}(U)_x \to \Omega^{m-1}(N_{\gamma,U})_x.$$

The collection of maps (1.2) for all $x \in N_{\gamma,U}$ yields the required map $\eta(\gamma)$.

In coordinates the map $\eta(\gamma)$ is described as follows. Let $U \subset M$ be such that the restriction $\mathcal{L}|_U$ is the trivial line bundle. Choose a trivialization $L_U = U \times F$ and the dual trivialization $L_U^* = U \times F$. Denote by y the coordinate in the fibers of projection $L_U \to U$ and by y^* be the dual coordinate in the fibers of the projection $L_U^* \to U$. A section γ of \mathcal{L}^* over U is given by a regular function $\theta(x)$ on U so that $\gamma(x) = (x, \theta(x)) \in U \times F$. For such a section, $N_{\gamma,U} = \{x \in U \mid \theta(x) = 0\}$ and γ is generic at a point $x \in N_{\gamma,U}$ if and only if $d\theta \neq 0$ at x.

A volume form $\omega \in \Omega^{m+1}(U)$ can be written as

(1.3)
$$\omega = \ell(p, y)\omega' \wedge dy,$$

where $\omega' \in \Omega^m(U)$, $\ell(p,y)$ is a function on $L_U = U \times F$. For such a form ω we have

(1.4)
$$\eta(\gamma)(\omega) = \mathop{\rm Res}_{N_{\gamma,U}} \left\{ \frac{\ell(p,0)\omega'}{\theta} \right\}.$$

Clearly, the right-hand side of (1.4) does not depend of the representation of ω in the form (1.3).

DEFINITION 1.2. For an open $U \subset M$, a volume form $\omega \in \Omega^{m+1}(L_U)$ is said to be *fiberwise constant* if $t_b^*\omega = \omega$ for any $b \in \Gamma(U, \mathcal{L})$, where $t_b \colon L_U \to L_U$ is the fiberwise addition.

Denote by $\Omega_{fc}^{m+1}(L_U)$ the space of fiberwise constant volume forms on L_U . In coordinates $\omega \in \Omega_{fc}^{m+1}(L_U)$ if and only if in some (hence every) representation of ω in the form (1.3), ℓ does not depend on y. In this case we can take $\ell = \text{const.}$

Let γ be a section of $\mathcal{L}^*|_U$. Define the complex valued function ψ_{γ} on L_U by the formula

$$\psi_{\gamma}(z) = \psi_F(\langle \gamma(x), z \rangle),$$

where $z \in L_U$, $x = \pi(y) \in U$, and $\gamma(x) \in \mathcal{L}^*(x)$ is considered as a linear functional on $\mathcal{L}(x)$.

Let \mathcal{L} be as before, $\omega \in \Omega^{m+1}(L)$, and f a complex valued locally constant function on L.

We say that f is locally integrable with respect to ω at a point $x \in M$ if for each sufficiently small compact neighborhood U of x the following condition holds.

• Choose a trivialization $L_U = U \times F$. Let $\mathcal{O}_1 \subset \mathcal{O}_2 \subset \cdots \subset F$ be a sequence of open compact subgroups such that $\bigcup \mathcal{O}_i = F$. Denote $V_i = U \times \mathcal{O}_i$. Then the limit

$$\lim_{i \to \infty} \int_{V_i} f|\omega|$$

exists.

It is clear that the limit (1.5) does not depend on the trivialization \mathcal{L} over U in (i) and on the sequence $\{\mathcal{O}_i\}$ in (ii). We denote this limit by

$$\lim_{i \to \infty} \int_{V_i} f|\omega| = \int_{L_U} f|\omega|.$$

It is also clear that now we can define $\int_{L_U} f|\omega|$ for any open set $U \subset M$ and an arbitrary locally constant function f on L_U such that the projection of $p(\operatorname{supp} f) \subset M$ is compact and f is integrable with respect to ω at each point of $p(\operatorname{supp} f)$.

PROPOSITION 1.1. Let $U \subset M$ be a compact open set. For any generic section γ of $\mathcal{L}^*|_U$, any locally compact complex valued function f on U, and any fiberwise constant volume form $\omega \in \Omega^{d+1}_{fc}(L_U)$, the function $\pi^*(f)\psi_{\gamma}$ is locally integrable with respect to ω at all points of U and the integral is given by

$$\int_{L_U} \pi^*(f)\psi_{\gamma}|\omega| = \int_{N_{\gamma,U}} f|\eta(\gamma)(\omega)|,$$

where $N_{\gamma,U}$ is the set of zeros of γ in U and in the right hand side we take the restriction of f in $N_{\gamma,U}$.

Proof. First, we consider a case where M is an affine line with the coordinate x, \mathcal{L} is a trivial one-dimensional bundle with the coordinate y along the fibers, and the section γ of \mathcal{L}^* is given by a function $y^* = \theta(x)$, so that $\gamma(x) = (x, \theta(x))$. We have $N_{\gamma} = \{x \mid \theta(x) = 0\}$ and γ is generic at a point $x \in N_{\gamma}$ if and only if $\theta'(x) \neq 0$. If γ is generic, then N_{γ} consist of the finite number of isolated points. Assume that U is so small that $N_{\gamma,U}$ consists of a single point x_0 . For a fiberwise constant form $a(x) dx dy \in \Omega^2(L_U)$ the value of zero-form $\eta(\gamma)(\omega)$ at $x_0 \in N$ is $a(x_0)/\theta'(x_0)$.

Let $\{\mathcal{O}_i\}$ be an increasing sequence of open compact subgroups in F, $\cup \mathcal{O}_i = F$, and $V_i = U \times \mathcal{O}_i \subset U \times F = L_U$. Then

$$\begin{split} \int_{V_i} \pi^*(f)(z) \psi_{\gamma}(z) |\omega| &= \int_{U \times \mathcal{O}_i} \psi_F(y \theta(x)) |a(x)| \, |dx| \, |dy| \\ &= \int_{U} f(x) |a(x)| \, |dx| \int_{\mathcal{O}_i} \psi_F(y \theta(x)) |dy|. \end{split}$$

Denote $\mathcal{O}_i^{\perp} = \{ y \in F \mid \psi_F(yu) = 1 \text{ for all } u \in \mathcal{O}_i \}.$ Then

$$\int_{\mathcal{O}_i} \psi_F(y\theta(x))|dy| = \left\{ \begin{array}{ll} \operatorname{meas} \mathcal{O}_i & \text{if } \theta(x) \in \mathcal{O}_i^{\perp}, \\ 0 & \text{otherwise.} \end{array} \right.$$

Next, denote $\widehat{\mathcal{O}}_i^{\perp} = \{ y \in F \mid \theta(y) \in \mathcal{O}_i^{\perp} \}$. Then

$$\int_{V_i} \pi^*(f)(z)\psi_{\gamma}(z)|\omega| = (\operatorname{meas} \mathcal{O}_i) \int_{U \cap \widehat{\mathcal{O}}_i^{\perp}} f(x)|a(x)| \, |dx|.$$

For a sufficiently large i, $\widehat{\mathcal{O}}_i^{\perp}$ is a small neighborhood of points $x_0 \in N_{\gamma,U}$ and $\cap_i \widehat{\mathcal{O}}_i^{\perp} = \{x_0\}$. In particular, $\widehat{\mathcal{O}}_i^{\perp} \subset U$ and

$$\lim_{i \to \infty} (\text{meas } \mathcal{O}_i)(\text{meas } \widehat{\mathcal{O}}_i^{\perp}) = 1/|\theta(x_0)|.$$

Therefore

$$\lim_{i \to \infty} \int_{V_i} \pi^*(z) f(x) \psi_{\gamma}(z) |\omega| = \lim_{i \to \infty} (\text{meas } \mathcal{O}_i) \int_{\widehat{\mathcal{O}}_i^{\perp}} f(x) |a(x)| |dx|$$
$$= \frac{f(x_0) |a(x_0)|}{|\theta'(x_0)|}$$

and the right-hand side equals

$$\int_{N_{2,U}} f \eta(\gamma)(\omega).$$

In the general case we can argue locally on M. Let $U \subset M$ be such that \mathcal{L} and \mathcal{L}^* are trivial over U. Choose local coordinates x_1, \ldots, x_m in U such that γ is given by the equation of the form $y^* = \theta(x_1)$ and $N_{\gamma,U} = \{x_1, \ldots, x_m\} \mid x_1 = x_1^{(0)}\}$ for a single $x_0 \in F$. For a fiberwise constant form $\omega = a(x)dx_1 \wedge \cdots \wedge dx_m \wedge dy^* = \omega_1 \wedge dy^*$ on L_U we have

$$\operatorname{Res}_{N_{\gamma,U}} \frac{\omega_1}{\theta} = \sum_{x_1^{(0)} \in N_1} \frac{a(x_1^{(0)}, x_2, \dots, x_m) dx_2 \wedge \dots \wedge dx_m}{\theta'(x_1^{(0)})}.$$

To complete the proof one computes $\int f(z)\psi_{\gamma}(z)|\omega|$ using the arguments similar to those employed in the case m=1 above.

2. Γ -factors and measures.

- **2.1.** Subgroups of the group GL_n . We recall some notation from the introduction and give also some new ones.
- **Q** is the subgroup of GL_n consisting of the matrices with the first row of the form (*00...0).
- U_- is the lower unipotent subgroup of GL_n , $\psi(u) = \psi_F(u_{21} + \cdots + u_{n-1})$ a nondegenrate character (one-dimensional complex representation of U_-).
- σ : $\mathbf{GL}_n \to \mathbf{GL}_n$ is the involution given by the formula $\sigma(g) = (ag^{\top}a^{-1})^{-1}$, where $^{\top}$ denotes the reflection with respect to the second (nonprincipal) diagonal in \mathbf{GL}_n and $a = \operatorname{diag}(1, -1, 1, \dots, (-1)^{n+1})$. We have $\sigma(\mathbf{U}_-) = U_-$ and $\psi \circ \sigma = \psi$.
 - $\mathbf{R} = \mathbf{Q} \cap \mathbf{Q}^{\sigma}$.
 - By Ind we will always understand the unitary induction.

2.2. Generic representations of GL_n . Let (π, V) be a unitary representation of GL_n . Let (π^a, V^a) be the smooth model of (π, V) (see [BZ]). Recall that V^a consists of all vectors $v \in V$ such that Stab v is an open compact subgroup of GL_n , and π^a is the restriction of π to V^a . It is known that V^a is dense in V.

DEFINITION 2.1. An irreducible unitary representation (π, V) of GL_n is said to be generic if V^a admits a (U_-, ψ) -equivariant linear functional φ , i.e.,

$$\varphi(u_-v) = \psi(u_-)\varphi(v), \qquad v \in V^a, \quad u_- \in U_-.$$

It is known [BZ] that for a generic irreducible unitary representation the functional φ is unique up to a scalar factor.

2.3. Standard representation of Q**.** Denote by $\mathbf{C} \subset \mathbf{Q} \subset \mathbf{GL}_n$ the center of GL_n . For a unitary character $\mathcal{E} \colon C \to \mathbb{C}^*$ introduce the *standard representation* of Q by the formula

$$(\rho_{Q,\mathcal{E}}, L_{Q,\mathcal{E}}) \stackrel{\mathrm{df}}{=} \mathrm{Ind}_{CU_{-}}^{Q}(\mathcal{E} \cdot \psi).$$

The respresentation $\rho_{Q,\mathcal{E}}$ is irreducible. The following result proved in [BZ] is the basis of our construction of Γ -factors for GL_n .

THEOREM 2.1. Let (π, V) be a generic unitary irreducible representation of GL_n , \mathcal{E} the central character of π . The restriction of π to Q is equivalent to $\rho_{Q,\mathcal{E}}$.

2.4. Two restrictions to Q. Let (π, V) be a generic unitary irreducible representation of GL_n with central character \mathcal{E} . By Theorem 2.1 there exists a (unique up to a factor) unitary operator $\alpha_1 \colon V \to L_{Q,\mathcal{E}}$ establishing the equivalence $\pi \mid_{Q} \simeq \rho_{Q,\mathcal{E}}$.

Similarly, let $\sigma \colon GL_n \to GL_n$ be the involution defined in 2.1. Then $\pi^{\sigma} \stackrel{\mathrm{df}}{=} \pi \circ \sigma$ is also a generic unitary irreducible representation of GL_n . Applying Theorem 2.1 again, we get the unitary operator $\alpha_2 \colon V \to L_{Q,\mathcal{E}^{\sigma}}$ establishing the equivalence $\pi^{\sigma} \mid_{Q} \simeq \rho_{Q,\mathcal{E}^{\sigma}}$, where $\mathcal{E}^{\sigma} = \mathcal{E} \circ \sigma$ is the central character of π^{σ} .

Since π and π^{σ} act in the same space V, we have the operator $\beta_{\pi} = \alpha_2 \circ \alpha_1^{-1} \colon L_{Q,\mathcal{E}} \to L_{Q,\mathcal{E}^{\sigma}}$. It is a unitary operator satisfying the condition

(2.1)
$$\beta_{\pi} \circ \rho_{Q,\mathcal{E}}(r) = \rho_{Q,\mathcal{E}^{\sigma}}(r^{\sigma}) \circ \beta_{\pi}, \qquad r \in R = Q \cap Q^{\sigma}.$$

Note that the unitary operator β_{π} satisfying (2.1) is defined uniquely up to a multiplicative factor c_{π} with $|c_{\pi}| = 1$.

2.5. An auxiliary operator. We construct the operator $\kappa_{\mathcal{E}} \colon L_{Q,\mathcal{E}} \to L_{Q,\mathcal{E}^{\sigma}}$ satisfying the intertwining condition similar to (2.1). The operator $\kappa_{\mathcal{E}}$ will depend on \mathcal{E} but not on π .

Denote by $w_Q \in Q$ the following permutation matrix:

$$w_Q = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 1 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

Next, denote $U_Q = w_Q U_- w_Q^{-1}$ and let $\psi_Q \colon U_Q \to \mathbb{C}^*$ be given by the formula

$$\psi_Q(u) = \psi(w_Q^{-1}uw_Q), \qquad u \in U_Q.$$

Denote also $U_R = U_Q \cap R$, and $\psi_R = \psi_Q|_R \colon U_R \to \mathbb{C}^*$.

In this section we will often represent elements of $g \in GL_n$ by block 3×3 -matrices according to the decomposition n = 1 + (n-2) + 1 of rows and columns. In such representation, $q \in Q$, $r \in R$, $u_Q \in U_Q$, and $u_R \in U_R$ have the form

$$q = \begin{pmatrix} * & 0 & 0 \\ * & * & * \\ * & * & * \end{pmatrix}, \qquad r = \begin{pmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{pmatrix},$$
$$u_Q = \begin{pmatrix} 1 & 0 & 0 \\ * & u' & * \\ * & 0 & 1 \end{pmatrix}, \qquad u_R = \begin{pmatrix} 1 & 0 & 0 \\ * & u' & 0 \\ * & 0 & 1 \end{pmatrix}.$$

Here * denotes possibly nonzero positions and u' is a lower unipotent matrix of order n-2. The characters ψ_Q and ψ_R are given by the formulas

$$\psi_Q(u) = \psi_F(u_{n1} + u_{32} + \dots + u_{n-1 \, n-2} + u_{2n}),$$

$$\psi_R(u) = \psi_F(u_{n1} + u_{32} + \dots + u_{n-1 \, n-2}).$$

Introduce also the subgroup A as follows:

$$A = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & E_{n-2} & * \\ 0 & 0 & 1 \end{pmatrix} \right\},\,$$

where E_{n-2} is the identity matrix of order n-2. Notice that $A \subset U_Q$ and $\psi_A(a) = \psi_F(a_{2n})$ for $a \in A$.

Let us define the following representations.

(i) A representation of the group Q:

$$(\widehat{\rho}_{Q,\mathcal{E}}, \widehat{L}_{Q,\mathcal{E}}) \stackrel{\mathrm{df}}{=} \operatorname{Ind}_{CU_Q}^Q (\mathcal{E} \cdot \psi_Q).$$

(ii) A representation of the group R:

(2.2)
$$(\rho_{R,\mathcal{E}}, L_{R,\mathcal{E}}) \stackrel{\text{df}}{=} \operatorname{Ind}_{CU_R}^R (\mathcal{E} \cdot \psi_R).$$

Next we introduce the following linear operators between the spaces of these representations:

$$C_1: L_{Q,\mathcal{E}} \to \widehat{L}_{Q,\mathcal{E}}, \quad (C_1 f)(q) = f(w_Q^{-1} q),$$

 $C_2: \widehat{L}_{Q,\mathcal{E}} \to L_{R,\mathcal{E}}, \quad C_2(f) = f \mid_R.$

Finally, define the operator $C_3: L_{R,\mathcal{E}} \to L_{R,\mathcal{E}^{\sigma}}$ as follows. Let $B \subset U_Q$ be the (n-2)-dimensional commutative subgroup of matrices with the block representation of the form

$$b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & E_{n-2} & 0 \\ 0 & * & 1 \end{pmatrix},$$

where E_{n-2} is the identity matrix of order n-2. Let $f \in L_{R,\mathcal{E}}$ be a smooth (i.e., locally constant) function compactly supported on $CU_R \setminus R$. Denote

$$\widetilde{f}(r) = \int_{B} f(br^{\sigma})|db|$$

one can verify that the integral converges absolutely, that $\widetilde{f} \in L_{R,\mathcal{E}}$, and that the mapping $f \mapsto \widetilde{f}$ defined on smooth compactly supported functions extends to a unitary operator $C_3 \colon L_{R,\mathcal{E}} \to L_{R,\mathcal{E}^{\sigma}}$.

Note that all operators C_1, C_2, C_3 depend on \mathcal{E} .

Lemma 2.1. (i) The operator C_1 establishes an equivalence of representations $\rho_{Q,\mathcal{E}} \simeq \widehat{\rho}_{Q,\mathcal{E}}$.

- (ii) The operator C_2 establishes the equivalence of representations of R: $\widehat{\rho}_{Q,\mathcal{E}} \mid_{R} \simeq (\rho_{R,\mathcal{E}}, L_{R,\mathcal{E}})$.
 - (iii) The operator C_3 satisfies the condition

$$\rho_{R,\mathcal{E}^{\sigma}}(r^{\sigma}) \circ C_3 = C_3 \circ \rho_{R,\mathcal{E}}(r), \quad r \in R.$$

Proof. (i) and (iii) are clear and (ii) follows from the fact that U_QR is dense in Q.

Definition 2.1. Define the operator $\kappa_{\mathcal{E}}: L_{Q,\mathcal{E}} \to L_{Q,\mathcal{E}^{\sigma}}$ by the formula

$$\kappa_{\mathcal{E}} = C_1^{-1} \circ C_2^{-1} \circ C_3 \circ C_2 \circ C_1.$$

The operator $\kappa_{\mathcal{E}}$ is unitary and one easily verifies that $\kappa_{\mathcal{E}^{\sigma}} \circ \kappa_{\mathcal{E}} = \mathrm{id}$. By Lemma 2.1, $\kappa_{\mathcal{E}}$ satisfies the condition

(2.3)
$$\kappa_{\mathcal{E}} \circ \rho_{O,\mathcal{E}}(r) = \rho_{O,\mathcal{E}^{\sigma}}(r^{\sigma}) \circ \kappa_{\mathcal{E}} \qquad r \in \mathbb{R}.$$

Explicit formula for $\kappa_{\mathcal{E}}$ is given as follows. Let $q = w_Q^{-1}ar$, $a \in A$, $r \in R$. Then

(2.4)
$$(\kappa_{\mathcal{E}} f)(q) = \int_{R} f(w_{Q}^{-1} b r^{\sigma}) |db|.$$

DEFINITION 2.2. Define the operator $\beta_{\pi}^{\kappa} \colon L_{Q,\mathcal{E}} \to L_{Q,\mathcal{E}}$ by the formula

$$\beta_{\pi}^{\kappa} = \kappa_{\mathcal{E}}^{-1} \circ \beta_{\pi}.$$

By (2.1) and (2.3), the operator β_{π}^{κ} commutes with $\rho_{Q,\mathcal{E}}(r)$ for $r \in R$.

2.6. The isomorphism of spaces of operators. Denote by $M \simeq F^* \times GL_{n-2} \subset R$ the subgroup of the matrices m of the form

$$m = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & \lambda \end{pmatrix},$$

where $\lambda \in F^*$, $A \in GL_{n-2}$. Denote $U_M = U_- \cap M$, $\psi_M = \psi_R|_M$, and

$$(\rho_{M,\mathcal{E}}, L_{M,\mathcal{E}}) \stackrel{\mathrm{df}}{=} \mathrm{Ind}_{CU_M}^M (\mathcal{E} \cdot \psi_M).$$

For two unitary representations (ρ_1, L_1) , (ρ_2, L_2) of a group G by $\operatorname{Hom}_G(L_1, L_2)$ we denote the space of continuous linear operators $V_1 \to V_2$ commuting with the action of G.

Our goal in this subsection is to construct an isomorphism of linear spaces

(2.5)
$$\alpha_{\mathcal{E}} \colon \operatorname{Hom}_{R}(L_{Q,\mathcal{E}}, L_{Q,\mathcal{E}}) \simeq \operatorname{Hom}_{M}(L_{M,\mathcal{E}}, L_{M,\mathcal{E}}).$$

(i) By Lemma 2.1 (i), (ii), the restriction of $\rho_{Q,\mathcal{E}}$ to R is equivalent to the representation $(\rho_{R,\mathcal{E}}, L_{R,\mathcal{E}})$ with the equivalence established by the operator $C_2 \circ C_1 : L_{Q,\mathcal{E}} \to$

 $L_{R,\mathcal{R}}$. Therefore,

(2.6)
$$\operatorname{Hom}_{R}(L_{Q,\mathcal{E}}, L_{Q,\mathcal{E}}) \simeq \operatorname{Hom}_{R}(L_{R,\mathcal{E}}, L_{R,\mathcal{E}}).$$

(ii) Denote by H the subgroup of the block matrices h of the form

(2.7)
$$h = \begin{pmatrix} 1 & 0 & 0 \\ a & E_{n-2} & 0 \\ c & b & \lambda \end{pmatrix},$$

where E_{n-2} is the identity matrix, a and b are (n-2)-dimensional vectors, $c \in F$, and $\lambda \in F^*$. Let $U_H \subset H$ be the subgroup consisting of the matrices $h \in H$ with b = 0 and $\lambda = 1$ in (2.7), and $\psi_H : U_H \to \mathbb{C}^*$ the character given by

$$\psi_H(h) = \psi_F(c).$$

Let (ρ_H, L_H) be the induced representation

$$(\rho_H, L_H) \stackrel{\mathrm{df}}{=} \operatorname{Ind}_{U_H}^H(\psi_H).$$

It is easy to prove that the representation ρ_H is irreducible. Furthermore, since the adjoint action of M on H preserves the subgroup H and the character U_H , we have the representation I of M in L_H given by the formula $(I(m)f)(h) = f(m^{-1}hm)$.

(iii) We have $R = H \times M$ and $U_R = U_H \times U_M$. Also, the restriction of ψ_R to \widehat{H} and to U_M coincides with ψ_H and ψ_M respectively. For each $m \in M$ we have $mU_Hm^{-1} = U_H$ and $\psi_H(mhm^{-1}) = \psi_H(h)$ for all $h \in U_H$. Therefore, regarding $L_H \otimes L_{M,\mathcal{E}}$ as the space of $(U_H \times CU_M, \psi_H \cdot (\mathcal{E} \psi_M))$ -equivariant functions on $H \times M$, we see that the mapping $f \mapsto (f_1)(h, m) = f(mh)$ establishes an isomorphism of linear spaces

$$(2.8) L_{R,\mathcal{E}} \stackrel{\sim}{\to} L_H \otimes L_{M,\mathcal{E}}.$$

The group R acts on the spaces on both sides of the last formula: by $\rho_{R,\mathcal{E}}$ on the left space, and by the formula

$$r = hm \mapsto (\rho_H(h) \circ I(m)) \otimes \rho_{M,\mathcal{E}}(m)$$

on the right space, and the isomorphism (2.8) intertwines these actions of R. Taking into account that ρ_H is irreducible, we obtain

(2.9)
$$\operatorname{Hom}_{H}(L_{R,\mathcal{E}}, L_{R,\mathcal{E}}) \simeq \operatorname{Hom}(L_{M,\mathcal{E}}, L_{M,\mathcal{E}}).$$

(iv) The group M acts on both sides of (2.9) by the formula

$$a \mapsto \rho_R(m) \circ a \circ \rho_R(m^{-1}), \qquad a: L_{R,\mathcal{E}} \to L_{R,\mathcal{E}}$$

for the left-hand side and a similar formula for right-hand side, and the isomorphism (2.9) intertwines these actions. Taking M-invariant elements, we obtain the isomorphism

(2.10)
$$\operatorname{Hom}_{R}(L_{R,\mathcal{E}}, L_{R,\mathcal{E}}) \simeq \operatorname{Hom}_{M}(L_{M,\mathcal{E}}, L_{M,\mathcal{E}}).$$

Combining it with (2.6), we get the required isomorphism $\alpha_{\mathcal{E}}$ in (2.5).

2.7. The operator Γ_{π} . Applying the isomorphism $\alpha_{\mathcal{E}}$ in (2.5) to the operator $\beta_{\pi}^{\kappa}: L_{Q,\mathcal{E}} \to L_{Q,\mathcal{E}}$ we obtain an operator $\Gamma_{\pi}: L_{M,\mathcal{E}} \to L_{M,\mathcal{E}}$ commuting with $\rho_{M,\mathcal{E}}$. We call it the Γ -operator corresponding to the generic unitary representation π . Let

$$\rho_{M,\mathcal{E}} = \bigoplus \int_{\Theta} \theta \, d\mu(\theta)$$

be the direct integral decomposition of $\rho_{M,\mathcal{E}}$ into irreducible components, each occuring with multiplicity one. In this decomposition the operator Γ_{π} is the multiplication by almost everywhere defined function $\Gamma(\pi,\cdot)$ on Θ .

Since $M = C \times GL_{n-2}$, the formula $\theta \mapsto \mathcal{E}^{-1} \otimes \theta$ establishes a bijection between the set Θ of irreducible components of $\rho_{M,\mathcal{E}}$ and the set of generic unitary irreducible representations of GL_{n-2} .

Denote by $\gamma(\pi, \tau)$ the Gamma factor of [JPS] at the point s = 1/2 (see [JPS], (3.1)).

PROPOSITION 2.1. For any generic unitary representation π of the group GL_n we have $\Gamma(\pi,\theta) = \theta(-1)^{n-1}\gamma(\pi,\mathcal{E}^{-1}\otimes\theta)$ for almost every $\theta\in\Theta$.

Proof. See Appendix.

- 3. Γ-measure corresponding to the principal series.
- 3.1. Standard realization of the principal series. Let $AFl = U_+ \setminus GL_n$ be the affine flag manifold and $(M,\Pi) = \operatorname{Ind}_{U_+}^{GL_n}(1)$ the principal series representation of GL_n . On AFl, we consider the left action of the split torus $T_0 \subset GL_n$ given by the formula $x \mapsto tx$. This formula makes sense because T_0 normalizes U_+ . The action of T_0 commutes with the action of GL_n on AFl, so we can regard Π as a representation of the direct product $GL_n \times T_0$ according to the formula

$$\Pi(g,t)f(x) = f(t^{-1}xg)\Delta_{B_+}(t), \qquad x \in AFl, \quad g \in GL_n, \quad t \in T_0,$$

where Δ_{B_+} is the modulus,

$$\Delta_{B_+}(t) = \left| \frac{d(tut^{-1})}{du} \right|^{1/2}, \qquad t \in T_0,$$

and du is the invariant volume form on U_+ .

Let $\widetilde{B} \subset GL_n \times T_0$ be the following subgroup:

$$\widetilde{B} = \{(b,t) : b \in B_+, t \in T_0, t^{-1}b \in U_+\}.$$

Then

$$\Pi \simeq \operatorname{Ind}_{\widetilde{B}}^{GL_n \times T_0}(1)$$

(isomorphism of representations of $GL_n \times T_0$).

3.2. Irreducible principal series representations. Let $\chi: T_0 \to \mathbb{C}$ be a unitary character of T_0 . Regarding χ as a character of B_+ via the isomorphism $T_0 \simeq B_+/U_+$, denote

$$(\pi_{\chi}, V_{\chi}) = \operatorname{Ind}_{B_{\perp}}^{GL_n}(\chi).$$

Recall that Ind denotes the unitary induction, so that the space of the representation π_{χ} consists of B_+ -homogeneous functions on GL_n of degree $(\chi \Delta_{B_+})(b)$ for $b \in B_+$.

The following two propositions summarize the well-known results about principal series representations.

PROPOSITION 3.1. (i) Each π_{χ} is a generic unitary representation of the group GL_n .

(ii) The Weyl group S_n (the symmetric group of order n) acts on T_0 , hence also on the unitary dual $(T_0)^{\hat{}}$ to T_0 . Representations π_{χ_1} and π_{χ_2} are equivalent if and only if $\chi_1 = (\chi_2)^w$ for some $w \in S_n$.

Together with the representation π_{χ} we consider the representation $\widetilde{\pi}_{\chi}$ of the group $GL_n \times T_0$ defined by the formula $\widetilde{\pi}_{\chi} = \pi_{\chi} \otimes \chi^{-1}$.

PROPOSITION 3.2. We have the direct integral decomposition of representations of $GL_n \times T_0$:

$$\Pi = \bigoplus \int_{(T_0)} \widetilde{\pi}_{\chi} \, d\chi,$$

where $d\chi$ is the Haar measure on (T_0) .

3.3. Restriction to Q**.** Recall the definition of the representation $\rho_{Q,\mathcal{E}}$ of the group Q (see 2.1). By Proposition 3.1(i) and Theorem 2.1 we have

$$\pi_{\gamma}|_{Q} \simeq \rho_{Q,\mathcal{E}},$$

where $\mathcal{E}(\lambda) = \chi(\operatorname{diag}(\lambda, \dots, \lambda))$ is the central character of π_{χ} . Therefore, we have

(3.1)
$$\widetilde{\pi}_{\chi}|_{Q \times T_0} \simeq \rho_{Q,\mathcal{E}}, \times \chi^{-1}.$$

Introduce the subgroup $C_1 \simeq F^*$ as follows: $C_1 = \{(\lambda E, \lambda E)\} \subset GL_n \times T_0$, where E is the identity element. Clearly, C_1 is in the kernel of the representation Π . Denote by $\widetilde{\psi}$ the one-dimesional representation $\widetilde{\psi}(\lambda u_-, \lambda E) = \psi(u_-)$ of the group C_1U_- , and let

$$(\widetilde{\rho}_Q, \widetilde{L}_Q) \stackrel{\mathrm{df}}{=} \operatorname{Ind}_{C_1U_-}^{Q \times T_0} (\widetilde{\psi}).$$

For any $\mathcal{E} \in (F^*)^{\widehat{}}$ let

$$(R_{T_0,\mathcal{E}}, L_{T_0,\mathcal{E}}) \stackrel{\mathrm{df}}{=} \mathrm{Ind}_{\{\lambda E\}}^{T_0}(\mathcal{E})$$

be the \mathcal{E} -homogeneous part of the regular representation of T_0 . Then

(3.2)
$$\widetilde{\rho}_Q = \bigoplus \int_{(F^*)^{\widehat{}}} (\rho_{Q,\mathcal{E}} \otimes R_{T_0,\mathcal{E}^{-1}}) \, d\mathcal{E}.$$

On the other hand, by Proposition 3.2 and formula (3.1) we have

$$\Pi|_{Q\times T_0}=\oplus \int_{(F^*)^{\hat{}}} (\rho_{Q,\mathcal{E}}\otimes R_{T_0,\mathcal{E}^{-1}})\,d\mathcal{E}.$$

Therefore, the representations $\Pi \mid_{Q \times T_0}$ and $\tilde{\rho}_Q$ of the group $Q \times T_0$ are equivalent. Since these representations are reducible, there are many isomorphisms of these representations. For our purposes we must choose a particular isomorphism

(3.3)
$$\varphi \colon \Pi \mid_{Q \times T_0} \to \widetilde{\rho}_Q$$

constructed in [K] using the Jacquet functors. Rather than going into details of Jacquet functors, we present explicit formulas for φ . Before doing this, we need some preparation.

Consider the subgroups \widetilde{B} and $\widetilde{Q} \stackrel{\text{df}}{=} Q \times T_0$ in $GL_n \times T_0$. Since $\widetilde{B}\widetilde{Q}$ is dense in $GL_n \times T_0$, the restriction $\Pi|_{\widetilde{O}}$ is equivalent to the induced representation

$$(\Pi_1, M_1) \stackrel{\mathrm{df}}{=} \operatorname{Ind}_{B_1}^{\widetilde{Q}}(1), \qquad B_1 \stackrel{\mathrm{df}}{=} \widetilde{B} \cap \widetilde{Q},$$

in the space M_1 of left B_1 -invariant functions on \widetilde{Q} . The operator $M \to M_1$ establishing this equivalence sends a function $f \in M$ on $GL_n \times T_0$ to its restriction to $\widetilde{Q} = Q \times T_0$. Hence, both representations $\Pi|_{\widetilde{Q}}$ and $\widetilde{\rho}_Q$ act in the spaces M_1 and \widetilde{L}_Q of functions on the group \widetilde{Q} . In these realizations, explicit formulas for the operator φ are described as follows.

Let $L_S \subset \widetilde{L}_Q$ be the dense subspace consisting of smooth functions with compact support modulo C_1U_- (the Schwarz space). Let also $U_1 = U_+ \cap Q$ and $T_0^{\operatorname{diag}} = \{(t,t): t \in T_0\} \subset Q \times T_0$, so that $B_1 = (U_1 \times \{1\}) \cdot T_0^{\operatorname{diag}} \subset Q \times T_0$.

PROPOSITION 3.3 (see [K], Lemma 3.1.10). (i) For $f \in L_S$ the integral

$$(\varphi f)(q) = \int_{U_1 \times T_0/C_1} f(utq, t) \, du \, dt$$

(which makes sense since f is invariant under C_1) converges absolutely.

- (ii) The mapping $f \mapsto \varphi(f)$ extends to a unitary operator $\varphi \colon \widetilde{L}_Q \to M_1$ intertwining $\widetilde{\rho}_Q$ and $\Pi|_{Q \times T_0}$.
 - (iii) For any $w \in W(T_0) = S_n$ we have

$$\varphi \circ w = \mathcal{F}_w \circ \varphi,$$

where S_n acts on \widetilde{L} by the formula

$$wf(q,t) = f(q,t^{w^{-1}}),$$

and \mathcal{F}_w is the Fourier-Weyl operator in the space $M_1 \simeq M$ (for the definition of \mathcal{F}_w , see [GG] or [KL])).

Proof of (i). The proof follows from the directly verified fact that the composition

$$U_1 \hookrightarrow Q \to U_- \setminus Q$$

is a proper map.

3.4. Representing operators by measures. In this paper we will often replace operators between spaces of induced representations of a group G by the corresponding measures. The general construction is described as follows.

Let G be a topological group, H_1, H_2 two subgroups of G, and θ_1, θ_2 unitary characters of H_1, H_2 respectively. Let

$$(\rho_1, V_1) = \operatorname{Ind}_{H_1}^G(\theta_1), \quad (\rho_2, V_2) = \operatorname{Ind}_{H_2}^G(\theta_2)$$

be two irreducible representations and $E\colon V_1\to V_2$ a linear operator. Define the left- $(H_1\times H_2,\theta_1^{-1}\theta_2)$ -equivariant complex valued measure μ_E on $G\times G$ by the formula

(3.4)
$$\int_{(H_1 \setminus G) \times (H_2 \setminus G)} f_1(x_1) \overline{f_2(x_2)} \mu_E(x_1, x_2) = (Ef_1, f_2)_{V_2},$$

where $(,)_{V_2}$ is the inner product in V_2 . Since the linear combinations of the products $f_1(x_1)\overline{f_2(x_2)}$ are dense in the appropriate Hilbert space of left- $(H_1 \times H_2, \theta_1\theta_2^{-1})$ -equivariant functions on $G \times G$, formula (1.3) determines μ_E uniquely.

If E is an intertwining operator, i.e., commutes with the action of G in V_1 and V_2 , then the measure μ_E is right-invariant with respect to the diagonal action of G on $G \times G$.

In explicit computations it is often convenient to use another realization of the measure associated to an operator. As before, assume that $E\colon V_1\to V_2$ is an operator between the spaces of two induced representations. Choose a section $s_i\colon X_i\to G$ of the projection $p_i\colon G\to H_i\setminus G,\, i=1,2$. Restricting functions in V_i to $X_i\subset G$, we can regard V_i as a space of functions on X_i (with appropriate inner product). Define the measure μ_E' on $X_1\times X_2$ by the formula similar to (3.4):

(3.5)
$$\int_{X_1 \times X_2} f_1(x_1) f_2(x_2) \mu'_E(x_1, x_2) = (Ef_1, f_2)_{V_2}.$$

Again, formula (3.5) determines the measure μ_E' uniquely.

There is an obvious one-to-one correspondence between measures on $X_1 \times X_2$ and left- $(H_1 \times H_2, \theta_1^{-1}\theta_2)$ -equivariant measures on $G \times G$ which sends μ_E to μ_E' .

In what follows we will not distinguish between the measures μ_E and μ'_E . It will be clear from the context (or stated explicitly) which of these two measures is used.

3.5. Properties of measures corresponding to operators.

Definition 3.1. Let X be a space with a positive measure ν . A complex valued measure μ on $X \times X$ is said to be a ν -operator measure (or simply an operator measure) if

$$\langle \mu f_1 \times \overline{f}_2 \rangle \le C ||f_1||_{L_2} \cdot ||f_2||_{L_2}$$

for all $f_1, f_2 \in L_2(X, \nu)$.

LEMMA 3.1. Formula (3.4) establishes a one-to-one correspondence between the bounded operators $E: L_2(X, \nu) \to L_2(X, \nu)$ and the operator measures μ_E on $X \times X$.

Proof. Clear.

We will need the following properties of operator measures.

I. Let $X' \subset X$ be a subset such that $\nu(X \setminus X') = 0$ and ν' the restriction of ν to X'. For an operator measure μ on $X \times X$ denote by μ' the restriction of μ to $X' \times X'$. Then $\mu \longleftrightarrow \mu'$ is an one-to-one correspondence between operator measures on $X \times X$ and $X' \times X'$.

II. Let $(X, \nu) = (X_1 \times X_2, \nu_1 \times \nu_2)$. Let μ_i be a ν_i -operator measure on $X_i \times X_i$, i = 1, 2. Then $\mu = \mu_1 \times \mu_2$ is a ν -operator measure on X.

Similarly we can define operator measures on sections of product line bundles on $X \times X$.

Now we turn to the construction of the Γ -measure corresponding to the principal series representation Π . This construction is similar to the construction of the Γ -factors described in §2, but is performed "for all $\chi \in (T_0)^{\hat{}}$ simulteneously." At the end of the section we show how this construction is formulated in terms of measures.

3.6. The operator β_{Π} . Extend this involution σ from 2.1 to $GL_n \times T_0$ by the formula

$$\sigma(g,t) = (g^{\sigma}, t^{\sigma}).$$

Since the subgroup $\widetilde{B} \subset GL_n \times T_0$ is invariant under σ , we can define the operator $\Pi(\sigma)$ in the space M by the formula

$$\Pi(\sigma)f(x) = f(x^{\sigma}).$$

Now we set

(3.6)
$$\beta_{\Pi} = \varphi^{-1} \circ \Pi(\sigma) \circ \varphi \colon \widetilde{L}_{Q} \to \widetilde{L}_{Q}.$$

Clearly, β_{Π} is a unitary operator in the space \widetilde{L}_Q satisfying the condition

$$(3.7) \beta_{\Pi} \circ \widetilde{\rho}_{\mathcal{O}}(r,t) = \widetilde{\rho}_{\mathcal{O}}(r^{\sigma},t^{\sigma}) \circ \beta_{\Pi}, r \in R = Q \cap Q^{\sigma}, t \in T_0.$$

Formula (3.7) implies, in particular, that the operator β_{Π} intertwines irreducible principal series representations π_{χ} and $\pi_{\chi^{\sigma}}$ in Π .

Proposition 3.4. In decomposition (3.2) we have

$$\beta_{\Pi} = \bigoplus \int_{(T_0)^{\smallfrown}} (\beta_{\pi_{\chi}} \otimes \sigma),$$

where the operator $\beta_{\pi_{\chi}}$ is defined in 2.5 and $\sigma: L_{T_0,\mathcal{E}} \to L_{T_0,\mathcal{E}^{-1}}$ is induced by the action of σ on T_0 .

Proof. Clear.

3.7. The operator κ . Recall the direct integral decomposition (3.2) of the representation $(\widetilde{\rho}_Q, \widetilde{L}_Q)$ of the group \widetilde{Q} ,

(3.8)
$$\widetilde{L}_{Q} = \bigoplus \int (L_{Q,\mathcal{E}} \otimes L_{T_{0},\mathcal{E}^{-1}}) d\mathcal{E}.$$

DEFINITION 3.2. In the decomposition (3.8), let us define the operator $\kappa \colon \widetilde{L}_Q \to \widetilde{L}_Q$ by the formula

(3.9)
$$\kappa = \bigoplus \int (\kappa_{\mathcal{E}} \otimes \sigma_{T_0}) d\mathcal{E},$$

where $\sigma_{T_0}: L_{T_0,\mathcal{E}^{-1}} \to L_{T_0,\mathcal{E}}$ is given by $\sigma F(t) = F(t^{\sigma})$.

PROPOSITION 3.5. (i) Formula (3.9) yields a unitary operator $\kappa \colon \widetilde{L}_Q \to \widetilde{L}_Q$ such that $\kappa^2 = \mathrm{id}$.

(ii) The operator κ satisfies the condition

(3.10)
$$\kappa \circ \widetilde{\rho}_{Q}(r,t) = \widetilde{\rho}_{Q}(r^{\sigma}, t^{\sigma}) \circ \kappa \qquad r \in R = Q \cap Q^{\sigma}, \quad t \in T_{0}.$$

Proof. Immediately follows from the corresponding properties of the operators $\kappa_{\mathcal{E}}$.

Similarly to formula (2.4), we can give an explicit formula for the operator κ . Let $q = w_O^{-1} ar$ with $a \in A$, $r \in R$, and let $t \in T_0$. Then

(3.11)
$$(\kappa f)(q,t) = \psi_Q(a) \int_B f(w_Q^{-1} b r^{\sigma}, t^{\sigma}) |db|.$$

3.8. The isomorphism α . In §2 (see 2.7), we have constructed the isomorphisms

$$\alpha_{\mathcal{E}} \colon \operatorname{Hom}_{R}(L_{Q,\mathcal{E}}, L_{Q,\mathcal{E}}) \simeq \operatorname{Hom}_{M}(L_{M,\mathcal{E}}, L_{M,\mathcal{E}}), \quad \mathcal{E} \in (F^{*})^{\widehat{}}.$$

Here we repeat this construction in the framework of the "tensored with T_0 " space \widetilde{L}_Q instead of $L_{Q,\mathcal{E}}$. We will use the notation of §2. In addition, we denote $\widetilde{R} = R \times T_0$,

 $\widetilde{M} = M \times T_0$. Then $C_1 = \{(\lambda I, \lambda I)\} \subset \widetilde{M} \subset \widetilde{R}$ and we can define

$$(\widetilde{\rho}_M, \widetilde{L}_M) \stackrel{\mathrm{df}}{=} \operatorname{Ind}_{C_1 U_M}^{\widetilde{M}}(\psi_M),$$

 $(\widetilde{\rho}_R, \widetilde{L}_R) \stackrel{\mathrm{df}}{=} \operatorname{Ind}_{C_1 U_R}^{\widetilde{R}}(\psi_R).$

Our goal is to construct the isomorphism

$$\alpha \colon \operatorname{Hom}_{\widetilde{R}}(\widetilde{L}_Q, \widetilde{L}_Q) \simeq \operatorname{Hom}_{\widetilde{M}}(\widetilde{L}_M, \widetilde{L}_M).$$

In addition to the direct integral decomposition (3.11), we have a similar decomposition

(3.12)
$$\widetilde{M}_Q = \bigoplus \int (M_{Q,\mathcal{E}} \otimes L_{T_0,\mathcal{E}^{-1}}) \, d\mathcal{E}.$$

for \widetilde{M}_Q . Clearly,

$$\operatorname{Hom}_{\widetilde{R}}(\widetilde{L}_Q,\widetilde{L}_Q) = \oplus \int \left(\operatorname{Hom}_R(L_{Q,\mathcal{E}},L_{Q,\mathcal{E}}) \otimes \operatorname{Hom}_{T_0}(L_{T_0,\mathcal{E}},L_{T_0,\mathcal{E}})\right) d\mathcal{E},$$

and similarly for \widetilde{M}_Q :

$$\operatorname{Hom}_{\widetilde{M}}(\widetilde{L}_{M},\widetilde{L}_{M}) = \oplus \int \left(\operatorname{Hom}_{R}(L_{M,\mathcal{E}},L_{M,\mathcal{E}}) \otimes \operatorname{Hom}_{T_{0}}(L_{T_{0},\mathcal{E}},L_{T_{0},\mathcal{E}})\right) d\mathcal{E}.$$

In terms of these decompositions, we define the operator α as the direct integral

$$\alpha = \bigoplus \int (\alpha_{\mathcal{E}} \otimes \operatorname{Id}) d\mathcal{E}.$$

Repeating the construction of 2.6, we see that the isomorphism α is the composition of two isomorphisms,

$$\alpha_{Q \to R} \colon \operatorname{Hom}_{\widetilde{R}}(\widetilde{L}_Q, \widetilde{L}_Q) \simeq \operatorname{Hom}_{\widetilde{R}}(\widetilde{L}_R, \widetilde{L}_R)$$

and

$$\alpha_{R\to M}$$
: $\operatorname{Hom}_{\widetilde{R}}(\widetilde{L}_R,\widetilde{L}_R) \simeq \operatorname{Hom}_{\widetilde{M}}(\widetilde{L}_M,\widetilde{L}_M)$.

3.9. Transformation of measures. Let μ_{β} be the $(C_1U_- \times C_1U_-, \psi^{-1} \cdot \psi)$ -equivariant measure on $\widetilde{Q} \times \widetilde{Q}$ corresponding to the operator β_{Π} and μ_{Γ} be the $(U_M \times U_M, \psi_M^{-1} \cdot \psi_M)$ -equivariant measure on $\widetilde{M} \times \widetilde{M}$ corresponding to the operator $\alpha(\kappa \circ \beta_{\Pi})$. In this subsection we express μ_{Γ} in terms of μ_{β} . The measure μ_{Γ} is obtained from μ_{β} in the following three steps:

(3.13)
$$\mu_{\beta} \Longrightarrow \mu_{\beta}^{\kappa} \stackrel{\alpha_{Q \to R}}{\Longrightarrow} \mu_{R} \stackrel{\alpha_{R \to M}}{\Longrightarrow} \mu_{\Gamma},$$

where μ_{β}^{κ} corresponds to the operator $\kappa \circ \beta_{\Pi}$, μ_{R} corresponds to the operator $\alpha_{Q \to R}(\kappa \circ \beta_{\Pi})$, and μ_{Γ} corresponds to the operator $\alpha_{R \to M}(\alpha_{Q \to R}(\kappa \circ \beta_{\Pi})) = \alpha(\kappa \circ \beta_{\Pi})$. In the next three lemmas we present the formulas for each of the steps in (3.13).

Recall the definition of the subgroup A in 2.5.

LEMMA 3.2. The measure μ_{β}^{κ} is the unique $(C_1U_- \times C_1U_-, \psi^{-1} \cdot \psi)$ -equivariant operator measure on $\widetilde{Q} \times \widetilde{Q}$ whose restriction to the open set

(3.14)
$$Q \times T_0 \times w_Q^{-1} AR \times T_0 \subset Q \times T_0 \times Q \times T_0 = \widetilde{Q} \times \widetilde{Q}$$

is given by the formula

(3.15)
$$\mu_{\beta}^{\kappa}(q,t;w_Q^{-1}ar,t') = \psi_Q^{-1}(a)\mu_{\beta}(q,t;w_Q^{-1}r^{\sigma},t^{\sigma}).$$

Proof. Formula (3.15) for the restriction of μ_{β}^{κ} to the open set (3.14) follows from (3.11). The uniqueness of the extension follows from Property I in 3.5.

Next we construct μ_R from μ_{β}^{Γ} . Consider the auxiliary measure

$$\mu'(q_1, t_1; q_2, t_2) = \mu_{\beta}^{\kappa}(w_Q^{-1}q_1, t_1; w_Q^{-1}q_2, t_2)$$

on $\widetilde{Q} \times \widetilde{Q}$. This measure is $(C_1U_Q \times C_1U_Q, \psi_Q^{-1} \cdot \psi_Q)$ -equivariant. Therefore, its restriction to the open dense set $AR \times T_0 \times AR \times T_0 \subset \widetilde{Q} \times \widetilde{Q}$ has the form

$$\mu'(q_1, t_1; q_2, t_2) = \psi_Q^{-1}(a_1)\psi_Q(a_2)da_1' da_2' \mu''(r_1, t_1; r_2, t_2),$$

for $q_i = a_i r_i$, $a_i \in A$, $r_i \in R$, i = 1, 2, where μ'' is a $(C_1 U_R \times C_1 U_R, \psi_R^{-1} \cdot \psi_R)$ -equivariant operator measure on $\widetilde{R} \times \widetilde{R}$.

LEMMA 3.3. The measure μ_R corresponding to $\alpha_{Q\to R}(\mu_{\beta}^{\kappa})$ coincides with the measure $\mu''(r_1, t_1; r_2, t_2)$.

Proof. Clear.

Now we construct μ_{Γ} from μ_{R} . We have the semidirect product decompositions $\widetilde{R} = H \ltimes \widetilde{M}$ and $C_{1}U_{R} = U_{H} \ltimes C_{1}U_{M}$ (see 2.6), hence, in particlar, $\widetilde{R} = H \times \widetilde{M}$ as spaces.

Denote by the δ_{H/U_H} the $(U_H \times U_H, \psi_H^{-1} \cdot \psi_H)$ -equivariant measure on $H \times H$ corresponding to the identity operator in the space L_H of (U_H, ψ_H) -equivariant functions on H. Explicitly, δ_{H/U_H} is given as follows. Let

$$V_H = \left\{ v = \begin{pmatrix} 1 & 0 & 0 \\ 0 & E_{n-2} & 0 \\ 0 & b & a \end{pmatrix} \right\} \subset H.$$

Then $H = U_H V_H$ and $U_H \cap V_H = \{1\}$. Let δ_{V_H} be the diagonal measure on $V_H \times V_H$, i.e.,

$$\int_{V_H \times V_H} f(v_1, v_2) \delta_{V_H} = \int_{V_H} f(v, v) |dv|.$$

Then

$$\delta_{H/U_H}(u_1v_1, u_2v_2) \stackrel{\text{df}}{=} \psi_H(u_1^{-1}u_2)\delta_{V_H}(v_1, v_2).$$

Lemma 3.4. The measure μ_R is of the form $\mu_R = \delta_{U_H} \times \mu'''$ for a unique $(U_M \times U_M, \psi_M^{-1} \cdot \psi_M)$ -equivariant operator measure μ''' on $\widetilde{M} \times \widetilde{M}$, and the measure μ_Γ corresponding to the operator $\alpha(\kappa \circ \beta_\Pi)$ coincides with μ''' .

Proof. The first statement holds for every operator measure μ corresponding to an operator $\Phi \in \operatorname{Hom}_H(\widetilde{L}_R, \widetilde{L}_R)$. The second statement follows from the explicit constriction of the isomorphism $\alpha_{R \to M}$ (see 2.6).

Finally, we combine Lemmas 3.2–3.4 and give an expression for μ_{Γ} . Consider he map

$$S \stackrel{\mathrm{df}}{=} (A \times H \times M) \times T_0 \times (A \times H \times M) \times T_0 \to \widetilde{Q} \times \widetilde{Q}$$

given by the formula

$$(a_1, u_1, m_1; t_1; a_2, u_2, m_2; t_2)$$

$$\mapsto (w_Q^{-1} a_1 h_1 m_1, t_1; w_Q^{-1} a_2 h_2^{\sigma} m_2^{\sigma}, t_2^{\sigma}) \in Q \times T_0 \times Q \times T_0 = \widetilde{Q} \times \widetilde{Q}.$$

This map is an embedding of S into an open dense subset $\widetilde{S} \subset \widetilde{Q} \times \widetilde{Q}$. Lemmas 3.2–3.4 immediately show that the restriction $\mu' = \mu_{\beta}|_{\widetilde{S}}$ of the operator measure μ_{β} to $\widetilde{S} \simeq S$ is given by the formula

$$\mu'(a_1, u_1, m_1; t_1; a_2, u_2, m_2; t_2) = \delta_{H/U_H}(h_1, h_2)\psi_Q^{-1}(a_1)\psi_Q(a_2)\widehat{\mu}(m_1, t_1; m_2, t_2)$$

for some $(U_M \times U_M, \psi_M^{-1} \cdot \psi_M)$ -equivariant operator measure $\widehat{\mu}$ on $\widetilde{M} \times \widetilde{M}$, and that the measure μ_{Γ} corresponding to the operator $\alpha(\kappa \circ \beta_{\Pi})$, equals $\widehat{\mu}$.

4. The measure μ_{β} .

4.1. The measure μ_{β} . In this section we compute explicitly the measure μ_{β} corrsponding to the operator $\beta_{\Pi} \colon \widetilde{L}_{Q} \to \widetilde{L}_{Q}$ defined by formula (3.6). Hence, μ_{β} is a $(C_{1}U_{-} \times C_{1}U_{-}, \psi \cdot \psi^{-1})$ -equivariant complex valued measure on $\widetilde{Q} \times \widetilde{Q}$ given by the formula

$$\langle \mu_{\beta}, f_1 \times \overline{f_2} \rangle = (\beta_{\Pi} f_1, f_2)_{\widetilde{L}_{\mathcal{Q}}}$$

for $f_1, f_2 \in \widetilde{L}_Q$.

Since φ and $\Pi(\sigma)$ in the definition (3.6) of β_{Π} are unitary operators, and $\Pi(\sigma)$ is an involution, we have

$$(4.2) \qquad (\beta_{\Pi} f_1, f_2)_{\widetilde{L}_Q} = (\varphi f_1, \Pi(\sigma) \varphi f_2)_{M_1}, \qquad f_1, f_2 \in \widetilde{L}_Q$$

Let $B_- \subset Q \subset GL_n$ be the subgroup of lower triangular matrices. Denote by the same letter the corresponding subgroup $B_- \times \{1\}$ in $\widetilde{Q} \subset GL_n \times T_0$. We have $B_- \cap B_1 = \{1\}$ and B_-B_1 is dense in \widetilde{Q} . Therefore, the inner product in M_1 can be written in the form

(4.3)
$$(F_1, F_2)_{M_1} = \int_{B_-} F_1(b_-) \overline{F_2(b_-)} |db_-|,$$

where db_{-} is a fixed left invariant volume form on B_{-} and the integral converges absolutely.

Denote $Z = U_1 \times T_0/C \times U_1 \times T_0/C \times B_-$. Recall that by $L_S \subset \widetilde{L}_Q$ we denoted the space of smooth (C_1U_-) -equivariant flunctions on \widetilde{Q} that are compact modulo C_1U_- . Taking into account the formulas for the operator φ (Proposition 3.3(i, ii)) we formally obtain from (4.1) and (4.2) that

$$\langle \mu_{\beta}, f_1 \times \overline{f_2} \rangle = \int_{Z} f_1(u_1 t_1 b_-, t_1) \overline{f_2(u_2 t_2 b_-^{\sigma}, t_2)} |du_1 dt_1 du_2 dt_2 db_-|,$$

where $f_1, f_2 \in L_S$ are considered as functions on $\widetilde{Q} = Q \times T_0$ invariant under C_1 .

Since the integral (4.4) does not converge absolutely, we must specify the order of integration. Fix $f_1, f_2 \in L_S$ and denote the integrand in (4.4) by $F = F_{f_1, f_2}(u_1, t_1; u_2, t_2; b_-)$. Then Proposition 3.3(i)–(ii) show that for a fixed $b_- \in B_-$ there exists a compact set $K(b_-) = K_{f_1, f_2}(b_-) \subset U_1 \times T_0/C \times U_1 \times T_0/C$ (depending on the supports of f_1 and f_2) such that $F(u_1, t_1; u_2, t_2; b_-)$ vanishes for $(u_1, t_1; u_2, t_2) \notin K(b_-)$.

Proposition 4.1. For $f_1, f_2 \in L_S$ we have

$$\langle \mu_{\beta}, f_1 \times \overline{f_2} \rangle = \int_{B_-} db_- \int_{K(b_-)} F_{f_1, f_2}(u_1, t_1; u_2, t_2; b_-) |du_1 dt_1 du_2 dt_2 db_-|$$

and the integral over B_{-} converges absolutely.

Proof. Formula (4.5) follows from Proposition 3.3 (i)–(ii). The absolute convergence of the integral over B_{-} is the absolute convergence of the integral in (4.3).

4.2. Reduction of the measure μ_{β} . In this subsection we use the construction described in §1 (Proposition 1.1) to show that the measure μ_{β} is supported on a of codimension one submanifold $Y_1 \subset Y$ and compute the restriction of μ_{β} to Y_1 .

In the group B_{-} , introduce the following subsets:

$$B' = \left\{ r(a) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & E & 0 \\ a & 0 & 1 \end{pmatrix}, \ a \in F \right\},$$
$$B'' = \left\{ b_{-} \in B_{-} \mid (b_{-})_{n,1} = 0 \right\}.$$

Then $B_- = B'B''$ with the unique decomposition and for $b_- = r(a)b''$ we have $db_- = da \, db''$ for a unique volume form db'' on B''. With this decomposition of B_- we will regard $Z = U_1 \times T_0/C \times U_1 \times T_0/C \times B_-$ as the total space of the trivial line bundle over $Z_0 = U_1 \times T_0/C \times U_1 \times T_0/C \times B''$ with a fixed trivialization. We identify each fiber with $B' \simeq F$, so that $Z = Z_0 \times B'$.

Fix $f_1, f_2 \in L_S$ and recall that by $F(z) = F_{f_1, f_2}(z)$ we denoted the integrand in (4.4) and in (4.5), so that the right-hand side of (4.5) is

(4.6)
$$\int_{B_{-}} db_{-} \int_{K_{f_{1},f_{2}}(b_{-})} F_{f_{1},f_{2}}(u_{1},t_{1};u_{2},t_{2};b_{-})|\omega(z)|,$$

where $\omega = du_1 dt_1 du_2 dt_2 db_-$ is a volume form on Z. Using the intertwining property (3.7) of the operator β_{Π} with $r = r_a \in B'$, we easily see that for $z = (z_0, r_a) \in Z_0 \times B'$ we have

$$F(z) = \psi_F(\gamma(z_0)a)F_0(z_0),$$

where F_0 is the restriction of F to $Z_0 = Z_0 \times \{0\} \subset Z$ and the function γ (a section of the trivial bundle) is given by the formula

$$\gamma(z_0) = (u_1)_{2n}(t_1)_n(t_1)_1^{-1} + (-1)^{n+1}(u_2)_{2n}(t_2)_n(t_2)_1^{-1}$$

for $z_0 = (u_1, t_1; u_2, t_2; b'') \in Z_0$.

Denote by $N = N_{\gamma} \subset Z_0$ the set of zeros of γ .

LEMMA 4.1. N is a smooth subvariety of Z_0 , the section γ is generic at all points of N, and the form ω in (4.6) is fiberwise constant.

Proof. Direct verification.

Denote by $\omega_1 = \eta(\gamma)\omega$ the induced form on N (see (1.4)), and by F_1 the restriction of F to N. We want to prove that

(4.7)
$$\int_{Z} F(z)|\omega| = \int_{N} F_{1}(z)|\omega_{1}|.$$

However, we cannot apply Proposition 1.1 directly since Z_0 and N are not compact and the integral on the left-hand side of (4.7) is a iterated integral as explained in 4.1.

Nevertheless, formula (4.7) holds id the integral on the right-hand side in interpreted as an iterated integral similarly to the integral on the left, but "intersected with N".

Namely, for $b'' \in B''$ denote

$$M(b'') = \{(u_1, t_1; u_2, t_2) \text{ such that } (u_1, t_1; u_2, t_2; b'') \in N\}$$

and let $\omega_{b''} = \omega_1/db''$ be the corresponding volume form on M(b''). Denote the integral (4.6) by I.

Proposition 4.2. We have

(4.8)
$$I = \int_{B''} |db''| \int_{M(b'')} F_1(u_1, t_1; u_2, t_2; b'') |\omega_{b''}|$$

and both the inner and the outer integral on the right-hand side converge absolutely.

Proof. Recall that for a fixed $b_{-} \in B_{-}$ the inner integral in (4.6) is taken over the compact set $K(b_{-}) \subset U_1 \times T_0/C \times U_1 \times T_0/C$. It is easy to see that if $b_{-} = r_a b''$, then the set $K(b_{-})$ can be taken not depending on a. Therefore, we denote it by K(b'').

Now we take an arbitrary sequence of open compact sets $\mathcal{B}_n \subset B''$ such that

$$(4.9) \mathcal{B}_1 \subset \cdots \subset \mathcal{B}_n \subset \cdots, \quad \bigcup \mathcal{B}_n = B''.$$

Let also $\mathcal{O}_m \subset B' = F$ be given by

$$\mathcal{O}_m = \{ r_a | |a| \le p^m \}.$$

Denote by $\Phi(b_{-})$ the inner integral in (4.6) and let

$$I_{mn} = \int_{\mathcal{O}_m \times \mathcal{B}_n} \Phi(b_-) |db_-|.$$

Since the integral over B_{-} in (4.6) converges absolutely, we have

$$I = \lim_{m,n \to \infty} I_{mn} = \lim_{n \to \infty} (\lim_{m \to \infty} I_{mn}).$$

Denote

$$K_n = \bigcup_{b'' \in \mathcal{B}_n} K(b'') \subset U_1 \times T_0/C \times U_1 \times T_0/C.$$

This is a compact set and

$$I_{mn} = \int_{\mathcal{O}_m \times \mathcal{B}_n} da \, db'' \int_{K_n} F(z_0, r_a) |du_1 \, dt_1 \, du_2 \, dt_2|$$
$$= \int_{\mathcal{O}_m} da \int_{K_n \times \mathcal{B}_n} F(z_0, r_a) |\omega_0|.$$

Since $K_n \times \mathcal{B}_n$ is a compact set, we can apply Proposition 1.1 and obtain

$$\lim_{m \to \infty} I_{mn} = \int_{(K_n \times B_n) \cap N} F_1(z) |\omega_1|.$$

Since $\{\mathcal{B}_n\}$ is an arbitrary sequence of open sets satisfying (4.9), Proposition 4.2 is proved.

COROLLARY. The restriction $\mu_{\beta}^{(1)}$ of the measure μ_{β} to Y_1 is given by formula (4.8).

4.3. Another presentation of the measure $\mu_{\beta}^{(1)}$. To construct an algebraic presentation we need to transform formula (4.8) for the measure $\mu_{\beta}^{(1)}$.

Let us choose an arbitrary semialgebraic section $X \hookrightarrow \widetilde{Q}$ of the projection $\widetilde{Q} \to C_1U_- \setminus \widetilde{Q}$, so that each $\widetilde{q} \in \widetilde{Q}$ we have a unique decomposition

$$\widetilde{q} = u_{-}(\widetilde{q})x(\widetilde{q}), \qquad u_{-}(\widetilde{q}) \in U_{-}, \quad x(\widetilde{q}) \in X.$$

According to the remark at the end of 3.4, we can define the measure μ_{β} as a measure on the set $Y = X \times X$.

Denote by $Y_1 \subset Y$ the subvariety of those $y = (q_1, t_2; q_2, t_2)$ for which

(4.10)
$$\widetilde{\gamma}(y) \stackrel{\text{df}}{=} (q_1)_{11}^{-1} (q_1)_{2n} + (-1)^{n+1} (q_2)_{11}^{-1} (q_2)_{2n} = 0.$$

Then the measure μ_{β} is supported on Y_1 (see 4.2) and $\mu_{\beta}^{(1)}$ is the restriction of μ_{β} to Y_1 , i.e.,

$$\int_{Y} F \mu_{\beta} = \int_{Y_{1}} F \mid_{Y_{1}} \mu_{\beta}^{(1)}$$

for smooth compactly supported functions F on Y.

First of all, formula (4.4) immediately shows that the measure μ_{β} is supported on the subset $Y_0 \subset Y$ consisting of the quadruples $(q_1, t_1; q_2, t_2)$ such that

For two elements $g_1, g_2 \in GL_n$ we write $g_1 \stackrel{U_-}{\sim} g_2$ if g_1 and g_2 belong to the same double coset modulo U_- , i.e.,

$$q_1 = u_{-1}q_2u_{-2}, \qquad u_{-1}, u_{-2} \in U_{-1}.$$

For $y = (q_1, t_2; q_2, t_2) \in Y$ denote

$$(4.12) b(y) = q_1 q_2^{\top} \in GL_n, t(y) = t_1 t_2^{\top} \in T_0.$$

Note that $b(y)_{1n} = 0$ for $y \in Y$ and, by (4.11), for $y \in Y_0$ we have

$$\det b(y) = \det t(y).$$

Now we define Z' as a subset of the direct product $Y_0 \times U_+$ consisting of the pairs (y, u) such that

$$(4.13) b(y) \stackrel{U_{-}}{\sim} t(y)u,$$

i.e.,

$$(4.14) u_{-1}b(y)u_{-2}^{\top} = t(y)u, u_{-1}, u_{-2} \in U_{-}.$$

For $(u_1, t_1; u_2, t_2; b_-) \in Z = U_1 \times T_0/C \times U_- \times T_0/C \times B_-$ we define $\theta(z) \in Y \times U_+$ as follows:

$$\theta(z) = (q_1, t_1; q_2, t_2; u) \in X \times X \times U_+,$$

where

$$(q_1, s_1) = x(t_1u_1b_-, t_1),$$

$$(q_2, s_2) = x(t_2u_2b_-^{\sigma}, t_2),$$

$$(4.15) u = t(y)^{-1}u_1t(y)u_2^{\top}.$$

Clearly, $u \in U_+$.

Proposition 4.3. We have $\theta(z) \in Z'$.

Proof. Define $(c_1u_{-1}, c_1), (c_2u_{-2}, c_2) \in C_1U_-$ by the formulas

$$(c_1u_{-1},c_1)=u_-(t_1u_1b_-,t_1), \qquad (c_2u_{-2},c_2)=u_-(t_2u_2b_-^{\sigma},t_2),$$

so that in $\widetilde{Q} = Q \times T_0$ we have

$$(4.16) (t_1u_1b_-, t_1) = (c_1u_{-1}, c_1)(q_1, s_1),$$

$$(4.17) (t_2 u_2 b_-^{\sigma}, t_2) = (c_2 u_{-2}, c_2)(x_2, s_2).$$

Applying the antiinvolution \top to (4.17), multiplying by (4.16), and using formulas (4.11) and (4.15), we get

(4.18)
$$t_1 t_2^{\top} = ct(y) \\ t_1 t_2^{\top} u = cu_{-1} b(y) u_{-2}^{\top},$$

where $c = c_1 c_2$. Therefore, so that $b(y) \stackrel{U_-}{\sim} t(y)u$. Since $u \in U_+$, we have $q(z) \in Z'$. Proposition 4.3 is proved.

Denote by $p': Z' \to Y_0$ the projection and let $Z'_1 \subset Z'$ be the preimage of Y_1 , so that Z'_1 consists of those $z = (q_1, t_1; q_2, t_2; u)$ for which

$$\widetilde{\gamma}(p(z')) = 0.$$

Now we define open dense subset $Y_2 \subset Y_1$, $Z_2 \subset Z_1$, and $Z_2' \subset Z_1'$ by the conditions:

$$(4.19) Y_2 = \{ y \in Y_1 \text{ such that } (b(y))_{1 n-1} = (b(y))_{2n} \neq 0 \}$$

$$Z_2 = \{ (u_1, t_1; u_2, t_2; b_-) \in Z_1 \text{ such that } (u_1)_{2n} \neq 0, \ (u_1)_{2n} \neq 0 \};$$

$$Z_2' = \{ (y, u) \in Z_1' \text{ such that } y \in Y_2. \}$$

Clearly, θ maps Z_2 to Z'_2 .

Proposition 4.4. $\theta: Z_2 \to Z_2'$ is a bijection.

Proof. We construct the inverse map $\theta'\colon Z_2'\to Z_2$. In this construction we assume that $B_-\hookrightarrow GL_n\times T_0$ is a genuine section of the projection $GL_n\times T_0\to B_1\setminus GL_n\times T_0$ (for the notation, see 3.1). To make all the arguments precise we must replace B_- by a semialgebraic section $\widehat{B}_-\subset GL_n\times T_0$ such that \widehat{B}_- is invariant under the left multiplication by elements of B'.

Let $z=(q_1,t_1;q_2,t_2;u)\in Z_2'$, i.e., conditions (4.11), (4.13) and (4.19) hold. For each pair (u_{-1},u_{-2}) satisfying (4.14) we define $u_1\in U_1$ and $b_-\in B_-$ from the (unique) decomposition

$$u_1 t_1 b_- = u_{-1} q_1$$

(with t_1, u_{-1}, q_1 known). From condition (4.19) one easily gets that the family of pairs (u_{-1}, u_{-2}) satisfying (4.14) is one-dimensional and there exists exactly one pair for which the corresponding b_- is in B''. Below by (u_{-1}, u_{-2}) we will mean this particular pair.

Now we set

$$(4.20) u_2 = (u')^{\top} (t(y)^{-1} u_1 t(y))^{\sigma}.$$

From the definition (4.15) of u we get

$$u_2 t_2 b_-^{\sigma} = u_{-2} x_2.$$

In particular, $u_2 \in Q$ and $u_2 \in U' \subset U_+$, so that $u_2 \in Q \cap U_+ = U_1$. Therefore,

$$\theta'(z') \stackrel{\text{df}}{=} z = (u_1, t_1; u_2, t_2, b_-) \in Z_1$$

and p(z) = y. Hence, $z \in \mathbb{Z}_2$. It is also clear that $q \circ \theta' = \mathrm{id}_{\mathbb{Z}'_2}$.

For $y \in Y_2'$ we denote by $U_y \subset U_+$ the fiber of the projection $p' \colon Z_2' \to Y_2$. This is a dense open subset in a closed codimension n subvariety $\overline{U_y}$ in U_+ given by the n equations

(4.21)
$$\Phi_1^{(y)}(u) = \dots = \Phi_n^{(y)}(u) = 0, \qquad u \in U_+.$$

The first two of these equations are

$$u_{1n} = 0, \qquad u_{1n-1} = u_{2n}.$$

Introduce the volume form $\omega_{Y_1} = \operatorname{Res} \frac{\omega_Y}{\tilde{\gamma}}$ ($\tilde{\gamma}$ is defined by (4.10)) and let ω_{Y_2} be the restriction of ω_{Y_1} to Y_2 . Introduce also a volume form ω_{U_y} on each fiber U_y by the formula

$$\omega_{U_y} = \operatorname{Res} \frac{\bigwedge_{i < j} du_{ij}}{\Phi_1^{(y)} \cdots \Phi_n^{(y)}}.$$

The forms ω_{Y_2} and ω_{U_y} , $y \in Y_2$, determine a volume form ω' on Z'_2 .

Finally, introduce an algebraic function f' on \mathbb{Z}_2' by the formula

$$f'(y, u) = \Psi(u_{-1}u_{-2}),$$

where u_{-1} , u_{-2} are taken from (4.14). Note that although u_{-1} and u_{-2} in (4.14) are not unique, the condition $\tilde{\gamma}(y) = 0$ implies that f' is well defined on Z'_2 .

Conjecture. Denote by $\mu_{\beta}^{(2)}$ the restriction of $\mu_{\beta}^{(1)}$ to the open dense subset $Y_2 \subset Y_1$. Then the data

$$\boldsymbol{\mu} = (\mathbf{Z}_2', \mathbf{Y}_2, \mathbf{p}', \boldsymbol{\omega}', \mathbf{p}')$$

is an algebraic presentation of $\mu_{\beta}^{(2)}$.

Remarks. 1. If the conjecture is true, than it is easy to prove that the measure realized by the data μ coincides with $\mu_{\beta}^{(2)}$.

2. In all examples intersection of the level sets of \mathbf{f}' in \mathbf{Z}_2' with the fibers of \mathbf{p}' are open subsets of Calabi–Yau manifolds and the form ω' extends to a regular form on the completion.

For n=3 the above conjecture is obviously true because each fiber U_y consists of just one point. In the next section we prove this conjecture for n=4.

5. Explicit formulas for GL_4 .

5.1. The measure $\mu_{\beta}^{(2)}$. Now we consider the case n=4. We write a matrix $u \in U$ in the form

$$u = \begin{pmatrix} 1 & a_1 & a_2 & a_3 \\ 0 & 1 & a_4 & a_5 \\ 0 & 0 & 1 & a_6 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

so that $\omega_U(u) = \bigwedge_{i=1}^6 da_i$.

Fix $y=(q_1,t_1;q_2,t_2)\in Y_2$. Let the Bruhat decomposition of $b(u)\in GL_4$ be $b(y) = u'_{-1} \Lambda u'_{-2}$ with $u'_{-1}, u'_{-2} \in U_{-1}$

$$\Lambda = \begin{pmatrix} 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \\ 0 & \nu_1 & 0 & 0 \\ \nu_2 & 0 & 0 & 0 \end{pmatrix}.$$

Let $t(y) \in T_0$ be the diagonal matrix $t(y) = \operatorname{diag}(\tau_1, \tau_2, \tau_3, \tau_4)$.

The condition (4.13) is equivalent to the following equalities:

$$a_3 = 0$$
, $\tau_1 a_2 = \tau_2 a_5 = \lambda$, $\tau_1 \tau_2 \tau_3 (a_1 a_4 a_6 - a_1 a_6 - a_2 a_5) = \lambda^2 \nu_1$,

so that the fiber $U_y \subset U_+$ over y is the affine plane, and we can take $s_1 = \tau_1 a_1$ and $s_2 = \tau_3 a_6$ as coordinates on this plane.

The function f'(z') on Z'_2 is given by the formula

(5.1)
$$f'(z') = \Psi(u_{-1}u_{-2}^{\mathsf{T}})(R(s_1, s_2; \Lambda, t)),$$

where $R(s_1, s_2; \Lambda, t)$ is a rational function in s_1, s_2 depending on parameters Λ, t . Explicitly,

$$\begin{split} R(s_1,s_2,\Lambda,t) &= \lambda^{-1} \big[s_1 + s_2 + \lambda (\tau_1 + \tau_2) s_1^{-1} + \lambda (\tau_3 + \tau_4) s_2^{-1} \\ &+ \nu_1^{-1} \tau_3 \tau_4 s_1 s_2^{-1} + \nu_1^{-1} \tau_1 \tau_2 s_2 s_1^{-1} + \lambda^2 \nu_1 s_1^{-1} s_2^{-1} \big]. \end{split}$$

Finally, the form ω_{U_y} on the fiber $U_y \subset U_+$ is given by

$$\omega_{U_y} = \frac{da_1 da_4 da_6}{d(\tau_1 \tau_2 \tau_3 (a_1 a_4 a_6 - a_1 a_6 - a_2 a_5))} = \frac{ds_1 ds_2}{s_1 s_2}.$$

Proposition 5.1. The data $\mu = (\mathbf{Z}_2', \mathbf{Y}_2, \mathbf{p}', \omega', \mathbf{f}')$ give an algebraic presentation of the measure $\mu_{\beta}^{(2)}$.

Proof. We must prove that conditions (i)–(iv) of Definition 0.1 are satisfied.

Instead of proving (i)-(iii) we prove a stronger result that similar properties hold

at each fiber U_y of $p' \colon Z_2' \to Y_2$. Take a point $y \in Y_2$. The factor $\Psi(u_{-1}u_{-2}^{\top})$ in formula (5.1) is constant on the fiber U_y , so we can ignore it.

For almost each $\xi \in F$ the level set $R + \xi$ of the function R inside the affine plane \mathbb{A}^2 with coordinates s_1, s_2 is (the affine part of) a smooth elliptic curve E_{ξ} given by the equation $F_{\xi}(s_1, s_2; \Lambda, t, \xi) = 0$, where

$$F_{\xi}(s_1, s_2; \Lambda, t, \xi) \stackrel{\text{df}}{=} s_1 s_2 (R(s_1, s_2; \Lambda, t) + \xi) = s_1^2 s_2 + s_1 s_2^2 + \nu_1^{-1} \tau_3 \tau_4 s_1^2 + \xi s_1 s_2 + \nu_1^{-1} \tau_1 \tau_2 s_2^2 + \lambda (\tau_3 + \tau_4) s_1 + \lambda (\tau_1 + \tau_2) s_2 + \lambda^2 \nu_1.$$

The form ω_{ξ} on the level set E_{ξ} is given by the formula

$$\omega_{\xi} = \operatorname{Res} \frac{ds_1 ds_2}{F_{\xi}(s_1, s_2; \Lambda, t, \xi)}.$$

It is easy to see that ω_{ξ} is a (unique up to a scalar factor) regular differential on E_{ξ} . Therefore, for almost all $\xi \in F$ the integral

$$I(\xi) \stackrel{\mathrm{df}}{=} \int_{E_{\mathcal{E}}} |\omega_{\xi}|$$

converges.

Next we must prove that $I(\xi)$ is a locally L^1 -function of ξ . The singularities of $I(\xi)$ occur at the point where E_{ξ} becomes a singular curve. It is easy to see from explicit expression for ω_{ξ} that for each such point $\overline{\xi}$ the form $\omega_{\overline{\xi}}$ is nonsingular at each generic point of the (possibly reducible) curve $E_{\overline{\xi}}$. By a general theorem (see [S]), this implies that

$$I(\xi) = O(|\log(\xi - \overline{\xi})|^k)$$

for some k as $\xi \to \overline{\xi}$ and $I(\xi)$ is an L^1 -function near $\overline{\xi}$.

Finally, as $|\xi| \to \infty$, the curve E_{ξ} degenerate into the curve E_{∞} given by the equation $s_1 s_2 = 0$, and the form ω_{∞} on E_{∞} is regular at both generic points of E_{∞} . The same general result easily implies that as $|\xi| \to \infty$, the function $I(\xi)$ depends only on $|\xi|$. This implies that the sequence of integrals

$$\int_{|\xi| \le p^n} I(\xi) \, |d\xi|.$$

stabilizes.

So, we proved that "fiberwise versions" of properties (i)–(iii) of Definition 0.1 hold. In particular, this implies that if $f_1, f_2 \in L_S$, then the integral

(5.2)
$$\int_{Z'_2} \psi_F(f'(z'))(p')^* (f_1 \times \overline{f_2})(z') |\omega'(z')|$$

converges in the sense of Definition 0.1. Using the convergence of the integrals in formula (4.8) one can see that the integral (5.2) equals $\langle \mu_{\beta}^{(1)}, f_1 \times \overline{f_2} \rangle$. Proposition 5.1 is proved.

5.2. S_4 -invariance. In this section we construct an action of the group S_4 on the data $\mu = (\mathbf{Z}_2', \mathbf{Y}_2, \mathbf{p}', \omega', \mathbf{f}')$.

Recall that the action of S_4 on Y (and the induced action on Y_2) is given by $w(x_1, t_2; x_2, t_2) = (x_1, t_1^w; x_2, t_2^{w^{\sigma}})$. We must construct the action of S_4 on Z_2' compatible with the action of S_4 on Y_2 and preserving the function f' and the form ω' .

Let $\Sigma_i(\tau_1, \tau_2, \tau_3, \tau_4)$, i = 1, 2, 3, 4, be the *i*-th elementary symmetric function. For the proof, it suffice to rewrite the formulas the curve E_{ξ} and for the form $\omega_{E_{\xi}}$ in terms of S_4 -invariant combinations Σ_i of τ_i .

We pass from the coordinates s_1, s_2 on the plane to homogeneous coordinates S_1, S_2, S_3 such that $s_1 = S_1/S_3, s_2 = (S_2 - S_1)/S_3$. In these coordinates we have

$$S_3^3 F_{\xi} = P_1(S_2, S_3) S_1^2 + P_2(S_2, S_3) S_1 + P_3(S_2, S_3),$$

where

$$P_1(S_2, S_3) = -S_2 + (\nu_1^{-1}\tau_1\tau_2 + \nu_1^{-1}\tau_3\tau_4 - \xi)S_3,$$

$$P_2(S_2, S_3) = S_2^2 + (-\xi + 2\nu_1^{-1}\tau_1\tau_2)S_2S_3 + S_3^2\lambda(-\tau_1 - \tau_2 + \tau_3 + \tau_4),$$

$$P_3(S_2, S_3) = \nu_1 S_2(\nu_1^{-1}\tau_1 S_2 + \lambda S_3)(\nu_1^{-1}\tau_2 S_2 + \lambda S_3).$$

Direct computations show that the discriminant $\Delta = P_2^2 - 4P_1P_3$ is a symmetric polynomial in $\tau_1, \tau_2, \tau_3, \tau_4$. Expressed in terms of elementary symmetric functions Σ_i , it is

$$\Delta = S_2^4 + 2\xi S_2^3 S_3 + (\xi^2 + 2\Sigma_1 + 4\rho \Sigma_4) S_2^2 S_3^2 + (2\xi \Sigma_1 + 4\rho^{-1} - 4\rho \Sigma_3) S_2 S_3^3 + (2\xi \rho^2 + \Sigma_1^2 - 4\Sigma_2) S_3^4,$$

where $\rho = \lambda^2 \nu_1$.

Taking instead of S_1 the variable S given by

$$(5.3) S = 2P_1(S_2, S_3)S_1 - P_2(S_2, S_3),$$

we obtain that the equation of E_{ξ} is

$$S^2 - \Delta(S_2, S_3) = 0.$$

Hence, E_{ξ} is invariant under the action of S_4 .

Using the change of variables (5.3) one gets, in an obvious way, the action of S_4 on \mathbb{Z}_2' .

PROPOSITION 5.2. The described action of S_4 on \mathbf{Z}_2' determines the action of S_4 on the data $\boldsymbol{\mu} = (\mathbf{Z}_2', \mathbf{Y}_2, \mathbf{p}', \boldsymbol{\omega}', \mathbf{f}')$.

Proof. By construction, the action of S_4 commutes with \mathbf{p}' and \mathbf{f}' . The invariance of the form ω_{ξ} on E_{ξ} under the action of S_4 is easy, and it implies the invariance of ω' .

Using Proposition 5.2, one can easily write does the twisted data μ_{α} that conjecturally determine the measure μ_{α} defined by the Γ -function for GL_4 (see Conjectures 1 and 2 in the introduction).

Appendix. Comparison with the JPS gamma factor.

In this appendix the proof of Proposition 2.1 is given.

PROPOSITION A.1. Let $\tau = \mathcal{E}^{-1} \otimes \theta$ be a generic irreducible unitary representation of GL_{n-2} . Then

$$\Gamma(\pi,\theta) = \omega_{\widetilde{\tau}}(-1)^{n-1}\gamma(\pi \times \widetilde{\tau}, 1/2, \psi),$$

where $\omega_{\widetilde{\tau}}$ is the central character of $\widetilde{\tau}$, $\widetilde{\tau}$ is the contragredient of τ (which, since τ is unitary, is $\overline{\tau}$), and γ is the gamma factor of [JPS].

In this appendix we use a slightly different set up from the one in the main body of the paper (see [JPS]). In particular, we will use the following notation.

• w_n is the $n \times n$ permutation matrix $w_n = \begin{pmatrix} & & 1 \\ 1 & & \end{pmatrix}$ with 1's along the skew diagonal.

- For the outer involution of GL_n in this appendix we take the involution given by $q^{\sigma} = w_n{}^t g^{-1}w_n$.
- Q is the stabilizer of the point $(0:\cdots:0:1)\in\mathbb{P}^n$ and so consists of matrices whose last row is $(0,\ldots,0,*)$.
- $R = Q \cap Q^{\sigma}$ is then the standard parabolic subgroup associated to the partition n = 1 + (n 2) + 1 containing the upper triangular unipotent subgroup U.
 - $\psi = \psi_n$ is the standard non-degenerate character of U.

Let
$$w_Q = \begin{pmatrix} 0 & 1 & 0 \\ I_{n-2} & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Then

$$U_Q = w_Q U w_Q^{-1} = \left\{ \begin{pmatrix} 1 & 0 & c \\ a' & u' & a \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

with $\psi_Q(u) = \psi_0(u_{1,n} + u_{2,3} + \dots + u_{n-2,n-1} + u_{n-1,1})$

$$U_R = U_Q \cap R = \left\{ \begin{pmatrix} 1 & 0 & c \\ 0 & u' & a \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

with $\psi_R = \psi_Q|_R$. Here, the matrices are in block form associated to the partition (1, n-2, 1) of n.

The induced representations are all as in the main text, with the replacement of U_{-} by the upper unipotent subgroup U.

We want to analyze a particular element of $\operatorname{Hom}_R(\rho_{R,\mathcal{E}},\rho_{R,\mathcal{E}})$ beginning with a irreducible unitary generic representation (π,V_{π}) of GL_n with central character \mathcal{E} .

Step 1: To get our first realization of $\rho_{R,\mathcal{E}}$ we do the following. We first pass from V_{π} to its Whittaker model $\mathcal{W}(\pi,\psi)$ and then restrict these functions to Q:

$$v \in V_{\pi} \mapsto W_{v}(q)$$

where W_v is the Whittaker function associated to v and $q \in Q$. The space

$$\{W_v(q) \mid W_v \in \mathcal{W}(\pi, \psi), q \in Q\}$$

gives a realization of $\rho_{Q,\mathcal{E}}$.

To get a realization of $\rho_{R,\mathcal{E}}$ we apply your maps C_1 and then C_2 :

$$W_v(q) \mapsto W_v(w_O^{-1}q) \mapsto W_v(w_O^{-1}r)$$

with now $r \in R$. So our first realization of $\rho_{R,\mathcal{E}}$ is on the space

$$\{W_v(w_O^{-1}r) \mid W_v \in \mathcal{W}(\pi, \psi), r \in R\}$$

with R acting by right translation.

Step 2: The element of $\operatorname{Hom}_R(\rho_{R,\mathcal{E}},\rho_{R,\mathcal{E}})$ that we want to analyze is, using the notation in Section 2,

$$C_3 \circ C_2 \circ C_1 \circ \beta_{\pi} \circ C_1^{-1} \circ C_2^{-1}$$
.

If we begin with $W_v(w_Q^{-1}r)$, then applying $C_1^{-1} \circ C_2^{-1}$ brings us back to $W_v(q)$. The map β_{π} in these models is the map

$$\beta_{\pi}: W_{v}(q) \mapsto \widetilde{W}_{v}(qw_{n}) = \widetilde{W}_{\pi(w_{n})v}(q),$$

where, as in [JPS], we have set $\widetilde{W}(g) = W(w_n^t g^{-1})$. Applying C_1 and then C_2 to this gives

$$\widetilde{W}_{\pi(w_n)v}(q) \mapsto \widetilde{W}_{\pi(w_n)v}(w_Q^{-1}q) \mapsto \widetilde{W}_{\pi(w_n)v}(w_Q^{-1}r).$$

Now, applying the map C_3 gives

$$\widetilde{W}_{\pi(w_n)v}(w_Q^{-1}r) \mapsto \int_{B} \widetilde{W}_{\pi(w_n)v}(w_Q^{-1}\underline{b}r^{\sigma}) \ db,$$

where we now have

$$B = \left\{ \underline{b} = \begin{pmatrix} 1 & b & 0 \\ 0 & I_{n-2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| b \in F^{n-2} \right\}.$$

So, our element of $\operatorname{Hom}(\rho_{R,\mathcal{E}},\rho_{R,\mathcal{E}})$ is

$$W_v(w_Q^{-1}r) \mapsto \int_B \widetilde{W}_{\pi(w_n)v}(w_Q^{-1}\underline{b}r^{\sigma}) \ db.$$

Step 3: We now pass from $\operatorname{Hom}(\rho_{R,\mathcal{E}},\rho_{R,\mathcal{E}})$ to $\operatorname{Hom}(\rho_{M,\mathcal{E}},\rho_{M,\mathcal{E}})$ using $\rho_{R,\mathcal{E}} \simeq \rho_H \otimes \rho_{M,\mathcal{E}}$. This isomorphism is effected by restricting the functions in $\rho_{R,\mathcal{E}}$ to M. To pass from $\rho_{R,\mathcal{E}}$ to $\rho_{M,\mathcal{E}}$ we must then twist these restrictions by the action of M on ρ_H . Let us write $M = C_n \times GL_{n-2}$ and correspondingly m = cm' with $m' \in GL_{n-2}$ embedded as the center block in GL_n . Then the unitary action of m on ρ_H , if we realize this as functions on an appropriate space X, is $\varphi(x) \mapsto |\det(m')|^{1/2} \varphi(xm')$. This gives, in essence, $\rho_{M,\mathcal{E}} = |\det(m')|^{-1/2} \rho_{R,\mathcal{E}}|_M$.

So, our element of $\operatorname{Hom}(\rho_{M,\mathcal{E}},\rho_{M,\mathcal{E}})$, in our models, takes the form

$$\mathcal{E}(c) |\det(m')|^{-1/2} W_v(w_Q^{-1} m') \mapsto \mathcal{E}(c) |\det(m')|^{-1/2} \int_B \widetilde{W}_{\pi(w_n)v}(w_Q^{-1} \underline{b}(m')^{\sigma}) \ db.$$

Step 4: This morphism should act as a scalar $\Gamma(\pi,\theta)$ on each irreducible component θ of $\rho_{M,\mathcal{E}}$. Each such component is of the form $\theta = \mathcal{E} \otimes \tau$ with τ an irreducible unitary generic representation of GL_{n-2} . To compute this scalar we want to project into the $\mathcal{E} \otimes \tau$ component by pairing $\rho_{M,\mathcal{E}}$ with the contragredient $(\mathcal{E} \otimes \tau)^{\sim} = \mathcal{E}^{-1} \otimes \tilde{\tau} = \bar{\mathcal{E}} \otimes \bar{\tau}$. In this pairing, the central characters cancel. So we can effect the pairing by taking $\tilde{\tau}$ in its ψ^{-1} -Whittaker model and integrating over $U_{n-2} \setminus GL_{n-2}$. (We do not worry about convergence of the integrals.)

Let $W_{\widetilde{\tau}}(g) \in \mathcal{W}(\widetilde{\tau}, \psi^{-1})$. Before applying the morphism we have

$$\begin{split} I &= \langle |\det(m')|^{-1/2} W_v(w_Q^{-1}m'), W_{\widetilde{\tau}}(m') \rangle \\ &= \int_{U_{n-2} \setminus GL_{n-2}} W_v \left(w_Q^{-1} \begin{pmatrix} 1 & & \\ & m' & \\ & & 1 \end{pmatrix} \right) W_{\widetilde{\tau}}(m') |\det(m')|^{-1/2} dm' \\ &= \int_{U_{n-2} \setminus GL_{n-2}} W_{\pi(w_Q^{-1})v} \begin{pmatrix} m' & & \\ & & I_2 \end{pmatrix} W_{\widetilde{\tau}}(m') |\det(m')|^{1/2-1} dm' \\ &= \Psi(W_{\pi(w_Q^{-1})v}, W_{\widetilde{\tau}}, 1/2), \end{split}$$

where $\Psi(W_{\pi(w_O^{-1})v}, W_{\widetilde{\tau}}, 1/2)$ is as in [JPS].

After applying the morphism, we should get

$$\widetilde{I} = \langle |\det(m')|^{-1/2} \int_{B} \widetilde{W}_{\pi(w_n)v}(w_Q^{-1}\underline{b}(m')^{\sigma}) \ db, W_{\widetilde{\tau}}(m') \rangle$$

which, if the morphism is to act by the scalar $\Gamma(\pi,\theta)$ on this piece, should give

$$\begin{split} \widetilde{I} &= \Gamma(\pi,\theta) \langle |\det(m')|^{-1/2} W_v(w_Q^{-1}m'), W_{\widetilde{\tau}}(m') \rangle \\ &= \Gamma(\pi,\theta) \Psi(W_{\pi(w_Q^{-1})v}, W_{\widetilde{\tau}}, 1/2). \end{split}$$

Step 5: The final step is to identify \widetilde{I} with the right-hand side of the $GL_n \times GL_{n-2}$ functional equation. If we write the integral \widetilde{I} out it is

$$\begin{split} \widetilde{I} &= \int_{U_{n-2}\backslash GL_{n-2}} \int_{B} \widetilde{W}_{\pi(w_n)v}(w_Q^{-1}\underline{b}(m')^{\sigma}) db \ W_{\widetilde{\tau}}(m') |\det(m')|^{-1/2} dm' \\ &= \int \int \widetilde{W}_v \left(w_Q^{-1}\underline{b} \begin{pmatrix} 1 & & \\ & m' & \\ & 1 \end{pmatrix}^{\sigma} w_n \right) db W_{\widetilde{\tau}}(m') |\det(m')|^{-1/2} dm'. \end{split}$$

We next have a few elementary calculations:

$$\begin{split} \widetilde{W}_v(g) &= \widetilde{W}_{\pi(w_Q^{-1})v}(gw_Q) \\ \begin{pmatrix} 1 & & \\ & m' & \\ & & 1 \end{pmatrix}^{\sigma} &= \begin{pmatrix} 1 & & \\ & (m')^{\sigma} & \\ & & 1 \end{pmatrix} \\ w_Q^{-1} \begin{pmatrix} 1 & b & \\ & I_{n-2} & \\ & & 1 \end{pmatrix} w_Q &= \begin{pmatrix} I_{n-2} & \\ & b & 1 \\ & & 1 \end{pmatrix} = \widetilde{b} \\ w_Q^{-1} \begin{pmatrix} 1 & & \\ & m' & \\ & & 1 \end{pmatrix} w_Q &= \begin{pmatrix} m' & \\ & I_2 \end{pmatrix} \\ \begin{pmatrix} w_{n-2} & \\ & I_2 \end{pmatrix} w_Q^{-1} w_n w_Q &= \begin{pmatrix} I_{n-2} & \\ & w_2 \end{pmatrix} = w_{n,n-2} \end{split}$$

If we now use these calculations in our expression for \widetilde{I} , and set $v'=\pi(w_Q^{-1})v$, we obtain

$$\widetilde{I} = \int \int \widetilde{W}_{v'} \left(\widetilde{b} \begin{pmatrix} w_{n-2}{}^t (m')^{-1} \\ I_2 \end{pmatrix} w_{n,n-2} \right) db W_{\widetilde{\tau}}(m') |\det(m')|^{-1/2} dm'.$$

Now we change of variables $m' \mapsto w_{n-2}{}^t(m')^{-1}$ and note that $W_{\tilde{\tau}}(w_{n-2}{}^t(m')^{-1}) = \widetilde{W}_{\tilde{\tau}}(m')$. Then our expression can be written

$$\widetilde{I} = \int \int (
ho(w_{n,n-2})\widetilde{W}_{v'}) \begin{pmatrix} m' \\ bm' & 1 \\ & 1 \end{pmatrix} db \widetilde{W}_{\widetilde{\tau}}(m') |\det(m')|^{1/2} dm'.$$

Making the change of variables $b \mapsto b(m')^{-1}$ we finally obtain

$$\begin{split} \widetilde{I} &= \int \int (\rho(w_{n,n-2})\widetilde{W}_{v'}) \begin{pmatrix} m' \\ b & 1 \\ & 1 \end{pmatrix} db \widetilde{W}_{\widetilde{\tau}}(m') |\det(m')|^{-1/2} dm' \\ &= \int \int (\rho(w_{n,n-2})\widetilde{W}_{v'}) \begin{pmatrix} m' \\ b & 1 \\ & 1 \end{pmatrix} db \widetilde{W}_{\widetilde{\tau}}(m') |\det(m')|^{(1-1/2)-1} dm' \\ &= \Psi(\rho(w_{n,n-2})\widetilde{W}_{v'}, \widetilde{W}_{\widetilde{\tau}}, 1 - 1/2; 1). \end{split}$$

Thus we arrive at

$$\Gamma(\pi,\theta)\Psi(W_{v'},W_{\widetilde{\tau}},1/2) = \Psi(\rho(w_{n,n-2})\widetilde{W}_{v'},\widetilde{W}_{\widetilde{\tau}},1-1/2;1).$$

By the local functional equation of [JPS] we have

$$\omega_{\widetilde{\tau}}(-1)^{n-1}\gamma(\pi\times\widetilde{\tau},1/2,\psi)\Psi(W_{v'},W_{\widetilde{\tau}},1/2)=\Psi(\rho(w_{n,n-2})\widetilde{W}_{v'},\widetilde{W}_{\widetilde{\tau}},1-1/2;1).$$

Hence we have

$$\Gamma(\pi,\theta) = \omega_{\widetilde{\tau}}(-1)^{n-1}\gamma(\pi \times \widetilde{\tau}, 1/2, \psi)$$

as claimed.

REFERENCES

- [BZ] I. N. BERNSTEIN AND A. V. ZELEVINSKY, Induced representations of reductive p-adic groups. I., Ann. Sci. Icole Norm. Sup. (4), 10 (1977), p. 441-472.
- [GG] S. GELFAND AND M. GRAEV, Fourier-Weyl operators on the base principal series of a Chevalley group, Preprint (1973).
- [HT] M. HARRIS AND R. TAYLOR, On the Geometry and Cohomology of Some Simple Shimura Varieties, Preprint, 1998.
- [JPS] H. JACQUET, I. I. PIATETSKII-SHAPIRO, AND J. SHALIKA, Rankin-Selberg convolutions, Amer. J. Math., 105 (1983), pp. 367-464.
 - [K] D. KAZHDAN, "Forms" of the principal series for GLn, in Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), Birkhäuser, Boston, 1995, pp. 153-171.
- [K1] ———, The minimal representation of D₄, in Operator Algebras, Unitary Representations, and Invariant Theory (Paris, 1989), Birkhäuser, Boston, 1990, pp. 125–158.
- [KL] D. KAZHDAN AND G. LAUMON, Glueing of Preverse sheaves and discrete series representations, J. Geom. Phys., 5 (1988), pp. 63-120.
- [S] J. SILVERMAN, The arithmetic of elliptic curves, Springer-Verlag, New York-Berlin, 1986.
- [W] A. Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math., 113 (1965), pp. 1–87.