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CONJECTURAL ALGEBRAIC FORMULAS 
FOR REPRESENTATIONS OF GLj 

SERGEI GELFAND* AND DAVID KAZHDAN* 

0. Introduction. 

0.0. Let F be a non-archimedean local field. Due to the recent work of Harris and 
Taylor [HT], we know that the local Langlands conjecture is true. In other words, for 
any local field F we know the existence of the one-to-one correspondence <^n: nn —> 
GLn(F)^ between the set nn of n-dimensional representations of the Galois group 
0 = Gal(jF/F) and the set GLn(F)^ of irreducible nondegenerate representations of 
the group GLn{F). In particular, one can associate an irreducible representation 7rx 

of the group GLn(F) to a pair (£?,x)> where E is a commutative semisimple algebra 
over F of degree n and x is a multiplicative character of the group E*. However, we do 
not know any explicit construction for the representation 7rx. In our paper we propose 
an explicit "algebraic" construction for the representation 7rx at least for n — 4. 

One can inductively characterize the correspondence (j)n in the following way. 
Suppose that we know the correspondence </>n-2- Then for any a G nn we can char- 
acterize the representation (j>n{a) as the unique representation of GLn(F) such that 
for any representation p £ Tln-2 we have 

r(^n((7),0n-2(p)) = r(flr<8)p*), 

where r(0n(cr),0n_2(p)) is the Gamma function of Jacquet, Piateskii-Shapiro, Sha- 
lika [JPS] and r(cr 0 p*) is the Gamma function of Langlands. More precisely, 
let GLn(F)u C GLn(F)~ and nn.u C nn be the subsets of unitary representa- 
tions. We denote by rn the function on the set GLn-2(F)u x H^ defined by 
rn(7r,/9) = r(7r,0n_2(p)). To any maximal torus T in GLn(F) and any character 
X of T we may associate an n-dimensional representation ax £ Iin and therefore a 
representation irx = (j)n(ax) £ GLn(F)~. Let (pn-2,Whn-2) be the Whittaker repre- 
sentation of GLn-2 (F) • The representation of GLn_2 x T in the space Whn-2 0 L2 (T) 
decomposes in the direct integral 

(0.1) Whn-2 <8> L2(T) = © / (V^ ® x), 
JGLn-2(F)uXT- 

where Vn is the space of the representation TT. Let A,^_2 be the unitary operator in the 
space Whn-2 0 L2(T) commuting with GLn_2(jP) x T that in the above decomposi- 
tions is the multiplication by rn(7r,7rx). As follows from [JPS], one can write explicit 
formulas for all 7rx if one knows the operator A^_2. 

The goal of this paper is to propose an algebraic formula for this operator in 
the case n = 4. More precisely, for any n we construct "algebraic" data fin = 
(Z, Y,p,u>,f) that define an operator An

0_2 corresponding to the maximal split torus 
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To in GLn. In this case the representation 7TX is the induced principal series represen- 
tation. Next, for n = 4, we define an action of the symmetric group ^4 on /14. Then 
for any maximal torus T in GL4 we can define the corresponding twist /XTA of AM and> 
therefore, an operator Aj on the space Wh2 0 L2(T). We conjecture that Aj = Aj. 
Moreover, we conjecture that for any n there exists an action of the symmetric group 
Sn on /jbn such that A^_2 = ^-2 for any niaximal torus T in GLn(F). 

Note that for n = 3 this conjecture was proved in [Kl]. 
The same formulas work for a real field F. 

0.1. Algebraic measures and twisting. We start with the notion of an alge- 
braic measure. For the rest of paper we choose a nontrivial additive character ipj? of the 
field F, tpp: F ->• C*. We will denote algebraic varieties over F by bold letters (say, X) 
and the sets of F-point by the corresponding italic letters (say, X = X(i?)). Similarly, 
morphisms of algebraic varieties will be denoted by bold letters (say, f: Xi —► X2) 
and the induced mappings of the sets of F-points by the corresponding italic letters 
(say, /: Xi —> X2). For a smooth algebraic variety Y by S(Y) we denote the space 
of locally constant function on Y with compact support. 

Let Y be an algebraic variety over F and fi a complex valued measure on Y. An 
algebraic presentation of/x is data (Z, Y, p, u, f), where Z is a smooth algebraic variety, 
p: Z -> Y a morphism, u E nr(Z), r = dimZ, a volume form (i.e., a differential form 
of the top degree) on Z, and f an algebraic function on Z such that the measure fj, is 
equal to the distribution 

p*(M • W>FO/)), 

where |a;| is the measure on Z corresponding to u, see [W]. In other words, for a 
function (p G S(Y) we have 

/ VAt= f v{p{zWF{f{z))\u>\{z). 
JY JZ 

One has to be careful since in cases we are interested in the integral in the right-hand 
side of the last formula does not converge absolutely. Therefore, we must specify the 
integration process. We choose the following scheme. 

For a 6 F let Za C Z be the level variety Za = {f = a}. The volume form u on 
Z determined the volume form uja on Za by the formula 

u)a = Res 
f-a 

DEFINITION 1. Algebraic measure is data /x = (Z,Y,p,a;,f) such that the fol- 
lowing conditions are satisfied. 

(i) For any function ip E S(Y) and for almost any a £ F the integral 

a(<p) = /    <p(p(z))\wa\(z) 
Jza 

converges absolutely. 
(ii) Ia(y>) is a locally L1-function of a. 
(iii) The limit 

I(<p) =  lim   / il)F(a)Ia{ip)\da\ 
n^00J\a\<p^ l\a\<pi 

exists. 
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(iv) There exists a complex valued measure ji on Y such that I(ip) = JY (p/i for 
v e S(Y). 

In the case /i is called the realization of /x and fi is called an algebraic presentation 
of fJ>. 

Remark. In general, a measure /i can have several nonisomorphic algebraic pre- 
sentations. 

Let F be a finite group of F-automorphisms of Y. A lifting of the action of F to 
fi is an F-action of F on Z that commutes with p and preserves u and f. If /i is the 
realization of a F-invariant data fi, then fi itself is F-invariant. 

Given a lifting of the action of F to /x, we can construct twisted forms of fj, as 
follows. 

Let © = Gal(F/F). Elements of Hl(<8, AutZ) correspond to homomorphisms 
a: 0 —> F modulo conjucation by elements of F. To any such a we associate the 
twisted form Za of Z. This is an algebraic variety over F, which is isomorphic to Z 
over F. The set of F-points of Za is given by 

Za = {xe Z(F) | (z = a(C)z for C 6 0}. 

Similarly, to a we can associate the twisted form Ya of Y.    Since the action of 
F on Z and Y preserves UJ and commutes with p and f, we get the twisted data 
fJ,Q = \£ja') ¥ Q;, Pen k^co *Q:J' 

In the case where jza defines an algebraic measure (i.e., the integrals in Definition 
1 converge and the limit exists), we define the measure fia on Ya as the realization of 
/xa. We emphasize that /XQ, depends not just on fi and the action of F on Y, but also 
on the lifting of this action to fi. 

A measure on Y is a linear functional of the space of continuous function. We 
need a generalization to the case where the function are replaces with sections of a line 
bundle on Y. More precisely, we consider the following situation. Let Y be a variety 
with the free action ra:UxY-»Yofa unipotent group U, such that Y = Y/U, 
and let \I>: U ->> Ga be a character of U. Then we can consider the space S^(Y) of 
locally constant functions ip on Y such that 

tp(uy) = ipF(-$>(u))(p(y),        u€U,    y € Y, 

and the function \\(p\\ on Y has a compact support. 
A ^-measure is a linear functional on <S\p(y) that extends to a continuous func- 

tional on a space of continuous ^-equivariant functions on Y that are "compactly sup- 
ported" (in the above sense). Let Z be a manifold with a free action of U, p: Z -t Y 
an U-equivariant map, UJ a U-invariant volume form on Z, f: Z —> A1 a function such 
that 

f(u2) = *(ii)+f(5). 

Let us choose an invariant volume form du on U. _ _ 
DEFINITION 2. We say that the data Ji = (Z, Y, p, tj, f) is an algebraic ^-measure 

if the following conditions are satisfied. 
(i') For (f G Sy(Y) and a e F denote 

ZatV = {zeZ:f(z)tp(p*(z)) = a}. 

Then Zai(p is invariant under U. Let Za^ — Za^/U and \uJa,ip\ the measure on Z0jV> 
induced by cu/du. We assume that for any ip E 5^(y) and for almost any a £ F the 



20 S. GELFAND AND D. KAZHDAN 

integral 

hiv) -   / /(*)¥>(P*(2))K>V>| 

converges absolutely. 
(ii') /a(y?) is a locally Ll-function of a. 
(m1) The limit 

I {if) =  lim   / ipF(a)Ia(cp)\da\ 
'\a\<p" 

exists. 
(iv') There exists an (U, ^r)-equivariant complex valued measure /i on Y such that 

Hv) = IY W ^OT V G s*(y)' 
As before, we call the data Jl an equivariant presentation of/i and fj, the realization 

of jl. 
Similarly to the above, we can define twisting of equivariant measures. 

0.2. F-factors. Let U_ be the lower unipotent subgroup in GL^ and ^: U_ —> 
Ga the homomorphism given by 

i&(u) = U21 H h u^i-i. 

The Whittaker representation (pi, Whi) of GLt is defined by the formula 

W=Indgf<M. 
An irreducible representation TT of GLn is called generic if it occurs in the decomposi- 
tion of pn into irreducible components. It is known that any generic unitary TT occurs 
in p£ exactly once. 

Let T be a maximal torus in GLn(F) and x a unitary character of T. The pair 
(T, x) determines an n-dimensional representation px of 0, and by the Langlands 
correspondence (see [HT]), a unitary nondegenerate irreducible representation 7rx of 
GLn(F). Let a be a generic unitary irreducible representation of GL^. Jacquet, Piate- 
skii-Shapiro, and Shalika [JPS], associated to the pair {7rx,a) the number r(7rx,cr), 
|r(7rx,cr)| = 1. Using the direct integral decomposition similar to (0.1), we combine 
the numbers r(7rx,cr) for all unitary characters x: T -* C and all generic unitary 
irreducible representations a of GL^F) in a unitary operator Aj in the space Wh^ 0 
L2 (T) commuting with the action of GLi on the first factor multiplication by elements 
of T in the second factor. _ 

Define the action m of the unipotent subgroup U_ C GL^ on the space Y — 
GLi x T by left multiplication on the first factor. Let U^2) = U_ x U_ and let 
$(2): u(2) -» Ga be given by 

*(2)(w,ti/) = *(w)-*(w/)- 

The action m determines theaction m^ of U^2^ on Y = GL^ x T x GL^ x T. Define 
the \I>(2)-measure ^(T,£) on Y by the formula 

L „ fl(h,gi)f2{t2,g2) riTJ) = (Aifij2)whe®LHT)' 

The first result of the paper (Proposition 5.1) is the construction of an algebraic 
presentation /XTo,n of the measure /i(T, £) in the case where n = 4, T = TQ is the split 
torus in GL4, and £ = 2. 
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0.3. Twisting of the algeraic presentation. For a unitary character %: To -> 
C* let 'Kx be the corresponding irreducible unitary representation of the principal 
series. As is well known, for w G Sn the representation 7rx and 7rx™ are equivalent. 
Therefore, the constructed ^^^-measure /x(To,n — 2) on Y is 5n-invariant. 

Our second result (Proposition 5.2) is the construction of the lifting of the action 
of 5n on Y to the presentation //To,n for n = 4. 

Let T be a maximal torus in GL4. Any such torus is obtained from the maximal 
split torus To by an element of i71(0, AutTo), i.e., by a homomorphism a: 0 —>> Sn. 
Using the lifting of 54 we can define fia as the twisting of /x = /XTO,4- 

CONJECTURE 1. The data na define a *(2) -measure na on Y = GL2 x T x GL2 x 
T. 

The second conjecture is that this measure coincides with the measure defined by 
the F-function. More precisely, let Aa be the operator on the space Whn-2 0 L2(T) 
corresponding to the measure fj,a. 

CONJECTURE 2. The operator Aa is unitary and in the direct integral decompo- 
sition (0.1) is given by the multiplication by T(7rx,a) 

In other words, Aa = A^_2 for the operator Ar^_2 described in 0.0. 
Finally, we conjecture that all of the above remains true for an arbitrary n. 

CONJECTURE 3. For an arbitrary n > 4 there exists a lifting of the action of Sn to 
the algebraic presentation /x = /XTo,n-2- For a maximal torus T in GLn corresponding 
to a homomorphism a: 0 —> 5n; the twisted data fxa determine a w2'-measure fj,a on 
Y = GLn-2 xTxGLn-2 xT. The corresponding operator in the space Whn-2®L2(T) 
is unitary and in the decomposition (0.1) it is the multiplication by r(7rx,cr). 

Acknowledgements. We are grateful to Jim Cogdell and Karl Rubin for helpful 
discussions. 

1. Measures. In this section we present a general result about complex valued 
measures on vector bundles over smooth varieties over F. This result can be viewed 
as a formalization of the formula 

/ ipF{xy)dy = 6(x), 
JF 

which is well known in the theory of distributions. 
Let M be an m-dimensional algebraic variety over F. By flTn(M) we will always 

denote the space of volume forms on M. Let C a one-dimensional vector bundle on M, 
£* the dual bundle, L, L* the total spaces of £ and £*, and TT: L -» M, TT* : L* -> M 
the corresponding projections. Let also £: M -* L* be the zero section of £*. For 
an open set U C M we denote by Lu the total space of the restriction of £ to U. 
Similarly, L^ is the total space of the restriction of C* to U. 

Let 7 e r([/,£*) be a section of C* and let iV7>£/ = {x £ U \ j(x) = C(x)} be the 
subvariety of zeros of 7 in U. Let 7M (iV^c/) and £*(7V7)[/) be the restrictions to A^t/ 
of the tangent bundle 7M and of the vector bundle £*. Denote by TM(Nlyu) and 
L*(Ny,u) the corresponding total spaces. Let x be a smooth point of iV^t/, y = j(x) 
the corresponding point of L*. The tangent space to L* at y is canonically represented 
as the direct sum 

(1.1) TL*,y=TM,x®F, 
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where F is the one-dimensional tangent space to the fiber L* of £* over x. Therefore 
the composition of the differential of 7 and the projection of TL*^ to the second 
summand in (1.1) determines a morphism 6X: TM,X -> L*x. 

DEFINITION 1.1. (i) A section 7 is said to be generic at a smooth point x £ iV7 

if 6X is surjective. 
(ii) A section 7 of £* is said to be generic in U if N^p is smooth and generic at 

all points of N7iu. 
If 7 is generic at x, then we can identify Kerfl^ and the tangent space T/v7,z to 

N7 at x. 
Let U C M be an open set, 7 G r(?7, £*) a generic section. Our next goal is to 

construct a morphism 77(7): ^^(Lu) -> nm-1(N7iU). 
Let 7 be generic at a point x G iV^c/. Since Tx,^ = Lx 0 TM,Z5 for the fiber of 

^-^(Lc/) at x we have 

nTO+1(^)x=^®A^(TJJf|!B). 

The exact sequence 

0 -»rjv,,, -»■ rM,x ^ L; -»• 0 

shows that 

so that we have 

Using the pairing L* ® Lx -* F, we get the map 

(1.2) fim+1(C/)x^nm" ^N^u)*. 

The collection of maps (1.2) for all x G N^^u yields the requred map 77(7). 
In coordinates the map 77(7) is described as follows. Let U C M be such that 

the restriction £|c/ is the trivial line bundle. Choose a trivialization Lu = U x F 
and the dual trivialization Ly — U x F. Denote by y the coordinate in the fibers of 
projection Lu -> U and by 2/* be the dual coordinate in the fibers of the projection 
L^ -> U. A section 7 of £* over C7 is given by a regular function d{x) on U so that 
7(2:) = (x,6(x)) e U x F. For such a section, N^^u = {x e U \ 9(x) = 0} and 7 is 
generic at a point x G N7,u if and only if dO ^ 0 at x. 

A volume form CJ G flm","1((7) can be written as 

(1.3) u> = e(p,y)u>' Ady, 

where u* G Qm(U), l(p, y) is a function on Lu = U x F. For such a form u we have 

Clearly, the right-hand side of (1.4) does not depend of the representation of u in the 
form (1.3). 

DEFINITION 1.2. For an open U C M, a volume form a; G nm+1(L(/) is said 
to be fiberwise constant if tlu = u for any b G r([/, £), where ^i Lt/ —^ i^f/ is the 
fiber wise addition. 

Denote by 0^,+1(Lc/) the space of fiberwise constant volume forms on Lu-  In 

coordinates u G nTc
+1(Z/[/) if and only if in some (hence every) representation of u in 

the form (1.3), £ does not depend on y. In this case we can take £ = const. 
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Let 7 be a section of £*|c/. Define the complex valued function ^ on Lu by the 
formula 

where z G Lf/, x = ir(y) G f/, and j(x) G >C*(x) is considered as a linear functional on 
C(x). 

Let £ be as before, UJ G nm+1(L), and / a complex valued locally constant 
function on L. 

We say that / is locally integrable with respect to u at a point x G M if for each 
sufficiently small compact neighborhood U of x the following condition holds. 

• Choose a trivialization Lu = U x F. Let C?i C O2 C • • • C F be a sequence of 
open compact subgroups such that [JOi = F. Denote Vi = U x Oi. Then the limit 

(1.5) lim  / /|CJ| 
l->00 Jy. 

exists. 
It is clear that the limit (1.5) does not depend on the trivialization C over U in 

(i) and on the sequence {Oi} in (ii). We denote this limit by 

>oo 
/ /M = f 
JVi JL 

lim  /   /M = /    /M 

It is also clear that now we can define /L /|t<;| for any open set U C M and an 
arbitrary locally constant function / on Lu such that the projection of p(supp /) C M 
is compact and / is integrable with respect to UJ at each point of p(supp/). 

PROPOSITION 1.1. Let U C M be a compact open set. For any generic section 
7 of C*\u, any locally compact complex valued function f on U, and any fiberwise 
constant volume form u G Q^^Lt/), the function n*(f)ip>y is locally integrable with 
respect to LU at all points of U and the integral is given by 

f    7r*(/)V7M = /       /h(7)M|, 

where Nlyu is the set of zeros of 7 in U and in the right hand side we take the 
restriction of f in Nj^u- 

Proof First, we consider a case where M is an affine line with the coordinate x, 
£ is a trivial one-dimensional bundle with the coordinate y along the fibers, and the 
section 7 of C* is given by a function y* = 8{x), so that 7(2;) = (x,6{x)). We have 
N1 = {x I 6{x) = 0} and 7 is generic at a point x G N^ if and only if O'fa) ^ 0. 
If 7 is generic, then N7 consist of the finite number of isolated points. Assume that 
U is so small that N^^u consists of a single point XQ. For a fiberwise constant form 
a(x)dxdy G fi2(Z/t/) the value of zero-form 77(7X0;) at XQ G N is a(xo)/d,(xo). 

Let {d} be an increasing sequence of open compact subgroups in F, UOi = F, 
<md Vi = U x Oi C U x F = Lu. Then 

/ 7r*(/)(z)iMz)M = /       fl>F{vO{x)Mx)\ \dx\ \dy\ 
JVi JUxOi 

= [ f(x)\a(x)\\dx\ [   1>F{y0{x))\dy\. 
JU JOi 
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Denote O-1 = {y G F \ ippiyu) = 1 for all u G d}. Then 

I   fJ>F{vO(x))\dy\ = | 
measOi    if 0(x) G Of , 

0 otherwise. 

Next, denote O-1 = {2/ G F | <9(2/) G 0±}. Then 

/ 7r*(/)(^7(z)|a;| = (measO,) /        f(x)\a(x)\ \dx\. 
JVi Jundf- 

For a sufficiently large i, O/- is a small neighborhood of points XQ G -/V7)t/ and CiiOf- = 
{XQ}. In particlular, O/- C C/ and 

lim (measOiXmeasO^) = l/|<9(xo)|. 
i—>oo 

Therefore 

lim   /   'K*(z)f(x)%l)1(z)\(jj\= lim  (measO;) /     f{x)\a(x)\\dx\ 
i-*00 JVi i_)>00 Jd± 

_ f(xo)\a(xo)\ 

\0'(xo)\ 

and the right-hand side equals 

/       /i?(7)M. 

In the general case we can argue locally on M. Let U C M be such that £ and 
£* are trivial over U. Choose local coordinates xi,... ,xm in U such that 7 is given 
by the equation of the form y* = 9(xi) and N7^u = {xi,... ,xm} | xi = #1 } for a 
single £0 € -F- For a fiberwise constant form u = a(a;)(ixi A • • • A (ia;m A c?2/* = ^1 A <iy* 
on L t/ we have 

p     —L -    V^    a(a?i   ,^2,...,^m)rf^2 A---Ada;m 

To complete the proof one computes f f(z)il>7(z)\uj\ using the arguments similar to 
those employed in the case m = 1 above. 

2. F-factors and measures. 

2.1. Subgroups of the group GLn. We recall some notation from the intro- 
duction and give also some new ones. 

• Q is the subgroup of GLn consisting of the matrices with the first row of the 
form (*00...0). 

• U_ is the lower unipotent subgroup of GLn, ip(u) = ^(^21 + • • • + unn-i) a 
nondegenrate character (one-dimensional complex representation of U- . 

• a: GLn —> GLn is the involution given by the formula a(g) = (a^Ta~'1)_1, 
where T denotes the reflection with respect to the second (nonprincipal) diagonal in 
GLn and a = diag(l, -1,1,..., (-l)n+1). We have cr(U_) = U- and ip o a = I/J. 

• R = QnQ(T. 
• By Ind we will always understand the unitary induction. 
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2.2. Generic representations of GLn. Let (TT, V) be a unitary representation 
of GLn. Let (7ra, Va) be the smooth model of (TT, V) (see [BZ]). Recall that Va consists 
of all vectors v G V such that Stabt; is an open compact subgroup of GI/n, and 7ra is 
the restriction of TT to Va. It is known that Va is dense in V. 

DEFINITION 2.1. An irreducible unitary representation (TT, V) of GLn is said to 
be generic if Va admits a (C/_,,0)-equivariant linear functional <£, i.e., 

(p(u-v) — \l)(u-)(p(v)i        v € Va,    u- G U-. 

It is known [BZ] that for a generic irreducible unitary representation the functional 
ip is unique up to a scalar factor. 

2.3. Standard representation of Q. Denote by C C Q C GLn the center of 
GLn. For a unitary character £: C -> C* introduce the standard representation of Q 
by the formula 

{pQ,s,LQ,e) = Indg^ (£ • ^). 

The respresentation pg^ is irreducible.   The following result proved in [BZ] is the 
basis of our construction of F-factors for GLn. 

THEOREM 2.1. Let (TT, V) be a generic unitary irreducible representation ofGLn, 
£ the central character ofn.  The restriction of TT to Q is equivalent to PQ,£. 

2.4. Two restrictions to Q. Let (TT, V) be a generic unitary irreducible repre- 
sentation of GLn with central character £. By Theorem 2.1 there exists a (unique up 
to a factor) unitary operator ai: V -» LQ^ establishing the equivalence TT |Q~ PQ,S- 

Similarly, let a: GLn -> GLn be the involution defined in 2.1. Then TT
0

" = TTOCT is 
also a generic unitary irreducible representation of GLn. Applying Theorem 2.1 again, 
we get the unitary operator 0:2 • V —> LQ^* establishing the equivalence TT

0
" |Q~ PQ,£° , 

where £(T — £ o a is the central character of TT
0

" . 
Since TT and TT

0
" act in the same space V, we have the operator /?^ = 0:2 o 

af1: LQ^ —> LQ£<T. It is a unitary operator satisfying the condition 

(2.1) ^ o pQiE{r) = pQf (ra) o(3n,        reR = QnQa. 

Note that the unitary operator /3n satisfying (2.1) is defined uniquely up to a multi- 
plicative factor c^ with Ic^l = 1. 

2.5. An auxiliary operator. We construct the operator Kg: LQ^ —> LQ^* 

satisfying the intertwining condition similar to (2.1). The operator «£ will depend on 
£ but not on TT. 

Denote by WQ G Q the following permutation matrix: 

WQ 

Next, denote UQ = WQU-WQ
1
 and let I/JQ : UQ —> C* be given by the formula 

II)Q(U) = II){WQ
1
UWQ),        U e UQ. 

Denote also UR — UQ Pi R, and IJJR — I^QIR : UR -> C*. 

/1 
0 

0 
0 

0 
1 

0   .. 
0   .. 

■   0 \ 

.   0 
0 0 0 1   .. .   0 

0 
V 0 

0 
1 

0 
0 

0   .. 
0   .. 

.   1 

.   0 / 



Q = C 
0   0N 

*    * 

/I 0    0 
UQ = * u' * 

0    1 

* 0 0> 
* * 0 
* * *y 

1 0 0 
* «' 0 
* 0 1 

26 S. GELFAND AND D. KAZHDAN 

In this section we will often represent elements of g € GLn by block 3 x 3-matrices 
according to the decomposition n = 1 + (n — 2) -f- 1 of rows and columns. In such 
representation, q € Q, r e R, UQ € UQ, and UR £ UR have the form 

r = 

^fl = 

Here * denotes possibly nonzero positions and ul is a lower unipotent matrix of order 
n — 2. The characters T/JQ and I/JR are given by the formulas 

IpQiu) = VF^nl + W32 + • ' ' + Un-l n-2 + W2n)j 

^/l(w) =ll>F(unl +W32-f---+Wn-ln-2). 

Introduce also the subgroup A as follows: 

4 = 

where En-2 is the identity matrix of order n — 2. Notice that A C UQ and ^(a) = 
il>F{a>2n) for a G A. 

Let us define the following representations. 
(i) A representation of the group Q: 

(PQ,E,LQ,E) = Indg^(5 • IIJQ). 

(ii) A representation of the group R\ 

(2-2) (/^,£R,£)ilnd*t/R(£-V'K). 

Next we introduce the following linear operators between the spaces of these 
representations: 

Ci: LQ>£ -»• ZQI£>     (C7I/)(?) = /(V?)' 

C2:LQt£-*LRt£,    C*2(/) = /|H. 

Finally, define the operator C3: !(«,£■ -> L/?^^ as follows. Let 5 C C/Q be the (n — 2)- 
dimensional commutative subgroup of matrices with the block representation of the 
form 

/I       0       0' 
6=0   En-2    0 

V°      *      1, 
where En-2 is the identity matrix of order n — 2. Let / G Li?^ be a smooth (i.e., 
locally constant) function compactly supported on CUR \ R. Denote 

f(r) = ! m')\db\ 
JB 
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one can verify that the integral converges absolutely, that / G LR^, and that the 
mapping / i-> / defined on smooth compactly supported functions extends to a unitary 
operator C3: LR^ -» LR^* . 

Note that all operators Ci,C2,C3 depend on S. 

LEMMA 2.1.  (i)  The operator Ci establishes an equivalence of representations 
PQ,£~PQ,£. 

(ii) The operator C2 establishes the equivalence of representations of R: pq^ \R~ 

(PR,£,LR,£)' 
(hi) The operator C3 satisfies the condition 

PR,£°{ra) o C3 = C3 o pRts(r),    r e R. 

Proof, (i) and (hi) are clear and (ii) follows from the fact that UQR is dense in 
Q. 

DEFINITION 2.1. Define the operator Kg: LQ^ -> LQ^* by the formula 

K£ = C^    o C2    0 C3 o C2 0 Ci. 

The operator K£ is unitary and one easily verifies that KS* o K>e = id. By Lemma 
2.1, Kg satisfies the condition 

(2.3) Kg ° pQ,g(r) - PQ,£<r(ra) o Kg        r 6 R. 

Explicit formula for Kg is given as follows. Let q = w^ar, a G A, r G R. Then 

(2.4) (Ksf)(q) = / fiwJbr'Xdbl 
JB 

DEFINITION 2.2. Define the operator /?£: Lq^g ->- LQ)(P by the formula 

By (2.1) and (2.3), the operator /3£ commutes with PQ,g(r) for r € R. 

2.6. The isomorphism of spaces of operators. Denote by M ~ F* x 
GLn_2 C i? the subgroup of the matrices m of the form 

/A    0    0> 

m=     0    A    0 
VO    0    A, 

where A G F*, A G GLn-2. Denote UM = ?7- fl M, ^M = ^IM, and 

(PM,E,LM,S) = Indcc/M(f -^M). 

For two unitary representations (pi,Li), (p2,^2) of a group G by HomG^Zq,!^) 
we denote the space of continuous linear operators Vi —>• V^ commuting with the action 
of G. 

Our goal in this subsection is to construct an isomorphism of linear spaces 

(2.5) ag: Homj^Lg^LQ^) ~ HomM^M.^iM,*). 

(i) By Lemma 2.1 (i), (ii), the restriction of pq^g to R is equivalent to the represen- 
tation (PR^^LR^) with the equivalence established by the operator C2 o C\: Lq,g -> 
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LR^U- Therefore, 

(2.6) Hom^Lg^, LQJ) ~ KomR(LRi£,LRt£). 

(ii) Denote by H the subgroup of the block matrices h of the form 

(2.7) h = 

where En-2 is the identity matrix, a and b are (n — 2)-dimensional vectors, c € F, and 
A G F*. Let UH C H be the subgroup consisting of the matrices h £ H with 6 = 0 
and A = 1 in (2.7), and ipn: UH —> C* the character given by 

ipH(h) = II)F{C)> 

Let {PHILH) be the induced representation 

{pH,LH)^ln4H^H). 

It is easy to prove that the representation pn is irreducible. Furthermore, since the 
adjoint action of M on H preserves the subgroup H and the character UH, we have 
the representation I of M in LH given by the formula (I(m)f)(h) — f(m~1hm). 

(hi) We have R = H ix M and UR — UH K UM- Also, the restriction of ipR to 
H and to UM coincides with I/JH and I/JM respectively. For each m G M we have 
raC/tfra-1 = C//f and ^(mftm"1) = ipnih) for all ft G [/#. Therefore, regarding 
LH®LM,8 as the space of (£/# x CUM^H ' {£ ^M))-equivariant functions on H x M, 
we see that the mapping / y-t (/i)(ft, m) = /(raft) establishes an isomorphism of linear 
spaces 

(2.8) LR,£ ^ LH ®LM,8. 

The group R acts on the spaces on both sides of the last formula: by pRi£ on the left 
space, and by the formula 

r = hm \-> (PHW O I(m)) (g) PM,E{™) 

on the right space, and the isomorphism (2.8) intertwines these actions of R. Taking 
into account that pn is irreducible, we obtain 

(2.9) Homtf (£#,£•, LRis) ~ Hom(LM?<f, LM^)- 

(iv) The group M acts on both sides of (2.9) by the formula 

a \-> pR{m) oao ^(ra-1), a: LRis -> LR£ 

for the left-hand side and a similar formula for right-hand side, and the isomorphism 
(2.9) intertwines these actions. Taking M-invariant elements, we obtain the isomor- 
phism 

(2.10) llomR{LRie,LRie) ^ ^oraM{LM^,LM^). 

Combining it with (2.6), we get the required isomorphism as in (2.5). 
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2.7. The operator F^. Applying the isomorphism as in (2.5) to the operator 
/?£: LQ^ -» LQ^ we obtain an operator IV: LM,£: -^ ^M,<f commuting with pM,£- 
We call it the F-operator corresponding to the generic unitary representation TT. Let 

PM%E = e / ed/x(fl) 

be the direct integral decomposition of pM,e into irreducible components, each occur- 
ing with multiplicity one. In this decomposition the operator F^ is the multiplication 
by almost everywhere defined function r(7r, •) on 0. 

Since M = C x GLn-2, the formula 6 »-» £~l 0 0 establishes a bijection between 
the set 0 of irreducible components of pM,e an(l the set of generic unitary irreducible 
representations of GLn-2- 

Denote by 7(71-, r) the Gamma factor of [JPS] at the point s — 1/2 (see [JPS], 
(3.1)). 

PROPOSITION 2.1. For any generic unitary representation ir of the group GLn 

we have T(7r,0) = 0(-l)n~lj('K,£~1 ® 0) for almost every 0 € Q. 

Proof See Appendix. 

3. F-measure corresponding to the principal series. 

3.1. Standard realization of the principal series. Let AFl = {7+ \GLn be 
the affine flag manifold and (M, 11) = Ind^Ln(l) the principal series representation of 
GLn. On AFlj we consider the left action of the split torus To C GLn given by the 
formula x >-> tx. This formula makes sense because To normalizes [/+. The action of 
To commutes with the action of GLn on AFl, so we can regard 11 as a representation 
of the direct product GLn x To according to the formula 

n(<M)/(aO = f(t-1xg)AB+(t),        x G AFl,    g G GLn,    t e To, 

where AB+ is the modulus, 

A*+(t) = 
ditut-1) 1/2 

ten, 
du 

and du is the invariant volume form on U+. 
Let B C GLn x To be the following subgroup: 

B = {(b,t) :beB+,te To, t^b e 17+}. 

Then 

(isomorphism of representations of GLn x To). 

3.2.    Irreducible principal series representations.  Let %: To —> C be a 
unitary character of TQ.    Regarding x as a character of £+ via the isomorphism 
To ^ B+IU+, denote 

(7rx,yx)=Ind^(x). 

Recall that Ind denotes the unitary induction, so that the space of the representation 
ITX consists of £?+-homogeneous functions on GLn of degree (XAJB+)(&) for b E B+. 

The following two propositions summarize the well-known results about principal 
series representations. 
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PROPOSITION 3.1. (i) Each 7rx is a generic unitary representation of the group 
GLn. 

(ii)The Weyl group Sn (the symmetric group of order n) acts on TQ, hence also 
on the unitary dual {TQ)^ to TQ. Representations 7rXl and 7rX2 are equivalent if and 
only ifxi = (X2)w for some w G 5n. 

Together with the representation 7rx we consider the representation 7rx of the 
group GLn x TQ defined by the formula 7rx = 7rx <g> x-1. 

PROPOSITION 3.2. We have the direct integral decomposition of representations 
ofGLnxTo: 

n = 0 /      7TX dx, 
/(Tor 

where dx is the Haar measure on (TQP 

3.3. Restriction to Q. Recall the definition of the representation pq^ of the 
group Q (see 2.1). By Proposition 3.1(i) and Theorem 2.1 we have 

where £ (A) = x(diag(A,..., A)) is the central character of 7rx. Therefore, we have 

(3-1) TrxiQxTo ^PQ^XX
-1

. 

Introduce the subgroup Ci ~ F* as follows: Ci = {(XE, XE)} C GLn x TQ, where 
E is the identity element. Clearly, Ci is in the kernel of the representation 11. Denote 
by ip the one-dimesional reprepsentation ip(Xu-,XE) = ip(u-) of the group Ci£/_, 
and let 

(pQ,LQ)^Ind^W. 

For any £ € (F*)~ let 

(RT0,s,LT0,£)=lndJlE}(£) 

be the ^-homogeneous part of the regular representation of TQ. Then 

(3.2) PQ = ® (PQ,S ® Rr0f-i)d£. 
J(F*r 

On the other hand, by Proposition 3.2 and formula (3.1) we have 

n|Q'xTo = e /        (PQ,S ® RTo,e-^d£' 
J{F*r 

Therefore, the representations 11 IQXTQ and pq of the group Q x TQ are equivalent. 
Since these representations are reducible, there are many isomorphisms of these rep- 
resentations. For our purposes we must choose a particular isomorphism 

(3.3) ^:n|QxT0^PQ 

constructed in [K] using the Jacquet functors. Rather than going into details of 
Jacquet functors, we present explicit formulas for (p. Before doing this, we need some 
preparation. 
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Consider the subgroups B and Q = Q x To in GLn x TQ. Since BQ is dense in 
GLn x TQ, the restriction n|g is equivalent to the induced representation 

(Hi, Mi) = Indf^l),        BxiBflQ, 

in the space Mi of left Bi -invariant functions on Q. The operator M -t Mi estab- 
lishing this equivalence sends a function / G M on GLn x TQ to its restriction to 
Q = Q x TQ. Hence, both representations 11U and pq act in the spaces Mi and LQ 

of functions on the group Q. In these realizations, explicit formulas for the operator 
cp are described as follows. 

Let Ls C LQ be the dense subspace consisting of smooth functions with compact 
support modulo CiU- (the Schwarz space). Let also Ui = U+nQ and T0

ias = {(£,£) : 
t e To} C Q x To, so that Bi = (Ui x {1}) • T0

diag c Q x TQ. 

PROPOSITION 3.3 (see [K], Lemma 3.1.10). (i) For f e Ls the integral 

(vDiq) = / f(utq,t)dudt 
JUxxTo/d 

(which makes sense since f is invariant under Ci) converges absolutely. 
{ii) The mapping f \-> </?(/) extends to a unitary operator ip: LQ -> Mi inter- 

twining pq and IIIQXTO • 
(iii) For any w eW(To) = Sn we have 

ipow = Fwo(p, 

where Sn acts on L by the formula 

wf(q,t)=f(q,tw'1), 

and Fw is the Fourier-Weyl operator in the space Mi ~ M {for the definition of Tw, 
see [GG] or [KL])). 

Proof of (i). The proof follows from the directly verified fact that the composition 

Ui <-+ Q -> U- \ Q 

is a proper map. 

3.4. Representing operators by measures. In this paper we will often re- 
place operators between spaces of induced representations of a group G by the corre- 
sponding measures. The general construction is described as follows. 

Let G be a topological group, Hi,H2 two subgroups of G, and 61,62 unitary 
characters of Hi, H2 respectively. Let 

(puVi) = Ind%1(e1),    (p2,V2) = Ind%2(e2) 

be two irreducible representations and E: Vi ->• Vo a linear operator. Define the left- 
(Hi x iJ2,^r1^2)-equivariant complex valued measure HE on G x G by the formula 

(3.4) / fl(x1)f2(X2)flE{xUX2) = (EfUf2)v2, 
J(H1\G)x(H2\G) 

where ( , )y2 is the inner product in V2. Since the linear combinations of the prod- 
ucts fi{xi)f2{x2) are dense in the appropriate Hilbert space of left-(i^i x H^^OiO^1)- 
equivariant functions on G x G, formula (1.3) determines HE uniquely. 
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If E is an intertwining operator, i.e., commutes with the action of G in Vi and 
V2, then the measure HE is right-invariant with respect to the diagonal action of G on 
G x G. 

In explicit computations it is often convenient to use another realization of the 
measure associated to an operator. As before, assume that E: Vi -* V2 is an operator 
between the spaces of two induced representations. Choose a section Si: Xi -> G of 
the projectionpii G -> Hi\G, i = 1,2. Restricting functions in Vi to Xi C G, we can 
regard Vi as a space of functions on Xi (with appropriate inner product). Define the 
measure //^ on Xi x X2 by the formula similar to (3.4): 

(3.5) / f1(x1)f2(x2)fi
,
E(xux2) = (Efuh)^. 

JX1XX2 

Again, formula (3.5) determines the measure /i^ uniquely. 
There is an obvious one-to-one correspondence between measures on Xi x X2 and 

left-(Hi x iJ2 5^r1^2)-equivariant measures on G x G which sends ^E to /i^. 
In what follows we will not distinguish between the measures fiE and /^. It will 

be clear from the context (or stated explicitly) which of these two measures is used. 

3.5. Properties of measures corresponding to operators. 
DEFINITION 3.1. Let X be a space with a positive measure v. A complex valued 

measure /J, on X x X is said to be a v-operator measure (or simply an operator measure) 
if 

<M/lX/2><C||/l||La-||/2||La 

foraIl/i,/2GL2(X,i/). 

LEMMA 3.1. Formula (3.4) establishes a one-to-one correspondence between the 
bounded operators E: L2(X, v) —> L2(XJ v) and the operator measures fiE on X x X. 

Proof. Clear. 

We will need the following properties of operator measures. 
I. Let X' C X be a subset such that v(X \ X') — 0 and z/ the restriction of u to 

X'. For an operator measure ji on X x X denote by fi' the restriction of /i to X' x X'. 
Then fi <—> //' is an one-to-one correspondence between operator measures on X x X 
and X' x X'. 

II. Let (X, v) — (Xi x X2, vi x 1/2)- Let ^ be a ^-operator measure on Xi x X^ 
i = 1,2. Then JJ, = /J,I x ^2 is a z/-operator measure on X. 

Similarly we can define operator measures on sections of product line bundles on 
X xX. 

Now we turn to the construction of the F-measure corresponding to the principal 
series representation Ft. This construction is similar to the construction of the F- 
factors described in §2, but is performed "for all x € (TQ)^ simulteneously." At the 
end of the section we show how this construction is formulated in terms of measures. 

3.6. The operator /%. Extend this involution a from 2.1 to GLn x TQ by the 
formula 

<r(9,t) = (g<rX). 

Since the subgroup B C GLn x To is invariant under a, we can define the operator 
n(cr) in the space M by the formula 

Tl(a)f(x) = fix"). 
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Now we set 

(3.6) Al = </?~1 0 n(cr) o ip\ LQ ->" LQ. 

Clearly, /3n is a unitary operator in the space LQ satisfying the condition 

(3.7) fa o pQ(r, t) = PQ{ra,n o fa,        reR = QnQ°,    teT0. 

Formula (3.7) implies, in particular, that the operator /fo intertwines irreducible prin- 
cipal series representations 7rx and 7Txo- in 11. 

PROPOSITION 3.4. In decomposition (3.2) we have 

/3n = 0 /    (Ax0^), 
J(TQr '(ToT 

where the operator P7Tx is defined in 2.5 and a: LT0,£ -> LTQ^-I is induced by the 
action of a on To. 

Proof. Clear. 

3.7. The operator K. Recall the direct integral decomposition (3.2) of the 
representation (PQ,LQ) of the group Q, 

(3.8) LQ = © y (LQ,£ (g) LT0f£-i) df. 

DEFINITION 3.2. In the decomposition (3.8), let us define the operator K:LQ-+ 

LQ by the formula 

(3.9) K = @    (K,e®(TTo)d£, 

where CTTO • LTo^-i —> LT0,£ is given by <jF(t) — F^). 

PROPOSITION 3.5.  (i) Formula (3.9) yields a unitary operator K: LQ —> LQ such 
that K

2
 = id. 

(ii) The operator K satisfies the condition 

(3.10) K o j5g(r, t) = pQ{raX) 0 «        r G ii = Q fl Q'7,     t G TQ. 

Proof. Immediately follows from the corresponding properties of the operators 

Similarly to formula (2.4), we can give an explicit formula for the operator K. Let 
q = w^ar with a G A, r G ii, and let t G TQ. Then 

(3.11) (Kf)(q,t)=il>Q(a)J fiw^br^nm. 

3.8. The isomorphism a. In §2 (see 2.7), we have constructed the isomor- 
phisms 

ae: Homtf(LQ5£,LQ,£) ~ HomM^M,^,LM^),     S G (F*P 

Here we repeat this construction in the framework of the "tensored with To" space LQ 

instead of LQ^. We will use the notation of §2. In addition, we denote ii = ii x To, 
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M = M x TQ. Then d = {(XI, XI)} C M C R and we can define 

(PM,LM) = IndCl£/M(^M), 

(PR,LR) =fInd^lt/ii(^i2). 

Our goal is to construct the isomorphism 

a: Hom^(ZQ,ZQ) ^ Hom^(ZM)ZM). 

In addition to the direct integral decomposition (3.11), we have a similar decomposi- 
tion 

(3.12) MQ = e l(MQts®LTQte-i)dE. 

for MQ. Clearly, 

Hom^(Zg,ZQ) = © / (ftomR(LQiE,LQiE)®RomTQ{LTQi£,LT0ie))d£, 

and similarly for MQ: 

Eomj^(LM,LM) = © / (Hom^(LM,<f,^M,<f) ® HomTo^To^^To,^)) df. 

In terms of these decompositions, we define the operator a as the direct integral 

a = © / (as (8) Id) d£. 

Repeating the construction of 2.6, we see that the isomorphism a is the compo- 
sition of two isomorphisms, 

aQ-+R: Hom^(ZQ,ZQ) - Hom^(Zi?,Zi?) 

and 
aR^M' Hom^(Zi?,Zi?) ~ HomS:(ZM,ZM). 

3.9. Transformation of measures. Let fip be the (CiU- x CiU-^~l • ^)- 
equi variant measure onQ xQ corresponding to the operator /?n and fir be the (UM X 

C^M, ^M •'0M)-equivariant measure on M x M corresponding to the operator a(tto/?n). 
In this subsection we express /ir in terms of fip. The measure /ip is obtained from ftp 
in the following three steps: 

(3.13) up => n*  => IJ,R   =>  fxr, 

where fig corresponds to the operator Aco/?n, jj,R corresponds to the operator ag-^^o 
/3n)j and ^r corresponds to the operator ajR_>M(^Q->i?(^ 0 )9n)) = ^(^ 0 Ai)- In the 
next three lemmas we present the formulas for each of the steps in (3.13). 

Recall the definition of the subgroup A in 2.5. 

LEMMA 3.2. The measure fig is the unique (CiU- x CiC/-,^-1 • %p)-equivariant 

operator measure on Q x Q whose restriction to the open set 

(3.14) Q x To x w^AR xToCQxToxQxTo = QxQ 
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is given by the formula 

(3.15) ^(q^WQ1ar,t,)=^Q1(a)fiP(q,t;wQ1r%n. 

Proof. Formula (3.15) for the restriction of fig to the open set (3.14) follows from 
(3.11). The uniqueness of the extension follows from Property I in 3.5. 

Next we construct fiR from fi^. Consider the auxiliary measure 

fi(qi,ti;q2M) = /^(wg1?!,*!; WQ
1
^,^) 

on Q x Q.   This measure is {CIUQ X CIIIQ^Q
1
 • ipQ)-equivariant.   Therefore, its 

restriction to the open dense set AR x To x AR x To C Q x Q has the form 

I*'(qi,ti',q2>t2) = IPQ
1(a1)^Q(a2)daf

1da,
2 ft"'(ri,ti;r2,fe), 

for qi = Ofri, a. G A, r, € i?, i = 1,2, where fz" is a (CiC/fl x CIUR^R
1
 • ^j?)- 

equivariant operator measure on Rx R. 

LEMMA 3.3. The measure fin corresponding to OCQ^R^Q) coincides with the 
measure fi" (ri, ti; r^, £2) • 

Proof. Clear. 

Now we construct //p from fiR. We have the semidirect product decompositions 
R = H x M and CiE/j? = UH ^ C'IC/M (see 2.6), hence, in particlar, i? = H x M as 
spaces. 

Denote by the 5H/UH the ([/# x C/jy,i/;^1 -t/^-equivariant measure on HxH cor- 
responding to the identity operator in the space LH of (UH, ipH)-equivariant functions 
on H. Explicitely, SH/I/H 'ls &Yen as follows. Let 

Then iiT = UHVH and [7^ fl VH — {!}• Let Jy^ be the diagonal measure on VH X V/f, 
i.e., 

/ f(vi,V2)6vH=        f(v,v)\dv\. 
JVMXVM JVM 

Then 

SH/UH(
U

1
V

1^
U

2
V

2) = ^H(Ui1U2)SvH(v1,V2). 

LEMMA 3.4. The measure fiR is of the form fiR = SuH x fl", for a unique (UM 
X 

UM,IPM ' 'tpM)-equivariant operator measure fi'" on M x M, and the measure fir 
corresponding to the operator a(K, o fin) coincides with fi'". 

Proof. The first statement holds for every operator measure fi corresponding to 
an operator $ G Homij(LR:LR). The second statement follows from the explicit 
constriction of the isomorphism CZR-^M (see 2.6). 

Finally, we combine Lemmas 3.2-3.4 and give an expression for fir- Consider he 
map 

5 = (A x H x M) x To x (A x H x M) x T0 -> Q x Q 
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given by the formula 

(oi, ui, mi; ti;a2,112, m2; *2) 

M- (WQ
1

 aihimijtij WQ
1

 a^h^m^ ,^2) ^Q'XTQXQXTQ — Q X Q. 

This map is an embedding of S into an open dense subset 5 C Q x Q. Lemmas 3.2-3.4 
immediately show that the restriction // = (jLp\g of the operator measure fip to S ~ S 
is given by the formula 

fjL,(a1,u1,mi',t1;a2,U2,m2]t2) = SH/UH (hu h2^Q1 (a1)^Q(a2)^(mut1] 777,2,^2) 

for some (UM 
X
 UM^'M • V;M)-equivariant operator measure /i on M x M, and that 

the measure JAY corresponding to the operator a(^ o /?n), equals /2. 

4. The measure /i^. 

4.1. The measure /x^. In this section we compute explicitely the measure /i/3 
corrsponding to the operator (5^: LQ -> LQ defined by formula (3.6). Hence, fip is a 
(CiU- x CiU-Tip - '0_1)-equivariant complex valued measure on Q x Q given by the 
formula 

(4.1) (n,fix7d = Muf2)zQ 

for/i,/2GLQ. 
Since y? and n(cr) in the definition (3.6) of fin are unitary operators, and n(cr) is 

an involution, we have 

(4.2) (Pufuf2)zQ = (vfiMv)^)**!,        fij2 e LQ 

Let B- C Q C GLn be the subgroup of lower triangular matrices. Denote by the same 
letter the corresponding subgroup £?_ x {1} in Q C GLn x TQ. We have B-DBi — {1} 
and B-Bi is dense in Q. Therefore, the inner product in Mi can be written in the 
form 

(4.3) {FuF2)Ml= f    Fiib^FW^ldb-l 

where db- is a fixed left invariant volume form on B- and the integral converges 
absolutely. 

Denote Z - Ui x TQ/C X UI X TQ/C X B_. Recall that by L5 C LQ we denoted 
the space of smooth (Ci£/_)-equivariant fiunctions on Q that are compact modulo 
CiU-. Taking into account the formulas for the operator ip (Proposition 3.3(i, ii)) we 
formally obtain from (4.1) and (4.2) that 

(4.4) (lJ./3jixh)= / fi(uit1b-,t1)f2(u2t2b<L,t2)\du1dtidu2dt2db-\, 
Jz 

where /1, /2 € Ls are considered as functions on Q = Q x TQ invariant under Ci. 
Since the integral (4.4) does not converge absolutely, we must specify the order 

of integration. Fix /i,/2 € Ls and denote the intgrand in (4.4) by F — Fflj2(ui^ti\ 
U2,t2]b-). Then Proposition 3.3(i)-(ii) show that for a fixed &_ G -B- there exists a 
compact set K(b-) = K^ j2(6_) C Ui xTQ/CXUIXTQ/C (depending on the supports 
of/1 and /2) such that F{ui,ti\U2,t2\b-) vanishes for (^i, ti;^,^) ^ K(b-). 
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PROPOSITION 4.1. For /i,/2 e Ls we have 

(4.5) Oz/?,/i x /2) = /     *- / ^/i,/2(wi^i;w2^2;&-)|^i^i du2dt2db-\ 
JB- JK{b-) 

and the integral over B- converges absolutely. 

Proof. Formula (4.5) follows from Proposition 3.3 (i)-(ii). The absolute conver- 
gence of the integral over B- is the absolute convergence of the integral in (4.3). 

4.2. Reduction of the measure /i^. In this subsection we use the construction 
described in §1 (Proposition 1.1) to show that the measure up is supported on a of 
codimension one submanifold Y\ C Y and compute the restriction of /x/3 to Yi. 

In the group £?_, introduce the following subsets: 

r       A  0 o\ 
& = ^ r(a) = I 0    E    0 ) , a G F 

£" = {6_ € J3. 

Then JB_ = B'B" with the unique decomposition arid for b- — r(a)b" we have dfr- = 
dadb" for a unique volume form db" on £?". With this decomposition of B- we will 
regard Z = Ui x To/C x [/1 x TQ/C X 5_ as the total space of the trivial line bundle 
over ZQ = Ui x TQ/C X UI X TQ/C X B" with a fixed trivialization. We identify each 
fiber with B' ~ F, so that Z = ZQ X B'. 

Fix /1, /2 G I/5 and recall that by F(z) = Ff1j2(z) we denoted the integrand in 
(4.4) and in (4.5), so that the right-hand side of (4.5) is 

(4.6) /    db. f Ff^iuuhw^b-yuW, 
JB- JKfltf2(b-) 

where u = dui dti du2 dt2 db- is a volume form on Z. Using the intertwining property 
(3.7) of the operator /3u with r = ra G B', we easily see that for z = (ZQ, ra) G ZQ X B1 

we have 

F(z)=ipF(1(zo)a)Fo(zo), 

where FQ is the restriction of F to ZQ = ZQ X {0} C Z and the function 7 (a section 
of the trivial bundle) is given by the formula 

7(*0) = (Wl)2n(*l)n(*l)r1 + (-l)n+1(^2)2n(t2)n(^2)r1 

for ZQ - {ui,ti',U2,t2\b") G ZQ. 

Denote hy N = N1 C ZQ the set of zeros of 7. 

LEMMA 4.1. N is a smooth subvariety of ZQ, the section 7 is generic at all points 
of N, and the form UJ in (4.6) is fiberwise constant. 

Proof. Direct verification. 

Denote by cui = 77(7)0; the induced form on N (see (1.4)), and by Fi the restriction 
of F to N. We want to prove that 

(4.7) f F(z)\w\=  f FxWM- 
JZ J N 

However, we cannot apply Proposition 1.1 directly since ZQ and TV are not compact 
and the integral on the left-hand side of (4.7) is a iterated integral as explained in 4.1. 
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Nevertheless, formula (4.7) holds id the integral on the right-hand side in interpreted 
as an iterated integral similarly to the integral on the left, but "intersected with N". 

Namely, for b" e B" denote 

M(b") = {(ui,tiiU2,t2)   such that (ui,ti;w2,*2;&//) € N} 

and let ut," = uildb" be the corresponding volume form on M(b"). Denote the integral 
(4.6) by L 

PROPOSITION 4.2.   We have 

(4.8) 1=  (    \db"\ [        ^(tii.tijua,^;^)!^"! 
JB" JM(b") 

and both the inner and the outer integral on the right-hand side converge absolutely. 

Proof. Recall that for a fixed 6_ G B- the inner integral in (4.6) is taken over the 
compact set K(b-) C Ui x TQ/C XUIX TQ/C. It is easy to see that if 6_ = rab", then 
the set K(b-) can be taken not depending on a. Therefore, we denote it by K(b"). 

Now we take an arbitrary sequence of open compact sets Bn C B" such that 

(4.9) BiC-"CBnC---,    \jBn = B". 

Let also Om C B' — F be given by 

Om = {ra\\a\<pm}. 

Denote by $(&-) the inner integral in (4.6) and let 

Imn=   f $(&-)|d&_|. 
JOmXBn 

Since the integral over B- in (4.6) converges absolutely, we have 

/ =    lim   Imn - lim ( lim Jmn). 
m^n-^oo n—>oo m—>oo 

Denote 
Kn =   \J   K{b") C t/i x TQ/C x C/i x To/a 

b"£Bn 

This is a compact set and 

Imn - / dadb" I    F(zQ,ra)\duidtidu2dt2\ 
JOmXBn JKn 

=  1     da F(zo,ra)\uJo\' 
JOn JKnXBn 

Since Kn x Bn is a compact set, we can apply Proposition 1.1 and obtain 

lim  Imn = / Fi(z)|a;i|. 
m^00 J(KnxBn)nN 

Since {>Bn} is an arbitrary sequence of open sets satisfying (4.9), Proposition 4.2 is 
proved. 

COROLLARY.   The restriction /A ^  of the measure fip to Yi  25 ^en by formula 

(4.8). 
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4.3. Another presentation of the measure /A\ To construct an algebraic 

presentation we need to transform formula (4.8) for the measure /i^ . 

Let us choose an arbitrary semialgebraic section X M- Q of the projection Q -> 
CiU- \ Q, so that each q G Q we have a unique decomposition 

q = u-.(q)x(q), U-ffleU-,     x(q) G X. 

According to the remark at the end of 3.4, we can define the measure fip as a measure 
on the set Y = X x X. 

Denote by Yi C Y the subvariety of those y = (qi, £2; #2, £2) for which 

(4.10) 7(1/) = (9i)r1
1(?i)2n + (-i)n+1te)r1

1fe)2„ = 0. 

Then the measure fip is supported on Yi (see 4.2) and fi^' is the restriction of ///? to 
Yi, i.e., 

j FIJL0 = J FW^f 
'Yi 

for smooth compactly supported functions F on Y. 
First of all, formula (4.4) immediately shows that the measure fip is supported 

on the subset YQ C Y consisting of the quadruples (#1, £1; £2? £2) such that 

(4.11) detgidetg^ = detiidet^- 

For two elements gi, #2 £ GLn we write gi ~ ^2 if ^1 and ^2 belong to the same 
double coset modulo £/_, i.e., 

gi =U-1g2U-.2,        u-.uu-2 G U-. 

For i/ = (^1,^2;^2,^2) G y denote 

(4.12) 6(2/) = (MJ € GLn,        t(j/) = titj G To. 

Note that b(y)in = 0 for y G Y and, by (4.11), for y G Yb we have 

det6(2/) = dett(2/). 

Now we define Z* as a subset of the direct product YQ X C/+ consisting of the pairs 
(y,u) such that 

(4.13) b(y) ~ *(j/)ti, 

i.e., 

(4.14) u-1b(y)u'L2 = t{y)u,        u-Uu-2 e C/-. 

For (ixi,ti;w2,*2;6-) € Z = Ui x TQ/C X J7_ X TO/C X .B. we define 0(z) G Y x 17+ 
as follows: 

(9(z) = {q1,tuq2,t2',u) e X x X x U+, 

where 

(gi,si) =a;(tiui6-.,*i), 

(^2,52) -x{t2U2b(J_,t2), 

(4.15) w = t(y)~1ixi*(j/)tx3". 
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Clearly, u E C/+. 

PROPOSITION 4.3.   We have 6(z) 6 Z'. 

Proof. Define (cii6_i,ci), (c2W_2,C2) E CiU- by the formulas 

(CitX_i,Ci) =iX_(tiTXi6_,*i), (C2TX__2,C2) = U-fa^bl^), 

so that in Q = Q x To we have 

(4.16) (*ltll&-,*l) = (ciU-ijCi)^!^!), 

(4.17) (t2U2b(T_1t2) = (C2U_2,C2)(X2,52). 

Applying the antiinvolution T to (4.17), multiplying by (4.16), and using formulas 
(4.11) and (4.15), we get 

titj — ct(y) 
(4.18) T T 

tit2u = cu-ib(y)u_2, 

where c = C1C2. Therefore, so that 6(2/) ~ t(2/)w. Since tx 6 C/+, we have g(^) E Z7. 
Proposition 4.3 is proved. 

Denote by p': Z' —> YQ the projection and let Z'1 C Z' be the preimage of Yi, so 
that Z{ consists of those z = (qi,ti\q2,t2\u) for which 

7(P(*')) = 0. 

Now we define open dense subset Y2 C Yi, Z2 C Zi, and Z2 C Z{ by the 
conditions: 

(4.19) 
¥2 = {ye Yi   such that (&(j/))in-i = {b{y)hn ? 0} 

^2 = {(ui,ti;u2,t2ib-) E Zi   such that (111)2*. # 0, (^1)2x1 7^ 0}; 

Z2 = {(2/,tz) E Z{   such that y E Y2.} 

Clearly, 0 maps Z2 to Z2. 

PROPOSITION 4.4. 0: Z2 -> ^ Z5 a bijection. 

Proof. We construct the inverse map 0l: Z2 ^ Z2. In this construction we assume 
that £?_ C

-> GLn x To is a genuine section of the projection GLn XTQ ^ Bi\ GLn x To 
(for the notation, see 3.1). To make all the arguments precise we must replace B- 
by a semialgebraic section B- c GLn x To such that B- is invariant under the left 
multiplication by elements of B'. 

Let z = (qi,ti',q2,t2',u) E Z^ i.e., conditions (4.11), (4.13) and (4.19) hold. For 
each pair (u__i,tt_2) satisfying (4.14) we define ui E Ui and 6_ E B- from the 
(unique) decomposition 

Uitib- = U-iQi 

(with ti,u-i,qi known). From condition (4.19) one easily gets that the family of 
pairs (u-1,11-2) satisfying (4.14) is one-dimensional and there exists exactly one pair 
for which the corresponding b- is in B". Below by (u-1,11-2) we will mean this 
particular pair. 
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Now we set 

(4.20) u2 = (u')T(*(z/)-W(2/)r. 

From the definition (4.15) of u we get 

U2t2ba_ = U-2X2- 

In particular, U2 G Q and 112 £Uf CU+, so that U2 € QnU+ = Ui. Therefore, 

6'(z,) = z = (uut1;u2,t2,b-)eZ1 

and p(z) = y. Hence, z G Z2. It is also clear that q o 6' = \&z'2- 

For y G Y^ we denote by C/y C U+ the fiber of the projection p': ^ -> ^2- This 
is a dense open subset in a closed codimension n subvariety Uy in [/+ given by the n 
equations 

(4.21) $<w)(iz) = • • • = $^)(ix) = 0,        u G t/+. 

The first two of these equations are 

Uin — 0, Uin-i — U2n- 

Introduce the volume form UYX = Res ^ (7 is defined by (4.10)) and let cjy^ be the 
restriction of LUY1 to Y2. Introduce also a volume form ujuy on each fiber Uy by the 
formula 

Ai<idui3 uu  = Res 
i^)...*^' 

The forms UJY2 and cjc/y5 2/ G F2, determine a volume form u' on Z^. 
Finally, introduce an algebraic function /' on Z2 by the formula 

f,(y,u) = y(u-1U-2), 

where u-1, ii_ 2 are taken from (4.14). Note that although U-1 and U- 2 in (4.14) are 
not unique, the condition j(y) = 0 implies that /' is well defined on Z^. 

CONJECTURE.  Denote by /A ^ t/ie restriction of [A    to the open dense subset 
Y2CY1.  Then the data 

/^(Z^Y^PV,^) 

is an algebraic presentation of /A \ 

Remarks. 1. If the conjecture is true, than it is easy to prove that the measure 
(2) realized by the data ji coincides with /A . 

2. In all examples intersection of the level sets of f in Z2 with the fibers of p' 
are open subsets of Calabi-Yau manifolds and the form LJ' extends to a regular form 
on the completion. 

For n = 3 the above conjecture is obviously true because each fiber Uy consists 
of just one point. In the next section we prove this conjecture for n = 4. 

5. Explicit formulas for GL4. 
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(2) 5.1.  The measure /A . Now we consider the case n = 4. We write a matrix 

u € 1/ in the form 
(1    ai    0,2    a^\ 

0       1       (24      (25 

0    0     1     oe     ' 
0    0     0      1/ 

so that u)u(u) = /\^=1 dai. 

Fix ?/ = (<7i,£i;<Z2jtf2) € ^2-   Let the Bruhat decomposition of b(u) G GL4 be 
6(2/) = tx/_iAu/_2 with ut_1,u'_2 G C/_, 

/0 0 A 0\ 
0 0 0 A 
0 1/1 0 0 

Vz/2 0 0 0/ 

Let £(2/) G To be the diagonal matrix t(y) = diag(Ti,T2,T3,T4). 
The condition (4.13) is equivalent to the following equalities: 

^3 = 0,    Tia2 =: r2a5 = A,    T^Tzfaia^aG — aiae — ^2^5) = A2z/i, 

so that the fiber [/^ C C/+ over y is the affine plane, and we can take si = nai and 
52 = Tsde as coordinates on this plane. 

The function /'(z') on Z2 is given by the formula 

(5.1) /'(*') = *(u-1u-2
T)(R(sus2]A,t)), 

where R(si,S2]A,i) is a rational function in 51,52 depending on parameters A,£. 
Explicitly, 

R(s1,S2,A,t) = A"1 [5i + 52 + A(Ti +T2)5j"1 + Afo + r4)5^1 

+ Vl1l'3T4SiS21 +Vi1TiT2S2Si1 + A2Z/i5["15^1] . 

Finally, the form o;^ on the fiber Uy C (7+ is given by 

dai da4 ddQ dsi ds2 
uuv = 

d(TiT2Ts(aia4aQ — CLICLQ - 02^5)) 5i52 

PROPOSITION 5.1. The data /x = (Z2, Y2,p/,a;/,f/) give an algebraic presenta- 

tion of the measure /A ^. 

Proof. We must prove that conditions (i)-(iv) of Definition 0.1 are satisfied. 
Instead of proving (i)-(iii) we prove a stronger result that similar properties hold 

at each fiber Uy of p': Z2 -» ¥2- Take a point y G Y2. 
The factor ^(u-iU-.2T) in formula (5.1) is constant on the fiber Uy, so we can 

ignore it. 
For almost each f G F the level set it! + £ of the function R inside the affine plane 

A2 with coordinates 51,52 is (the affine part of) a smooth elliptic curve E^ given by 

the equation F^(si,S2] A,t,£) = 0, where 

FC(5i, 525 A, *, 0 = 5152(^(51, 525 A, t) + £) = 5?52 + 5iS^ + */1-
1T3T45? 

+ £si52 + ^f 1Tir2s| + A(r3 +r4)5i + A(ri +T2)52 + X2ui. 
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The form u^ on the level set E^ is given by the formula 

dsids2 
tjf = Res 

F€(5i,52;A,t,0' 

It is easy to see that w^ is a (unique up to a scalar factor) regular differential on 2%. 
Therefore, for almost all f G F the integral 

m ^ f 
JE( 

ki 

converges. 
Next we must prove that /(£) is a locally L1-function of f. The singularities of 

/($) occur at the point where E^ becomes a singular curve. It is easy to see from 
explicit expression for UJ^ that for each such point £ the form uj is nonsingular at each 
generic point of the (possibly reducible) curve ET. By a general theorem (see [S]), this 
implies that 

I(0 = O(|k>g(£-Dl*) 

for some k as £ -> £ and /(£) is an L1-function near £. 
Finally, as |£| —> oo, the curve ^ degenerate into the curve E^ given by the 

equation S1S2 = 0, and the form uOoo on Eoo is regular at both generic points of EOQ. 

The same general result easily implies that as |£| —► oo, the function /(£)) depends 
only on |£|. This implies that the sequence of integrals 

/    mm 
J\fL\<Pn 

stabilizes. 
So, we proved that "fiberwise versions" of properties (i)-(iii) of Definition 0.1 

hold. In particular, this implies that if /i, /2 € Ls, then the integral 

(5.2) /   M/V))(PT(/IX^)(*>V)I 
Jz'2 

converges in the sense of Definition 0.1. Using the convergence of the integrals in 
formula (4.8) one can see that the integral (5.2) equals (/A , /i x /2). Proposition 5.1 
is proved. 

5.2. 54-invariance. In this section we construct an action of the group 54 on 
the data ^ = (Z^, Y2,p/,u/,f/). 

Recall that the action of 54 on Y (and the induced action on Y2) is given by 
w{xi)t2\X2it2) = (xi1ti]X2,t2<T). We must construct the action of £4 on Z2 compat- 
ible with the action of 54 on Y2 and preserving the function /' and the form CJ'. 

Let Ei(ri, T2, rs, T4), i — 1,2,3,4, be the i-th elementary symmetric function. For 
the proof, it suffice to rewrite the formulas the curve E^ and for the form CJ^ in terms 
of 54-invariant combinations £* of r;. 

We pass from the coordinates si,S2 on the plane to homogeneous coordinates 
Si,52,53 such that si — Si/S3, 52 = (52 — Si)/S3. In these coordinates we have 

SiFz = P1(S2, S^Sf + P2(S2,S3)S1 + P3(S2, S3), 
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where 

A(52, Ss) = -52 + (y^nTS + vr1™ - 053, 
iM52,53) = Si + (-£ + 2i/r1rir2)5253 + 5?M-n -T2+T3+ T4), 

^3(52,53) = ^52(i'r1Ti52 + A53)(j/rl7"252 + A53). 

Direct computations show that the discriminant A = P$ — 4P1P3 is a symmetric 
polynomial in TI,T2,T3,T4. Expressed in terms of elementary symmetric functions Si, 
it is 

A = 52
4 + 2£52

353 + (^2 + 2Ei + 4/9S4)52
2532 

+ (2fEi + 4P-1 - 4^3)5251 + (2^2 + S2 - 4S2)534, 

where p = X2ui. 
Taking instead of Si the variable S given by 

(5.3) 5 = 2P1(52,53)5i-F2(52,53), 

we obtain that the equation of E^ is 

S2-A(S2,S3) = 0. 

Hence, E^ is invariant under the action of 54. 
Using the change of variables (5.3) one gets, in an obvious way, the action of 54 

on Z'2. 

PROPOSITION 5.2. The described action of S^ on Z2 determines the action of S^ 
on the data /x = (Z^ Y2,p/,u/,f/). 

Proof By construction, the action of £4 commutes with p' and f. The invariance 
of the form UJ^ on E^ under the action of £4 is easy, and it implies the invariance of 
CJ'. 

Using Proposition 5.2, one can easily write does the twisted data fia that conjec- 
turally deteremine the measure fia defined by the F-function for GL4 (see Conjectures 
1 and 2 in the introduction). 

Appendix. Comparison with the JPS gamma factor. 

by J. Cogdell 

In this appendix the proof of Proposition 2.1 is given. 

PROPOSITION A.l. Let r = f*-1 0 9 be a generic irreducible unitary representa- 
tion of GLn-2 -  Then 

r(7r^)=a;?(-l)n-17(7rXr,l/2,V), 

where u? is the central character of r, r is the contragredient of r (which, since r is 
unitary, is r), and 7 is the gamma factor of [JPS]. 

In this appendix we use a slightly different set up from the one in the main body 
of the paper (see [JPS]). In particular, we will use the following notation. 

/    . i' 
• wn is the n x n permutation matrix w^ = . • ]  with 1's along the 

skew diagonal. 
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• For the outer involution of GLn in this appendix we take the involution given 
by g* = wn

tg-1wn. 
• Q is the stabilizer of the point (0 : • • • : 0 : 1) G Pn and so consists of matrices 

whose last row is (0,..., 0, *). 
• R — QnQa is then the standard parabolic subgroup associated to the partition 

n = I + (n — 2) + l containing the upper triangular unipotent subgroup U. 
• ip = ipn is the standard non-degenerate character of U. 

0       1    0\ 
Let WQ = ( In-2    0    0    . Then 

0       0    1/ 

UQ = WQUWQ
1
 = 

With ll)Q{u) = ^o(wl,n + ^2,3 + ' • ' + Un-2,n-l + ^n-l,l) 

I7fl = C/Q n R = 

with -0^ = V'QIH- Here, the matrices are in block form associated to the partition 
(l,n-2,l) of n. 

The induced representations are all as in the main text, with the replacement of 
U- by the upper unipotent subgeoup U. 

We want to analyze a particular element of Hom/^pi^,^^) beginning with a 
irreducible unitary generic representation (7r,T4) of GLn with central character £. 

Step 1: To get our first realization of PR^ we do the following. We first pass 
from T4 to its Whittaker model VV(7r,^) and then restrict these functions to Q: 

v e Vn ^Wv(q) 

where Wv is the Whittaker function associated to v and q G Q. The space 

{Wv{q)\WvZWM),qZQ} 

gives a realization of PQ,S- 

To get a realization of pR,£ we apply your maps Ci and then C2: 

Wv(q) «-► Wv{w^q) K> W^^gV) 

with now r e R. So our first realization of PR^S is on the space 

{Wyiw^r) I W* G >V(7r,0),r G i?} 

with it! acting by right translation. 

Step 2: The element of HomjR(pjR}<r, pR^) that we want to analyze is, using the 
notation in Section 2, 

C3oC2oCio/3ffoC'r1oC^1. 

If we begin with Wv(wQ1r), then applying Cf1 o C^"1 brings us back to Wv(q). The 
map fin in these models is the map 

PIT : Wute) •-> Wv(^n) = W^Wn)v{q), 
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where, as in [JPS], we have set W(g) = W(wn
tg~1). Applying Ci and then C2 to this 

gives 

Now, applying the map C3 gives 

J B 
db, 

where we now have 

r    A   6   o\ 
B=U=    0   /n_2   0    \b£Fn-2 

[      Vo     0     1/ 

So, our element of Hom^^pi^) is 

Step 3: We now pass from Hom^^,^^) to ftom(pM,£,PM,£) using pRis ~ 
PH®PM,E- This isomorphism is effected by restricting the functions in PR,£ to M. To 
pass from pn^ to PM.S we must then twist these restrictions by the action of M on 
PH- Let us write M = Cn x GLn-2 and correspondingly m = cm' with m' G GLn-2 
embedded as the center block in GLn. Then the unitary action of m on pn, if we 
realize this as functions on an appropriate space X, is ip(x) H-> | det(m/)|1/2(^(a:m/). 
This gives, in essence, PM,£ = \ det(m/)|~1/2pjRj£:|M- 

So, our element of flom(pM,£,PM,£), in our models, takes the form 

f(c)|det(m/)r1/2Wv(^
1m/) ^ £(c)\det(m,)\-1/2 [ W^^iw^bim')") db. 

J B 

Step 4: This morphism should act as a scalar r(7r, 6) on each irreducible com- 
ponent 6 of PM,£' Each such component is of the form 6 — £ 0 r with r an 
irreducible unitary generic representation of GLn-2. To compute this scalar we 
want to project into the £ ® r component by pairing PM,£ with the contragredi- 
ent {£ <g) T)~ = £~l ®T — £®f. In this pairing, the central characters cancel. So 
we can effect the pairing by taking r in its '0-1-Whittaker model and integrating over 
Un-2 \ GLn-2. (We do not worry about convergence of the integrals.) 

Let Wr{g) € W(r, i/j"1). Before applying the morphism we have 

/ = (| det(m,)^1/2J^(^^1m,), Wr(m')) 

= [ Wv f WQ
1
 I       ml       ] ) WVfnOldetfaOr172 dm' 

Jun-2\GLn-2 \ \ I I  I 

= *(^(U)-),.^V2)) 

where *(WW(ID5I)I;> WV, 1/2) is as in [JPS]. 
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After applying the morphism, we should get 

1= (|det(m,)r1/2 / W^^w^Um'Y) db.Wrim')) 
JB 

which, if the morphism is to act by the scalar Y^^O) on this piece, should give 

7-^(7^,^)(|det(m,)^1/2^(w;Q1m,),WF(m,)) 

Step 5: The final step is to identify / with the right-hand side of the GLn x GLn_2 
functional equation. If we write the integral / out it is 

?=  I ( ^(U;n)v(^f;516K)£r)^^fK)|det(m,)^1/2rfm, 

=  f fwvl WQlb I       m!       )   wn ) dbWr(m')\ det(m,)^1/2dm,. 

We next have a few elementary calculations: 

i       y   (i 
m1 = {m'Y 

16 \ //„-2 
WQ

1
   \ In-2 \WQ=   I       b 1 ]   = b 

'1 
-1 wQ   I        m I WQ = ^ /2 

Wn-2 \      -1 fIn-2 
hjwQwnwQ=^ wj=wntn-2 

If we now use these calculations in our expression for /, and set v' = ^(WQ
1
^, 

we obtain 

I =  f f Wv, (b f^-^^T1    ^ \ Wnn_2\ dbWr(m')\det(m')r1/2dm'. 

Now we change of variables m' i-> iyn_2t(Tn')_1 and note that Wrf(u;n_2'(m')_1) = 
Wr(m'). Then our expression can be written 

7= J J(p(wn<n-2)Wv,)lbm'    1 dbWr(m')\det{m')\^2dm'. 
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Making the change of variables b (-► &(m')-1 we finally obtain 

T =  f f(p(wn,n-2)Wv,) I   b     1        |d6WV(m')|det(m')r1/2dm' 

=  f f (p(wn,n-2)Wv.) (   b     1       Jd6wV(m')|det(m')|(1-1/2)-1dm' 

= *(pK,„_2) WV, , Wr, 1 - 1/2; 1). 

Thus we arrive at 

r(7r, e)^{Wv,, Wr, 1/2) = y(p(wn>n-2)Wv,,%,!- 1/2; 1). 

By the local functional equation of [JPS] we have 

wK-ir-Sfr x T, 1/2,V)*(^',W7,1/2) = *(pK,n_2)W„.,W7,1- 1/2; 1). 

Hence we have 
r(7r^)=^(-l)"-17(7rx?,l/2)V) 

as claimed. 
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