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CONJECTURAL ALGEBRAIC FORMULAS
FOR REPRESENTATIONS OF GL,!

SERGEI GELFAND* aND DAVID KAZHDAN?

0. Introduction.

0.0. Let F be a non-archimedean local field. Due to the recent work of Harris and
Taylor [HT], we know that the local Langlands conjecture is true. In other words, for
any local field F' we know the existence of the one-to-one correspondence ¢,,: II,, —
GL,(F)" between the set II,, of n-dimensional representations of the Galois group
® = Gal(F/F) and the set GL,,(F)" of irreducible nondegenerate representations of
the group GL,(F). In particular, one can associate an irreducible representation
of the group GL,(F') to a pair (E,x), where E is a commutative semisimple algebra
over F of degree n and y is a multiplicative character of the group E*. However, we do
not know any explicit construction for the representation 7. In our paper we propose
an explicit “algebraic” construction for the representation , at least for n = 4.

One can inductively characterize the correspondence ¢, in the following way.
Suppose that we know the correspondence ¢,_2. Then for any o € II,, we can char-
acterize the representation ¢,(c) as the unique representation of GL,(F) such that
for any representation p € II,,_» we have

L(¢n(0), dn—2(p)) = (o ® p*),

where I'(¢,(0), pn—2(p)) is the Gamma function of Jacquet, Piateskii-Shapiro, Sha-
lika [JPS] and I'(c ® p*) is the Gamma function of Langlands. More precisely,
let GL,(F)y C GL,(F)" and II,, C II, be the subsets of unitary representa-
tions. We denote by T', the function on the set GL,—2(F)y x II,, defined by
Tp(m,p) = T(m, pn—2(p)). To any maximal torus T in GL,(F) and any character
x of T we may associate an n-dimensional representation o, € II, and therefore a
representation T, = ¢, (0y) € GL,(F)". Let (pn—2, Whp_2) be the Whittaker repre-
sentation of GL,_»(F). The representation of GL,_5 x T in the space Wh,,_,® L*(T)
decomposes in the direct integral

(0.1) Whp_2® L*(T) = & / (Ve ® ),
GLp—2(F)axT"

where V; is the space of the representation 7. Let AL_, be the unitary operator in the
space Why,_ ® L%(T') commuting with GL,_»(F) x T that in the above decomposi-
tions is the multiplication by I',(m, 7y ). As follows from [JPS], one can write explicit
formulas for all 7, if one knows the operator AT_,.

The goal of this paper is to propose an algebraic formula for this operator in
the case n = 4. More precisely, for any n we construct “algebraic” data p, =
(Z,Y,p,w,f) that define an operator Ag"_z corresponding to the maximal split torus
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18 S. GELFAND AND D. KAZHDAN

To in GL,. In this case the representation , is the induced principal series represen-
tation. Next, for n = 4, we define an action of the symmetric group Sy on ps. Then
for any maximal torus T in GL4 we can define the corresponding twist g1 4 of p4 and,
therefore, an operator AT on the space Why ® L*(T). We conjecture that AT = AT.
Moreover, we conjecture that for any n there exists an action of the symmetric group
S, on u, such that AL _, = AT _, for any maximal torus T' in GL,(F).

Note that for n = 3 this conjecture was proved in [K1].

The same formulas work for a real field F.

0.1. Algebraic measures and twisting. We start with the notion of an alge-
braic measure. For the rest of paper we choose a nontrivial additive character ¥z of the
field F, ¢¥r: F — C*. We will denote algebraic varieties over F' by bold letters (say, X)
and the sets of F-point by the corresponding italic letters (say, X = X(F')). Similarly,
morphisms of algebraic varieties will be denoted by bold letters (say, £: X; — Xs)
and the induced mappings of the sets of F-points by the corresponding italic letters
(say, f: X1 = X3). For a smooth algebraic variety Y by S(Y) we denote the space
of locally constant function on Y with compact support.

Let Y be an algebraic variety over F' and p a complex valued measure on Y. An
algebraic presentation of u is data (Z,Y, p,w, f), where Z is a smooth algebraic variety,
p: Z =Y a morphism, w € Q7(Z), r = dim Z, a volume form (i.e., a differential form
of the top degree) on Z, and f an algebraic function on Z such that the measure p is
equal to the distribution

Pe(lwl - (¥F © f)),

where |w| is the measure on Z corresponding to w, see [W]. In other words, for a
function ¢ € S(Y') we have

/wu=/wMAWMﬂmww»
Y Z

One has to be careful since in cases we are interested in the integral in the right-hand
side of the last formula does not converge absolutely. Therefore, we must specify the
integration process. We choose the following scheme.

For a € F let Z, C Z be the level variety Z, a {f = a}. The volume form w on
Z determined the volume form w, on Z, by the formula

w

f-a
DEFINITION 1. Algebraic measure is data u = (Z,Y,p,w,f) such that the fol-

lowing conditions are satisfied.
(i) For any function ¢ € S(Y') and for almost any a € F the integral

uwﬁﬁwwmmw>

df
ws = Res

converges absolutely.
(ii) I, (¢) is a locally L!-function of a.
(iil) The limit

I(p) € lim Yr(a)l,(p)|dal

0 Jla|<pr

exists.
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(iv) There exists a complex valued measure 4 on Y such that I(p) = [ op for
p € S(Y).

In the case p is called the realization of pu and u is called an algebraic presentation
of u.

Remark. In general, a measure p can have several nonisomorphic algebraic pre-
sentations.

Let I be a finite group of F-automorphisms of Y. A lifting of the action of I to
p is an F-action of I on Z that commutes with p and preserves w and f. If y is the
realization of a [-invariant data u, then p itself is I-invariant.

Given a lifting of the action of I' to u, we can construct twisted forms of u as
follows.

Let ® = Gal(F/F). Elements of H'(®, Aut Z) correspond to homomorphisms
a: & — T modulo conjucation by elements of I'. To any such a we associate the
twisted form Z, of Z. This is an algebraic variety over F', which is isomorphic to Z
over F. The set of F-points of Z, is given by

Zy={z € Z(F) | (z =a(()z for € &}.

Similarly, to @ we can associate the twisted form Y, of Y. Since the action of
I"' on Z and Y preserves w and commutes with p and f, we get the twisted data
Ko = (ZayYa,paywa,fa)-

In the case where p, defines an algebraic measure (i.e., the integrals in Definition
1 converge and the limit exists), we define the measure p, on Y, as the realization of
Io. We emphasize that u, depends not just on u and the action of T on Y, but also
on the lifting of this action to .

A measure on Y is a linear functional of the space of continuous function. We
need a generalization to the case where the function are replaces with sections of a line
bundle on Y. More precisely, we consider the following situation. Let Y be a variety
with the free action m: U x Y — Y of a unipotent group U, such that Y = Y/U
and let ¥: U — G, be a character of U. Then we can consider the space Sy (Y) of
locally constant functions ¢ on Y such that

p(uf) =yr(-T(w)e@), uwel, je¥,

and the function ||¢|| on ¥ has a compact support.

A ¥-measure is a linear functional on Sg(Y') that extends to a continuous func-
tional on a space of continuous ¥- -equivariant functions on Y that are “compactly sup-
ported” (in the above sense). Let Z be a manifold with a free action of U, p: Z = Y
an U-equivariant map, @ a U-invariant volume form on Z, f: Z — A! a function such
that

f(uz) = U(u) + £(2).

Let us choose an invariant volume form du on U. _ _

DEFINITION 2. Wesay that thedatap = (Z,Y,p,d,f) is an algebraic U-measure
if the following conditions are satisfied.

(i') For ¢ € Sg(Y) and a € F denote

Zay=1{2€Z: f(2)p(p"(2)) = a}.

Then Za,‘p is invariant under U. Let Z,, = Za,w/U and |w,,,| the measure on Z, ,
induced by @/du. We assume that for any ¢ € Sy(Y") and for almost any a € F' the
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integral

L(p) & /Z F2)o(5™ () [wayl

converges absolutely.
(ii") I, () is a locally L!-function of a.
(iii') The limit
df .
I(p) = lim Yr(a)l,(p)|da
@&, | @)
exists. _
(iv") There exists an (U, ¥)-equivariant complex valued measure y on Y such that
I(p) = [y pu for p € Sy (Y).
As before, we call the data & an equivariant presentation of p and p the realization
of fr.
Similarly to the above, we can define twisting of equivariant measures.

0.2. I'-factors. Let U_ be the lower unipotent subgroup in GL; and ¥: U_ —
G, the homomorphism given by

\I/(u) =u21 + -+ Ugp-1-
The Whittaker representation (pg, Why) of GL, is defined by the formula
pe =Indg" ().

An irreducible representation w of GL,, is called generic if it occurs in the decomposi-
tion of p, into irreducible components. It is known that any generic unitary = occurs
in pg exactly once.

Let T be a maximal torus in GL,(F) and x a unitary character of T. The pair
(T, x) determines an n-dimensional representation p, of ®, and by the Langlands
correspondence (see [HT]), a unitary nondegenerate irreducible representation m, of
GL,(F). Let o be a generic unitary irreducible representation of GL,. Jacquet, Piate-
skii-Shapiro, and Shalika [JPS], associated to the pair (my,o) the number I'(my, o),
|[T(my,0)| = 1. Using the direct integral decomposition similar to (0.1), we combine
the numbers I'(m,, o) for all unitary characters x: T —+ C and all generic unitary
irreducible representations o of GL¢(F) in a unitary operator A7 in the space Wh, ®
L?(T) commuting with the action of GL; on the first factor multiplication by elements
of T in the second factor. _

Define the action m of the unipotent subgroup U_ C GL, on the space Y =
GL; x T by left multiplication on the first factor. Let U® = U_ x U_ and let
¥ : U® 5 G, be given by

@ (u,u') = U(u) — T(u').

The action m determines the action m® of U onY = GL,;x T x GL; x T. Define
the ¥()-measure u(T,£) on Y by the formula

/?fl(tl,gl)f2(t2,g2)/1/(T, 0) = (A7 f1, f2)WheoL2(T)-

The first result of the paper (Proposition 5.1) is the construction of an algebraic
presentation py n, of the measure u(T,£) in the case where n = 4, T' = Tj is the split
torus in GL4, and ¢ = 2.
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0.3. Twisting of the algeraic presentation. For a unitary character x: Tp —
C* let m, be the corresponding irreducible unitary representation of the principal
series. As is well known, for w € S, the representation m, and m,w are equivalent.
Therefore, the constructed ¥(?)-measure u(Ty,n — 2) on Y is S,-invariant.

Our second result (Proposition 5.2) is the construction of the lifting of the action
of S,, on Y to the presentation pty, n for n = 4.

Let T be a maximal torus in GL4. Any such torus is obtained from the maximal
split torus Ty by an element of H'(®, AutTp), i.e., by a homomorphism a: & — S,,.
Using the lifting of S; we can define p, as the twisting of p = ppy 4.

CONJECTURE 1. The data po define a ¥'?)-measure pio on Y = GLy xT xGLy X
T.

The second conjecture is that this measure coincides with the measure defined by
the I'-function. More precisely, let A, be the operator on the space Why,,_s ® L?(T)
corresponding to the measure p,.

CONJECTURE 2. The operator A, is unitary and in the direct integral decompo-
sition (0.1) is given by the multiplication by I'(my,0)

In other words, A, = AL_, for the operator AL_, described in 0.0.
Finally, we conjecture that all of the above remains true for an arbitrary n.

CONJECTURE 3. For an arbitrary n > 4 there exists a lifting of the action of S, to
the algebraic presentation p = pr, n—2. For a mazimal torus T in GL,, corresponding
to a homomorphism a: & — S, the twisted data po, determine a U(?) -measure p, on
Y =GLy_oXTxGL,_yxT. The corresponding operator in the space Wh,,_o® L*(T)
is unitary and in the decomposition (0.1) it is the multiplication by I'(my, o).

Acknowledgements. We are grateful to Jim Cogdell and Karl Rubin for helpful
discussions.

1. Measures. In this section we present a general result about complex valued
measures on vector bundles over smooth varieties over F'. This result can be viewed
as a formalization of the formula

/ (o) dy = 6(z),
F

which is well known in the theory of distributions.

Let M be an m-dimensional algebraic variety over F. By Q™ (M) we will always
denote the space of volume forms on M. Let £ a one-dimensional vector bundle on M,
L* the dual bundle, L, L* the total spaces of £ and L*, and 7: L - M, n*: L* - M
the corresponding projections. Let also (: M — L* be the zero section of L*. For
an open set U C M we denote by Ly the total space of the restriction of £ to U.
Similarly, Ly, is the total space of the restriction of £L* to U.

Let v € I'(U, £*) be a section of £* and let N,y = {z € U | 7(z) = {(z)} be the
subvariety of zeros of v in U. Let Tpr (N, i) and L*(N,,y) be the restrictions to N,y
of the tangent bundle 7js and of the vector bundle £*. Denote by T (IN,,r) and
L*(N4,u) the corresponding total spaces. Let z be a smooth point of N, ¢, y = v(z)
the corresponding point of L*. The tangent space to L* at y is canonically represented
as the direct sum

(11) TL*,y =TM,w®Fa
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where F' is the one-dimensional tangent space to the fiber L% of £* over z. Therefore
the composition of the differential of v and the projection of Ty« , to the second
summand in (1.1) determines a morphism 6 : Tas,, — L.

DEFINITION 1.1. (i) A section v is said to be generic at a smooth point z € N,
if 6, is surjective.

(ii) A section y of £* is said to be generic in U if N, y is smooth and generic at
all points of N, .

If 7y is generic at z, then we can identify Ker6, and the tangent space T, . to
N, at z.

Let U C M be an open set, v € I'(U, L*) a generic section. Our next goal is to
construct a morphism 7(y): Q™+1(Ly) = Q™ YN, v).

Let v be generic at a point x € N, y. Since Ty ; = Ly ® T 5, for the fiber of
Q™+ (Ly) at = we have

Q™ (Ly), = L ® A™(Tjy,).

The exact sequence
0= Twn, e = Tare 53 L5 =0

shows that
A™(Typ ) = AmHTR, ) @ Ly = Q" H (N v)e © Lo,

so that we have
Q"N U), = L @ Q™" YNy v)e ® L.

Using the pairing L} ® L, — F, we get the map
(1.2) Q™ U), = Q™ NN, v)e.

The collection of maps (1.2) for all z € N,y yields the requred map n(v).

In coordinates the map 7(vy) is described as follows. Let U C M be such that
the restriction L|y is the trivial line bundle. Choose a trivialization Ly = U x F
and the dual trivialization L}, = U x F. Denote by y the coordinate in the fibers of
projection Ly — U and by y* be the dual coordinate in the fibers of the projection
L} — U. A section v of £L* over U is given by a regular function 6(z) on U so that
~v(z) = (z,0(z)) € U x F. For such a section, Nyy = {z € U | 8(z) = 0} and ~ is
generic at a point € N,y if and only if df # 0 at z.

A volume form w € Q™+1(U) can be written as

(1.3) w = £(p,y)w' A dy,
where w' € Q™(U), £(p,y) is a function on Ly = U x F. For such a form w we have

(14) 7)) = Res {?-(”—0‘”1}

Clearly, the right-hand side of (1.4) does not depend of the representation of w in the
form (1.3).

DEFINITION 1.2. For an open U C M, a volume form w € Q™1 (Ly) is said
to be fiberwise constant if tfw = w for any b € I'(U, £), where ty: Ly — Ly is the
fiberwise addition.

Denote by Q}”C“(LU) the space of fiberwise constant volume forms on Ly. In

coordinates w € 5" (Ly) if and only if in some (hence every) representation of w in
the form (1.3), £ does not depend on y. In this case we can take £ = const.
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Let 7 be a section of £*|yy. Define the complex valued function . on Ly by the
formula

¥y (2) = Yr((7(2),2)),

where z € Ly, z = n(y) € U, and v(z) € L*(z) is considered as a linear functional on
L(z).

Let £ be as before, w € Q™*!(L), and f a complex valued locally constant
function on L.

We say that f is locally integrable with respect to w at a point € M if for each
sufficiently small compact neighborhood U of = the following condition holds.

¢ Choose a trivialization Ly = U x F'. Let O; C O3 C --- C F be a sequence of
open compact subgroups such that |J O; = F. Denote V; = U x O;. Then the limit

(1.5) lim [ flw]|
1—00 Vi
exists.
It is clear that the limit (1.5) does not depend on the trivialization £ over U in
(i) and on the sequence {O;} in (ii). We denote this limit by

im [ gel= [ gl

It is also clear that now we can define [, Lo |w| for any open set U C M and an
arbitrary locally constant function f on Ly such that the projection of p(supp f) C M
is compact and f is integrable with respect to w at each point of p(supp f).

PROPOSITION 1.1. Let U C M be a compact open set. For any generic section
v of L*|u, any locally compact complex valued function f on U, and any fiberwise
constant volume form w € Q?;H(LU), the function 7*(f)y, is locally integrable with
respect to w at all points of U and the integral is given by

/ Tl = /.

v

fin(Mm @),

where N,y is the set of zeros of v in U and in the right hand side we take the
restriction of f in Ny y.

Proof. First, we consider a case where M is an affine line with the coordinate z,
L is a trivial one-dimensional bundle with the coordinate y along the fibers, and the
section v of £* is given by a function y* = 6(z), so that y(z) = (z,6(z)). We have
N, = {z | 6(z) = 0} and 7 is generic at a point z € N, if and only if 6'(z) # 0.
If 7 is generic, then NV, consist of the finite number of isolated points. Assume that
U is so small that IV, y consists of a single point zo. For a fiberwise constant form
a(z) dz dy € Q*(Ly) the value of zero-form 7(y)(w) at zo € N is a(zo)/6' (o).

Let {O;} be an increasing sequence of open compact subgroups in F, UQ; = F,
and V; =U x O; CU x F = Ly. Then

[ whEw@w = [ veaoala]dd d
Vi UxO;
- [ $@le(@)ldsl [ br(uba)idsl
U O;:
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Denote O} = {y € F | yr(yu) =1 for all u € O;}. Then

meas O; if 6(z) € OF,
0 otherwise.

RETEE {
O;
Next, denote @j‘ ={y € F|6(y) € O}}. Then
/ 7 () (2)r (2) ] = (meas O) /  f@)la(@)] dl.
Vi Uno#

For a sufficiently large 4, @f is a small neighborhood of points zo € N,y and M;O0F =
{z0}. In particlular, O} C U and

lim (meas O;)(meas O;) = 1/|8(zo)|.

i—00
Therefore
i [ 7@ @, (el = lim (meas0)) [ | f@)la(o)]ldal
1—00 \A 1—00 oiJ.
— f(@o)|a(zo)|
6" (zo)]
and the right-hand side equals
| e
Nyu
In the general case we can argue locally on M. Let U C M be such that £ and
L* are trivial over U. Choose local coordinates z1,...,Zy, in U such that 7 is given

by the equation of the form y* = 0(z1) and N,y = {z1,...,zm} | 71 = z§°)} for a
single zog € F. For a fiberwise constant form w = a(z)dz; A-- - Adxy, Ady* = wy Ady*
on Ly we have

Z a(x(lo),xg,...,:cm)dzg A ANdxm,

w1
Res — =
0'(z{")

Nyu 0
:EEO) €N,

To complete the proof one computes [ f(z)¥,(z)|w| using the arguments similar to
those employed in the case m = 1 above.

2. I'-factors and measures.

2.1. Subgroups of the group GL,. We recall some notation from the intro-
duction and give also some new ones.

e Q is the subgroup of GL,, consisting of the matrices with the first row of the
form (x00...0).

e U_ is the lower unipotent subgroup of GL,,, ¥(u) = ¥p(us1 + -+ + Unn-1) a
nondegenrate character (one-dimensional complex representation of U_ .

¢ 0: GL, — GL, is the involution given by the formula o(g) = (ag"a™!)71,
where T denotes the reflection with respect to the second (nonprincipal) diagonal in
GL, and a = diag(1,-1,1,...,(=1)""1). We have ¢(U_) = U_ and ¢y o 0 = 9.

sR=QnNQ°.

e By Ind we will always understand the unitary induction.



CONJECTURAL ALGEBRAIC FORMULAS FOR REPRESENTATIONS OF GL,, 25

2.2. Generic representations of GL,. Let (m, V) be a unitary representation
of GLy,. Let (7, V*) be the smooth model of (7, V') (see [BZ]). Recall that V* consists
of all vectors v € V such that Stabv is an open compact subgroup of GL,,, and 7% is
the restriction of 7 to V. It is known that V* is dense in V.

DEFINITION 2.1. An irreducible unitary representation (7, V) of GL, is said to
be generic if V¢ admits a (U_, ¢)-equivariant linear functional ¢, i.e.,

plu-v) =u-)pv), veV? u_elU_.

It is known [BZ] that for a generic irreducible unitary representation the functional
(p is unique up to a scalar factor.

2.3. Standard representation of ). Denote by C C Q C GL, the center of
GL,,. For a unitary character £: C — C* introduce the standard representation of @
by the formula

(pa.e: La,e) L%y, (€-9).

The respresentation pg ¢ is irreducible. The following result proved in [BZ] is the
basis of our construction of I'-factors for GL,,.

THEOREM 2.1. Let (m,V) be a generic unitary irreducible representation of GL,,
& the central character of w. The restriction of m to Q is equivalent to pg,¢.

2.4. Two restrictions to Q. Let (m, V) be a generic unitary irreducible repre-
sentation of GL, with central character £. By Theorem 2.1 there exists a (unique up
to a factor) unitary operator ay: V — Lg ¢ establishing the equivalence 7 |g~ pg,¢.

Similarly, let 0: GL,, — GL,, be the involution defined in 2.1. Then #“ d oo is
also a generic unitary irreducible representation of GL,. Applying Theorem 2.1 again,
we get the unitary operator as: V' — Lg ¢~ establishing the equivalence 77 |g~ pg,e-,
where £7 = £ o ¢ is the central character of 7.

Since m and ¢ act in the same space V, we have the operator 3, = a3 o
a7l Lg.e — Log-. It is a unitary operator satisfying the condition

(2.1) Br 0 pQ.e(r) = pg,e-(r7) © B, reR=QNQ°.

Note that the unitary operator 3, satisfying (2.1) is defined uniquely up to a multi-
plicative factor ¢, with |c;| = 1.

2.5. An auxiliary operator. We construct the operator kg: Lo e — Lg.e-
satisfying the intertwining condition similar to (2.1). The operator ¢ will depend on
£ but not on .

Denote by wg € Q the following permutation matrix:

1 0 0 0 ... O

0o o 1 0 ... O

0 o o 1 ... 0
wg =

0o o0 o0 o0 ... 1

0 1 0 O ... O

Next, denote Ug = 'wQU_wc_21 and let 9g: Ug — C* be given by the formula

vo(u) = plwgluwg),  u e Ug.
Denote also Up = Ug N R, and g = ¢Yg|r: Ur — C*.
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In this section we will often represent elements of g € G L, by block 3 x 3-matrices
according to the decomposition n = 1+ (n — 2) + 1 of rows and columns. In such
representation, ¢ € Q, 7 € R, ug € Ug, and ug € Ug have the form

{* 00 x 00
q:"* * x|, r=|x*x x 0],

\* * % x % %

1 0 0 1 0 0
uQ=(* u x|, wugp=[|x* u 0

* 0 1 * 0 1

Here * denotes possibly nonzero positions and u' is a lower unipotent matrix of order
n — 2. The characters 1o and ¢g are given by the formulas

Q/)Q(U’) =Yr(unr +usa + -+ Up-1p-2 + U,zn),
¢R(u) = "/)F(unl +ugz + -+ U n—2)~

Introduce also the subgroup A as follows:

1 0 0
A= 0 En,—2 * 3
0 0 1

where E,_, is the identity matrix of order n — 2. Notice that A C Ug and ¢ 4(a) =
Yr(azy) for a € A.

Let us define the following representations.

(i) A representation of the group Q:

" o= df
(Pa.£:Lo) = IndZy, (€ - ¥q).
(ii) A representation of the group R:

(2:2) (pre> Lre) L Ind%y (€ - ¥r).

Next we introduce the following linear operators between the spaces of these
representations:

Ci:Lge = Log  (Cif)(a) = fwg'q),
Cs:Loe— Lre, Ca(f)=flr-

Finally, define the operator C5: Lr ¢ — Lg - as follows. Let B C Ug be the (n —2)-
dimensional commutative subgroup of matrices with the block representation of the

form
1 0 0
b= 0 En -2 0 5
0 * 1

where E,,_» is the identity matrix of order n — 2. Let f € Ly ¢ be a smooth (i.e.,
locally constant) function compactly supported on CUg \ R. Denote

fr) = /B £(br)\ab)



CONJECTURAL ALGEBRAIC FORMULAS FOR REPRESENTATIONS OF GL, 27

one can verify that the integral converges absolutely, that f € Lpeg, and that the

mapping f — fdeﬁned on smooth compactly supported functions extends to a unitary
operator C3: Lrpe — Lpgo.
Note that all operators C1,C2,C3 depend on &.

LEMMA 2.1. (i) The operator Cy establishes an equivalence of representations

PQ.E = PQ.e-
(i) The operator Cy establishes the equivalence of representations of R: pg,e |~

(pre, LR£)-
(iii) The operator C3 satisfies the condition

PRe-(17)0C3 =Cs0ppe(r), TE€R.

Proof. (i) and (iii) are clear and (ii) follows from the fact that UgR is dense in

DEFINITION 2.1. Define the operator k¢: Lg,e = Lg,e- by the formula
ke =C'oCy' 0C30C,0Ch.

The operator k¢ is unitary and one easily verifies that ke- 0 k¢ = id. By Lemma,
2.1, k¢ satisfies the condition

(2.3) ke 0 pg.e(r) = pg.er(r7) o ke r € R.

Explicit formula for k¢ is given as follows. Let ¢ = wélar, a€ A, r € R. Then
(2.49) (veH)@) = [ flugt o),
DEFINITION 2.2. Define the operator 8: Lg,e — Lg,e by the formula
187’: = NEI ° ﬁw-

By (2.1) and (2.3), the operator 8 commutes with pg ¢(r) for r € R.

2.6. The isomorphism of spaces of operators. Denote by M ~ F* x
GL,_s C R the subgroup of the matrices m of the form

A0 O
m=|0 A 0],
0 0 A

where A € F*, A € GL,—2. Denote Uyy = U_ N M, ¥pr = Yr|nm, and

(pres Lrg) & Indy,, (€ - ¥um).

For two unitary representations (p1, L1), (p2, L2) of a group G by Homg (L1, L2)
we denote the space of continuous linear operators V; — V5 commuting with the action

of G.

Our goal in this subsection is to construct an isomorphism of linear spaces
(2.5) Qg HOmR(LQ,g, LQ,g) o~ HOmM(LM,g,LM,g).

(i) By Lemma 2.1 (i), (ii), the restriction of pg ¢ to R is equivalent to the represen-
tation (pgr,e, Lr,e) with the equivalence established by the operator Co 0 Cy: Lo ¢ —
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Lgr . Therefore,
(2.6) HOmR(LQ,g, LQ,g) >~ HomR(LR,g, LR,g).

(ii) Denote by H the subgroup of the block matrices h of the form

1 0 0
(2.7) h=|a E,» 0],
c b A

where E,_ is the identity matrix, a and b are (n — 2)-dimensional vectors, ¢ € F, and
A € F*. Let Uy C H be the subgroup consisting of the matrices h € H with b =0
and A =11in (2.7), and ¢y : Ug — C* the character given by

Yu(h) = ¥r(c).

Let (pu, Lu) be the induced representation

(prr, L) € nd¥ ().

It is easy to prove that the representation pg is irreducible. Furthermore, since the
adjoint action of M on H preserves the subgroup H and the character Uy, we have
the representation I of M in Ly given by the formula (I(m)f)(h) = f(m~thm).

(iii) We have R = H x M and Ur = Uy x Ups. Also, the restriction of ¥ to
H and to U M coincides with ¢y and vy respectively. For each m € M we have
mUgm™ = Ug and ¥g(mhm™') = g (h) for all h € Ug. Therefore, regarding
Ly ® Ly e as the space of (Ug x CUp,¥w - (€ Yur))-equivariant functions on H x M,
we see that the mapping f — (f1)(h, m) = f(mh) establishes an isomorphism of linear
spaces

(2.8) LR,g :) LH®LM,5.

The group R acts on the spaces on both sides of the last formula: by pr ¢ on the left
space, and by the formula

r = hm — (pgr(h) o I(m)) ® par.e(m)

on the right space, and the isomorphism (2.8) intertwines these actions of R. Taking
into account that pg is irreducible, we obtain

(2.9) Homp(Lg,e, Lr,e) ~ Hom(Lpe, Lus,e)-
(iv) The group M acts on both sides of (2.9) by the formula
a > pr(m) cao pr(m™), a: Lre = Lre

for the left-hand side and a similar formula for right-hand side, and the isomorphism
(2.9) intertwines these actions. Taking M-invariant elements, we obtain the isomor-
phism

(210) HOmR(LR75,LR,g) ~ HOmM(LM75,LM,5).

Combining it with (2.6), we get the required isomorphism ag¢ in (2.5).
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2.7. The operator I';. Applying the isomorphism ag in (2.5) to the operator
B%: Lg,e = Lg,e we obtain an operator I'y: Lyr g = Lye commuting with ppe.
We call it the I'-operator corresponding to the generic unitary representation . Let

pme=® /@ 0 du(6)

be the direct integral decomposition of pys ¢ into irreducible components, each occur-
ing with multiplicity one. In this decomposition the operator I';; is the multiplication
by almost everywhere defined function I'(w,-) on ©.

Since M = C X GL,_3, the formula  — £~! ® § establishes a bijection between
the set © of irreducible components of pps ¢ and the set of generic unitary irreducible
representations of GL,, 2.

Denote by v(w,7) the Gamma factor of [JPS] at the point s = 1/2 (see [JPS],
(3.1)).

PROPOSITION 2.1. For any generic unitary representation 7 of the group GL,
we have T'(m,0) = 0(—=1)""y(m,EL ®0) for almost every 6 € O.

Proof. See Appendix.
3. I'-measure corresponding to the principal series.

3.1. Standard realization of the principal series. Let AFl = U, \ GL,, be
the affine flag manifold and (M,II) = Indgf" (1) the principal series representation of
GL,. On AFI, we consider the left action of the split torus Ty C GL,, given by the
formula z — ¢z. This formula makes sense because Ty normalizes U, . The action of
Ty commutes with the action of GL,, on AFl, so we can regard Il as a representation
of the direct product GL,, x Ty according to the formula

(g, 8)f(z) = f(t T 2g)Ap, (t), z€AFl, g€ GLn, teTy,
where Ap, is the modulus,

1/2

d(tut™") te T,

du

and du is the invariant volume form on U,.
Let B C GL,, x Tp be the following subgroup:

B={(bt):be By, teTy, t"'be Uy}

Ap,(t) = ‘

Then
I ~ Ind§*~ "0 (1)

(isomorphism of representations of GL,, X Tp).

3.2. Irreducible principal series representations. Let x: Tp — C be a
unitary character of Ty. Regarding x as a character of B, via the isomorphism
To ~ B, /Uy, denote

G n
(my> Vi) = Ind 2" ().

Recall that Ind denotes the unitary induction, so that the space of the representation
7y consists of By-homogeneous functions on GL, of degree (xAp, )(b) for b € B,.

The following two propositions summarize the well-known results about principal
series representations.
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PROPOSITION 3.1. (i) Fach my is a generic unitary representation of the group
GL,.

(ii) The Weyl group S, (the symmetric group of order n) acts on Ty, hence also
on the unitary dual (To)~ to To. Representations my, and my, are equivalent if and
only if x1 = (x2)* for some w € S,.

Together with the representation 7, we consider the representation 7, of the
group GL, x T defined by the formula 7, = m, ® x 1.

PROPOSITION 3.2. We have the direct integral decomposition of representations
Of GLn X To.'
D= / Ty dX,
(To)™

where dy is the Haar measure on (Tp)"

3.3. Restriction to (). Recall the definition of the representation pg ¢ of the
group @ (see 2.1). By Proposition 3.1(i) and Theorem 2.1 we have

TxlQ = pQ.¢,

where £(A) = x(diag(A, ..., A)) is the central character of m,,. Therefore, we have

(31) %XIQXTO ~ pQ.E, XX_l.

Introduce the subgroup C; ~ F* as follows: C; = {(AE,\E)} C GL, x Ty, where
E is the identity element. Clearly, C; is in the kernel of the representation II. Denote
by 1 the one-dimesional reprepsentation ¥(Au—,\E) = 9(u-) of the group C;U_,
and let

(Pa: Lo) £ ndZ P (9).
For any £ € (F*)~ let
(Ry.e, L1y ) S Ind(3 5y (€)

be the £-homogeneous part of the regular representation of Tp. Then
(3.2) pQ =@ /(F )A(pQ,g ® RTo’g—l) d€.

On the other hand, by Proposition 3.2 and formula (3.1) we have

~

H|QXT0 = ®[F | (pQ,E ® RTo’g—l) d€.

Therefore, the representations II |gx7, and pg of the group @ x Tp are equivalent.
Since these representations are reducible, there are many isomorphisms of these rep-
resentations. For our purposes we must choose a particular isomorphism

(3.3) ¢: I lox1,— Po

constructed in [K] using the Jacquet functors. Rather than going into details of
Jacquet functors, we present explicit formulas for ¢. Before doing this, we need some
preparation.
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Consider the subgroups B and @ ] Q x Ty in GL,, x Tp. Since ﬁ@ is dense in
GL, x Ty, the restriction II| 5 is equivalent to the induced representation

(M, M) $Wdl (1), BiLBnQ,

in the space M; of left B;-invariant functions on @ The operator M — M; estab-
lishing this equivalence sends a function f € M on GL, x Tp to its restriction to
@ = @ x Tp. Hence, both representations H|@ and pg act in the spaces M; and EQ
of functions on the group @ In these realizations, explicit formulas for the operator
 are described as follows.

Let Ls C ZQ be the dense subspace consisting of smooth functions with compact
support modulo CyU_ (the Schwarz space). Let also U, = Uy NQ and T528 = {(t,t) :
t € To} C Q x To, so that B; = (Uy x {1}) - T&*8 ¢ Q x Tp.

ProPoOsSITION 3.3 (see [K], Lemma 3.1.10). (i) For f € Lg the integral

(pf)g) = / Flutq, t) dudt

U1 xTo/C1

(which makes sense since f is invariant under Cy) converges absolutely.

(#) The mapping f — @(f) extends to a unitary operator ¢: Lo — M, inter-
twining pg and I|gxT,.
(iii) For any w € W(Tp) = S, we have

¢0w=-7:w°90,

where S,, acts on L by the formula

wf(g,t) = f(g,t*),

and Fy, is the Fourier-Weyl operator in the space My ~ M (for the definition of Fy,,
see [GG] or [KL])).

Proof of (i). The proof follows from the directly verified fact that the composition
Up=>Q—-U-\@Q
is a proper map.

3.4. Representing operators by measures. In this paper we will often re-
place operators between spaces of induced representations of a group G by the corre-
sponding measures. The general construction is described as follows.

Let G be a topological group, H;, H, two subgroups of G, and 6,6 unitary
characters of Hy, H, respectively. Let

(p1,V1) = Ind§ (61), (p2,Va) = Ind, (62)

be two irreducible representations and E: V; — V5 a linear operator. Define the left-
(Hy x Hq,607 19,)-equivariant complex valued measure ug on G x G by the formula

(34) fi(z1) f2(z2) e (21, 22) = (Ef1, f2) V8

/(HI\G)X(HZ\G)
where (, )y, is the inner product in V5. Since the linear combinations of the prod-
ucts fi(z1)fo(x2) are dense in the appropriate Hilbert space of left-(H, x Ha, 6105 l)-
equivariant functions on G x G, formula (1.3) determines pg uniquely.
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If E is an intertwining operator, i.e., commutes with the action of G' in V; and
V3, then the measure pf is right-invariant with respect to the diagonal action of G on
G xQ@.

In explicit computations it is often convenient to use another realization of the
measure associated to an operator. As before, assume that E: V; — V5 is an operator
between the spaces of two induced representations. Choose a section s;: X; — G of
the projection p;: G — H;\ G, i = 1,2. Restricting functions in V; to X; C G, we can
regard V; as a space of functions on X; (with appropriate inner product). Define the
measure p on X1 X X by the formula similar to (3.4):

(3.5) /X  hle)hleus(ene) = (B, f)v.

Again, formula (3.5) determines the measure p uniquely.

There is an obvious one-to-one correspondence between measures on X; x X5 and
left-(Hy x Hap, 07 102)—equivariant measures on G x G which sends ug to pf.

In what follows we will not distinguish between the measures pg and pl. It will
be clear from the context (or stated explicitly) which of these two measures is used.

3.5. Properties of measures corresponding to operators.

DEFINITION 3.1. Let X be a space with a positive measure v. A complex valued
measure p on X X X is said to be a v-operator measure (or simply an operator measure)
if

(pfi x fa) < Cllfllz, - I fallz.
for all f1, fo € La(X,v).

LEMMA 3.1. Formule (3.4) establishes a one-to-one correspondence between the
bounded operators E: Ly(X,v) = Lao(X,v) and the operator measures ugp on X x X.

Proof. Clear.

We will need the following properties of operator measures.

I. Let X' C X be a subset such that (X \ X') =0 and v’ the restriction of v to
X'. For an operator measure p on X X X denote by ' the restriction of u to X' x X'.
Then p «— p' is an one-to-one correspondence between operator measures on X x X
and X' x X'.

IL. Let (X,v) = (X1 x X2,v1 X 12). Let u; be a v;-operator measure on X; X X;,
it =1,2. Then p = 1 X pg is a v-operator measure on X.

Similarly we can define operator measures on sections of product line bundles on
X xX.

Now we turn to the construction of the I'-measure corresponding to the principal
series representation II. This construction is similar to the construction of the I'-
factors described in §2, but is performed “for all x € (Tp)” simulteneously.” At the
end of the section we show how this construction is formulated in terms of measures.

3.6. The operator 3. Extend this involution o from 2.1 to GL, x Ty by the
formula
a(g,t) = (97,¢%).

Since the subgroup B C GL, x Ty is invariant under o, we can define the operator
II(o) in the space M by the formula

(o) f(z) = (7).
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Now we set

(3.6) Bri= ' oll(c) op: Lo — Lo.

Clearly, B is a unitary operator in the space EQ satisfying the condition
3.7) Buepq(r,t) =po(r’,t%)oBfu, reR=QNQ%, teTh.

Formula (3.7) implies, in particular, that the operator [y intertwines irreducible prin-
cipal series representations m, and my- in IL

ProposiTION 3.4. In decomposition (3.2) we have
pa=o (6, @0)
(Toy™
where the operator B, is defined in 2.5 and o: L1, ¢ — Lp, g-1 is induced by the
action of o on Tj.

Proof. Clear.

3.7. The operator x. Recall the direct integral decomposition (3.2) of the
representation (pg, Lg) of the group @,

(38) zQ - @ /(LQ,g ® LTo’g—l)dg.

_ DEeFINITION 3.2. In the decomposition (3.8), let us define the operator «: EQ —
Lq by the formula

(3.9 k=@ /(Kg ®or,) dE,

where o7, : L1, g-1 = LTy ¢ is given by oF(t) = F(t7).

PROPOSITION 3.5. (i) Formula (3.9) yields a unitary operator k: EQ — EQ such
that k? =id.
(ii) The operator k satisfies the condition

(3.10) ko po(r,t) =po(r?,t%) ok reR=QNQ7, teTp.
Proof. Immediately follows from the corresponding properties of the operators
Ke.

Similarly to formula (2.4), we can give an explicit formula for the operator . Let
q= w@lar with a € A, r € R, and let t € Ty. Then

(3.11) (k1) (0,1) = Yo(a) /B F(wgtbr, t7)db].

3.8. The isomorphism a. In §2 (see 2.7), we have constructed the isomor-
phisms
ag: HomR(LQ’g,LQ,g) ~ HOmM(thyg,LM’g), £ e (F*)A

Here we repeat this construction in the framework of the “tensored with Tp” space EQ
instead of Lg ¢. We will use the notation of §2. In addition, we denote R = R x Tp,
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M =M x Ty. Then C; = {(\I, \])} C M C R and we can define

i
(P, Lag) = Ind y,, (r),
~ 7 N df R
(Pr, Lr) < Indg, y, (¥R)-
Our goal is to construct the isomorphism
o Homﬁ(zQ,fQ) ~ Homﬁ(zM,f,M).

In addition to the direct integral decomposition (3.11), we have a similar decomposi-
tion

(3.12) Mg=@ / (Mg, ® Ly, g-1) dE.
for MQ. Clearly,
Homz(Lo, L) = ® / (Homg(Lg.¢, Lo.e) ® Homr, (Lt, ¢, LTy £)) dE,
and similarly for MQ:
Homz (Lar, L) = @ / (Hompg(Larg, Las,e) ® Homp, (L1, €, Ly ) dE.
In terms of these decompositions, we define the operator a as the direct integral
o= EB/(ag ®Id) d€.

Repeating the construction of 2.6, we see that the isomorphism « is the compo-
sition of two isomorphisms,

QAQ-R- Homﬁ(ZQ,zQ) >~ Homﬁ(zR,ER)
and
ap—m: Homg(Lg, Lr) ~ Homgz(Las, Lar).

3.9. Transformation of measures. Let ug be the (C1U_ x CLU_, 7L - 9)-
equivariant measure on @ x @) corresponding to the operator S and pr be the (Ups x

U, 1,0;,,1 -1bpr)-equivariant measure on M x M corresponding to the operator a(xofr).
In this subsection we express ur in terms of pg. The measure yr is obtained from pg
in the following three steps:

(313) bg = pg a9_—.’—'>R KR GE}M LT,

where pf corresponds to the operator ko, ug corresponds to the operator ag—, g (ko
Bn), and ur corresponds to the operator ar—p(ag—r(% o fn)) = a(k o Ba). In the
next three lemmas we present the formulas for each of the steps in (3.13).

Recall the definition of the subgroup A in 2.5.

LEMMA 3.2. The measure pj 1s the unique (C1U- X CLU_, 9™t - 9)-equivariant

operator measure on @ X 65 whose restriction to the open set

(3.14) QxToxwx'ARXTo CQxToxQxTo=Q xQ
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is given by the formula
(3.15) p5(g, t;wgtar, ') = Yot (@)ps(g, t;wg'r7, 7).

Proof. Formula (3.15) for the restriction of uf to the open set (3.14) follows from
(3.11). The uniqueness of the extension follows from Property I in 3.5.

Next we construct ug from ug. Consider the auxiliary measure
(g1, 815 G2, t2) = pf(wg a1, t1;wg' g2, 12)

on Q X é This measure is (C1Ug x Ci UQ,wal - ¢g)-equivariant. Therefore, its
restriction to the open dense set AR x To x AR x Ty C Q X @ has the form

12 (qutlaq2yt2) wQ (al)wQ(GZ)dal daZI"’ (Tl)tl;T2)t2)a

for ¢; = air;, a; € A, r; € R, 1 = 1,2, where p" is a (C1Ug % ClUR,Il)R - YR)-
equivariant operator measure on R x R

K

LEMMA 3.3. The measure ur corresponding to aQ_,R(pB) coincides with the
measure ' (r1,t1;72,t2).

Proof. Clear.

Now we construct pr from pgr. We have the semidirect product decomposmons
R=Hwx M and C1Ur = Uy x C1Uys (see 2.6), hence, in particlar, R=HxM as
spaces.

Denote by the dg/y,, the (Un x Un, Yy -wH)-equivariant measure on H x H cor-
responding to the identity operator in the space Ly of (Un, ¥ x)-equivariant functions
on H. Explicitely, 6x/u, is given as follows. Let

1 0 0
Ve={v=|0 E,_» 0 C H.
0 b a

Then H = UyVy and Uy NV = {1}. Let dy,, be the diagonal measure on Vi x Vy,
i.e.,

/ fvr,v2)dvy = f(v,v)|dv].
Va xVu Va

Then
OH /Uy (U101, ugv2) d Vi (ul u2)dv, (vi,v2).

LEMMA 3.4. The measure ug is of the form #R = 6UH X u " for a unique (Upr X

UM,wM Y )-equivariant operator measure ' on M x M and the measure pr
corresponding to the operator a(k o fr1) coincides with p'"'.

Proof. The first statement holds for every operator measure y corresponding to
an operator ® € Hompg(Lg,Lg). The second statement follows from the explicit
constriction of the isomorphism ar—, s (see 2.6).

Finally, we combine Lemmas 3.2-3.4 and give an expression for ur. Consider he
map

Sg:f(AXHXM)XToX(AXHXM)XTO%QXQ
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given by the formula
(a1,u1,my;ts; a2, ug, my; t2)
= (wélalhlml,tl;wélazhgmg,tg) € Q X TO X Q X TO = Q X é

This map is an embedding of S into an open dense subset Sc @ X @ Lemmas 3.2-3.4
immediately show that the restriction u' = pg|z of the operator measure pg to S ~ S
is given by the formula

W (a1, u1, masty; a, ug, Mas ta) = Sy, (hy ha)tg ' (a1) Y (ag)i(ma, tr; ma, t2)

for some (Upr x Uy, w;,,l - ¥pr)-equivariant operator measure & on MxM , and that
the measure ppr corresponding to the operator a(k o ), equals f.

4. The measure pg3.

4.1. The measure ug. In this section we compute explicitely the measure pg
corrsponding to the operator [ : LQ — LQ defined by formula (3 6). Hence, pg is a

(CLU- x CLU_, % - p~1)-equivariant complex valued measure on Q x Q given by the
formula

(41) (Mﬁ7f1 X E) = (ﬂnflaf2)zq

for fl,fz S EQ.
Since ¢ and II(o) in the definition (3.6) of B are unitary operators, and II(o) is

an involution, we have

(42) (IBHfly.jQ)LQ ( fl: (U)(pr)Mly fl:fZGZQ

Let B- C @ C GLy, be the subgroup of lower triangular matrices. Denote by the same
letter the corresponding subgroup B_ x {1} in @ C GL, X To. We have B_NDB; = {1}
and B_B; is dense in ). Therefore, the inner product in M; can be written in the
form

(4.3) (1, Fa)ur, = /B Fy(b-)Fo(62) |db_|,

where db_ is a fixed left invariant volume form on B_ and the integral converges
absolutely.

Denote Z = Uy x Tp/C x Uy x Ty/C x B_. Recall that by Lg C Lg we denoted
the space of smooth (CiU_)-equivariant fiunctions on @ that are compact modulo
C,U_. Taking into account the formulas for the operator ¢ (Proposition 3.3(i, ii)) we
formally obtain from (4.1) and (4.2) that

(4.4) (,Ll:ﬁ, f] X E) = / f1 (ultlb_, tl)fz(u2t2bi, tg) ]du1 dty dus dto db_l,
A

where f1, fo € Ls are considered as functions on @ = @ x Tp invariant under Cj.

Since the integral (4.4) does not converge absolutely, we must specify the order
of integration. Fix fi1, fo € Ls and denote the intgrand in (4.4) by F' = Fy, z,(u1,t1;
ug,t9;b_). Then Proposition 3.3(i)—(ii) show that for a fixed b_ € B_ there exists a
compact set K (b_) = Ky, 1,(b_) C Uy xTp/C xU; xTy/C (depending on the supports
of f1 and f5) such that F(ui,t1;us,te;b_) vanishes for (u1,t1;us,t2) ¢ K (b-).



CONJECTURAL ALGEBRAIC FORMULAS FOR REPRESENTATIONS OF GL, 37
PROPOSITION 4.1. For fi, fo € Ls we have
(45) (,U,ﬂ,fl X:)?g—) = / db_/ ( )Ffl,fz(’u,l,tl;u%tz;b_)ld’u,l dty dus dt2 db_|
_ K(b_

and the integral over B_ converges absolutely.

Proof. Formula (4.5) follows from Proposition 3.3 (i)—(ii). The absolute conver-
gence of the integral over B_ is the absolute convergence of the integral in (4.3).

4.2. Reduction of the measure pug. In this subsection we use the construction
described in §1 (Proposition 1.1) to show that the measure pug is supported on a of
codimension one submanifold ¥; C' Y and compute the restriction of ug to Y7.

In the group B_, introduce the following subsets:

1 0 0
B'={r(a)=|0 E 0]|,a€F,,
a 0 1
B" ={b_ € B_| (b-)n1 =0}.

Then B_ = B'B" with the unique decomposition and for b = r(a)b" we have db_ =
da db” for a unique volume form db” on B". With this decomposition of B_ we will
regard Z = Uy xTp/C x Uy x Tp/C x B_ as the total space of the trivial line bundle
over Zo = Uy x Tp/C x Uy x Tp/C x B" with a fixed trivialization. We identify each
fiber with B’ ~ F', so that Z = Z, x B'.

Fix f1, fo € Ls and recall that by F(z) = F}, j,(2) we denoted the integrand in
(4.4) and in (4.5), so that the right-hand side of (4.5) is

(4.6) / ﬁ_/ Fpopa(un, t13u, 125 0 |w(2),
- Ky, 55(b-)

where w = du; dt; dus dts db— is a volume form on Z. Using the intertwining property
(3.7) of the operator 8y with r =r, € B', we easily see that for z = (29,7,) € Zg x B’
we have

F(2) = ¥r(v(20)a)Fo(20),

where Fp is the restriction of F' to Zy = Zy x {0} C Z and the function v (a section
of the trivial bundle) is given by the formula

Y(20) = (u1)2n(t2)n(t) T + (=1 (u2)2n(t2)n(t2)7 "

for zg = (ul,tl;u2,t2;b") € Zy.
Denote by N = N, C Z, the set of zeros of 7.

LEMMA 4.1. N is a smooth subvariety of Zy, the section ~y is generic at all points
of N, and the form w in (4.6) is fiberwise constant.

Proof. Direct verification.

Denote by wy = 1(y)w the induced form on N (see (1.4)), and by F} the restriction
of F to N. We want to prove that

(47) [ Pl = [ Al

However, we cannot apply Proposition 1.1 directly since Zy and N are not compact
and the integral on the left-hand side of (4.7) is a iterated integral as explained in 4.1.



38 S. GELFAND AND D. KAZHDAN

Nevertheless, formula (4.7) holds id the integral on the right-hand side in interpreted
as an iterated integral similarly to the integral on the left, but “intersected with N”.
Namely, for b" € B"” denote

M®") = {(u1,t1;u2,t2) such that (u1,t1;uz,ts;b") € N}

and let wy = wy /db"” be the corresponding volume form on M ("). Denote the integral
(4.6) by I.

PROPOSITION 4.2. We have
(4.8) I= / |dbu|/ Fi(u1, t1;us, 250" ) jwer |
JBII M(b”)

and both the inner and the outer integral on the right-hand side converge absolutely.

Proof. Recall that for a fixed b_ € B_ the inner integral in (4.6) is taken over the
compact set K(b_) C Uy x To/C x Uy x Tp/C. 1t is easy to see that if b_ = r,b", then
the set K(b_) can be taken not depending on a. Therefore, we denote it by K (b").

Now we take an arbitrary sequence of open compact sets B, C B such that

(4.9) BiC---CB,C- -, UBTL:BH'
Let also O,, C B' = F be given by
Om = {rd|lal < p™}.

Denote by ®(b_) the inner integral in (4.6) and let

Lon =/ B(b-) |db_|.
Om XB,

Since the integral over B_ in (4.6) converges absolutely, we have

I= lim Inn= lim ( lim Ip,).
m,n—ro0 n—o0 m—oo

Denote
K,= |J K1) CUi xTo/C x Uy x Ty/C.
blleBn

This is a compact set and

Ipn = / da db”/ F(z0,70) |duy dt1 dus dts|
Om XBn K,

.
= / da/ F(z20,74)|wol.
Om K, xB,

Since K,, x B, is a compact set, we can apply Proposition 1.1 and obtain

lim Imn=/ Fi(2)|w].
m—00 (KnxBp)NN

Since {B,} is an arbitrary sequence of open sets satisfying (4.9), Proposition 4.2 is
proved.

COROLLARY. The restriction ,ugl) of the measure pg to Y; is given by formula
(4.8).
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4.3. Another presentation of the measure ,u( ). To construct an algebraic

presentation we need to transform formula (4.8) for the measure ,u(l)

Let us choose an arbitrary semialgebraic section X — Q of the projection Q —
CiU_\ Q, so that each § € Q we have a unique decomposition

g=u_-(Qz(@), u(QeU-, z(q) eX.

According to the remark at the end of 3.4, we can define the measure pg as a measure
ontheset Y = X x X.
Denote by ¥; C Y the subvariety of those y = (g1, t2; g2, t2) for which

(4.10) ’Y(y) (Q1)11 (q1)2n + (=1)""(g2)11 (g2)2n = 0.

Then the measure pg is supported on Y; (see 4.2) and pg) is the restriction of pg to

Y, ie,
/F#ﬂ=/ Fly ug)
Y Y1

for smooth compactly supported functions F on Y.
First of all, formula (4.4) immediately shows that the measure ug is supported
on the subset Yy C Y consisting of the quadruples (¢1, t1;gs, t2) such that

(411) det q1 det q2 = det tl det tg .

U- .
For two elements g1, g2 € GL,, we write g1 ~ g2 if g; and g» belong to the same
double coset modulo U_, i.e.,

g1 = U-192U-2, u_1,u_2 €U_.
For y = (q1,t2;92,t2) € Y denote
(4.12) b(y) = q1gs € GLn,  tly) =tit; € Tp.
Note that b(y)1, = 0 for y € Y and, by (4.11), for y € Y, we have
det b(y) = det t(y).

Now we define Z' as a subset of the direct product Yy x U4 consisting of the pairs
(y,u) such that

(4.13) b(y) < t),
ie.,
(4.14) u_1b(y)ul, = t(y)u, u_1,u—g € U_.

For (uiy,t1;us,t2;0-) € Z=U; x To/C x U- x Tp/C x B_ we define 6(z) € Y x Uy
as follows:

0(z) = (q1,t15 g2, t25u) € X x X x Uy,
where
(@1,51) = z(tiurb_, 1),
(g2, 82) = z(tauad”, ta),
(4.15) u = t(y) " urt(y)ug
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Clearly, u € Us..
PROPOSITION 4.3. We have 8(z) € Z'.
Proof. Define (c;u—1,c1), (cau—2,c2) € CrU_ by the formulas

(cru—1,c1) = u_(trwab_, t1), (cau—2,c2) = u_(taugb?, t2),

so that in @ = @ x Ty we have

(4.16) (trurb_,t1) = (cru—1,¢1)(q1, 1),
(417) (thgbi,tz) = (CQU_Q,CQ)(.’Uz,SQ).

Applying the antiinvolution T to (4.17), multiplying by (4.16), and using formulas
(4.11) and (4.15), we get

tity = ct(y)

4.18
(4.18) ftT 0 = cu_yb(y)uTy,

where ¢ = ¢jco. Therefore, so that b(y) % t(y)u. Since u € Uy, we have ¢(z) € Z'.
Proposition 4.3 is proved.

Denote by p': Z' — Y, the projection and let Z] C Z' be the preimage of Y1, so
that Z] consists of those z = (g1, t1; g2, t2; u) for which

7(p(z") = 0.

Now we define open dense subset Yo C Yy, Zo C Z;, and Z, C Z] by the
conditions:

(4.19)
Y, = {y € Y1 such that (b(y))1n-1 = (b(¥))2n # 0}
Zy = {(u1,t1;u2,t2;b_) € Z1 such that (u1)2n # 0, (u1)2n # 0};
Zy = {(y,u) € Z] such that y € Y.}

Clearly, 8 maps Zs to Zj.
PROPOSITION 4.4. 0: Zy — Zy is a bijection.

Proof. We construct the inverse map §': Zj — Z,. In this construction we assume
that B_ < GL, x Ty is a genuine section of the projection GL, x Ty — B; \GL, x T
(for the notation, see 3.1). To make all the arguments_ precise we must replace B_
by a semialgebraic section B_ C GL, x Ty such that B_ is invariant under the left
multiplication by elements of B’.

Let z = (q1,t1; 92, t2;u) € Z3, i.e., conditions (4.11), (4.13) and (4.19) hold. For
each pair (u—1,u—_s) satisfying (4.14) we define u; € U; and b— € B_ from the
(unique) decomposition

urtib- =u_1qq

(with t;,u4_1,¢1 known). From condition (4.19) one easily gets that the family of
pairs (u_1,u_ o) satisfying (4.14) is one-dimensional and there exists exactly one pair
for which the corresponding b_ is in B"”. Below by (u_1,u—2) we will mean this
particular pair.
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Now we set
(4.20) ug = (u) T (t(y) "t uat(y))
From the definition (4.15) of u we get
Ustab® = u_sxs.
In particular, us € Q and uy € U’ C Uy, so that us € Q NU4 = U;. Therefore,
6’ (2" g, = (u1,t1;us,t0,b_) € Z

and p(z) =y. Hence, z € Z,. It is also clear that go 6’ =idz;.

For y € Y we denote by U, C U the fiber of the projection p': Z; — Y5. This
is a dense open subset in a closed codimension n subvariety U, in Uy given by the n
equations

(4.21) W)y =--.=2eWw)=0, welU,.
The first two of these equations are
uin =0, Ul n—1 = U2n-

Introduce the volume form wy, = Res“X (7 is defined by (4.10)) and let wy, be the
restriction of wy, to Y2. Introduce also a volume form wy, on each fiber U, by the

formula,
Nicj duig

wy, = Res ——=————.
ng) ,,,q,sly)

The forms wy, and wy,, y € Y2, determine a volume form w’ on Z,.
Finally, introduce an algebraic function f’ on Z} by the formula

f'y,u) = ¥(u_1u-»),

where u_1, u_ o are taken from (4.14). Note that although u_; and u_» in (4.14) are
not unique, the condition J(y) = 0 implies that f' is well defined on Zj.

CONJECTURE. Denote by ,ug) the restriction of ug) to the open dense subset
Y, C Y,. Then the data

n= (Z’2’Y21p1;wlap,)
s an algebraic presentation of ug) .

Remarks. 1. If the conjecture is true, than it is easy to prove that the measure
realized by the data p coincides with uff).

2. In all examples intersection of the level sets of f' in Z) with the fibers of p’
are open subsets of Calabi—Yau manifolds and the form ' extends to a regular form

on the completion.

For n = 3 the above conjecture is obviously true because each fiber U, consists
of just one point. In the next section we prove this conjecture for n = 4.

5. Explicit formulas for GL,.
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5.1. The measure pg‘)). Now we consider the case n = 4. We write a matrix

u € U in the form

1 a1 ay as

_ 0 1 asg Qs
““lo 0 1 a
0 0 o0 1

so that wy(u) = /\?=1 da;.
Fix y = (q1,t1;42,t2) € Y2. Let the Bruhat decomposition of b(u) € GL4 be

b(y) = ul;Au’ 5 with v’ ;,u! 5, € U_,

o

o
OO O
O O O

125} 0

Let t(y) € To be the diagonal matrix ¢(y) = diag(ri, 72,73, 74).
The condition (4.13) is equivalent to the following equalities:

_ . — —_1\2
as = 0, T1Q2 = T2G05 = /\, 7'1727'3(a1a4a6 — Q106 — a2a5) = v,

so that the fiber U, C U, over y is the affine plane, and we can take s; = 1 a; and
s9 = T3ae as coordinates on this plane.
The function f'(z') on Zj is given by the formula

(5.1) F(&) = U(u-ru—z")(R(s1,52; A, 1)),

where R(s1,s2;A,t) is a rational function in s;,s; depending on parameters A, t.
Explicitly,

R(s1,82,A,t) = X" [s1 + 52 + A(m1 + 12)s7t + A(73 + 74)s5

— -1 -1 - 1 -
+ vl mmsisy ! + v trimesasT! 4+ Nuisylss .

Finally, the form wy, on the fiber U, C U, is given by

da1 da4 dae _ dSl d$2
“U = d(rirems(ar0aas — arag — azas) '
(7'17'27'3 410406 — Q106 — G205 S$182

PROPOSITION 5.1. The data p = (Z4,Y2,p',w',f') give an algebraic presenta-

tion of the measure ,ugz) .

Proof. We must prove that conditions (i)—(iv) of Definition 0.1 are satisfied.

Instead of proving (i)—(iii) we prove a stronger result that similar properties hold
at each fiber Uy of p': Zj — Y>. Take a point y € Y5.

The factor ¥(u_1u-»") in formula (5.1) is constant on the fiber Uy, so we can
ignore it.

For almost each & € F the level set R+ £ of the function R inside the affine plane
A% with coordinates s1, s is (the affine part of) a smooth elliptic curve E¢ given by
the equation F¢(s1, s2; A, t,&) = 0, where

df -
F5(81,82;A,t, f) = 8182(1%(81,82; A,t) + f) = S%Sz + 815% + v 1T3T46%

+ €512 + V1_17'17'25§ + /\(7'3 + 7'4)81 + /\(T1 + 7'2)82 + )\2111.



CONJECTURAL ALGEBRAIC FORMULAS FOR REPRESENTATIONS OF GL,, 43

The form wg on the level set E is given by the formula

we = Res _._d%
¢ FE(SI,SZ;AataE).

It is easy to see that we is a (unique up to a scalar factor) regular differential on E¢.
Therefore, for almost all £ € F' the integral

1(6) & /E Jwl

converges.

Next we must prove that I(£) is a locally L!-function of £. The singularities of
I(§) occur at the point where E¢ becomes a singular curve. It is easy to see from
explicit expression for w; that for each such point £ the form wg is nonsingular at each
generic point of the (possibly reducible) curve Eg. By a general theorem (see [S]), this
implies that

I(¢) = O(|log (¢ — O)I)

for some k as £ = € and I(¢) is an L*-function near £.

Finally, as |£] — oo, the curve E; degenerate into the curve Eo, given by the
equation s1s2 = 0, and the form ws on Eo is regular at both generic points of Eq.
The same general result easily implies that as |£] — oo, the function I(£)) depends
only on |£|. This implies that the sequence of integrals

/ 1(e) ldé).
lg|<pm™

stabilizes.
So, we proved that “fiberwise versions” of properties (i)—(iii) of Definition 0.1
hold. In particular, this implies that if fi, fo € Lg, then the integral

(52) [ el @@ (h x B )

converges in the sense of Definition 0.1. Using the convergence of the integrals in
formula (4.8) one can see that the integral (5.2) equals (ug), f1 x fa). Proposition 5.1
is proved.

5.2. Sj-invariance. In this section we construct an action of the group S4 on
the data p = (25, Yo, p',w',f').

Recall that the action of Sy on Y (and the induced action on Y3) is given by
w(zy,ta; T2, t2) = (z1,tY; 22, t’z"’). We must construct the action of Sy on Zj compat-
ible with the action of Sy on Y2 and preserving the function f' and the form w'.

Let X;(m1,72,73,74), t = 1,2, 3,4, be the i-th elementary symmetric function. For
the proof, it suffice to rewrite the formulas the curve E¢ and for the form wg, in terms
of Ss-invariant combinations ¥; of 7;.

We pass from the coordinates s;,s2 on the plane to homogeneous coordinates
S1,S2,Ss such that s; = S1/Ss, s2 = (S — S1)/S3. In these coordinates we have

S3F¢ = Py(Ss,S3)SE + P2(S2, S3)S1 + P3(S2, S3),
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where

Py(S2,83) = =S + (vi ' + vy 137y — £)S3,

Py(S2,83) = 82 + (=€ + 207 ' 11 72) 8283 4+ SEN(—1y — T2 + T3 + T4),

P5(S2,83) = 1182 (v7 11182 + AS3) (v 17282 + AS3).
Direct computations show that the discriminant A = PZ — 4P, P; is a symmetric
polynomial in 7y, 79,73, 74. Expressed in terms of elementary symmetric functions X;,
it is

A =S5 +2¢5585 + (€2 + 281 + 4p%4) 5252
+ (2621 + 4p7! — 4p%3) S, 53 + (26p% 4 X2 — 4%,)S3,

where p = \2v;.
Taking instead of S; the variable S given by

(5.3) S = 2P1(S3,53)S1 — P2(S2, S3),
we obtain that the equation of E is
5% — A(S2,S3) = 0.

Hence, E; is invariant under the action of Sy.

Using the change of variables (5.3) one gets, in an obvious way, the action of Sy
on Zj.

PROPOSITION 5.2. The described action of Sy on Zj determines the action of Sy
on the data p = (Z4, Yo, p',0', f').

Proof. By construction, the action of Sy commutes with p’ and f’. The invariance

of the form w¢ on E¢ under the action of Sy is easy, and it implies the invariance of

w'.

Using Proposition 5.2, one can easily write does the twisted data po that conjec-
turally deteremine the measure u, defined by the I'-function for GL4 (see Conjectures
1 and 2 in the introduction).

Appendix. Comparison with the JPS gamma factor.
by J. Cogdell

In this appendix the proof of Proposition 2.1 is given.

PROPOSITION A.1. Let 7= E71 ® 0 be a generic irreducible unitary representa-
tion of GLy_2. Then

D(m,8) = wr(=1)""1y(m x 7,1/2,9),

where ws is the central character of T, T is the contragredient of T (which, since T is
unitary, is 7), and 7y is the gamma factor of [JPS].

In this appendix we use a slightly different set up from the one in the main body
of the paper (see [JPS]). In particular, we will use the following notation.
1

e w, is the n X n permutation matrix w, = with 1’s along the

skew diagonal.
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¢ For the outer involution of GL,, in this appendix we take the involution given
by 9% = wptg ™ wn.

e () is the stabilizer of the point (0:---:0:1) € P™ and so consists of matrices
whose last row is (0,...,0,%*).

e R = QN Q" is then the standard parabolic subgroup associated to the partition
n =1+ (n —2)+ 1 containing the upper triangular unipotent subgroup U.

e 1) = 1, is the standard non-degenerate character of U.

0 1 0
Let wqQ = I, 0 0]. Then
0 01
1 0 ¢
UQ=1UQUIU51= a u a
0 0 1

with 1,/)Q(u) = '(/10(u1,n +u23+ -+ Up—2n-1+ Un—l,l)

1 0 ¢
Ur=UgNR= 0 v a
0 0 1

with Yp = ¥g|r. Here, the matrices are in block form associated to the partition
(1,n —2,1) of n.

The induced representations are all as in the main text, with the replacement of
U_ by the upper unipotent subgeoup U.

We want to analyze a particular element of Hompg(pr.e, pr,e) beginning with a
irreducible unitary generic representation (,V;) of GL, with central character £.

Step 1: To get our first realization of pr ¢ we do the following. We first pass
from V,; to its Whittaker model W(m, 1) and then restrict these functions to Q:

v € Vo = Wy(q)
where W, is the Whittaker function associated to v and q € Q. The space

{Wo(q) | Wy € W(m,9),q € Q}

gives a realization of pg,¢.
To get a realization of pr ¢ we apply your maps C; and then Co:

Wy (q) = Wy (wg'q) = W, (wg'r)
with now r € R. So our first realization of pg ¢ is on the space

{Wv(wélr) | Wy € W(m,¢),r € R}
with R acting by right translation.

Step 2: The element of Homg(pr,¢, pr,e) that we want to analyze is, using the
notation in Section 2,

C30C20C; 0B, 0C 0 CL.

If we begin with W, (walr), then applying C;* o C5' brings us back to W, (g). The
map B, in these models is the map

Br : Wo(q) = Wo(qwn) = Wr(wn)(9),
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where, as in [JPS], we have set W(g) = W (wntg~!). Applying C; and then Cj to this
gives

Wﬂ'(wn)v(Q) = Ww(wn)v(wc_QIQ) = Wﬁ(wn)v(walr)'

Now, applying the map Cj5 gives

W,r(,wn)v(wélr) > /]BWW(wn)v(wélbr”) db,

where we now have

1 b 0
B={b=|0 I.s 0]peF?
0 0 1

So, our element of Hom(pg ¢, pr,¢e) is

W, (wg'r) = /B W (unyo (g br®) db.

Step 3: We now pass from Hom(pge, pr,e) to Hom(par,e, pre) using pre ~
pH® pum,e. This isomorphism is effected by restricting the functions in pgp ¢ to M. To
pass from pg ¢ t0 pm,e we must then twist these restrictions by the action of M on
pH- Let us write M = C,, x GL,,_5 and correspondingly m = cm’ with m’ € GL,,_»
embedded as the center block in GL,,. Then the unitary action of m on pg, if we
realize this as functions on an appropriate space X, is ¢(z) + |det(m/)|}/2p(zm/).
This gives, in essence, pare = |det(m)|"/2pr ¢|nr-

So, our element of Hom(pas,e, pum,e), in our models, takes the form

E(o)| det(m)| 72 W, (wg'm') I—>rf(C)Idet(m')I“lﬂ/ We(un)o(wg b(m')7) db.
B

Step 4: This morphism should act as a scalar I'(r, 8) on each irreducible com-
ponent 6 of ppre. Each such component is of the form § = £ ® 7 with 7 an’
irreducible unitary generic representation of GL,_;. To compute this scalar we
want to project into the £ ® 7 component by pairing pare with the contragredi-
ent (E®7)~ =E1®7T=E®7. In this pairing, the central characters cancel. So
we can effect the pairing by taking 7 in its ¢y~*-Whittaker model and integrating over
Un—2\ GL,_3. (We do not worry about convergence of the integrals.)

Let Wx(g) € W(7,%!). Before applying the morphism we have

I = (| det(m")| /2 W, (wg'm'), Wx(m')

1
= / W, wal m' Wi(m')| det(m')|~*/? dm’
Un-2\GLn-2 1

i
:/ W, w=1)o (m I ) Wx(m')| det(m')[}/2~1 dm!
Un-2\GLn—2 @ 2

= V(W gty Wi 1/2),

(w

where \I,(Wﬂ_(,wal)v, Ws,1/2) is as in [JPS].
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After applying the morphism, we should get
F=(det(m)| 2 [ Wyl bm')") db, W (m')
B

which, if the morphism is to act by the scalar I'(w, 8) on this piece, should give

I'=T(r,0)(| det(m")| "W, (wg'm'), Wz(m'))
L(m, )T (W, gty Wi, 1/2).

™

Step 5: The final step is to identify T with the right-hand side of the GL,, X GL,,—2
functional equation. If we write the integral I out it is

I= / / Wﬂ(wn)v(wélb(m')”)db W=(m')| det(m')|~*/2dm’
Un—2\GL,,_2 /B

1 g
= //WU <w51Q< m' ) wn> dbWx(m")| det(m')| =/ 2dm.
1

We next have a few elementary calculations:

Wv(g) = Wn(wal)v (gwq)

Wn—2 -1 — Ins —
(e~ (77 ) =

If we now use these calculations in our expression for I, and set v’ = 7r(w51)'u,
we obtain :

//W( (“’" —~(m)! 12>wn,n_2> dbW(m")| det(m')| =/ 2dm’.

Now we change of variables m' — w,_*(m’)~! and note that Wi(w,_st(m’)™!) =
Wiz(m'). Then our expression can be written

!

f: //(p(wn,n_z)wvl) (g?nl 1 1) de?(m')ldet(m')P/?dm’_
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Making the change of variables b — b(m')~! we finally obtain

!

m
I= [ [Gtwnna®o) | b 1| doiotm) detm)
1

ml

= [ [ty [ b 1| et detom') 4 e
1

= U(p(wpn2)We, Ws, 1 —1/2;1).

Thus we arrive at

T(m,0) O (W, Wi, 1/2) = U (p(wp n_2) Wy, Wa, 1 — 1/2;1).
By the local functional equation of [JPS] we have

wr(=1)"y(m x 7,1/2,9) (W, Wr,1/2) = ¥(p(wn,n—2) W, Wz, 1 — 1/2;1).
Hence we have
[(m,60) = wz(=1)""'y(r x 7,1/2,9)
as claimed.
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