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SPECTRAL CURVES AND WHITHAM EQUATIONS IN 
ISOMONODROMIC PROBLEMS OF SCHLESINGER TYPE* 

KANEHISA TAKASAKlt 

Abstract. It has been known since the beginning of this century that isomonodromic problems 
— typically the Painleve transcendents — in a suitable asymptotic region look like a kind of "mod- 
ulation" of isospectral problem. This connection between isomonodromic and isospectral problems 
is reconsidered here in the light of recent studies related to the Seiberg-Witten solutions of N = 2 
supersymmetric gauge theories. A general machinary is illustrated in a typical isomonodromic prob- 
lem, namely the Schlesinger equation, which is reformulated to include a small parameter e. In the 
small-e limit, solutions of this isomonodromic problem are expected to behave as a slowly modulated 
finite-gap solution of an isospectral problem. The modulation is caused by slow deformations of the 
spectral curve of the finite-gap solution. A modulation equation of this slow dynamics is derived by 
a heuristic method. An inverse period map of Seiberg-Witten type turns out to give general solu- 
tions of this modulation equation. This construction of general solution also reveals the existence of 
deformations of Seiberg-Witten type on the same moduli space of spectral curves. A prepotential is 
also constructed in the same way as the prepotential of the Seiberg-Witten theory. 

1. Introduction. The notion of "isomonodromic deformations" was first dis- 
covered by R. Fuchs [1] in 1907 as a new interpretation of the 6th Painleve equation 
(PVI)J and developed in diverse directions in the next decade. R. Fuchs considered a 
second order scalar ODE 

of Fuchsian type with four regular singularities, one of which is an apparent singularity. 
Gamier [2] generalized the work of R. Fuchs in two different forms. One generalization 
is to consider more than four regular singularities. This leasd to a multi-variable 
generalization of Pvi- The other is to include irregular singularities. The other five 
Painleve equations (Pi - Py) can be derived from this generalization. Schlesinger [3] 
obtained the so called Schlesinger equation from isomonodromic deformations of first 
order matrix ODE 

where M(A) is an r x r matrix of the form 

N 

M(A) = £ 
i=l 

Garnier noticed later [4] that the 2x2 Schlesinger equation is equivalent to his isomon- 
odromic deformations of 2nd order scalar Fuchsian equation. 

It is also in this decade that a link with "isospectral deformations" was uncov- 
ered. This is again due to Garnier [5]. He proposed an autonomous analogue of the 
Schlesinger equations, and pointed out that it can be integrated by Abelian functions. 
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Remarkably, Garnier substantially arrived at the notion of isospectral deformations 
therein. Let us briefly review Garnier's discovery. Schlesinger's equation can be writ- 
ten 

This is a non-autonomous system, because the right hand side contains the indepen- 
dent variables t — {^} explicitly. Garnier's proposal was to replace these Vs by 
constants, ti —>> Q. The outcome is an autonomous system of the form 

^i = (1_^.)M-M_,iii:M-M. 
otj a    CJ k^ a    ck 

As Garnier noticed, this gives isospectral deformations of M(A), namely, the char- 

acteristic polynomial det[M(A) — fil) is invariant under the t flows. The algebraic 

curve defined by the characteristic equation 

det(Af(A)-/il) =0 

in the (A, /J) plane (and its appropriate compactification) is nowadays called the "spec- 
tral curve." What Garnier did is to solve the above autonomous system in terms of 
Abelian functions on this algebraic curve. 

Isospectral problems of the same type were studied by Moser [6] in the 70's. Moser 
proposed a matrix nonlinear system as a unified framework for a number of classically 
well known completely integrable dynamicals systems, such as the Neumann and 
Rosochatius systems, geodesic flows on an ellipsoid, etc. Moser's idea and Mumford's 
related work [7] were reformulated by the Montreal group (Adams, Harnad, Hurtubise 
and Previato) [8, 9, 10] and Beauville [11] to the isospectral problem of a rational 
matrix of the form M(A) (or U+M(\), where U is a constant matrix). Harnad and his 
collaborators later applied their method to isomonodromic problems [12, 13, 14, 15]. 

Garnier's proposal, however, originally aimed at a quite different issue. He consid- 
ered the autonomous system as a tool for studying asymptotic behavior of solutions 
of the Schlesinger equation in a neighborhood of singularities. A similar problem 
concerning the Painleve equations had been pursued by Boutroux [16]. Boutroux ob- 
tained an asymptotic expression of Painleve transcendents as a "modulated" elliptic 
function. Here "modulation" means that parameters of the elliptic function also de- 
pend (but "slowly") on the independent variable. In Garnier's program, Boutroux's 
elliptic curve is replaced by a more general algebraic curve. Flaschka and Newell 
[17, 18] revisited Garnier's program in their study of isomonodromic and isospectral 
problems, and noted an important remark: They pointed out that a JWKB approxi- 
mation converts the monodromy problem into a spectral problem. 

We reconsider this issue in the light of researches in the last ten years. Since the 
end of the 80's, low dimensional string and topological field theories have provided 
new subjects of isomonodromic problems. A central subject is the so called "string 
quations" of two-dimensional quantum gravity [19]. They are the first (or second) 
Painleve equation and its higher dimensional generalizations. These string equations 
have been studied from several different points of view. Among them, we are par- 
ticularly interested in the approach [20, 21, 22, 23] from the "Whitham averaging 
method" [24] (also referred to as the "nonlinear JWKB method" [25]). This method 
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may be viewed as a modernized version of Boutroux's analysis. We now consider the 
Schlesinger equation in the same philosophy. 

The Whitham averaging method, or the nonlinear JWKB method, covers a wide 
area of modulational phenomena in nonlinear waves. The most relevant for our prob- 
lem is the case of modulation of Abelian function solutions (which are usually called 
"finite-gap" or "quasi-periodic" solutions [26, 27, 28]) to a soliton equation. An "un- 
modulated" finite-band solution generally takes the form 

^0 ^Uo^^Uiti | {/n}j, 

where UQ is an Abelian function, U^s are ^-dimensional constant vectors (g is the 
genus of the spectral curve), and /n's are other parameters of the solution. The 
parameters C/i's and I^s are eventually determined by the spectral curve (as period 
integrals of meromorphic differentials). If the problem in question contains a small 
parameter e, one may consider a solution with the following asymptotic form 

■uo(X)^(r)ti|{/n}) 

as e -» oo. The parameter Ui and In now depend on the "slow variables" 

T - {Ti},    Ti = eU. 

This is the "modulation" of a finite-gap solution. The Whitham averaging method is 
a method to determine this slow dynamics in Ti in the form of differential equations. 
This kind of differential equations are generally called "modulation equations" (or 
"Whitham equations"). In the case of finite-gap solutions, the modulation equation 
can be formulated as a dynamical system on the moduli space of spectral curves. 

These modulation equations of finite-gap solutions are known to possess a number 
of remarkable properties [29]. It is Flaschka, Forest and McLaughlin [30] who first 
pointed out that this type of modulation equations have a universal structure. They 
demonstrated, in the case of the KdV equation, that the modulation equation boils 
down to the universal form 

—— dilj — T^rdCli, 
OTi     J     dTj      ' 

where dQ^s are meromorphic differentials on the spectral curve. Krichever [31, 32] 
and Dubrovin [33, 34] presented an abstract reformulation of this type of equations 
("Whitham hierarchies"), and constructed many special solutions (with applications 
to geometry and physics). 

Our concern lies in special solutions of the universal Whitham hierarchy that 
represent slow dynamics of a spectral curve in isomonodromic problems. Remarkably, 
it seems likely that this class of solutions of the universal Whitham hierarchy are 
always characterized by a differential equation of the form 

o 

—— dS — dtii,    dS = fidX. 
Ol i 

This is indeed the case for the string equations [20, 21, 22, 23]. In this paper, we shall 
derive a modulation equation of this form from the Schlesinger equation. 
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We use a very heuristic method to derive the modulation equation. This heuristic 
method was developed in an attempt [35] at an isomonodromic interpretation of inte- 
grable structures in supersymmetric gauge theories [36]-[47]. The modulation equa- 
tion turns out to possess almost the same properties as the so called "Seiberg-Witten 
solutions" of TV = 2 supersymmetric gauge theories. In particular, we introduce a 
period map of the Seiberg-Witten type, and prove that the inverse period map solves 
the modulation equation. This also reveals the existence of another set of commuting 
flows on the moduli space of spectral curves. We also show that the notion of prepo- 
tential can be generalized to this case. These results will be strong evidence for the 
validity of the heuristic derivation. 

This paper is organized as follows. Sections 2 and 3 are of preliminary nature. 
In Section 2, we review basic properties of the Schlesinger equation. In Section 3, we 
consider the geometric structure of spectral curves along the lines of approach by the 
Montreal group and Beauville. Section 4, 5, and 6 are focussed on the derivation of the 
modulation equation. We begin with a reformulation of the Schlesinger equation in 
Section 4. The reformulated Schlesinger equation has a small parameter e. Garnier's 
autonomous system emerges in the limit of e —)■ 0. Our modulation equation is derived 
in Section 5, along with comments on other possible approaches. The structure of 
meromorphic differentials df^, which are also basic constituents of our modulation 
equation, is specified in Section 6. Section 7 is devoted to solving the modulation 
equation by the inverse period map. Section 8 deals with the notion of prepotential. 
We conclude this paper in Section 9. 

2. Schlesinger equation. In this section, we review basic properties of the 
Schlesinger equation. For details and related topics, we refer to a series of papers by 
the Kyoto school (Jimbo, Miwa, Mori, Sato and Ueno) [48, 49, 50, 51]. 

2.1. Coadjoint orbit and hamiltonian structure. Let gl(r, C)^ denote a 
direct sum of N copies of gl(r, C). This is the space of TV-tuples (^i, • • •, ^4AT) of r x r 
matrices. GL(r, C) acts on this space by the diagonal coadjoint action: Ai ^ gAig'1. 
Since the Schlesinger equation can be written 

$ 

each coadjoint orbit Oi in the i-th. component of gl(r, C)^ is left invariant under the 
£-flows. Thus the Schlesinger equation is actually a collection of non-autonomous dy- 
namical systems on a direct product Oi x • • • x ON of coadjoint orbits in gl(r, C). 
Usually, only semi-simple orbits are considered; such an orbit is labeled by the eigen- 
values 0ia (a = 1, • • •, r) of Ai. In other words, these eigenvalues (and, in general, the 
Jordan canonical form of Ais) are invariants of the Schlesinger equation. 

Actually, there are some extra invariants. They are the matrix elements of 

AT 

(2.2) AQQ = — y jAj, 
2=1 

which are invariant under the Schlesinger equation: 
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This matrix, too, is usually assumed to be semi-simple, and it is customary to diag- 
onalize this matrix in advance by a constant "gauge transformation" Ai i-> CAiC"1. 
Thus only the eigenvalues #00^ (a = 1, • • •, r) of Aoo are nontrivial invariants. 

Geometrically, this gauge-fixing may be interpreted as the Marsden-Weinstein 
construction of a "reduced phase space." The "unreduced phase space" is a coad- 
joint orbit Ox x • • • ON X OOO in the vector space gl(r, C)iV+1 of (iV + l)-tuples 
(Ai, • • -, AN, AQO). In order to reproduce the Schlesinger equation, one has to im- 
pose the linear constraint 

JV 

(2.4) ^A. + Aoo-O, 
i=l 

and "gauge away" redundant degrees of freedom by the action of GL(r, C). The 
left hand side of the linear constraint is essentially a moment map of this diagonal 
GL(r, C) action. 

Analytically, as we see show below, the coadjoint orbit invariants 9ia (i = 1,2, • • -, 
iV, 00, a = l,---,r) give local monodromy exponents of Schlesinger's monodromy 
problem. 

The coadjoint orbit structure leads to a Hamiltonian formalism of the Schlesinger 
equation. Let us introduce a Poisson structure on the vector space gl(r, C)^ by 
defining the Poisson bracket of matrix elements of Ai = (Aiiap) as: 

(2.5) {Ai^piAj^tr} = Sij l-5ppAiiaa -f StraA^pp) . 

In each component of the direct sum, this is just the ordinary Kostant-Kirillov Poisson 
bracket. The Schlesinger equation can be written in the Hamiltonian form 

(2-6) ^ = {Aj,Hi}, 

where the Hamiltonians are given by 

(2.7) Hi = Res i Tr M(A)2 = £ Tr (^f) , 

and involutive, 

(2.8) {Hi,Hj} = 0. 

2.2. Isomonodromic deformations. The Schlesinger equation gives isomon- 
odromic deformations of the first order ODE 

dY 
(2.9) — = M(X)Y 

with the rational coefficient matrix 

N      A 
(2.10) M(A) = Y,    " 

teiA-*'" 

Note that A^ is the residue of M(A) at A = 00. 
Usually, this type of isomonodromic problems are considered under the following 
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ASSUMPTION 

• The residue matrices Ai (i — 1, • • •, iV, oo) are diagonalizable. 
• The eigenvalues #;a (a = 1, • • •, r) of each residue matrix Ai have no integer 

difference, i.e., 02a — Oip £ Z if a ^ /?. 
We assume them throughout this paper. These assumptions ensure that local solutions 
at the singular points A = £i, • • •, £JV, oo develop no logarithmic term (see below). 

The isomonodromic deformations are generated by the deformation equations 

These deformation equations and the above first order ODE comprise an "auxiliary 
linear problem" of the Schlesinger equation. Its Frobenius integrability conditions can 
be written in the "zero-curvature form" 

(2.12) K^xM-k = 0, 
Ai       d Ai 

dU     A — U' dtj     A — tj 
-0, 

and one can easily check that these zero-curvature equations are equivalent to the 
Schlesinger equation. 

2.3.  Local  solutions  at  singular points  and  tau  function.   Since A  = 
ti,"-,tN and A = oo are regular singularities of the above first order ODE, one 
can construct a local solution of the following form at each of these singular points: 

• Local solution at X = U: 

(2.13) Yi = Yi-(\-ti)
ei,    Yi = ^2Yin(\-ti)n. 

n=0 

• Local solution at A = oo: 

oo 

(2.14) YQQ = loo 'A       ^,      Yoo =  / v ^oonA 
n=0 

Here Yin are r x r matrices, the leading coefficients YM and YJ^o are invertible, and 
Qi and OQO are diagonal matrices of local monodromy exponents. Inserting these 
expressions into the first order ODE gives the relations 

(2.15) Ai = YioGiYa1,    i = 1, • ■ •, N, oo. 

In particular, local monodromy exponents coincide with the eigenvalues of Af. 

(2.16) 0i = diafi(0ii,---,0ir). 

It is not hard to check that these expressions of Ai and ©^ are also consistent with 
the other equations of the auxiliary linear problem. 

The r function of the Schlesinger equation is defined in two equivalent ways. One 
way is to define log r as a potential of the Hamiltonians Hi: 

N 

(2.17) dlogT = Y^Hidti. 
i=l 
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Another equivalent definition, which is more suited for generalization, is based on the 
equations 

dlogr 
(2.18) 

dU 
= TreiYulYil. 

The equivalence can be verified as follows: 

j^O 

Ai 
■Af(A) = Res Tr , 

\=ti      A — it 

= Res Tr ^^^ ^.yr1 

- Rec Tr    @i   y-1 —YrW-r, 

= rrrQiYa1Yil. 

The closedness of the 1-form ^ Hidti, or equivalently the integrability condition 

(2.19) 
dHj _ dHj 
dti dti ' 

is ensured by the Schlesinger equation itself. 

3. Spectral curve. By "spectral curve," we mean the plane algebraic curve 
defined on the (A, /x) plane by 

(3.1) det(M(A)-fx/) =0 

and its suitable compactification.   We first discuss its roles in isomonodromic and 
isospectral problems, then consider its geometric properties. 

3.1. Spectral curve in isomonodromic problem. Isomonodromic deforma- 
tions such as the Schlesinger equations are non-isospectral, namely, the spectral curve 
varies in deformations. 

Let us present an interesting formula (essentially due to Vereschagin [52]) which 
show qualitatively that the characteristic polynomial of M(A) varies under isomon- 
odromic deformations. First, by the the well known identities of linear algebra, we 
have 

8 ■ logdet (M(A) - ill) = A Tr log(M(A) - jzj) 
dU 

= Tr- 

By the first equation of the zero-curvature representation, dM(X)/dti can be rewritten 

dM(X) 
dU 

Ai 

(x-uy x-u ,M(X)-iiI 

The second term on the right hand side has no contribution, because of the identity 

Tr 
A-t 

-,M(A)-MJ (M(A)-M)   '=0 
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Thus, eventually, we obtain the formula 

(3.2) A log det (M(A) - pi) = Tr jj^js (M(A) " ^ "' • 

This clearly shows that the ^-dependence of the characteristic polynomial of M(A) is 
driven by the "anomalous" term Ai/(X — ti)2. 

3.2. Spectral curve in isospectral problem. We now turn to Garnier's au- 
tonomous analogue of the Schlesinger equation. This equation has the following zero- 
curvature representation: 

(3.3) W + T^-' M(A) 
ati    x — a 

= 0, 
d Ai        d Aj 

= 0. 
L dti     X — d' dtj     A — Cj 

Repeating the same calculations as above, we now find that 

(3.4) Adet(M(A)-/ij)=0, 

because there is no "anomalous" term like Ai/(X - ti)2. Thus one can confirm that 
Garnier's autonomous system is indeed an isospectral problem. An auxiliary linear 
problem is given by 

(3.5) ^ = M(X)rP,    ^ = -3^_V. 

Here ip is understood to be a column vector. The first equation means that T/J is 
an eigenvector of M(A) with eigenvalue fi. The second set of equations generate 
isospectral deformations. 

It is nowadays well known that this type of isospectral problems can be mapped 
to linear flows on the Jacobian variety of the spectral curve [26, 27, 28]. Reproducing 
the original nonlinear problem is identical to Jacobi's inversion problem, and indeed 
solvable by theta functions (or Baker-Akhiezer functions). The solution thus obtained 
is written in terms of period integrals and Abelian functions. 

Although isomonodromic problems (in a generic case) cannot be solved in that 
way, the notion of spectral curve still plays a role in the study of Hamiltonian struc- 
tures. Indeed, Harnad and Wisse [12, 15] presented a construction of special Darboux 
coordinates ("spectral Darboux coordinates") using the language of spectral curves. 
The case of r = 2 is particularly interesting, because this is the case where the 6th 
Painleve equation (Pvi) and Garnier's multi-variable version of Pvi (called the "Gar- 
nier system" by Okamoto [53]) emerge. The spectral Darboux coordinates in this 
case coincide with Okamoto's Darboux coordinates for the "Garnier system," which 
Okamoto discovered without using the notion of spectral curve. 

3.3. Geometry of spectral curves. The structure of spectral curves of the 
above type has been elucidated in detail by the Montreal group [8, 9, 10] and Beauville 
[11]. We present basic part of their results, which will be used in the subsequent 
sections. In the following, the poles of M(A) are written Cj rather than Ti. 

3.3.1. Spectral curve on plane. Let Co be the spectral curve on the (A,^) 
plane: 

(3.6) F(A, //) = det (M(A) - ///) = 0. 
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This becomes a ramified covering of the punctured Riemann sphere, 

(3.7) TT : Co -> CF1 \ {ci, • • -,^,00},    7r(A,/x) = A. 

For a generic value of A, the inverse image 7r_1(A) consists of r points (A,/ia) (a = 
1, • • • ,r). The /i-coordinates ^a of these points are eigenvalues of M(A). In a neigh- 
borhood of A = Ci, /ia's behave as 

(3.8) Ha = T———I- non-singular, 
A - ci 

where 6ia are the eigenvalues of At. Similarly, in a neighborhood of A = 00, 

(3.9) /ia = -0ooaA-1+O(A-2), 

where 0ooc* are the eigenvalues of AQQ = — X);=:i ^-i- (Of course, the numbering of 
fiaS is meaningful only locally.) 

3.3.2. Compactification of spectral curve. We now compactify Co by adding 
several points over the punctures of the Riemann sphere. In a neighborhood of A = c;, 
let us consider the following ft in place of /x: 

N 

(3.10) A = /(A)/i,    /(A) = n(A-c')- 
1=1 

In terms of the new coordinates (A,/x), the equation of the spectral curve becomes 

(3.11) FfaP) =det(/(A)M(A) -/il) =0. 

The inverse image 7r~1(A) consists of r points (A, /ia) (r = 1, • • •, r) such that 

(3.12) /ia = /'fe)0;a + O(A-c;) 

as A -> Ci. Since the eigenvalues 0ia (a = 1, • • • ,r) are pairwise distinct (recall the 
assumptions in Section 2), we add to Co extra r points (A,/2) = (ci,/'(ci)0ia) to fill 
the holes above A = Q. 

Similarly, in a neighborhood of A = 00, we use 

(3.13) jl = Xji 

in place of //. TT
-1

 (A) now consists of the r points (A, /}a) (r = 1,..., r) such that 

(3.14) /ia = _^ooa + 0(A-1) 

as A -> 00. The eigenvalues #00^ (r = 1, • • • ,r), too, are pairwise distinct. Therefore 
we add to Co the r points (A, p) — (00, -9ooa) to fill the holes above A = 00. 

Thus, by adding altogether riV + r points to Co, we obtain a compactification 
C of CQ. The covering map TT uniquely extends to C, and gives a ramified covering 
TT : C ->• CP1 of the Riemann sphere. 

3.3.3. Genus of compactified spectral curve. If there are multiple eigenval- 
ues of Ai, the compactified spectral curve C has singular points (nodes) over A = Q. 

In that case, one has to take a desingularization p : C —> C for further consideration. 
Fortunately, this does not occur in our case because of the assumptions introduced in 
Section 2. One can show, by a standard method, that C has the genus 

(3.15) 0=I(r_i)(rjV-r-2). 
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3.3.4. Structure of characteristic polynomial. In order to examine the 
structure of the characteristic polynomial of M(A) (or, rather, /(A)M(A)), we take 
the rational matrix 

JL   A0 

(3.16) M
0
(A) = £—i-,    il?=diag(fl<i,---,ftr)i 

i=i X~Ci 

as a reference point on the coadjoint orbit that M(A) belongs to. Now compare the 
characteristic polynomials F(X,p,) and F0(A,/i) of /(A)M(A) and /(A)M0(A). Note, 
first, that F(\,p,) — F0(X,fi) vanishes at A = c^. This will be obvious from the 
following expression of these polynomials as A -> a: 

F(A,/i) = detfricJAi - jll) + 0(A - c.), 

F0(A,/i) - det^'Cci)^ - jll) + 0(A - ci). 

(The two determinants on the right hand side are equal, because Ai and A® are on the 
same coadjoint orbit.) Therefore F{\, fi) — F0(\, JJ,) is divisible by /(A). Furthermore, 
these characteristic polynomials have the following expansion in powers of ft: 

F(\,ii) = (-fiy + TrM(\)(-ji)r-1 + ---, 

F0(A,A) = (-fiy + TvM0(X)(-iiy-1 + ■... 

Since the first two terms on the right hand side are equal, respectively, the difference 
of the two polynomials contains no terms proportional to //r and fir~1. From these 
observations, one can conclude that the difference of the characteristic functions can 
be written 

F(A,/i)~nA,/i) = /(A)^pKA)/i 
£=2 

where ^(A)'s are polynomial functions of A. A simple power counting argument 
(assigning weight 1 to A and weight N — 1 to p) shows that the degree of p^(A) does 
not exceed the positive integer 

(3.17) 5i = (N-i)i-N. 

Therefore p£(X) can be written 

St 

ptiX) = ]£ hmi\
m. 

m=0 

The leading coefficient of this polynomial is a function of 0ja's only, because it can be 
writen 

(3.18) hsa = (-lyfviiAoo) -^(A^)), 

where a£(A00) and cr^^L^) are the £-th elementary symmetric function of Aoo and 
A^o = - Si=i ^.?• Thus, eventually, we arrive at the following expression of F(A,/2): 

r       8i 

(3.19) F(A, A) = ^0(A, A) + E E hm^m»r-e- 
1-2 m=0 
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3.3.5. Parameters of spectral curve. Apart from the leading coefficients, the 
coefficients /im^ (£ = 2, • • •, r, m = 0, • • •, ^ — 1) of P£(A)'s give arbitrary parameters 
("moduli") of the spectral curve. Their total number coincides with the genus of the 
spectral curve: 

(3.20) ;[> = £((JV-1)£-.W)=<7. 
e=2        e=2 

In the isospectral problem, these parameters hm£ are constants of motion (Hamilto- 
nians of commuting isospectral flows). They should not be confused with the Hamil- 
tonians Hi of the isomonodromic deformations. 

Actually, the characteristic polynomial has yet another set of parameters — the 
position ci of poles of M(A). They play the role of deformation variables in isomon- 
odromic problem. 

In summary, the spectral curve has three distinct sets of parameters: 
• Position of poles c* (i = 1, • • •, N). 
• Coadjoint orbit invariants 0ia (i = 1, • • •, N, oo). 
• Isospectral invariants hm£ (£ = 2, • • •, r, m = 0,..., Si — 1). 

4.  Schlesinger equation with small parameter. 

4.1. Reformulation including small parameter. The first step towards the 
derivation of our modulation equation is to reformulate the Schlesinger equation by 
the following substitution rule: 

,.., d d d d Ai Ai 
dU        dTi'     dX        <9A'     X-ti       A-TV 

Note, in particular, that the deformation variables are renamed as ti —> Ti. TVs will 
play the role of "slow variables." The reformulated Schlesinger equation reads: 

(4.2) e|4i = (I_,ii)^!_^l:^l. 
01 j ±i     Ij ^^ li     Ik 

An auxiliary linear problem is given by 

The above e-dependent Schlesinger equation can be indeed reproduced from the the 
Frobenius integrability conditions 

(4.4) 
d Aj d Aj 

edTi 
+ A - Ti' edTj 

+ A - Tj j 

= 0, 

= 0. 

A few comments on the above reformulation will be in order: 
(i) Reformulating the Schlesinger equation as above is inspired by the work of 

Vereschagin [52], who considered all the six Painleve equations (PI-PVI) in such an 
e-dependent form. This is different from the way Boutroux [16] and Garnier [5] 
derived an Abelian function approximation, but, as Vereschagin stresses, they are 
asymptotically related. 

(ii) The string equations of two-dimensional quantum gravity, which are Pi, Pn 
and their higher order generalization, contain such a small parameter from the begin- 
ning. The small parameter is interpreted as "string coupling constant" [19]. 
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4.2. Isospectral deformations as first approximation. One can now see, 
at least intuitively, that an isospectral problem emerges from the above e-dependent 
Schlesinger equation. Let us introduce the "fast variables" 

(4.5) *i = €-1ri, 

and rewrite the above equation as 

(4.6) ^ = (1 - kJ)^
h^ - Sa y \£hM. 

Suppose we now observe this system in the scale of the fast variables ti. In this scale, 
Ti's may be treated as being approximately constant, because a finite displacement 
in tiS corresponds to a small (i.e., 0(6)) displacement in TVs. If TVs were true 
constants, the above equation would be exactly Garnier's autonomous system. Thus, 
observed in the scale of the fast variables, our e-dependent Schlesinger equation looks 
approximately like an isospectral problem. 

Of course, this is no more than an approximation. In fact, T^'s are not constant, 
but vary slowly in the order of 0(e). Accordingly, the spectral curve, too, deforms 
slowly because the defining equation of the spectral curve contains T^'s explicitly. A 
precise description of the isospectral approximation has to take into account such slow 
deformations of the spectral curve. 

It is, however, not only T^'s that vary; the isospectral invariants hmt also change 
values slowly. They are both responsible for deformations of the spectral curve. In 
order to see how this occurs, recall the derivative formula of the characteristic poly- 
nomial under isomonodromic deformations (Section 3.1). In the present setting, this 
formula takes the form 

(4.7) A log det (M(A) - /z/) = TV     ^      (M(A) - /./)" 

The right hand side plays the role of a "driving force" for slow deformations of the 
characteristic polynomial. More precisely, in order to extract a true driving force 
of slow deformations, one has to take an average of the right hand side over the 
quasi-periodic motion in the fast variables ti. This is a central idea of Vereschagin's 
averaging method [23, 52]. 

Meanwhile, the coadjoint orbit invariants 6ia remain constant, because they are 
also invariant of isomonodromic deformations. 

4.3. Concept of multiscale analysis. Although frequently lacking mathemat- 
ical rigor, "multiscale analysis" is widely accepted in applied mathematics as a pow- 
erful tool for dealing with this kind of problems [54, 55, 56] The Whitham averaging 
method, too, has been developed in the framework of multiscale analysis. The non- 
linear JWKB method of Dobrokhotov and Maslov [25] is an attempt at.a rigorous 
reformulation of multiscale analysis. Let us show how our problem may be formulated 
in the language of multiscale analysis. • 

A key of multiscale analysis is to treat the fast variables t = {^} and the slow 
variables T — {T;} as independent variables. A^s are thus assumed to be a function 
of t and T (and the small parameter e), 

(4.8) Ai = Ai(t,T,e). 
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The relation fy — e-1^ is imposed only in the differential equation in question. (For 
a more precise description, one may introduce a series of "slower" variables t^2\ t^3\ 
• • •, related with t^'s as 

(4.9) ^=6%. 

For our purpose, only the first two scales are sufficient.) 
In this multiscale ansatz, derivative terms in the equation are given by a sum 

of ^-derivatives and T-derivatives. In terms of differential operators, this amounts to 
substituting 

(4-1()) 'W^W^'W- 
We now assume an asymptotic expansion of the form 

(4.11) Mt,T,e) = 40)(t,T) + 41)(t,T)€+---, 

and plug all these stuff into the Schlesinger equation. From each order of e, we obtain 
a differential equation for the coefficients of the above expansion. 

The lowest order equation is give by 

dA{0) r^0) A{0)} „ L4(0) A{0)] 

Otj ±i      Ij ^^     ±i      Ik 

If we consider Ti — ci, this is nothing but Garnier's autonomous system. Note that this 
derivation of Garnier's isospectral problem is more understandable than the intuitive 
derivation in the last subsection. In the derivation of the last subsection, t and T 
were not independent and constrained by the relation ti = €~lTi, thereby we had to 
say that T is "approximately constant"; in the setting of multiscale analysis, t and T 
are independent. This shows a conceptual advantage of multiscale analysis. 

The lowest order equation, however, carries no information on the T-dependence 
of A\ ^'S, which are to be determined by the next order equation. The next order 
equation is given by 

— (.1      Oij) 
atj     K     VJ Ti-Tj 

.,.. £ [^U^i + t^U (0)! 

(4.13) -f (terms containing A^'s and their T-derivatives only). 

This equation contains T-derivatives of Af' as well as t-derivatives of A^ . A standard 
prescription of multiscale analysis is to eliminate the latter by "averaging over the t 
space." This procedure usually takes the form of an "integrability condition" for the 
above equation to have a solution A\ ' under suitable a boundary condition (e.g., 

requiring the same quasi-periodicity as A\    S possess). 

One thus obtains a differential equation (in T) for t-averaged functionals of A} ' 's. 
This is one of various possible expressions ("modulation equations") of modulational 
dynamics. As Whitham pointed out [24], such a modulation equation frequently ap- 
pears in the form of "averaged conservation laws." Having this fact in mind, Flaschka, 
Forest and McLaughlin [30] considered averaged conservation lows of the KdV equa- 
tion, and derived their compact expression of this problem. 
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4.4. Our approach to modulation equation. There are many technical diffi- 
culties in deriving a modulation equation from the Schlesinger equation along the line 
presented above. A main obstacle is the fact that the spectral curve is no longer hy- 
perelliptic for r > 2. Most attempts in the literature, including the work of Flaschka, 
Forest and McLaughlin, have been limited to hyperelliptic spectral curves. This con- 
siderably reduces the obstacles (though a complete treatment of the problem is still 
by no means an easy task). The spectral curve of the Schlesinger equation is hyperel- 
liptic only if r = 2. In the general case, the averaging method is inevitably confronted 
with delicate problems of geometry of spectral curves. (In this respect, Krichever's 
averaging method [57, 58] for general spectral curves is quite remarkable.) 

Since our main concern is the structure of the modulation equation rather than 
the averaging method itself, we now bypass these delicate issues by a very heuristic 
argument. 

5.  Modulation equation. 

5.1. Multiscale analysis of auxiliary linear problem. The first step of our 
heuristic argument is to apply the concept of multiscale analysis to the auxiliary linear 
problem of the Schlesinger equation. Besides the multiscale expression of .Aj's, we now 
assume the following ansatz to Y (which is now understood to be vector-valued): 

(5.1) r= (^0)(^r,A) + ^1)(^,T,A)6 + ...)exp6-15(r,A). 

Here (f)^ (t, T, A) are vector-valued function and 5(T, A) a scalar-valued function. This 
is a kind of JWKB ansatz (inspired by the work of Flaschka and Newell [17, 18] and 
Novikov [20]). Note that the "phase function" S is independent of t. We can now 
write the auxiliary linear problem in the following multiscale form: 

(5.2) e|j = M(»Y, 

<5-3> (&+'£)' = -&'■ 
The leading order equation should reproduce the auxiliary linear problem of the 

isospectral problem. Let us confirm that this is indeed the case. The leading order 
equation is given by 

(5.4) ^)0(o)(A) = M(o)(A)(A(o)(A)j 

where 

(5.6) M(0)(A) = ]r  A'- 
.     A - Ti 

We now define 

(5-7) M=_^,    ^ = ^0)(A)exp2^ii—^. 
1=1 
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In terms of these quantities, the leading order equation of multiscale expansion can 
be rewritten 

Bib A{0) 

(5.8) ^ = MM(\)^    g^-^-i^/,. 

This is exactly the auxiliary linear problem of the isospectral problem that we derived 
in Section 4! 

5.2. Matching with Baker-Akhiezer function. The next step is the most 
crucial part of our heuristics. We now compare the above ip with the Baker-Akhiezer 
function in the ordinary algebro-geometric approach [26, 27, 28] to finite-band solu- 
tions of soliton equations. 

It is well known that the solution of the auxiliary linear problem for a finite-band 
solution can be constructed as a (scalar- or vector-valued) Baker-Akhiezer function. 
In the present setting, such a Baker-Akhiezer function can be written 

N 

(5.9) ip = (frexTpy^tiQi 
2=1 

Here 0 is a vector-valued function on the spectral curve, also depending on t] each 
entry is a combination of theta functions. We do not specify its detailed structure, 
because it is irrelevant in the following consideration. Meanwhile, fti is the primitive 
function of a meromorphic differential dCli on the spectral curve, 

(5.10) toi =  f 
(A,/x) 

dCli 

Note that these quantities also depend on T through the T-dependence of the spectral 
curve. Another important remark is that such an expression of the Baker-Akhiezer 
function is available only after selecting a "symplectic homology basis" of the spectral 
curve, i.e., cycles Aj, Bj (I = 1, • • •, g) with intersection numbers AJ-AJ = BJ-BJ = 0 
and Aj - Bj = Su. (This issue will be discussed in detail in Section 6.) 

We now assume that, for a suitable symplectic homology basis, this Baker- 
Akhiezer function coincides with the ip derived from the leading order equation of 
multiscale expansion. More precisely, we require their "amplitude part" and "phase 
part," respectively, to coincide: 

(5.11) *<0>=*,    11 = ^. 

Actually, the first relation may be relaxed as 

(5.12) 0(o> =0/i(TsA), 

where h(T, A) is a scalar function independent of t: this takes into account the obvious 
symmetry 

(5.13) 0<o>->^o>fc(T,A) 

of the lowest order equation of multiscale expansion. Such a factor h(T, A) might be 
necessary to proceed to the next order approximation of multiscale analysis. We shall 
not go into this issue here. 
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REMARK. We take this opportunity to correct an error in the previous publication 
[35]. Substantially the same JWKB ansatz also assumed therein, but with an extra 
factor of the form (d2S/dX2)1/2 — see Eqs. (13) and (21) therein. This factor itself 
is nonsense. Fortunately, this does not affect the leading order of multiscale analysis. 
As mentioned above, however, something like this factor will be necessary in the next 
order. The arbitrary function h stands for such a compensating factor. 

5.3. Modulation equation. Thus, under several assumptions, we have been 
able to derive a series of relations that link the isomonodromic and isospectral prob- 
lems. In particular, the following equations are obtained: 

(5.14) _=„,    — = <U. 

We propose these equations as the modulation equation that governs slow dynamics 
of the spectral curve 

(5.15) det(M(0)(A)-/zj) =0. 

Remember that one has to select a symplectic homology basis Aj, Bj {I = 
1, •••,(/) in order to derive these equations. Actually, selecting a proper homology 
basis is a non-trivial problem. We discuss this issue in more detail in Section 6, along 
with a precise characterization of the meromorphic differentials dfli. 

5.4. Relation to generic Whitham equation. As a piece of evidence that our 
modulation equation is a reasonable one, we now show that solutions of this equation 
give a special subfamily of generic Whitham deformations. 

The first equation of the modulation equation can be rewritten 

(5.16) dS =—dX = fidX. 
UA. 

In other words, 5, like fVs, is the primitive function of a meromorphic differential dS 
on the spectral curve: 

(5.17) S= I        fidX. 

The second part of the modulation equation implies the equations 

(5.18) — dS = dQi. 

Accordingly, the generic Whitham equation 

(5.19) A^ = ^ 

follows immediately. (Here, as usual, A is understood to be constant under the T- 
derivation. Geometrically, this should be treated as a connection. See the paper of 
Krichever and Phong [59].) 

Thus, our modulation equation turns out to yield a special subfamily of generic 
Whitham deformations. We shall see in Section 8 that an inverse period map yields 
generals solution of this equation. 
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5.5. Possible approach from averaging method. Our heuristic argument 
has to be justified in a more rigorous form, or at least cross-checked by some other 
method. A possible check will be to derive the above equations by an averaging 
argument. 

Krichever's averaging method [57, 58] (see also the papers by Fucito et al. [22] 
Carroll and Chang [60]) seems to be particularly promising. This method employs 
the so called "dual Baker-Akhiezer function" /0*, i.e., a solution of the dual auxiliary 
linear problem 

nib* A(0) 

(5.20) /z^=^iVf<0>(A),     ^-=</,*-^ 
dti      * A-7V 

along with ip. One can derive, for instance, the following formula evaluating T- 
dependence of the eigenvalue JJL of M^0^: 

d,    foM(°)(A-r,)-y) 

Here < ■ • • > means the average over the fast variables t. This formula can be readily 
translated to the language of dS (though we have been unable to calculate the average 
and to identify the resulting equation with the above equation for dS). Note that the 
term A^ (A — Ti)~2 in the above formula is the same as the "driving force" term that 
we encountered in the derivative formula of the characteristic polynomial of M(A). 

6. Structure of meromorphic differentials. In this and subsequent sections, 
we omit the superfix "W" and write A^\ M^0)(A), etc. as A*, M(A), • • •. This is just 
for simplifying notations. 

6.1. General remarks. The vector-valued Baker-Akhiezer function ip is single 
valued on the spectral curve, meromorphic outside the points of 7r~1({Ti, • • • jTV}), 
and has essential singularities of a particular exponential form at these exceptional 
points. The entries of 0 have a common pole divisor D, part of which may overlap 
with the essential singularities. (In the following, we consider a generic case where 
this overlapping does not occur.) The essential singularities at points in 7r~1(Ti) are 
generated by poles of the meromorphic differential dfi;. 

The meromorphic differentials dili have to be selected for the essential singulari- 
ties of I/J to match the auxiliary linear problem. This yields conditions on the poles of 
the meromorphic differentials. Our task in the following is to specify those conditions. 

In order to consider this problem, it is convenient to build a matrix solution ^ 
of the auxiliary linear problem from the vector-valued Baker-Akhiezer function ip. 
Let Pa (A) (a = 1, • • • ,r), denote the points of 7r~1(A). (Of course, also here, such 
numbering is meaningful only locally.) $ is given by 

(6.1) *=(^(P1(A)),---1ii-(Pr(A))). 

This matrix has the following factorized form: 

(6.2) * = $expdia€(^tA(i3i(A)),---,X)*A(^r(A))). 

$ = $(A) is an r x r matrix originating in the "amplitude part" </>, and invertible at 
a generic point. 
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6.2.  Conditions on meromorphic differentials. 

6.2.1. Poles of dtii. All necessary information on poles of dQi can be derived 
from the following relation, which is obtained by inserting the above expression of ^ 
into the auxiliary linear problem: 

(6.3) — $-1 + $diag(fii(Pi(A)),---,fii(Pr(A)))*-1 = 
A-TV 

We now compare the singular part of both hand side at A = T;. Since the first 
term on the left hand side is non-singular, it turns out that fli has a pole of first order 
at each point of 7r_1(Ti), and the residue is equal to (—1) times an eigenvalues of Ai. 
Since the eigenvalues of Ai are 8iai this implies that (after suitably renumbering the 
eigenvalues) Ai can be written 

(6.4) Ai = QiTi) diag(^i, • • -Ar^Ti)-1, 

and that 

0- 
(6.5) Qi = —     ia    + non-singular 

A — Ti 

in a neighborhood of Pa{Ti). 
In particular, the meromorphic differential dVti behaves as 

8- 
(6.6) dtii = ——to_ 2 dX + non-singular 

(A - Ti) 

in the same neighborhood of Pa(Ti). Therefore, if 0ia ^ 0, Poc{Ti) is a pole of dSli of 
second order. These are all poles that dVti is required to have. 

6.2.2. Period integrals of dfii. The above conditions on poles determine the 
meromorphic differential dVti up to a difference of holomorphic differential. We now 
select a symplectic homology basis AI,BI (I = 1,... ,g), and put the standard nor- 
malization condition 

(6.7) <£   dQi = 0,    I=l,...,g. 

dfti is thus uniquely determined. 

6.3. Back to modulation equation. This is the end of the precise description 
of our modulation equation. Let us finally reconfirm the roles of the three sets of 
parameters 0iai Ti and hm£ in the defining equation of the spectral curve: 

• The coadjoint orbit invariants 0ia are constant parameters. 
• The positions of poles Ti are "time variables." 
• The isospectral invariants hm£ are "dynamical variables." 

6.4. Remarks on symplectic homology basis. The choice of symplectic ho- 
mology basis is a non-trivial problem. The work of Flaschka, Forest and McLaughlin 
[30] provides a typical example for considering this problem. In their work, the mero- 
morphic differentials dfti are normalized along the so called "/i-cycles." These cycles 
are homologous to trajectories of the "auxiliary spectrum," which are nothing but 
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the degree g divisor ]Cf=1(Ai,Ci) 0^ zeros 0^ a Baker-Akhiezer function on the KdV 
hyperelliptic spectral curve 

2<H-1 

(6.8) c2= n^-^)- 
i=l 

The Whitham averaging over the quasi-periodic motion on the Jacobian variety even- 
tually boils down to period integrals along these trajectories. As this typical example 
shows clearly, the normalization condition of df^ is by no means arbitrary, but deter- 
mined by the geometric structure of motion of a divisor on the spectral curve. (In fact, 
as Ercolani, Forest and McLaughlin noted [61, 62], this issue is already considerably 
delicate in the case of the sine-Gordon equation.) 

Meanwhile, our formulation of the modulation equation itself works for any choice 
of the symplectic homology basis. Furthermore, the results of the subsequent sections 
also hold irrespective of the choice of the symplectic homology basis. Presumably, it 
is only a subset of solutions of our modulation equation that actually correspond to 
the true modulational description of isomonodromic problems. This issue, too, forms 
part of the hard analytical problems that we do not pursue in this paper. 

7.  Solutions of modulation equation. 

7.1. Period integrals a la Seiberg-Witten. In the following, let h — {hj \ 
I = 1, ••-,#} denote the g-tuple of isospectral invariants hmi (£ = 2,---,r, m = 
0, ' — ,&i — 1) (see Section 3). With the other parameters 9ia and Ti being fixed, 
the spectral curve forms a ^-dimensional deformation family parametrized by these 
isospectral invariants. This is the same situation as the Seiberg-Witten solution and 
its various generalizations [36]-[47]. One can indeed derive the following analogous 
results. 

• A set of (local) coordinates on the ^-dimensional moduli space of spectral 
curves are given by the period integrals 

(7.1) aj= /   dS,    J = 1,".,0. 
JA! 

• 

Here (and in the following), AI^BJ (I = l,---,^) are the same symplectic 
homology basis as used in the definition of the modulation equation. 
Another set of (local) coordinates are given by the dual period integrals 

(7.2) 6/= <f   dS,    I=l,...,g. 

• 
In the Seiberg-Witten theory, they are denoted by af. 
There is a (locally defined) function F = ^(a) ("prepotential") of a = {a/} 
such that 

• The second derivatives of J7 coincide with matrix elements of the period 
matrix, 

(7-4) -^- =TIj=i   dujj, 
daidaj JBl 
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where duji (I = 1, •••,</) are a basis of holomorphic differentials uniquely 
determined by the normalization condition 

(7.5) <b   duj = SJJ. 

In a sense, the rest of this paper is devoted to verifying these results in an T-dependent 
form. 

The goal of this section is to show that the inverse period map a\-+ h solves our 
deformation equation. We first establish the invertibility of the period map h \-+ a. 
The inverse map a i-> h then turns out to satisfy a deformation equation of Seiberg- 
Witten type (with respect to a^'s), as well as our modulation equation (with respect 
to TVs). Most results and proofs are a rather straightforward generalization of those 
of the Seiberg-Witten solution [36]-[47]. 

It should be added that Krichever and Phong [59] gave a similar period map 
construction of Whitham deformations in a far more general form. Our case can 
also be treated as a special case of their results. Nevertheless we dare to show the 
following construction, because this will be a simpler and more explicit proof in the 
present special setup. 

The notion of prepotential will be discussed in detail in Section 8. 

7.2. Invertibility of period map. This subsection is organized as follows. 
Firstly, we construct a basis duj (I = 1, • • • ,g) of holomorphic differentials as deriva- 
tives of dS with respect to /i/'s. Secondly, we examine the linear relations between this 
basis and the normalized basis duj (I = 1, • • • ,g). As a corollary, (local) invertibility 
of the period map h -> a follows. 

7.2.1. Basis of holomorphic differentials. We here consider fi to be a (mul- 
tivalued) function /i = /i(T, h, A) of T, h and A, and differentiate dS(T, h, A) = 
/JL(T, h, X)dX by hj. This gives the differential 

We now show that this gives a basis of holomorphic differentials on the spectral curve. 
The following reasoning is borrowed from the work of Adams, Harnad and Hurtubise 
[10]. 

This definition of duj can be cast into a more tractable form as follows. First 
rewrite it in terms of jj = /(A)// (see Section 3): 

i dji(T,h,\) 
/(A)       dhj 

Differentiating the equation 

F(A,/}) = det(/(A)M(A) - pj) = 0 

of the spectral curve in the (A, /2) coordinates gives 

dji _    dF(\,ii)ldhi 
dhi ~     dF(\,ii)/djt' 
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Now recall that hj is just an abbreviation of one of hmis in the following formula of 
Section 3: 

r      5t 
r-£ F(X, fi) = F\\, p) + /(A) J2 E JwV"/* 

1=2 m=0 

Therefore, for hj = hmi. 

Thus, eventually, we obtain the following expression of duj = d(jm£: 

(7.7) d£jm£ = =—£- dA. 
dF(\,ji)/dvi 

The last expression may be viewed as the Poincare residue of a meromorphic 2- 
form on the (A, p) plane with pole divisor along the spectral curve. Since 2 < £ < r 
and 0 <m < Si — 1, a standard argument leads to the following result: 

PROPOSITION 7.1. The differentials dQi (I — 1, • • • ^g), form a basis of holomor- 
phic differentials on the spectral curve. 

7.2.2. Linear relations between two bases. Since dtii and duji both give 
a basis of holomorphic differentials, they should be linked by an invertible linear 
transformation: 

9 

(7.8) dLjI = ^2AijdLjj. 
J=I 

The matrix A = (AJJ) of the coefficients is invertible. 
In fact, the matrix A is given by the period integrals 

(7.9) Au = i   dij, 
JAj 

as one can readily see by integrating the above linear relation of dubj and dojj along 
Aj. Similarly, integrating along Bj yields the matrix relation 

(7.10) B = AT, 

where the matrix elements of B = (B/j) are given by 

(7.11) Bu = <b   duj. 
JBJ 

In particular, the period matrix T can be written 

(7.12) T = A-1B. 
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7.2.3. Invertibility of period map. We now show the following result, which 
shows that the matrix is in fact the Jacobian matrix of the period map h *-> a. 

PROPOSITION 7.2. 

(7,3) ^.^. 

Proof, aj is defined by the period integral 

aj = f    dS. 
JAj 

Its ^/-derivative can be calculates as follows: 

—r^- = f    wr-dS =6    duj = AIJ. 
dhi       JAj °hi JAj 

D 
Since A is an invertible matrix, we have: 
COROLLARY 7.3.   The period map h \-* a is (locally) invertible. 

7.3. Solving deformation equations by inverse period map. We now take 
into account the variables T = {2i}, and consider the I-th coordinate of the inverse 
map a *-> h as a function of T and a: 

(7.14) hI = hI(T,a). 

(In order to obtain these functions, one has to solve the defining equation of the a/'s 
for the parameters hj. This is by no means an easy task.) Accordingly, dS = fidX 
becomes a meromorphic differential depending on the parameters (T, a): 

(7.15) dS = dS(T,a). 

We can now prove that dS satisfies the modulation equation with respect to T: 
PROPOSITION 7.4. dS satisfies the modulation equation 

Wids = dni. 

Proof. Let us tentatively define 

We show that this differential satisfies all conditions that characterize dfti. By the 
uniqueness, then, d&i coincides with dfi^, and the proof is completed. 

(i) Locations of poles of d(li. Differentiating the equation of the spectral curve 

F(A,/i) = det(M(A) - /x/) = 0 

gives the relation 

dTi dF(X^)/dfi' 
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Therefore, apart from the poles of //, the derivative dfi/dTi can have poles at the zeros 
of dF/dfd (i.e., at ramified points of TT). Let e be the ramification index at a ramified 
point. dfi/dTi has a pole of order at most e — 1 there. This pole, however, is canceled 
by zeros of dX because dX has a zero of order e — 1 at the same point. Meanwhile, in 
a neighborhood of each point of 7r~1(oo), 

^ = (0ooaA-2 + O(A-2))A 

so that the derivative d^i/dTi cancels the second order poles of dX at these points. 
Thus, poles of dfti are limited to points in 7r'"1({Ti, • • • ,T/v}). 

(ii) Singular behavior of d&i at poles. We examine the singular behavior of dfri 
at each point of TT

-1
^) = {Pji, • • • ,-P/r}. Recall that, in a neighborhood of P^, fi 

behaves as 

+ non-smgular. 
X-Tj 

Therefore 

Qp       ( non-singular {j ^ i) 

dTi = \ ~ (x -T-)2 + non~sinSular    0" = *) 

Consequently, dCli has poles only at the points over A = T^, and exhibits there the 
same singular behavior as dQi does. 

(hi) Period Integrals of dCli. Since the deformations leave a/'s invariant, we have 

i^-H^-wr-- 
Thus d&i satisfies the normalization condition of periods, too. D 

Similarly, dS turns out to satisfy a deformation equation of Seiberg-Witten type 
with respect to a/'s: 

PROPOSITION 7.5. dS satisfies the deformation equation 

-—dS = dcj/,    / = 1, • • •, p, 

of Seiberg- Witten type. 
Proof. This is just a consequence of the chain rule of differentiation: 

D 
Thus, we have been able to show that the inverse period map a H* h solves the 

coupled deformation equations 

(7.16) — dS = dSti,      jr-dS = duJj. 

(Reconfirm, once again, that the differentiation is understood to leave A constant, i.e., 
dX/dTi = dX/dai = 0.) 
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7.4. Remarks on structure of dS. It seems remarkable that although our 
meromorphic differential dS has simple poles with non-zero residues, their derivatives 
in deformation variables are holomorphic differentials or meromorphic differentials of 
second kind (i.e., meromorphic differentials with higher order poles and no residue). 
This is reminiscent of the structure of the Seiberg-Witten meromorphic differential in 
supersymmetric gauge theories coupled with matter fields [36]-[47]. 

Because of this fact, dS cannot be written as a linear combination of dujj and 
dfli] we need extra meromorphic differentials of the third kind, say dll, with the same 
singularity structure as dS but with vanishing ^./-cycles. dS can be written 

9 

(7.17) dS = Y1aiduJl + dU' 

Of course dU can be further decomposed into a sum of more elementary meromorphic 
differentials, but can never be a linear combination of dfVs. 

8.  Prepotential. 

8.1. Definition of prepotential. The notion of prepotential has been formu- 
lated in a quite general framework by Krichever [31, 32] and Dubrovin [33, 33]. Fol- 
lowing their formalism we can now define a prepotential J7 = !F(T, a) by the following 
differential equation. 

PROPOSITION 8.1. The following differential equations is integrable in the sense 
of Frobenius: 

1 a=l 

Here Pia, a — 1, • • • ,r; denote the points of 7r_1(T;) such that 

6- 
(8.2) /LX = -—^—- + non-singular 

A — Ti 

in a neighborhood of Pia - 

8.2. Equivalent definition. Before proving the above result, we note here that 
the defining equations of T can be rewritten in the following more compact form: 

(8-3) d^-hh dfrHi- 

The equivalence of the first equation is obvious from the definition of bj. Let 
us verify the equivalence of the second equation in some detail. We first rewrite the 
definition of Hi into a contour integral 

Hi^—^i \TrM{\)2d\ 
27rV-l J\\-Ti\=8 2 

along a sufficiently small circle (of radius 8) around X — Ti. Let /ia, a = 1, • • •, r, de- 
note the eigenvalues of M(A); they correspond to the r sheets of the spectral curve in a 
neighborhood of TT

-1
 (TJ). Expressing the trace of M(A)2 in terms of these eigenvalues, 
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we can rewrite the above integral formula as: 

27rV=TjfiA_riM^ 2 

^2*^=1 Jcia  2 

Now recall that /i has a Laurent expansion of the form 

8- 
V = T~T. 

+ Cia'0 + Cia»1^ ~ ^) "^  

in a neighborhood of P^. From this fact, we can easily derive the relation 

This relation and the above expression of Hi give 

Q:=l 

This leads to the second expression of the defining equation of the prepotential. 

8.3. Proof of proposition. The idea of proof is the same as the standard one 
based on Riemann's bilinear relation. Integrability conditions to be checked are the 
following: 

(8.4) 
dHl_dHi      dHl_dbL      dbj _ dbj 

dTi ~ dTj '     daj ~ dTj '     den ~ daj' 

Here 6/, 6j, Hi and Hj are used for simplifying notations; in the verification below, 
we have to return to the integral expressions of these quantities. 

These three relations can be verified in much the same way. We show the deriva- 
tion of the second relation in detail. First, differentiating the integral formula 

Hi = y —W /    T%r^ 

by a/ gives 

dH 
da 

Similarly, from the integral formula of 6/, 

dTj     TBl     
J 

By Riemann's bilinear relation, dHj and duj satisfies the relation 

(*)     == (p    QjduJi — 2_\ ( f     dflj (p     dui — (p     dCtj (p     duj ) . 
27rv-l 7aA j   \JAK        JBK JBK        JAK       ) 
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Here A is a simply connected surface with boundary (4^-gon) obtained in a standard 
way by cutting the Riemann surface of the spectral curve along 2g paths. The bound- 
ary 9A is oriented in the direction encircling interior points anti-clockwise. We now 
evaluate both hand sides. As for the left hand side of (*), Vtj has poles at the points 
Pji, • • •, Pjr in A whereas duj has of course no pole. Therefore the contour integral 
along <9A splits into a sum of contour integrals along Cji, • • •, Cjr. Furthermore, the 
singular behavior of Slj in a neighborhood of Pja is such that 

Slj = —9ja/{\ — Tj)+ non-singular. 

Therefore 

""""M-Ej^i/sV- 
Now consider the the right hand side of (*). The integrals of dftj along ^'s all 
vanish by the normalization conditions of dCtj. Its integrals along BR 'S do not vanish 
in general, but now the integral of duj along AK'S vanish except for K = /; in the 
case of K = /, the latter integral is equal to 1 by the normalization conditions of dcui. 
Thus 

RHSof (*) = - <£   dCtj. 

These relations imply the second integrability condition. 
In the verification of the first integrability condition, it is convenient to express dCti 

as a sum of meromorphic differentials dftia with just one pole at Pia and normalized 
by the same condition of vanishing ^4-periods. The integrability condition can then 
be reduced to Riemann's bilinear relation for dilia and dftj p. 

The third integrability condition is the easiest to verify. This case, however, is 
the most interesting in the context of the Seiberg-Witten theory. Differentiating bj 
now by aj gives 

=/ JB. 

dbj_ 

daj     JBJ 

dcuj = TIJ. 

This is equal to dbj/daj, because the period matrix T is symmetric. (One can also 
directly deduce this conclusion by applying Riemann's bilinear relation to duji and 
dujj. This is indeed a usual proof of the relation Tu = TJI !) 

This completes the proof of the proposition. 
As a corollary of the proposition and the final part of the proof, we obtain the 

following result: 
COROLLARY 8.2. The second a-derivatives of T — Ti^T, a) coincide with the 

matrix elements of the period matrix: 

Thus our treatment of the prepotential incorporates all essential aspects of the pre- 
potential of Seiberg-Witten type. 
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8.4. Final remarks, (i) The definition of prepotential shows a link with the 
notion of r function. Recall that Hi is equal to a logarithmic derivative of the r 
function of the Schlesinger equation. In the e-dependent formulation, 

(8.6, «-^I. 

Note, however, that logr and J7 are by no means in a simple proportional relation, 
because some averaging operation intervenes. 

(ii) Unlike the prepotentials in topological conformal field theories and the Seiberg- 
Witten theory, our prepotential T seems to possess no manifest homogeneity of degree 
two. This issue seems to be linked with the unusual structure of dS that we pointed 
out in the end of the last section. Presumably our prepotential (and the modula- 
tion equation) will have hidden homogeneity, which emerges after introducing more 
deformation variables. 

9. Conclusion. The body of this paper consists of two part. The first part is 
concerned with the derivation of the modulation equation. This equation is expected 
to describe slow dynamics of the spectral curve in isospectral approximation, in the 
sense of Gamier, of the (e-dependent) Schlesinger equation. Although our method 
for deriving this modulation equation is heuristic, we believe that this gives a correct 
answer (under a suitable choice of the symplectic homology basis). The second part 
of this paper is devoted to a complete description of solutions of the modulation 
equation, as well as the notion of prepotential. We have been able to obtain the 
following fundamental results: 

• General solutions are obtained by an inverse period map. The period map is 
given by period integrals of Seiberg-Witten type. 

• The modulation equation can coexist with a deformation equation of Seiberg- 
Witten type. They altogether form a commuting set of flows on the g- 
dimensional moduli space of spectral curves. 

• A prepotential can be defined on this extended commuting flows. This con- 
struction is parallel to already known examples of prepotentials. 

These results, too, strongly support the validity of the modulation equation. 
A number of problems are left unanswered. The most crucial is of course the 

issue of validity of our derivation of modulation equation. We have presented a few 
fragmental ideas in this direction. Krichever's averaging method seems to be the 
most powerful and universal approach to this problem; we, however, have no idea 
how to calculate the averaged quantities to obtain period integrals. Presumably, 
Vereschagin's method will be a hint to this issue. Also, we would like to stress that 
generalizing the averaging calculation of Flaschka, Forest and McLaughlin to non- 
hyperelliptic spectral curves is still a very important problem; the spectral Darboux 
coordinates of the Montreal group should be used in place of the classical auxiliary 
spectrum. 

The methods presented in this paper will be generalized to other types of isomon- 
odromic problems. An immediate, but also interesting generalization is the case with 
irregular singular points. For instance, if an irregular singular point of Poincare rank 
one is added to A = oo, the resulting isomonodromic problem becomes the so called 
JMMS equation [48]. This equations exhibits a remarkable "duality" [12], which will 
be inherited to the modulation equation. This issue is discussed in a separate paper 
[63]. An even more interesting direction is a generalization to isomonodromic problems 
on an elliptic (and higher genus) Riemann surface. Examples of such isomonodromic 
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problems have been constructed by Okamoto's group in a geometric framework [64]- 
[69]. Recently, Levin and Olshanetsky presented another framework based on the 
method of Hamiltonian reduction, and pointed out a link with the Whitham equation 
[70, 71]. 
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