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DUALITY FOR REGULAR SYSTEMS OF WEIGHTS* 

KYOJI SAITOt 

Abstract. Regular systems of weights are certain combinatorial and arithmetic 
objects related to a generalization of Coxeter elements [S6,7,8 and 11], and intro- 
duced in motivation to understand the flat structure for primitive forms for isolated 
hypersurface singularities [S3] (cf. [Man],[S11]). 

In the present article, the theory is applied to explain the self-duality of ADE 
(=:simply laced Dynkin diagrams) and the strange duality of Arnold. Beyond the 
original applications, the study gives further class of dual weight systems, which, for 
instance, has close connection with Conway group and seems interesting to be studied 
yet further. 

On the other hand, the duality of weight systems has an interpretation in terms of 
certain products of Dedekind eta functions. We give a conjecture on the non-negativity 
of the Fourier coefficients of the eta-products. The conjecture is solved affirmatively 
for the cases corresponding to elliptic root systems [S45]. But the meaning is not yet 
clear. 

Recently, one finds an equivalence between the duality in the present article and 
certain string duality in mathematical physics [T]. 

0. Introduction. The present article gives a general frame work on the duality 
of regular systems of weights. For a sake of self-containedness, all proofs are given or 
sketched except for some basic facts. For simplicity, we shall call a regular system of 
weights a weight system unless otherwise is stated. 

A weight system W := (a, 6,c;/i) is a system of 4 positive integers with some 
arithmetic constraint (see (1.0)). To W, we attach a cyclotomic polynomial ipw, 
called the characteristic polynomial of the weight system (see (2.1)). The duality we 
study in the present article appears as a duality between the cyclotomic polynomials. 
Let us explain this by examples. 

Let h be a positive integer and let (p(X) and <p*(A) be cyclotomic polynomials 
whose roots are ft-th roots of unity. The polynomials can be decomposed in the form: 

¥>(A) = IRA* - l)e(i)    and   ^(A) = pA* - l)e*« 
i\h i\h 

where e(i),e*(z) E Z for i G N with i \ h. We call ip and cp* to be dual to each other 
of level h, if the equality 

e(i) + e*(/i/i)=0 

holds for all i. We give two examples of such dualities between cyclotomic polynomials, 
which motivated the present article. 

1. The characteristic polynomial of the Coxeter element in the Weyl group of a 
type At (I > l),Di (I > 4) or Ei (I = 6,7,8) is self-dual (see Remark 0.1 1 and §11). 
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2. The characteristic polynomials of the Milnor monodromies ([M, §9]) for the 
strange dual pair of 14 exceptional unimodular singularity ([Al]) are dual to each 
other (see §12). 

Both facts 1. and 2. can be easily verified by direct calculations. On the other hand, 
the characteristic polynomials in the above 1. and 2. can be realized as these attached 
to some special weight systems (see §9, 12). Then the duality 1. and 2. are proven 
uniformly without using the classification as a consequence of a general frame work 
of the duality of weight systems (§7 Theorem 7.10) developed in the present article 
§§3-7. 

Beyond the above examples, the general framework gives further dual pairs of 
weight systems (§7 Theorem 7.9). In particular, it is remarkable that all weight 
systems of rank 24 are self-dual and have relationship with Frame shapes of Conway 
group (cf. Appendix 1), whose study in connection with mirror symmetry seems 
highly interesting (cf. Appendix 2). 

The duality between weight systems is reformulated (§7) as the duality of the set 
M{(p) := {i G Z>o | e(i) 7^ 0}, since the set M{W) attached to the characteristic 
polynomial for a weight system W admits a priori description from the weights (§4) 
and carries a specific structure such as a poset with 3 generators, classified into 14 
types, and the sign of ew{i) is determined by the level function n on the poset M{W) 
(Theorem 5.1-2). 

The §§8-10 are devoted for a study of some numerical invariants attached to a 
weight system: dual rank vw, genus ao? discriminants d{W) and d*(W) and signature 
A{W), which are used in §'s 12 and 13. 

Attached to the decompositions of <p(A) and <p*(A), define the products: 

^(r):=n^r)e(i) and ^*w:=n^r)e*(i)' 
i\h i\h 

00 

where 7/(r) := g1/24 H  (1 - qn) for q = exp(27rv/-Tr) is the Dedekind eta-function. 
71=1 

Then the duality between cp and (p* is equivalent to: 

^(-1/ftr) • 77<P*(T) 'Vd=l 

where d is the discriminant. It is also elementary to see that the Fourier coefficients 
at 00 of such dual pair of the eta-products are non-negative. Inspired by these facts, 
the §13 is devoted for the study of the eta-product rjw attached to (pw of a weight 
system W. We show that rjw is holomorphic (resp. vanishing) at all cusps if and only 
if one has an inequality uw < 0 (resp. vw < 0). We ask: 

Conjecture. The eta-product rjw has non-negative Fourier coefficients at 00 if 
and only if vw is non-negative (i.e. rjw is non-cuspidal). 

For three elliptic weight systems EQ^EJ^ES and for a weight system (1,1,2; 5) (whose 
eta-product is the one studied by Ramanujan), the conjecture is verified by a use of 
Euler products for the associated Dirichelet series (Example 14.3) (see [S41-V] for a 
complete treatment of the elliptic case). 

REMARK 0.1. 
1. The concept of a regular system of weights is an axiomatization of weight 

systems of a polynomial of 3 variables defining a weighted homogeneous isolated 
surface singularity   (see [S6,7,ll], Remarks 1.3, 2.1,10.3, §12 and Appendix 2). The 
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present paper is constructed axiomatically without assuming any knowledge of the 
back ground except for §12. 

2. The duality for Coxeter elements explained here is equivalent to a duality on 
Cartan matrix observed by Ochiai [Oc] (see §11). 

Acknowledement. The interpretation of the duality in terms of eta-products 
was suggested by G. Mason ([Ma]). The author is grateful to him for the discussions. 

1. Regular system of weights. We recall basic definitions and results from 
[S6,7 and 8]. 

A system of 4 integers a, b. c and h satisfying 0 < a, 6, c < h: 

(1.0) PF :=(a,&,c;/i) 

is called a weight system, where a, b and c are called the weights and hw := his called 
the Coxeter number. Two weight systems are identified when they have the same set 
of weights and the same Coxeter number. 

For a weight system W := (a, &, c; h), we associate a rational function: 

n n m  _„-h(Th-Ta)(Th-Tb)(Th-Tc) 
[     j Xw[   ) '" (T" - l){Tb - 1)(TC - 1) 

in an indeterminate T. We say that W is regular, if xw(T) has a pole at most at 
T = 0, or equivalently, if Thxw(T) is a polynomial in T [S6 (1.2)]. 

The regularity condition is reformulated in terms of elementary arithmetics: a 
weight system (a, 6, c; h) is regular, if and only if i) each of a, b, and c divides one of 
h — a, h - b or h — c, and ii) every gcd(a,6), gcd(&, c) and gcd(c, a) divides h. So, 
unless all weights are less than or equal to /i/2, there are two weights whose sum is 
equal to h. The weight system of the latter case (e.g. 6 + c — h) will be called of type 
At where £ := h/a — 1 for a reason explained below. As said in the introduction, from 
now on we shall call a regular system of weights W simply a weight system W. 

For a weight system W, it was shown [S6 (1.3) Theorem] that there is a finite 
number of integers mi, • • •, m^ such that 

(1.2) X^(T)=Tmi + ..- + Tm', 

where 

(1.3) // = iiw — (h — a)(h — b)(h — c)/abc 

is called the rank of the weight system. The integers mi, • • •, m^ are called the 
exponents for the weight system W (see Remark 1.3). Otherwise stated, we order 
them as mi < m2 < • • • < mM. Since one has T^^T-1) = xw(T), one obtains: an 
additive duality of the exponents: 

(1.4) mi + mp-i+i = h   for i = 1, • • • ,/x. 

The Laurent expansion of (1.1) shows that the smallest exponent mi, which we denote 
by ew, is given by 

(1.5) £w := a + b + c — h, 

and that its multiplicity is  1 (i.e. mi < 7712 and mM_i < mM if /x > 2). 
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For a positive integer d, the weight system (da, db, dc; dh) is regular if and only if 
(a, &, c; h) is regular. So, we shall call a weight system is primitive , if either when W is 
not of type At and gcd(a, 6, c, h) — l,or VFisof type^ of the form (1, &,£+! — 6;^+l) 
for some 6 with 1 < 6 < t. In fact, one has (a, 6, c) = 1 in both cases. 

Primitive weight systems having only positive exponents are classified, and are 
called of types At (£ >l),Dt(£> 4) and Et (£ = 6,7,8) according to the identification 
of the set of exponents with that of corresponding root systems (see [S6, §2] and §11). 
It is well known that the smallest exponent for these cases is equal to 1 ([Bo, Ch.V,§6 
6.2. Theoreme 1. (i)]). In general, for a primitive weight system, it is an important 
question whether the exponent equal to 1 or —1 exists (see Remark 2.1). In [S8 (2.2)], 
we answered to the question affirmatively as follows. 

THEOREM 1.1. Let W := (a, 6, c;/i) be a primitive weight system. Put 

(1.6) am :=  the multiplicity of the exponent equal to m. 

Then either ai > 0 or a_i > 0. That is: 

(1.7) mult (W) := ai + a_i > 0 . 

Here we call mult (W) the multiplicity of W. Later in §5, the multiplicity is identified 
with an exponent ew(h) (5.6). Then the above theorem will be reproved as the 
positivity of the exponent ew(h) (see Theorem 5.1 and Remark 5.4 1, cf. Remark 
2.1). 

Later in §6, a weight system W is called simple, if mult (W) = 1. The following 
imediate consequence of Theorem 1.1 is used in §6. 

ASSERTION 1.2. Let W be a primitive weight system, whose exponents are posi- 
tive.  Then W is simple and the smallest exponent ew is equal to 1. 

Proof. Since a_i = 0, mult (W) = ai > 0 implies the existence of exponent 
equal to 1. Of course 1 should be the smallest exponent. Then the simplicity of the 
multiplicity of the smallest exponent (1.5) implies ai = 1 and hence the simplicity of 
W. U 

REMARK 1.3. Let fw(x,y,z) = ^2ai+bj+ck=hcijkxlyjzk be a weighted homoge- 
neous polynomial in three variables (x,y,z) of weights (a, 6, c) with the total degree 
h. Then, for a generic choice of the coefficients, the surface Xw,o defined by the 
equation fw(x,y,z) = 0 has an isolated singularity at the origin if and only if the 
weight system (a, b, c;h) is regular (cf. [A3], [S6, Theo. 3]). If one assume this fact, 
then (1.2) and (1.3) are trivialities, since Xw(T) becomes a Poincare polynomial for 
the finite dimensional Jacobian ring C[x,y,z]/(dxfw,dyfw,dzfw) (up to the factor 
T£w). 

2. Characteristic polynomial y?w(A). Let the notation be as in §1. The 
characteristic polynomial for a weight system W is defined by 

(2.1) <PwW:=]l(X-Ui), 

where 

(2.2) uji := exp(27ry/^lmi/h)        i = 1, • • •, //, 

and rrii are the exponents introduced in §1 (1.2). Let us prove cpw € Z[X] in the 
following (2.3)-(2.5). For k £ Z consider the sum: 

(2.3) Aw(k):=u$ + ---+u* 
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In view of (1.2), one has Aw(k) — Xw(uk) for u := exp^iryj-l/h). On the other 
hand, the substitution of T = uk in (1.1) yields 

(2.4) xw(wk) = (s{ka mod h)- - l) (s(kb mod h)j- - l) (s(kc mod h)- - 1J 

where S(x) := 1 or 0 according as x = 0 or else. 
Proof of (2.4). Let us show that the function ^(T) := {Th - Ta)/(Ta - 1) takes 

value 5(ka mod h)% — 1 at T = ujk. Since Th takes value 1 at T = uk, the values 
of the denominator and the numerator of ^(T) at T = ujk are the same but with 
opposite sign. If both are not zero, then ^(cjfc) = —1. They are zero when ujka = 1, 
i.e. when S(ka mod h) = 1. Then the value of ip is the ratio of the derivatives: 
(Th - Tay/(Ta - 1)' = (hTh-1 - aTa-l)laTa-1 = h/a - 1. Performing similar 
calculations for other factors of xw, we complete the proof. □ 

Comparing the fact Aw{k) = xw{wk) and (2.4), we obtain 

(2.5) Aw{k) = (s{ka mod ft)- - 1J (<*(** mod h)^ - 1 j (<J(fcc mod /i)- - 1 

Hence Aw{k) are rational numbers. So, one has ipw G Q[A]. By definition, ipw 
is a monic polynomial and hence is a product of irreducible cyclotomic polynomials 
(which are monic and integral). The (2.5) implies: 

(2.6) Aw(l) :=LU1+-.- + Lufl  =  -1. 

REMARK 2.1. Under the notation of Remark 1.3, the rank fiw is equal to the 
rank of the middle homology group, or of the lattice of vanishing cycles in a smoothing 
of Xw,o, and is called the Milnor number. The characteristic polynomial of Milnor's 
monodromy cw acting on the lattice (which is semi-simple of order h) coincides with 
(fwW ([M]). The existence of exponents 1 or —1, shown in (1.7), implies that the 
monodromy cw has the h-th primitive root of unity exp(±27r\/—l//i) as an eigenvalue. 

Conjecture. The eigenspace belonging to the primitive roots of unity is regular 
in the sense that the eigenspace should not be contained in the reflexion hyperplane 
w.r.t. any vanishing cycle if OQ = 0. 

The conjecture is affirmatively answered for the positive definite cases ADE in 
[Bo,Ch.V,§6] (cf. [S9]), for the positive semidefinite case Ei for I = 6,7,8 in [S41, §10] 
(a modification of the conjecture is necessary if ao ^ 0) and for the 14 exceptional cases 
(unpublished note). The conjecture has quite important consequence in the study of 
period map associated to a primitive form [S3]. Namely, it implies the existence of 
flat structure on the invariant ring of the monodromy group, (cf. [S41-S45,S9]). 

3. Cyclotomic exponents ew{0- ^ny monic cyclotomic polynomial ip(\) has 
a unique expression: 

(3.1) <p(\) = l[(\i-l) 
i\h 

e(i) 

for some integers e(i) € Z for i £ N with i | h. (Here h is an integer such that all roots 
of ip(X) = 0 are h-th roots of unity.) The exponents e(i) are given by the following 
formulae: 

(3.2) m e{m) = ^/x(d)A(m/d), 
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(3.2)* A(k) = J2de(d) 
d\k 

for m, k 6 N. Here the summation index d runs over positive integers, A(k) is the sum 
of fc-th powers of roots of y>(A) = 0 (cf. (2.3)) and //(d) denotes the Mobius function 
indeZ(cf. [H, ch.II]). 

Proof. Both side of (3.2) are additive with respect to the product of cyclotomic 
polynomials. Hence it is sufficient to verify the formula only for (p(X) = X1 — 1, 
i e N. The LHS is i8m^ (S =Kronecker's delta). Since A(m/d) is i or 0 according as 
i | (m/d) or not, the RHS is either 0 in case i \ m, or equal to i • Y^, ^{d) where d runs 
in {d € Z>i : d | (m/i)} in case i | m. Due to a property of the Mobius function ([H 
(2.2)]) this is zero except for the case m/i = 1. The (3.2)* is obtained from (3.2) by 
a use of the Mobius inversion formula. D 

For a weight system W, we decompose the characteristic polynomial tpw as in 
(3.1). We shall call the exponent e(i) the cyclotomic exponent for the weight system 
W and denote it by ew(i)> So, combining (3.2) with (2.5), we obtain explicit formulae 
for the exponents ew(i)' Putting k = 0 in (3.2)*, one obtains an expression of the 
rank: 

(3.3) Vw^^iewtt) 
i\h 

which is nothing but the deg((pw)> The multiplicity of the root 1 in <pwW = 0 is 
equal to CLQ + ah = 2ao (recall the fact — h < mi, • • •,m^ < 2h) and is given by 

(3.4) 2ao = J2ewtt)- 
i\h 

The ao is called the genus of the weight system (cf. Remark 10.3 2). 

4. Poset M(W). For a primitive weight system W, we attach a poset M(W) 
consisting of some finite number of positive integers such that the cyclotomic exponent 
ew can be regarded as a nowhere vanishing function on M(W). From now on, we 
assume that the weight systems are primitive. 

For h € Z>o, denote by Div (h) the poset consisting of all positive integral divisors 
of /i, where the incidence relation p -< q for p, q G Div (ft) holds iff p | q. So p V q := 
1cm (p, q) and p A q := gcd(p, q). The unit 1 is the minimum and ft is the maximum 
element in Div (ft). For a triplet p = (pi,P2,P3) of integers with pi > 2 (i — 1,2,3) 
and 1cm (p) = ft, put 

(4.0) M(p) := the subposet of Div (ft) generated by pi   (i = 1,2,3). 

That is:   M(p) = {l,p; (1 < i < 3), pij := pi V pj (1 < ij < 3) and P123 := 
Pi Vp2 Vps = ft}. So ifMQ?) < 8. The projection map 

(4.1) $ : Div(h) -> M(p),    d i-> max{^ € M(p) : f | d} 

is a poset homomorphism (i.e. the incidence relations are preserved). 
Let pi^rj) for £,77 G M(p) be the Mobius function (cf. [H]). That is: Ji is an 

integral valued function on M(p) x M(p) such that Ji(^r)) = 0 for ^ f 77, Ji{^0 = 1 
for ^ G M(p), and E^^ £(£, A) = E^Ah^^) = 0 for a11 C and 77 G M(p) with 

f I ry (here by the notation £ 177, we mean £ | 77 and £ / 7/).   Let us extend the 
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domain of Jl from M(p) x M(p) to M(p) x Div(h) by putting Ji(^,rj) = 0 for (£,77) 6 
M(p) x (Div(h)\M(p)). 

ASSERTION 4.1. For any (£,77) E M(p) x Div(h), one has 

(4.2) £     tilM =»&*). 
d\ri 

de*-1^) 

Proof.   Consider a function /(£, rj) :=   ^ M7?/^) in (^7/) ^ -^(P) 
x Div(h). 

Clearly, /(£, rj) is 0 unless £ | rj and is 1 if £ = 77. If £ 177, then there is a prime number 
p such that its exponent e in 77 is strictly larger than that in f. Divide the set of 
running index d in the definition of /(£,77) into three parts I, II and III according to 
the exponent of p in d equals to e, e — 1 or less than e — 1. Owing to a property of the 
Mobius function, the sums over I and II cancel each other and each term of III is zero, 
so fi^v) — 0- Thus /(£,77) = £(£,77) (= delta function) for any (£,77). Decomposing 
{d E Z>o : £ I d \ 77} =      U     $_1(A), one has the formula: 

A<EM(£) 

(4.3) £        Y,     Kv/d)=6^ri). 

A<EM(£)   d€fc-i(A) 

Consider this as summation for a function in A E M(g) for each fixed 77, and apply 
the inversion formula of Mobius on M(p). D 

Let W := (a, 6, c; /i) be a primitive weight system not of A;-type. Put 

(4.4) h/a = pi/q1,     h/b = p2/q2    and    h/c = p3/q3, 

where RHS are reduced expressions: that is: Pi,qi E Z>o with 

(4.5) (W,tt) = l 

for i = 1,2,3. So, pi = h/(h,a), qi = a/(h,a), P2 = h/(h,b),q2 = b/(h,b) and 
Ps — h>l{h,c),qz = c/(ft, c). By definition, p^ | ft for i = 1,2,3. One has inequalities 
and an equality among them: 

(4.6) Pi>2qi>2        (2 = 1,2,3) 

(4.7) lcm(pi,p2,P3) = ft 

Proo/. (4.6) is trivial from the fact: ft/a, ft/6, ft/c > 2. Since pi \ ft (z = 1,2,3), 
LHS of (4.7) divides the RHS. Primitivity of W implies (a, 6, c) = 1. This implies 
that the RHS divides LHS. D 

The regularity "(a, 6),(6, c) and (c, a) divide ft" implies the relation 

(4.8) (?*,#) = 1   for    l<t<i<3. 

For a primitive weight system W, we put 



990 K. SAITO 

LEMMA 4.2. For a primitive weight system W, let ji be the Mobius {unction (cf. 
[H]) for the poset M(W). Let us extend the domain of Ji from M(W) x M(W) to 
M(W) x Div (h) by putting Jx^rj) = 0 for (^r/) G M(W) x (Div (h)\M(W)). Then 
for any rj G Div (h), the cyclotomic exponent ewiv) defined in (3.1) is given by 

(4.10) r, ew(Ti)=    J2    AMt&l)' 
ZeM(w) 

where Aw(€) is given in (2.5). 
Proof Rewriting the formula (2.5) in terms of pi and g^, one observes that the 

value Aw(d) for d G Div(h) depends only on <I>(d), i.e. Aw(d) — Aw{$(d))- So, 
formula (3.2) for ewivi) can be rewritten as 

n ew(v) = 5>(dMfo/d) = Yl»(v/d)A(d) = ^tiv/QAim) 
d\7] d\rj d\r] 

= E (
A

M E tiv/d))= E (Mmz,v)). 
$eM(W)  ^ d\T] ' $€M{W)  ^ ^ 

de®-1^) 

D 
As a consequence of the lemma, we see that the cyclotomic exponent ew(v) Z5 

non zero only when rj belongs to M(W). So, we shall regard the exponent ew as a 
function on M(W). Nowhere vanishing property of ew as a function on M(W) will 
be proven in the next section. 

5. The sign of the cyclotomic exponent. We introduce a level n (5.1) on 
the poset M(W), and classify the isomorphism classes of the pair (M(W),n) into 
14 types (Theorem 5.2). The cyclotomic exponent ew is calculated as a nowhere 
vanishing function on M(W) according to the types. We prove the basic result of the 
present paper: the sign of ew(0 at £ G M(W) is equal to (—l)nK)+1 (Theorem 5.1). 
In particular, this includes the positivity of ew (ft),-since n(ft) = 3. 

The level of f G M(W) is defined by 

(5.1) n(t) :=t{ie {1,2,3}: pi \Z)}, 

One has 0 < n(f) < 3 and n(f) = 0 (resp. 3) if and only if f = 1 (resp. f = ft). It 
is clear that £ | ry implies n(£) < 71(77) and the equality holds if and only if £ = 77. 

THEOREM 5.1. Let W be a primitive weight system. 
1. The cyclotomic exponent ew(0 is non zero for all £ G M(W). The sign of 

ew(0 is equal to (-l)n«)+1. 
2. One has ew(0 = (-l)n^+1 for £ G M(W) t/n(0 = 0 or 1. 
Theorem 5.1 is a consequence of the next classification Theorem 5.2. 
Terminology. An isomorphism class of leveled posets (M(W),n) shall be called 

a type, where two leveled posets are isomorphic if there is an abstract isomorphism of 
posets which preserves the level. 

THEOREM 5.2. There are 14 types of leveled posets (M(W),n), which are num- 
bered from I to XIV. For each type, the cyclotomic exponent ew is given as a rational 
function in the coordinates Pi,Pij,h = P123 and qi,q2,q3' 

In the next Table A, we exhibit the 14 type posets together with their cyclotomic 
exponents as the rational function in the coordinate, where 
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i) An element £ € M(W) is represented by a vertex QQ of a graph. The vertices 
are ordered from left to right according to the level 0 < n < 3, 

ii) An edge    {£) {rjj     for f, 77 E M(W) is drawn, if and only if £^77 and 
there does not exist £ E M(W) such that QQrj. 

iii) The function attached near at a vertex (£J is the exponent ew{£) (in Table 
G, we shall describe the exponent in refined coordinates). 

iv) The first 5 types I- V are called dual type for the reason explained in Remark 
2 at the end of this §. 

Table A. 

rPiP2/pi2 

P2P3/P2 

PlP2P3/Pl23 

P123 

II. 

III. 

(P2 - 1)P3MP13 

Pl3 = P123 
) 

$2 - q3)/pi2q2q3 

Pl2 = Pl3 = Pl23     J 

IV. 
& 

-{Pi - i)/q2 (Pi - 1)(P2 - q2)/q2q3 

-(pij ^2 = Pl3 P3 = P23 = Pl3 = Pl23 J 

v.       ©- 
(At+ !)//» 

-\Pl = P2 = P3 = Pl2 = P23 = Pl3 — P123 J 
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VI. 

VII.      ( 1 

VIII.     ( i 

IX.        (i 

Pipz/pi 

(P2 - 1)P1P3/P13 

[PIS - P123    J 

Pl(P2P3 -Pi -P3)/Pl2 

Pl2 = Pl3 = P123 3 

-P2PS/P23 

{P1P2P3 -P1P2 -P2P3 -PSP^/PU 

\P3 = P23j 

-PiP$Pi2 l)/qiPi - 1)(P2 - l)/^3 

~f   P3 = P23 = Pl3 = P123J 

XL        (1 

XII. 

(Pi - 1)(P2 - l)/tf3 -PlP2lPl2 

P3 = Pl2 = P23 = Pl3 = Pl23 J 

"(Pi - l)/93 



(pi - i)(P2 -q2 -q3)/q2q3 
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XIIL        (J^) (Pi/   fe = P3 = Pl2 = P23 = Pl3 = P123      1 

XIV. 

-1 -(P12 -qi -g2)/gig2 (pi -gi)(P2 -q2)/qiq2q3 

(7) fol = P2 = Pl2    J (P3 = P23 = Pl3 = P123 J 

Proo/ o/ Theorem 5.2. The classification of the leveled posets is elementary and 
we give only an outline of the proof below. In fact, we classify leveled posets (M(p),n) 

generated by three integers (g) = (pi,P2,P3) with Pi>2, where the level is defined by 
(5.1). First, we list up all division relations among pi, p2 and p^, and then determine 
all isomorphism classes of (M(g),n) for each case (by examining the division relations 
among pij's and h). Up to a permutation of p^'s, we have the following cases. 

I. There are no incidence relations among pi, p2 and p3 and also among pi2, P23 

andpsi- 
II. P2^P3 and there are no incidence relations between pi and ^2, and pi and p^. 

III. P2 = P3 and there are no incidence relations among pi and P2 = P3. 

IV. p1^p2^P3(= ft). 
V.  pi =P2 =P3(= ^ 

VI. There are no incidence relations among pi, P2 and p3 and there are a relations 

P13 = P123 = ft- 
VII. There are no incidence relations among pi, P2 and ps and there are relations 

Pl2 = Pl3 = P123 = ft- 
VIII. There are no incidence relations among pi, P2 and P3 and there are relations 

Pl2 = P23 - P31 = P123 = ft- 
IX. P2^P3, there are no incidence relations pi , P2 and ps and there is a relation 

P3 I P12 so that P12 = P13 = ft- 
X. There are no incidence relations among pi and P2, and there is a relation 

Pi2^P3 and so ps = ft. 
XL There are no incidence relations between pi and P2, and there is a relation 

P12 = Ps = ft- 
XII. Pi^P2 and pi^ps, and there are no incidence relations among P2 and P3. 

XIIL   Pi^P2 =P3. 

XIV.  pi =P2^P3- 
For any of the above 14 cases, the existence of a weight system W belonging to the type 
is shown by the following two steps: i) take (p) = (pi,P25P3) satisfying the conditions, 

ii) show that the weight system W := (p2P3,P3Pi,PiP2; P1P2P3)/ gcd(p2P3,P3Pi,PiP2) 
is regular and M(p) = M(W). 

We prepare a lemma for a calculation of the cyclotomic exponent. 

ASSERTION 5.3.  Let W = (a, fe, c;/i) be a weight system and pi,P2,ps, qi, q2 and 
qs be integers introduced in (4-4)- 
i) // a I (ft - 6), then P2 \ pi and qi \ (p2 - £2). 
ii) // n(pi) = 1, then a \ ft, a \ b, a \ c and qi — 1. 
iii) //ps tp2, then ^ | (pi - gi). 
iv) // n(pz) — 3 (<=> ps = ft), then (ft, c) = 1 and q3 — c divides either pi - ^ or 

P2 -92- 
Proo/. i) If a I (ft - 6), then (a, ft) | b and hence (a, ft) | (6, ft). This means 

P2 = ft/(ft, 6) divides pi = ft/(ft,a). Since (a,h)qi \ (b,h)(p2 — ^2) and gi is prime to 
(6, ft)/(a, ft), one has gi | (p2 - ^2). 
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ii) If n(pi) = 1, then owing to i), neither a \ (h — b) nor a | (h — c). So the only 
possibility is a \ (h — a). Then a f b otherwise a \ (h — b). 

hi) Due to i), b \ (h — c). So either b \ (h — b) or b \ (h — a). Hence either b \ h and 
hence #2 = 1 for the first case, or q2 \ (pi - qi) for the latter case. 

iv) The fact ps = h and h/c = ps/qs imply iv). D 
We return to the proof of Theorem 5.2. The calculation of ew(Q is achieved by 

induction on the level n(£). More precisely, it is achieved depending on the subposet 
M^ := {rj e M(W) : 77 | £}. The restriction of the Mobius function /!(•,£) of M(W) 
to M^ is the Mobius function of M^. 

Case 0.   n(£) = 0. 

In this case, £ — 1 and M^ =(l) . Formula (4.10) implies 1 • ew(l) = A(l)ji(l, 1) 
= ,4(1) = -1 (2.6), and therefore 

(5.2) cw(l) = -l = (-l)n«)+1. 

Case 1.   n(£) = 1. 
By a permutation of the index, we may assume £ = pi and P2 f £,£3 t £• ^n view 0f 

the Assertion 5.3 ii), one has a \ h and £ = pi = h/a. So a£ = h = 0 (h). On the other 
hand, &f = hq2^/p2 £ 0 (ft) and c£ = hq3^/p3 ^ 0 (ft). So j4(f) = h/a-l=p1-l 

(2.5). The poset M^ is equal to    (l) (^i)    and the Mobius function /!(*,£) is o 

 £.So(4.1O)mpUes£ew(0=A(O^^ 
Hence 

(5.3) ew(0 = l = (-l)n(O+1. 

Case 2.   n(0 = 2. 

By permuting the indices 1,2 and 3, M^ is one of the following 3 cases. 

i) Mc =  ®<C^f^>® with £ = p12 and p3 \ £. 

-1 
l      ^o^^     1 

The Mobius function /i(*, £) is "^^-QI^^ . Since Pi | f, P2 I f and ^1 = q2 = 1, 
one has a£ = hqi^/pi = 0 (ft) and &£ = hq2^/p2 = 0 (ft). On the other hand, 
Ps t f and hence cf = ft^^/ps ^ 0 (ft). Thus A(0 = -(pi - l)(p2 - 1) (2.5). So 
(4.10) implies few(0 = A(€)ji(€,€) + A(pi)j5(pi,0 + A(p2)^(p2,0 + A(l)Ji(l,t) = 
-(Pi - 1)(P2 - 1) - (Pi - 1) - (P2 - 1) - 1 = -P1P2. Hence 

(5.4.1) ew(0 = -P1P2/P12, 

whose sign is obviously equal to (—l)n^)+1 = —1. 

ii) Mz =0 (gj) Q) with Z=P2= P12 and ps t ^ 

The Mobius function /!(*,£) is o o o. Due to Assertion 5.3 ii) and hi), 
Qi = 1, ft I (Pi - 1) and Afa) = pi - 1, Afo) = -(pi - l)(P2/92 - 1) (2.5). Then 
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(4.10) implies £ew(0 = Aftji&O + AWJUpuZ) +A{l)ji(l,0 = -(pi-Vfafa- 
1) - (pi - 1) - 0 = -(pi - I)p2/q2. Hence 

(5.4.2) ew(€) = -(Pi - 1)792, 

whose sign is obviously equal to (—l)n(£)+1 = — 1. 

iii) M^ =(l) (gj     with ^ = p1 = p2 = p12 and p3 \ £. 

The Mobius function /x(*,£) is   o o. As before, one has A(€) — —{pi/qi — 
1){P2/Q2 — 1) (2.5). Since ps \ pi — P2, the Assertion 5.3 iii) implies q\ \ pi — <72 
and 92 | Pi - 9i- The (4.10) implies £ew(0 - A(0M(^0 + A(1)?(1,0 = -(pi/^i - 
l)(P2/g2 - 1) + 1 = -f (^ - 9i - 92)/(9i92). Hence 

(5.4.3) ew(0 = -K-(Zi-g2)/(9i92). 

Let us show the negativity of this. Note that W cannot be of type At, for M{Ai) 
does not contain the sub-diagram M^. Hence one has p\jq\ > 2 and P2/92 > 2. So 
£ — (/i — 92 > 0 and the equality holds only when ft/a = ft/6 = 2, which is the case of 
type Ai and cannot occur. 

Case 3.   n(£) = 3. 
This is the case when £ = ft = P123. By a use of formula (5.6) at the Remark 

5.4.1., one may be able to reduce the proof of the positivity of ew(ft) to the existence 
of the exponents prime to the Coxeter number which is readily proven in [S2, (2.2)] 
(quoted in (1.7)). But this is not sufficient for our purpose, since we need an exact 
expression of ew(ft) for the later uses. So, we give here a direct proof of the positivity 
ofew{ti). 

There are 14 types of M^ according to the table A. In all cases A(h) = (pi/qi - 
1)(P2/Q2 — 1)(P3/(Z3 — 1) (2.5). Since the Mobius function depends on the type of M^, 
we calculate ew(h) separately in each types. 

I. Due to Assertion 5.3 ii), one has qi = 92 = 93 = 1- 

The Mobius function /!(*, ft) is given by       ^^T^X ^^f"    , so we have: 

hew(h) = (px - l)(p2 - l)(p3 - 1) + (Pi - 1)(P2 - 1) + (Pi - 1)(P3 - 1) 

+ (P2 - 1)(P3 - 1) + (Pi - 1) + (P2 - 1) + (P3 " 1) + 1 

= PlP2P3. 

Hence 

(5.5.1) ew(ti) = P1P2P3/P123, 

which is apparently positive. 
II. Due to Assertions 5.3 ii) and iii), one has 91 = 92 = 1 and 93 | (p2 — 1). 

The Mobius function /!(*, ft) is given by 

hew(h) = (pi - 1)(P2 - l)(p3/93 - 1) + (Pi - 1)(P2 - 1) 

+ (Pl " l)(P3/93 " 1) + (P2 - l)(P3/93 - 1) + (P2 - 1) 

= PI(P2 -l)p3/93. 
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Hence 

(5.5.2) ew(h) =pi(p2 - 1)^3/(^13^3), 

which is apparently positive for P2 > 2 (4.6). 
III. Due to Assertion 5.3 ii) and iii), one has qi = 1,^1 (P2 — Qs) and ^3 | (p2 — ^2)- 

-1 

The Mobius function /i(*, h) is given by       ^^-^^   ^^^.0i   , so we have: 

-1 
hew{h) = (pi - I)(p2/q2 - ^(ps/qs - 1) 

+{P2/q2 - l)(P3/<fe - 1) - (pi - 1) - 1 

= PIP2(P2 - q2 - qz)l{q2qz). 

Hence 

(5.5.3) ew(h) = PiP2(P2 - q2 - (Iz)l{pi2q2qz). 

The same argument for iii) of n(f) = 2 shows the positivity ew{h) > 0. 
IV. Due to Assertion 5.3 ii) and iii), and qi = 1 and #2 I (Pi — Qi)- 

The Mobius function /i(*,/i) is given by o e o o, so we have: hew(h) = 
(Pi - ^)(P2/q2 - tffa/qs -1) +(pi - l)(P2/q2 - 1) = (Pi - 1)(P2 - ^Wfegs). Hence 

(5-5.4) ew(/i) = (pi - l)(p2 - 92)/(g2ff3), 

which is apparently positive (see (4.6)). 

V. The Mobius function //(*,/&) is given by   o o, so we have:   hew{h) = 
(Pi/qi — l)(P2/q2 — l)(P3/#3 — 1) + 1 = Hw + 1? where //vy is the rank of the weight 
system W (1.3). Hence 

(5.5.5) ew(h) = (fiw + 1)/^, 

which is obviously positive. For later use, we describe ew(h) precisely. By definition, 
a = qi, b = q2, c = qs and (a, ft) = (6, ft) = (c, ft) = 1. These imply (a, b) = (6,c) 
= (c, a) = 1. We assume either i)a|ft — 6, b \ h — c and c \ ft — a, or ii) a | ft — 6, 
6 I ft - a and c | ft — a. Let us study each cases. 

i) Put k := (ft — 6)/a, I \— {h - c)/b, and m :— {h — d)jc. Solving this, we see 

(a, &, c; ft) = (Im — m + 1, raA; — fe + 1, kl — I + 1; klm + l)/d, 

where 

d := (Im — m + 1, fc/ra + 1) = {mk — k + 1, A;Zra + 1) 

= (W -Z + l,Wm + l) 

= (Zm — m + 1, mk — k + 1) = (rafe - k + 1, A:Z — Z + 1) 

= (fcZ-Z-f l,Zra-m + l). 

Then, since // = (ft - a) (ft — 6) (ft — c)/abc — klm, one has 

(5.5.6) e^(ft) = (A:Zm + l)/ft = d. 
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ii) Put k := (h — b)/a, I := (h — a)/b. Solving this, we see 

(a, 6, c; h) = (I — 1, k — 1, dm; A:/ — l)/<i, 

where 

d:={k- 1, M - 1) = (/ - 1, kl - 1) = (fe - 1,1 - 1) 

and m is a divisor of I such that (m, (k — l)/d) = 1. Then one has 

(5.5.7) ew(7i) = (^VF 4- l)/h = /fc/m - d. 

VI. Due to Assertion 5.3 ii), one has qi = q2 = Qs = 1. 

The Mobius function ji(*,h) is given by       ^^^^^o^i     ' so we ^ave: 

he w(h) = (pi-l) (^-1)^3-1) 

+ (Pl " 1)(P2 - 1) + (pa " 1)(P3 - 1) + (P2 - 1) 

= (P2 -l)PlP3. 

Hence 

(5.5.8) ew(h) = (p2 - IJpiPa/pis, 

which is apparently positive. 
VII. Due to Assertion 5.3 ii), one has <7i = q2 — qs = 1. 

-lo 

The Mobius function /i(*, ft) is given by       ^vl^^^^i0   > so we have: 

fte^ (ft) = (pi-l)(p2-l)(P3-l) 

+ (P2-1)(P3-1)-(P1-1)-1 

= Pl(P2P3 -P2 "PS)- 

Hence 

(5.5.9) ew(ft) =Pl(p2P3 -P2 -P3)/Pl2> 

Since P2 and ps are not less than 2, ew(ft) can be non-positive only when p2 — Pz — 2, 
which contradicts to independence of pi and p2. 

VIII. Due to Assertion 5.3 ii), one has qi = q2 = qs — 1. 

2     ^^"^^       1 
o<: o- 

The Mobius function /i(*, ft) is given by   ^\^^^^^     , so we have 

ftew(ft) = (pi-l)(P2-l)(P3-l) 

-(pl-l)-(p2-l)-(P3-l)-2 

= PlP2P3 - PlP2 - P2P3 - PlP3- 

Hence 

(5.5.10) ew{h) = {P1P2P3 -P1P2 -P2P3 -piP3)/Pi2' 
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Positivity of ew (h) can be seen as follows. First, observe that pi is not a prime number. 
(If pi were prime, then the equality P12 = P13 implies P2 = ps- A contradiction!) By a 
permutation of indices we assume pi > P2 > Ps > 6. Then ew(h) = (piP2P3 — P1P2 — 
P2P3 -PlP3)/Pl2  > (6pi£>2 -PlP2 -PlP2 -PlP2)/Pl2 > 3. 

IX. Due to Assertion 5.3 ii) and iii), we have qi = #2 = 1 and qs \ P2 — 1. 

The Mobius function /£(*, h) is given by   ^^s>\^^^>0 , so we have 

hew(h) = (pi - l)(p2 - 1)(P3/Q3 - 1) 

+(P2-1)(P3M-1)-(P1-1)-1 
= Pl(P2P3/q3 -P2 -Ps/qs)- 

Hence 

(5.5.11) ew(h) =Pi{(p2 - 1)(P3 - Q3)/q3 - l}/pi2' 

The positivity of this can be shown as follows. At least ew(h) is non negative for 
(4.6). If it were zero, then P2 — 1 = ^3,^3 — #3 = 1 and hence P2 = P3 = 2, qs = 1. 
This contradicts the independence of P2 and pa. 

X. One has a | ft, b \ h and qi = #2 = 1- Since c = #3 divides either ft—a = a(pi-l), 
h — b = b(p2 — 1) or ft — c and (c, ft) = 1, #3 divides either pi — 1 or P2 — 1. 

0 

The Mobius functi ion //(*, ft) is given by   ^\^^             > 

hew(h) = (pi - l)(p2 - l)(P3/#3 - 1) 

+(pi-l)(P2-l)-l 

= (Pi -1)(P2 -1W93. 

so we have 

Hence 

(5.5.12) e^(ft) = (pi -l)(p2-l)/#35 

which is non less than min{pi — l,p2 — 1} > 0. 
XL One has a \ ft, b \ ft and qi = #2 = 1- #3 divides either pi — 1 or P2 — 1 as in 

type X. 

The Mobius function /i(*, ft) is given by   ^^^^^^-^""^   5 so we have 

hew(h) = (pi - 1)(P2 - l)(P3/q3 - 1) 
-(Pi-lj-fo-l)-! 

= (pi - 1)(P2 - l)p3/#3 -P1P2. 

Hence 

(5.5.13) ew(h) = (pi - l)(p2 - l)/#3 -P1P2/P12. 

The positivity of ew(ft) can be seen as follows. First, we examine special case when 
one of pi and P2 is equal to 2. Assume pi = 2. So ft = P12 = 2p2 and we have 
ew(h) = (P2 — l)/#3 — 1- There are two cases to consider:  a) qs \ (pi — 1). Then, 



DUALITY WEIGHT SYSTEMS 999 

q3 = p1 — 1 = 1 and hence ew (h) = P2 — 1 — 1. This is non-positive only when p2 = 2, 
which is impossible for pi = p2, b) gs | (^2 — 1). Since pz = 2p2 is an even number, q^ 
is odd. Since P2 and #3 are odd, (p2 — l)/^3 is an even positive number > 2. 

Next we consider the general case when pi, P2 > 3. Let us show that pz/qs > 2. 
Otherwise, ps/qz = 2 and so ps = 2, #3 = 1. Then pi | p^ = 2 and P2 | Ps = 2 imply a 
contradiction: p1 = p2 = p3 = 2. Assume 53 | (p2 — 1) and put P2 — 1 = ^(/s- So 

/iew(/i) = (pi - l)pzr - pi{rqs + 1) = r{(pi - 1)^3 - Piqs} - Pi 

> riipx - I)p3-Pi{p3 - l)/2} -pi 

= r(pi/2-l)p3 + (r/2-l)pi 

>P3/2-pi/2>0. 

XII. One has qi = 1, ^ I (pi - 1) and ^3 | Pi — 1. 

O 70<^ ^O 
The Mobius function /x(*,/i) is given by        1 ^"^^^^rf    , so we have 

0 
~    ,1 

hew(h) = (Pi - I)(p2/q2 - ^{Ps/qs - 1) 

+ (Pl - l)(P2/</2 - 1) + (Pi - l)(P3/^3 - 1) + (Pi - 1) 

■   = (pi - l)p2P3/(<72<73). 

Hence 

(5.5.14) ew{h) = (pi - 1)P2P3/\q2q3P23), 

which is apparently positive. 
XIII. One has qi = 1 and h — p2 — Ps- 

The Mobius function /!(*, ft) is given by o o e so we have: 

ftew(ft) = (Pi - l)(P2/92 - l)(P3/^3 - 1) - (Pi - 1) 

= (Pi - 1)P2(P23 - 92 - flO/teMs). 

Hence 

(5.5.15) ev^(ft) = (pi - 1)(P23 - 92 - tfaVfaMs). 

Its positivity is shown by the same proof as in the case n(£) =2 iii). 
XIV. One has ft = P3, gi | P2 - 92 and 92 | Pi - q\- 

The Mobius function /!(*, ft) is given by o o o , so we have: 

ftevKft) = (PiM " l)(P2/92 - IXPSM -1) 
+(piM - i)(P2/g2 -1) 

= (Pi - 9i)(P2 - q-^Pzl^iqiq?). 

Hence 

(5.5.16) ew(ft) = (pi - gi)(p2 - q2)I(q^qz), 

is apparently positive (cf. (4.6)). 
These complete the proof of the Theorem 5.2. D 
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In the rest of §5, we discuss immediate consequences of Theorems 5.1-2. 

1. Positivity of the multiplicity. 
Recall the multiplicity (1.7) of a weight system W: mult (W) := ai + a_i = 

tt{i G {1,.. .,/i} | rrii 6 {±1}}. Since a_i = a^+i by the duality (1.4), this is equal 
to the multiplicity of roots exp(27T^/^l/h) in the equation (pwW = 0 (2.1). So, by 
definition of exponent ew(ti) (3.1), one has 

(5.6) ew(h) =mult(W). 

Therefore, the positivity of ew(h) in the Theorem 5.1 is equivalent to that of mult (W) 
and hence is equivalent to the existence of exponents prime to the Coxeter number h 
(cf. Theorem 1.1). This fact for the classical cases Ai, Di and Ei is well known ([Bo, 
Ch5 §6 n02 Thl (1)]) and plays a basic role in the invariant theory for the classical 
root systems [Sp][S9]. 

2. DEFINITION of the dual type posets. 
Let us call a poset (M(W),n) (but not W) of dual type, if there exists an involutive 

anti-automorphism t of M(W) (i.e. f -< 7] <£> L(€) y L(r]), and n(^) + n(^(^)) = 3 for 
^,7/ G M(W)). The next fact is an immediate consequence of the classification. 

Fact. A leveled poset (M(W),n) is of dual type, if and only if one has the equality: 

(5.7) ii{£ G M(W) I n(0 is  even } = #{£ G M(W) \ n(0 is  odd }. 

In fact, the dual type posets are the types I, II, III, IV or V. An involution is often 
given by L(^) :— /i/£, but it is not always the case. 

3. DETERMINATION of M{W) from yw 

Fact. The characteristic polynomial tpw determines the leveled poset (M(W),n) 
together with the generator pi, P2 and ps. 

A sketch of proof. The decomposition (3.1) gives the set |M(W)| and the parity 
of the level n(£) for £ G \M{W)\. Put h := max{\M(W)\}. Then, n(0 = 1 for all 
odd parity elements except for n(h) = 3, and n(£) = 2 for all even parity elements 
except for n(l) = 0. The generators = {£ | n'(0 = 1} U {£ | n(f) = 2, #Me < 3} U {£ | 
n(g) = 3, #M^ < 4} with multiplicity n(£) - #M^ 4- 2 (except for the case XIV). 

REMARK 5.4. 1. The characteristic polynomial tpw determines W up to finite, 
as follows. Since ai = qih/pi (i = 1,2,3), one needs the data of qi (i = 1,2,3) 
to recover the weights. If n(pi) = 1 then ^ = 1. The formula of ew(€) in Table 
A together with its value determines qi except for the 2 cases: III. the equality 
q2q3ew{P2 — Ps) + P2 — <Z2 - ^3 •— 0 may have multi-solutions, and V (cf. Proof 
of Theorem 5.2 for the case V). 

2. The 14 types of posets are ordered according to their cardinality and degen- 
eration relations: 

XII 

VI 

XIV. 

XIIL 

V. 
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6.  Simplicity condition for the cyclotomic exponent. 
DEFINITION 6.1. Let us call a weight system W to be simple, if ew(£) G {±1} 

for all £ G M(W). In view of Theorem 5.1 1, this is equivalent to: 

(6.1) ew(0 = (-l)n^+1 

for all £ G M(W). We give a necessary and sufficient condition for W to be simple in 
the following Theorem 6.2. 

THEOREM 6.2. 1. A weight system W is simple, if and only if the multiplicity 
mult (W) (see (1.7) and (5.6)) is equal to 1. 

2. //mult (W) = 1, then M(W) is one of types I, II, III, IV, V or XL 
Proof. The condition mult (W) = 1 is necessary for W to be simple, because of 

the relation ew{h) = mult (W) (5.6). 
Assume mult (W) = 1 and let us show that ew(Q G {±1} for all £ G M(W). If 

n(£) = 0 or 1, then ew{Q is automatically —1 or 1, respectively (Theorem 5.1 2). If 
n(£) = 3 then £ = h and ew{h) = mult (W) = 1 by the assumption. Therefore we 
have only to show: 
a) ew{Q = -1 for f G M(VF) with n(f) = 2 assuming ew(h) = 1, 
b) ew(ft) > 2 for any PF of non-dual type except for the type XL 

We use (5.4)-(5.5) and Table A without referring to them explicitly. 

Proof of a). 
I. ew(h) = 1 implies P1P2P3 = lcm(pi,p2,P3). Hence, pi1p2 and p^ are mutually 

prime. Therefore ew(Pij) = —PiPj/Pij = —I for 1 < i ^ j < 3. 

II. Since (p2 - l)/q3 is an integer, ew(h) = ((P2 - 1)I<to){piPzIPiz) = 1 implies 
(P2 — 1)/<Z3 = 1 and PiPs/pu = 1. Prom the first equality, we obtain e^ps) = 1- 
From the latter equality, we obtain (pi,P3) = 1. Since P2 \ ps, one has (pi,P2) = 1 
and eiv(pi2) = -P1P2/P12 = -1- 

III. Since (p2-q2-qz)lQ2qs is an integer, eiv(h) = (pi^/p^Xfe-^-tfs)/^^2^3) = 
1 implies -e^fe) = (P2 - 92 - tfs)/^^ = 1 and P1P2/P12 = 1. 

IV. 91 = 1 and ft = api. So pi | P2 implies 6 = (a, 6)92 and P2 = pia/(a, b). Due 
to Assertion hi) and iv), one has #2 | {Pi -* 1)5 (c5 ft) = 1 and c — q^. Since (a, 6, c; ft) 
is regular, there are 3 cases to consider, i) c \ ft, ii) c | (ft — 6), iii) c | (ft — a) and 
(6,c) I ft. 

i) c = 1 and this case is included in ii). ii) c | (ft — b) — (ft,b){p2 - 92) and 
hence 93 = c | (p2 - 92). Then eiy(ft) = ((pi - l)/q2){{p2 - q2)/q3) = 1 implies 
1 = (pi - l)/q2 = -e(p2). iii) c | (ft - a) = a(pi - 1). Since (c,ft) = (93,^3) = 1, so 
(c,a) = 1 and therefore #3 | (pi - 1). On the other hand (92,qs) = 1 (4.8) together 
with ew(h) = ((pi - 1)/9293)(P2 -^2) = 1 implies (pi - l)/^^ = 1 and P2 - q2 = 1- 
The second equality together with the general fact 2 < P2/92 implies P2 = 2 and 
#2: = 1. Then 2 < pi < P2 = 2 is impossible so that this case cannot occur. 

V. There is no element £ G M(W) with n(£) = 2. 

Proo/ of b). 
VI. Suppose evy(ft) = 1. Then ew(ft) > P2 — 1 implies P2 = 2. This is impossible, 

since P2 | P13 implies either P2 | pi or P2 | P3, which contradicts the incidencialy 
independence of P2 from pi and ps. 

VII. First note that P1P2 > P12, else P1P2 = P12 = P13 = PiPs/ipiiPs) implies 
P2 I P3: a contradiction. For the same reason, pips > P13. These imply that P2 and ps 
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cannot be prime numbers. (If p2 were a prime, then P1P2 > pu implies P2 | pi.) So we 
haveP2,.Ps > 4. One has ew(h) = PiP2/pi2+PiP3/pi3+Pi{(P2-2)(p3 -2)-2}/p12 > 
P1P2/P12 +P1P3/P13 > 4. 

VIII. Observe that any of pi is not a prime number. (Suppose pi were a prime. 
Then p^ — p\P2 equals p\z — P1P3 implies P2 = P3- A contradiction!). By permuta- 
tion of indices we may assume pi > P2 > P3 > 6. Then ew{h) = (P1P2P3 — P1P2 — 
P2P3 - PlP3)/Pl2 > (6P1P2 - P1P2 - P1P2 - PlP2)IP\2 > 3. 

IX. Since P12 = PiP2/(pi,P2), the formula for ew{h) is rewritten as ew(h) = 
(Pi5P2){p3/g3(l - I/P2) - I}- Suppose (pi,p2) ^ 1. Then substituting (^1,^2) > 
2,P2 > 4 and ps/tfs > 2 in the expression of ew(h), one obtains e^(/i) > 1 and the 
equality ew(h) = 1 occurs only when P2 — 4 and Ps/gs = 2. Since (^3,^3) = 1, this 
implies #3 = 1 and p^ = 2, which contradicts P2 \ P3. Therefore we have (pi,P2) = 1. 
Then p1p2 = P12 = P13 = PiP3/(pi,P3) and hence ^3 = ^2(^1,^3)- So we have 
ew(h) = (P2 - l)(pi,P3)/q3 - 1. Since P2 ^ P3, we have {pup*) > 2. Therefore 
ew{h) = 1 implies (p2 — l)/^3 = 1 and (pi,P3) = 2. But this gives a contradiction, 
for (pi,P3) = 2 implies that pi and ^3 are even and hence (P11P2) = 1 implies P2 is 
odd. Then </2 = P2 — 1 is even and hence (p2, #2) contains a factor 2^1. 

X. Suppose ep^(/i) = 1. Since #3 divides either pi — 1 or P2 — 1, assume #3 | (pi — 1). 
Then ((pi — l)/q3)(p2 — 1) = 1 implies #3 = pi — 1 and P2 = 2. Since pi and P2 are 
independent, pi is odd. This is a contradiction, since P2 | ps implies ps is even and 
Q3 — Pi — 1 implies #3 is even, contradicting (ps,^) = 1. 

XL There is no element f E M(W) with n(^) = 2. 

XII. Similar to IV, one has #1 = 1,/i = pia, 6 = ^(a, &),P2 = pia/(a, 6),c = 
<73(a,c),p3 = pia/(a,c), and ^2,^3 | (pi - 1). The fact Jcra(pi,p2,P3) = /i im- 
plies a = /cm(a/(a, 6), a/(a, c)) and hence gcd((a, 6), (a, c)) = 1. Then P2P3/P23 = 
Pia/(a,6)(a,c), where the factor a/(a,b)(a,c) is an integer. Thus ew(/0 = (Pi — 
^)P2P3/q2q3P23 = {(Pi - I)a/(a,b)(a,c)}pi/q2q3, where the factor {*} is an integer 
and the denominator #2(73 is prime to pi. Then the fact evr(^) is an integer implies 
that (72<Z3 divides the factor {*} and that ew(h) is a multiple of pi > 2. 

XIII. There is no element f G M(W) with n(£) = 2. Nevertheless, we show 
ew(h) > 2. In this case, qi = 1 and h = pia. Since h = P2 = Ps, one gets q2 — b 
and gs = c. (^2,^2) = (^3,^3) = 1 imply (02, Pi a) = (03, Pi a) = 1- (&,c) | ft implies 
fe, ^3) = 1- Consider the following cases: i) b \ (ft - 1) and c | (ft - a), ii) b \ (ft - a) 
and c I (h — b), iii) 6 | (ft - a) and c | (ft - c), iv) b \ (ft - &) and c | (ft — 6), v) 6 | (ft — 6) 
and c I (ft — c), vi) b \ (ft — c) and c | (ft — b). 

i) q2 I (Pi - 1) and #3 | (pi - 1), so (#2,^3) = 1 implies #2^3 I (pi - 1). Hence 
Pi-q2-q3 > 02^3-02-03 + 1 > (02-l)(03-l) > 0 and e^(ft) = ((pi-l)/gM3)(P2- 
02 - 03) > 1 * (2pi - 02 - 03) > Pi > 2. 

ii) 02 I (Pi - 1) and q3 \ (p2 - 02). So e^(ft) = ((pi - 1)/#2)((P2 - 02 - 03)/03) = 1 
implies pi — 1 = 02 and P2 - 02 = 2^3. This is impossible, since the last equality 
implies that P2 and 02 are simultaneously odd and hence pi = 1 + 02 is even. This 
contradicts pi | P2. 

iii) 02 I (Pi - 1) and 03 | ft, so 03 = 1. Then ew(h) > 2 can be shown similar to 
the case i). 

iv) q2 I ft and qs \ (pia - #2), so #2 = 1. Then ew(h) > 2 can be shown similar to 
the case ii). 
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v) #2 | h and qs | ft, so q2 = qs = 1. Then eTy(ft) > 2 can be shown similar to the 
case i). 

vi) Q2 | (pia - qs) and ^3 | pia - ^2. Put pia - q3 = uq2 and pia - q2 = vq3. 
Then (u — 1)^2 = (v — 1)^3 and (925^3) = 1 implies the existence of r > 0 such that 
u-1 = rqs^v — l = rq2 andpia = rq2qz+q2 + qz- Thus, e^(ft) = (pi — l)r. Therefore 
evr(ft) = 1 implies pi = 2 and r = 1. Then pia + 1 = (^2 + 1)(^3 + 1) and pi = 2 
imply that ^ and (73 are even numbers contradicting (^2,^3) = 1. 

XIV. Put p := pi = P2 and d — (ft, a) = (ft, 6) so that ft = pd, a — q\d, b = q2d 
and (p,qi) = (p,#2) = 1. One has ps = ft = pd,^3 = c and (qs.pd) = 1. The 
regularity of the weight system implies that a, 5 and c divide either ft — a or ft — 6. 
Because of the symmetry among a and 6, we consider only the following 4 cases: 
i) a I (ft — a), b \ (ft — b),c | (ft — a), ii) a | (ft — a), b \ (ft — a),c | (ft — a), hi) 
a I (ft -a), b I (ft-a),c| (ft-6),iv) a| (ft-6),6| (ft-6),c| (ft-a). 

i) Qi — Q2 = 1 and 93 | (p - l)d and hence #3 | p - 1. Then ew(ft) = (p - l)(p — 
l)/qf3 = 1 implies p — 1 = 1 and (p — l)/q3 = 1. So p = 2 and qi — q2 — qs = 1 and 
hence W = (d, d, 1; 2d) is of type A^, which is excluded from the consideration. 

ii) qi = 1,^2 I P - 1 and (fe I (p - l)d and so ^3 | p - 1. Since (6,c) = (92,93) 
divides h = pd and ((fcjP) = (93,^) = 1, one has (92,93) = 1. Thus ew(ft) = 
((p - 1)/9293)(P - 92) = 1 implies p - 1 = 9293 and p - 92 = 1. For p/92 > 2, this is 
possible only when 92 = 1 and p = 2 and therefore 92 = 93 = 1. This case is excluded 
as type At as in the case i). 

hi) 91 = 1,92 |pi-l and 93 IP2-92. Thus ew(ft) = ((p- l)/92)((p-92)/93) = 1 
implies p— 1 = 92. Again p/92 > 2 implies p = 2 and 91 = 92 = 1. So W = (d, d, 1; 2<i) 
is of type At and is excluded. 

iv) 91 I (P - ^2), 92 I (p - 9i) and 93 | (p - 91). Since (6,c) = (92,93) divides ft 
and (93, ft) = 1, one has (92,93) = 1. Thus ew(h) = ((p - 9i)/9293)((p - 02)M) = 1 
implies p — 91 =9293 and p — 92 — 9i. This implies 93 = 1. Together with the fact 
p/9i,p/92 > 2 one has p = 2 and 91 = 92 = 1. So W = (d, d, 1; 2d) is of type A^ and 
is excluded. 

These complete a proof of Theorem 6.2. D 
Some additional calculations to the proof of Theorem 6.2 enable to list up all 

simple weight systems. Precisely, let us call a poset M(p) generated by three integers 
(p) = (pi,p2,P3) simple, if there exists a weight system W of multiplicity 1 such that 
M(p) = M(W)j and call W a (simple) weight system representing M(p). Then the 
next theorem gives a list of all simple posets together with a list of all weight systems 
representing them. For a relation with geometry, see Corollary 10.2 2 and Remark 
10.3 3. 

THEOREM 6.3. Consider the poset M(p) generated by three integers (p) = 
(Pi,P2,P3) with Pi > 2. For each type of M(p), we give a list of: 

i)   The arithmetic conditions for M(p) to be simple, 
ii)   The list of simple weight systems W representing M(p), 
hi)   The rank jiw 0f weight systems W representing M(p). 

I. The poset M(p) is simple of type I, if and only if 

(6.2) {pupj) = 1 

for ij = 1,2, 3 and i ^ j.  The simple weight system representing M(p) is unique and 
is given by 

(6.3) W = (piP2,P2P3,P3Pi;PiP2P3) 
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(6-4) Wv = (Pi-l)(P2-l)(P3-l). 

II. The poset M(p) is simple of type II, if and only if 

(6-5) ft^PSi     (PiiPs) = 1    and     {p2 - l^ps) = 1. 

T/ze simple weight system representing M(p) is uniquely given by 

(6.6) W = (P3,P1P3/P2, (P2 - l)pi;piP3) 

(6-7) fJLW = (px - l)(p3 -^2 + 1). 

III. 27ie pose^ M(p) Z5 simple of type III, z/ and on/y z/ 

(6.8) P2 = Ps    and   (pi,p2) = 1. 

TTie simple weight system representing M(p) is given by 

(6.9) W = (p2,Piq2,Piq3',PiP2) 

for any positive integers q2 and qs such that p2 + 1 = (#2 + 1)(#3 + 1) and (Q2, QS) — 1- 

(6.10) /iw = (pi-l)(P2 + l). 

IV. T/ie pose^ M(p) is simple of type IV, i/ and on/?/ z/ 

(6.11) i^M^Ps,     (Pi - 1^2) = 1    ^d    (p2 -Pi + 1,P3) = 1. 

The simple weight system representing M(p) is uniquely given by 

(6.12) W = (P3/P1, (Pi - 1)P3M,P2 -Pi + 1;P3) 

(6.13) \iw = ps - P2 + Pi - 1. 

V. Tfte ^ose^ M(p) is simple of type V, z/ and only if 

(6.14) pi =p2 =P3 =: ft. 

Tfte simple weight system representing M(p) is either type Ah-i or 

(6.15) W = (Im - m + 1, mk - k + 1, M - 1 + 1; h) 

for positive integers k, I and m with klm = h — 1 and (Zra — m + 1, ft) = 1. 

(6.16) /ny = ft-l. 

VI. VII, VIII, IX, X, XII, XIII or XIV.   The poset M(p) cannot be simple. 
XL Tfte poset M(p) is simple of type XI, if and only if (pi,P2,P3) belongs to one of 
the following three series: 

(6.17) Pi =2,    p2 = 4fc + 3,    p3 = 2(4k + 3)    for   k <E Z>o, 

(6.18) pi =3,    p2 = 3A: + 2,    p3 = 3(3A: + 2)    for   k e Z>o, 

(6.19) pi =4,    p2 = 2(2A: + l),    ps = 4(2A: +1)    for   keZ>Q. 
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Then the simple weight system representing M(p) is uniquely given by 

(6.20) W = {pzlPuPzlP2,qz\Pz) 

for qs = 2k H-1,3k + 1, and Ak + 1, respectively.  The rank fi\v is given by 

(6.21) fiw = Pi + P2 + Ps - 1. 

According to the series (6.18), (6.19) and (6.20), the representing weight system W, 
its rank fiw and its smallest exponent ew are given by 

(6.22) W = (4fc + 3,2,2ft+l;2(4fc + 3)), 

Hw = 12fc + 10,   ew = — 2fc,   z/py = 4A;   anc^ ao = 2,   /or  A; E Z>o, 

(6.23) Wr = (3ifc + 2>3l3A; + l;3(3A; + 2)), 

ixw — 12A; + 10,   e^y = — 3fc,   Z/VK = 6A:   and  ao = 2,   /or A; G Z>o, 

(6.24) Wr = (2Jfe + l,2,4ik + l;4(2fc + l)), 

/xvr = 12fe + 9,   evv = —2fc,   z/{y = 6fc   and  ao = 2,   /or fe G ^>o5 

Froo/. I. Simplicity of W implies P1P2P3 = Pi23- Since gi = #2 = ^3 = 1, weights 
a = /i/pi, 6 = h/p2, c — h/ps are uniquely determined. 

II. Simplicity of W implies qs = P2 - I1P1P2 = P12 and pxps = .P123, so {pi.ps) = 
(Pi>P2) = 1 and (p2 - 1,^3) = 1. Since qi = q2 = 1 and #3 = P2 - 1, the representing 
weights system is given by a = h/pi = ps, b = h/p2 = P1P3/P2 and c = (p2 — tyh/ps = 
(P2 - l)Pi- Conversely, for given p with ^2^3, put ^3 := P2 — 1- Then one has 
fe,P3) = (P2 - 1,P3) = 1 and 53/^3 = {p2 - IJ/P3 < P2/P3 < 1/2. 

III. Simplicity of W implies P2 = ^2^3 + ^2 + ^3 and P1P2 = Pi2(= /i). Conversely, 
for a given p with the conditions, any positive integral solution #2 ,#3 of the equality 
P2 + 1 = (92 + l)fe 4- 1) with (02,03) = 1 satisfies (^2,02) = (psjtfs) = 1 and the 
inequality 02/P2 < (g2 + l)/(P2 + l) = l/fe + l) < 1/2 and the inequality ^3/^3 < 1/2. 

IV. Simplicity of W implies #2 = Pi — 1 and ^3 = P2 - 02' = P2 — Pi + 1- Since 
0i = 1, the weights are given by a = /i/pi, 6 = 02^/^2 = (pi — l)h/P2 and c = q^h/pz = 
P2 — Pi + 1- Conversely, for a given p with the conditions, put 01 = 1,02 = Pi — 1 and 
qs = P2 - Pi + I- Then (02^2) = 1, O^Ps) = 1 and 02/P2 = (pi - 1)/P2 < P1/P2 < 
l/2,03/P3 = (P2 -Pi + 1)/P3 < P2/P3 < 1/2. 

V. Recall the descriptions i) and ii) of the weight system of type V in the proof 
of Theorem 5.1. The case i) yields the result. The case ii) reduces to the type At, 
since ew(h) = 1 implies 1 = I7 and k — 1 = d. 

XI. Since n(pi) = n(p2) = 1 and n(p$) = 3, one has qi = 02 = 1 and q3 = c 
(Assertion 5.3). This implies (6.20). The (6.21) follows from hew(h) = //- (pi - 1) - 
(P2 — 1) — 1 by putting ew(h) = 1. 

We determine the set pi,P2,P3 and 03. In the proof of Theorem 5.1, we have 
shown that P3/03 > 2. Since 03 divides either pi - 1 or P2 — 1, we may assume 
03 I P2 - 1 and put P2-l= rqs. So hew(h) = K(Pi - 1)P3 - Pi ^3} - Pi- 

If Pi > 5, then 

hew(h) > r(4p3 - 503) - 5 = h + r(p3 - 2q3)o/2 4- (r3 - 2)p3/2 - 5. 

Since ps > 203, the second term is positive. Since r3 — 2 > 1 and P3/2 > pi > 5 
the sum of the last two terms is non negative. This means ew(h) > 1. In the other 
words, if ew{h) = 1, then P2 is either 2, 3, or 4. 
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Case pi = 2. Then h = ps — 2p2 and P2 is odd number. Then (pa, #3) = 1 implies 
43 is odd so that r is a multiple of 2. On the other hand, hew(h) — r{p^ — 2^3} - 2 
and hence ejy(/i) = r(l - 93/(^3+)) - l/(r^3 + 1) > r - 1 - 1/(^3 4-1). Therefore 
eW/(/i) = 1 implies r < 2 and so r = 2. Then, we have 

Pi = 2,p2 = 2?3 + 1,P3 = 4<73 + 2. 

Since #3 is odd, by putting qs = 2k + I for k e Z>o, the representing weight system 
is given by (6.22). 

Case p1 = 3. Then hew(h) = r{2p3 - Sqs} -3 = h + r(ps- 2q3 - 1)3/2 + (r/2 - 
1)(P3 + 3)- Clearly the second and the third terms are non negative for r > 2. The 
last term is positive if r > 2. Hence r is either 2 or 1. If r = 2, then e(h) = 1 
implies pz = 2^3 + 1. On the other hand, r = 2 means P2 — 1 = 2^3. These imply 
Ps = 2qs 4- 1 = P2, which is impossible. Thus r = 1 and hew(h) = Zps — Sqs — 3. 
Thus ew(h) = 1 implies ps = 3(^3 + 1) and ps = qs + 1. 

Pi = 3,P2 = 93 + 1,P3 = 3(^3 + 1) 

where ^3 should obey conditions (pi,P2) = (ps^s) = 1. The conditions on qs means 
qs ^0,-1 mod 3. By putting qs = 3k + 1 for k € Z>o, 

p=(3,3A; + 2,3(3A; + 2)) 

the representing weight system is given by (6.23). 
Case px = 4. hew(h) = r{3p3 - 4^} - 4 = ft + r(ps - 2qs)2 + (r - l)ps - 4. The 

second term is always positive. Since pi^ps and pi — 4, one has ps > 4 so that the 
sum of the last two terms is positive when r > 2. Therefore, if ew(h) = 1, then r = 1 
and P3 = 2^3 + 2. 

Pi = 4,^2 = ^3 + 1,P3 = 2tf3 + 2 

where qs obeys conditions (pi,P2) = 2 and (^3,93) = 1. The conditions on qs mean 
#3 ^ 0,-1,-2 (4) and qs ^ 0 mod 2. By putting qs = 4A: + 1 for A; G Z>o5 the 
representing weight system is given by (6.24). 

These complete the proof of Theorem 6.3. D 
COROLLARY 6.4. The rank of a simple weight system is determined only by its 

poset, independent of weight systems representing the poset. 
REMARK 6.5. Theorem 6.3 implies that a simple weight system is either non- 

degenerate dual type or degenerate non-dual type XI, where a weight system is called 
degenerate if it has exponent 0 (i.e. ao > 0). 

The simple weight systems of type XI (6.22-24) seem to give an interesting "series 
of moderate degeneration" of algebraic varieties. For instance, the initial (k = 0) 
weight system of the series is 

Es : (3,2,1; 6). 

This is one of three elliptic weight systems corresponding to simply elliptic singularities 
(see the remarks at the end of §11). The next (k = 1) weight systems in the series: 
(7,2,3;14), (5,3,4;15) and (3,2,5;12) are exactly the list of degenerate weight systems 
having one negative exponent. They correspond to homotopy K3-surfaces with elliptic 
fibrations studied in [S7, §3]. 
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7. Duality among weight systems. In this section, we introduce a concept 
of duality between two weight systems W and W* (Definition 7.5). The dual W* for 
a given W may not exist always, but is unique if it exists and then W is the dual of 
W*. The smallest exponent for W and W* coincide (Theorem 7.8). 

We give a list of dual pairs of weight systems (Theorem 7.9). As a consequence, 
we prove that a simple weight system with smallest exponent 1 or — 1 has always the 
dual weight system (Theorem 7.10). This gives an answer to our motivation explained 
at the introduction (see also §11-12). 

Before we define the dual of a weight system, we define the dual characteristic 
function <^(A) for any W. 

DEFINITION 7.1.  The dual characteristic function oiW is defined by 

(7.1) c^A) := n^'- i)"6"^ 
j\h 

whose total degree in A is called the dual rank of W and is given by 

(7.2) vw := -^j • ew(h/j) 
j\h 

G Z. The dual rank may not always be positive, since ipyy may have poles. We show 
in the next assertion that <p|y(A) for any weight system W have poles at most only 
at A = 1 of order 2ao. 

First, we give a preliminary inequality. Note that the multiplicity of the root 
exp(27r\/=T/d) (d G N d \ h) in the equation tpwW — 0 for a weight system W is 
J2d\i\hew(i)' So we have an inequality: 

(7.3) X>^)^0 

d\i\h 

for any d G Z>o. The multiplicity of zeros (or, minus of the order of poles) of <^(A) 
at A = exp(27r<\/—l/d) is given by the sum: 

(7.4) - ^ ew(h/j) 
d\j\h 

ASSERTION 7.2. 
1. The sum (7.4) is non-negative for any d > 1 with d \ h. 
2. The sum (7.4) for d = 1 taken with the minus sign is equal to 2ao, where 

ao := #{ exponents equal to 0} (cf. (3.4))- 
Proof 1. Put £ := h/d and rewrite the sum (7.4): fw{0 '-— — Ylk\£ ew(k). Since 

/w(£) = fw($(£)) for * defined in (4.3), we have only to check the non-negativity 
of fw(i) for £ G M(W) with £ ^ h. As in the proof of Theorem 5.1, let us denote 
by M^ the subposet of M(W) consisting of elements low or equal than £ so that 
the summation index k in fwiQ runs over the set J\/f. We proceed the calculation 
according to n(£) = 0,1 or 2. 

Case n(0 = 0. Clearly Mc =0 , fw(g) = -e^(l) = -(-1) = 1 > 0. 

Case n(0 = 1.   M^ = 0 © , so fw{£) = -ew(l) - ew{g) = 1-1 = 0 
(Theorem 5.1 2). 
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Case n(£) = 2. As in the proof of Theorem 5.1, we consider 3 cases. In any case, 
recall the fact — ew(0 > 1 (Theorem 5.1 1). 

i) M^ = ©<^^^>(<e = P12 ) • 

Then fw(€) = -(-1) - (1) - (1) - ew(0 = -ew(0 - 1 > 0. 

ii) M4 = © @ © . Then fw(0 = -(-1) - 1 - ew(0 > 1. 

iii) M4 = © ©. Then fw(€) = -(-1) - ew(€) = -ew(Z) + 1 > 2. 
2. The left hand side of (7.4) for d = 1 is equal to the minus of the multiplicity 

of the root A = 1 in ipwW = 0. Use the formula (3.4). D 
The weight system W is called non-degenerate if the genus is zero: i.e. ao = 0. 

So, the dual characterisitic function <^(A) is a polynomial, if and only if W is non- 
degenerate. In general, (A — l)2ao<^(A) is a cyclotomic polynomial of degree vw + 2ao 
without a root A = 1. Let us introduce dual exponents as follows. 

DEFINITION 7.3. The system of integers m* for 1 < i < vw + 2ao are called the 
dual exponents, if 0 < m* < h for 1 < i < vw + 2ao and 

(v-\-2ao 

(7.5) H (A - exp(27rV=lm*//l))    = (A - l)2aV^(A). 
2=1 

REMARK 7.4. Since vw + ^ao is not less than the Euler number of /i, it is positive. 
But vw {— deg(<p*)) may be negative (see the §8 for a formula for vw)- Nevertheless, 
one has the boundedness of vw from below. 

(7.6) [iw + h • vw > 0. 

Proof. The LHS of (7.5) is J2ieM(w)^ ~ h2li)e>w(i)> We decompose the sum 
according n(i) = 0,1,2 or 3. The terms for n(z) = 3 (i.e. i = h) are cancelled 
automatically. So, 

= -l + A2+ Y, (i-h2li)+   Y. {h2li-i)-\ew(i)\ 
n(i)=l n(i)=2 

The last term is automatically non-negative. Therefore, if the index set / :— {i £ 
M(W) | n(i) = 1} for the second term is empty, the sum is non-negative. Assume 
1^0. Then one has 

= (E*-1)+/l2(1-E1/*)+   E   (h2/i-i)-M)\ 
Vie/ / \ iGl        )        n(i)=2 

The set / consists at most of three integers, which are non less than 2 and mutually 
different (cf. (4.4)). So, the factor 1 — Y^i^i V* can be negative only when / = {2,3, 5}. 
Then the explicit formula for ew in Table A. I, shows that ew(i) = (—l)n(z) and 
\iy/ = vyj — 8. So, the formula (7.5) is proven. D 

DEFINITION 7.5. Let W and W* be weight systems and let yw and yw* be 
their characteristic polynomials, respectively. We say W is dual to W*, if one of the 
following three conditions is satisfied. 
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i) Vw ± (ywY and yw* = {vw)* (^ (^w)* = Vw)- 
ii) tpw — (vw)* and W — W* except for the next iii). 

iii) ipw. = (^w)* and VF and W* are of the form (6.15) where the order of the 
parameters k,l and m is reversed in W and W*. 
By definition, VF is dual to W* if and only if W* is dual to W. A weight system of the 
case ii) is called self-dual. The case iii) is introduced from a comparison with a duality 
in mathematical physics (see [T]). The definition of the duality can be reformulated 
in terms of cyclotomic exponents as follows. The verification of the equivalence is left 
to the reader. 

LEMMA 7.6.    A weight system W is dual to W*, if and only if the following 
conditions are satisfied, 

i) the Coxeter numbers for W and W* coincide. Put h := hw = hw* • 
ii) the involution L defined by 

i{d) := h/d     for    d G Div (h) 
induces an anti-isomorphisms of the posets: M(W) ~ M(W*). 
iii) for any £ € M(T;F)7 one has 

(7.7) ew(O+ew*(L(O)=0. 

iv) If M(W) = M(W*), then either W = W*, or W and W* are of the form (6.15) 
with reversed order of parameters k,l and m. 
Followings are immediate consequences of the definition. 

ASSERTION 7.7. 
1. Suppose that there is a weight system dual to W. Then W satisfies the following 

i)-iv). 
i) W is non-degenerate: i.e. Go = # {0 — exponents} == 0. 
ii) W is simple: mult (W) = ew(h) = 1. 
iii) the poset M(W) is of dual type. 
iv) the poset L(M(W)) is represented by a simple weight system. 

2. Conversely, suppose W is simple and L(M(W)) is represented by a simple 
weight system, then there is a weight system dual to W. 

Proof Assume an existence of a weight system dual to W. 
i) Since tpyy is a polynomial, one has ao < 0 and hence ao = 0. 
ii) Using (7.7) and Theorem 5.1 2, e\y(h) — —ev^*(^(/i)) = —ew*(l) = 1- 
iii) Due to the Theorem 6.2 and above ii), ew(0 = (-l)n(c). Then E4€M(w)("1)n(C) 

~ S^eMrvr) ew(0 = 2ao = 0 (above i)). This is the definition of the dual type poset 
(recall (5.7)). 
iv) Obviously, ^(M(W)) is represented by a weight system W, which is dual to W. 
Apply above ii) to VF* so that it is also simple. 

Conversely, if VF* is a simple weight system representing i{M(Wy) (in case 
j,(M(W)) = M(W), choose W* carefully in accordance with ii) and iii) of Defini- 
tion 7.5). Then the simplicity of W* and W together with the formula (6.1) implies 
the condition (7.7) and W* is dual to W. D 

Combining Assertion 7.7 2 with Theorem 6.3 (which gives conditions for an ex- 
istence of a simple weight system representing £(A'/(W))), one obtains conditions for 
a weight system to have a dual. This has two important consequences: i) unique- 
ness of the dual W*, and ii) coincidence of the smallest exponents for W and W*, as 
formulated in the next theorem. 
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THEOREM 7.8. 
1. The dual weight system of a given weight system W (if it exists) is uniquely 

determined by W.  We denote it by W*. 
2. IfW is simple of types either I or III then W is self-dual. If W is simple of 

type V, then W is either of type A^-i or of the form (6.15). 
3. The smallest exponents for W and W* coincide with each other. 
Proof 1. Let W be dual to W*. If L{M(W)) = M(W), then W is either self-dual 

or of the form (6.15) so the dual W* is uniquely defined. If L(M(W)) ^ M(W), then 
we have to show the uniqueness of simple weight system representing L(M(W)). Since 
M(W) is of dual type (Assertion 7.7 hi)), t(M(W)) is also of the same type and hence 
one of the types I ~ V. We know already by Theorem 6.3 (§6) that a poset of type 
II or IV can be always represented by a unique simple weight system. Therefore, it is 
sufficient to show that if M(W) is of type I, III or V, then one has L(M(W)) = M(W). 
Actually, this is proven in the next 2. 

2. Let M(p) be simple and of type either I, III or V. We show i(M(p)) = M(p) 
for each types separately. 

1. Recall Table A I and Theorem 6.3 1. The simplicity of M(p) implies P123 = 
P1P2P3 and pij = pipj for i ^ j. Then, L(pi) (= pus/Pi) is equal to pjk for {i,j, k} = 
{1,2,3}. This implies i(M(p)) = M(p). 

III. Recall Table A III and Theorem 6.3 III. Since (pi,P2) = 1, P2 = Ps and 
h = P1P2, one has L(PI) = P2. This implies i(M(p)) — M(jp). 

V. Since pi — P2 = ps = h, clearly, i{M{p)) = M(p). 
3. If W is self-dual, then e(W) = e(W*) and we finished the proof. If W is not 

self-dual, then because of 2, M(W) is either of the form (6.15) or of type II or IV. 
The smallest exponent (1.5) for the case (6.15) is given by 1 — (k — 1)(Z — l)(m - 1), 
which is invariant under the change of the order of A;, / and m. We prove the equality 
E(W) = e(W*) separately for the types II and IV in the following Theorem 7.9. D 

In the next Theorem 7.9, we list all dual pairs of weight systems and their smallest 
exponents. The result is described in terms of the poset M(p) generated by three 
integers p = (pi,P2,P3) with Pi > 2 (cf. §4), where h = lcm(pi,p2,P3)5 and t is the 
involution L(€) := h/t;. 

THEOREM 7.9.   Let M{p) be a simple poset generated by p = (pi,£>2,P3) with 
Pi>2 (cf. Theorem 6.3). For each type of M(p), we give a list of 
i) the conditions for i(M{p)) to be simple, 
ii) simple weight systems W and W* representing M(p) and L(M(P)), 

hi) the smallest exponents e := Sw — £w* for W and W*, 
iv) the condition for W to be self-dual. 

I. Let M(p) be simple of type I (cf. (6.2)). 
i) i(M(p)) = M{p). It is automatically simple. 
ii) The weight system representing M(p) = LM(P) is uniquely given by 

(7.9) W = W* := (piP2,P2P3,P3Pl',PlP2P3)> 

hi) £w = h' (1/pi + I/P2 + I/P3 - I), 
iv) W is automatically self-dual. 

II. Let M(p) be simple of type II (cf. (6.5)). 
i) i(M(p)) = M(pi,p3/p2,P3)' It is simple if and only if 

(7.10) (P3/P2-1,P3) = 1- 
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ii) The weight system representing M(p) and L(M(P)) are uniquely given by 

/7 11x W = {P3,pm/P2, (P2 - IJjPUPiPs), 

ill) 

(7.12) ew =P3 -Pi(P2 - 1)(P3/P2 - 1). 

iv) The weight system W is self-dual if and only if 

(7.13) pl=P3. 

III. Let M{p) be simple of type III (cf. (6.8)). 
i) L(M(P)) = M(p). It is automatically simple. 
ii) The weight systems representing M(p) = t(M(p)) are given by (6.9): 

W = W* = (p2,Piq2,Piq2',PiP2)- 

in) ew = -{pi - 1)(P2 - q2 - qs) + q2 + q3- 
iv) Any simple weight system representing M(p) is self-dual 

IV. Let M(p) be simple of type IV (cf. (6.11)). 
i) L{M(P)) — M(p3/p2,P3/pi,P3). It is simple if and only if 

(7.14) {P3/P2 - hPs/pi) = (P3/P1 - P3/P2 + 1,P3) = 1. 

ii) The weight systems representing M(p) and L(M(P)) are uniquely given by 

(7.15) 

iii) 

W = (Ps/Pl, (pi - 1)P3/P2,P2 "Pi + 1;P3), 
W^* = (P2, (P3/P2 - 1)P1,P3/P1 -P3/P2 + ijps))- 

(7.16) £^= P3/P1 - {P3/P2 - 1)(P2 "Pi + 1) 

= P3 - P2P3/P1 - (P3/Pl - P3/P2 + 1)(P2 - Pi + 1). 

iv) The weight system W is self-dual if and only if 

(7.17) PlP2=P3. 

V. Let M(p) be simple of type V (cf. (6.14)). 
i) i(M(p)) = M(p). /^ is automatically simple. 
ii) T/ie weight systems representing M(p) = i(M(p)) are either of type Ah-i or given 
by (6.15): 

,       v W = (Im — m-\- l,mfc — k + l,kl — I + l]klm-\-1), 
(7.1SJ W* = (lk-k + l,ml-l + l,km-m + li klm + 1). 

iii) ew = 1 - (ifc - 1)(/ - l)(m - 1). 
iv) A simple weight system representing M(p) is self-dual if either it is of type Ah-i 
or of the form (6.15) and k = 1,1 = m or m = k. 
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VI-XIV. // M(p) is one of types VI-XIV, then it is not of dual type and i(M(p)) 
cannot be represented by a weight system. 

Proof The calculations of i), ii) and iv) are easy exercise by a use of data and 
results of Theorem 6.3 §6. The only thing one need to show is the coincidence of 
the smallest exponents of W and W* for types II and IV. Recalling the formula 
e = a + b + c-hfoT the smallest exponent, we show the coincidence of the sum 
a -+- b + c of the weights for each cases. 

I. Recall Theorem 6.3 I and Theorem 7.8 2. 
II. Recall Table A II and Theorem 6.3 II. Since P2^P3, (piiPs) = 1 and h = pips, 

one has i(pi) = p3, ifa) = Pifa/ft), ^PiP2) = P3/P2 > 2 and ifa) = p1. Put 
Pi := Pi, P'2 := P3/P2 and p'3 := p3. Clearly (pi,^) = 1, P2M and Pi VP2 = P1P2 = 
Pi(p3/P2)' So, L(M(P)) = M(pf). The simplicity conditions-for M(p') are p,

3/pi{= 
P3/P1) # 1, (pi,P3)(= (PuPs)) = 1 and (P2 - JJPS) = (P3/.P2 - 1,P3) = 1. The simple 
weight system W representing M{p') is uniquely given by W* = (p3,piP2, (P3/P2 — 
l)pi]PiP3) (cf. (6.7)). By a use of these expressions of the weights, we see that the 
sum a + b + c = p3 +P1P3/P2 + {P2 - l)pi and a' + V + c' = p3 ■\-p1P2 + (P3/P2 - l)pi 
coincide. This proves evr = ^w* • 

III. Recall Theorem 6.3 III and Theorem 7.8 2. 
IV. Recall Table A, IV and Theorem 6.3 IV. Since 1 ^ Pi^P2^P3 — h, one has 

1 7^ P3/P2^P3/PihPs so that i(M(W)) is given by Mty) for pi = /i/p2, P2 = h/pi 
and P3 = p3 = h. Then the simplicity conditions for Mty) is: (#[ — l,^) — (P3/P2 — 
liPs/Pi) = 1 and (P2 -Pi + 1,^3) = (Ps/Pi -P3/P2 + 1,^3) = 1- The weight system 
representing M(g') is uniquely given by P7* = (^2, (/1/P2 — l)Pi,h/pi — h/pi + 1; ft) 
(cf. (6.13)). By a use of these expression of weights, one see that the sum a 4- b + c = 
A/pi + (pi - l)h/p2 +P2 - Pi +1 and a' + 6' + c' = P2 + (/i/p2 - l)pi + h/pi - /1/P2 +1 
coincide. This proves ew = ew*- 

V. Recall Theorem 6.3 V and Theorem 7.8 2. □ 
As an application of Theorems 7.8 and 7.9, we obtain the following existence of 

the duality among weight systems with the smallest exponent equal to 1 or —1, respec- 
tively. This result is a starting point of the present work as explained in introduction. 
In §12 and 13, we shall study these cases more closely. 

THEOREM 7.10. Let W be a primitive weight system. 
1. // all exponents are positive, then W is self-dual. 
2. If W is simple and non-degenerate with ew = —1; then it is dual to a weight 

system with ew = — 1. 
Proof 1. Suppose that all exponents for W are positive. Due to the positivity 

mult (W) > 0 (cf. (5.6) and Theorem 5.1 1) and non-existence of exponent —1, there 
exists exponent equal to 1, which should be the smallest. Then due to the simplicity 
of the smallest exponent (cf. (1.5)), W is simple: mult (W) = 1. Therefore, M(W) is 
either of types I ~ V or of type XI (Theorem 6.2 2). But W cannot be of type XI, 
for the smallest exponent for type XI is non-positive (Theorem 6.3 XI). The weight 
system W is already self-dual, if M(W) is of type either I, III or V (Theorem 7.8 2). 
Thus we have only to show that W satisfies the self-duality conditions in Theorem 
7.9, when M(W) is of type II or IV. 

II. Recall descriptions (6.5), (6.6) of a simple weight system W of type II. Note 
that the (7.10) gives the smallest exponent for W, even W* may not exist. Put 
u := P3/P2 — 1 > 1 and v := P2 — 1 > 1 so that (7.10) yields piuv = (u + l)(v + l)— e. 
Let us show pi < 3. Otherwise pi > 4 and so piuv > 2u • 2v > (u + l)(v + 1) > 
(u -f- l)(i; + 1) — 1, a contradiction! If pi = 3 then (2u - l)(2v — 1) = 1, whose only 



DUALITY WEIGHT SYSTEMS 1013 

positive integral solution is u = v = 1. If pi = 2 then (u — l)(v — 1) = 1, whose only 
positive integral solution is u = v — 2. In both cases, one has u — v satisfying the 
condition (7.11) of the self-duality. 

IV. Recall descriptions (6.11), (6.12) of a simple weight system W of type IV. 
Put u := P3/P2 — 1 > 1 and v := P2/P1 — 1 > 1 so that (7.14) yields s = (u + l)(v + 
1) - u(piv + 1). This implies ((pi — l)u — l)v = 0. Since u > 1 and v > 1, this 
is possible only when pi = 2 and u = 1. So P3/P2 = 2 and hence W satisfies the 
condition pi = P3/P2 (7.15) of the self-duality. 

2. Let W be a simple weight system with the smallest exponent equal to — 1. The 
simplicity implies that W is either of types I ~ V or type XI (Theorem 6.2). But W 
cannot be of type XI, since the smallest exponents for the type XI is a multiple of 2, 
3 or 4 (Theorem 6.3 XI). If M(W) is of type I, III or V, then W is already self-dual 
(Theorem 7.8 2). Therefore we have only to show that the conditions for the existing 
of W* in Theorem 7.9 are satisfied, if W is of type II or IV. It is already shown that 
the smallest exponent of W* is equal to that of W (Theorem 7.9). 

11. Recall again in the descriptions (6.5), (6.6) and (7.10). Since^1(^3/^2 — 1)(P2- 
1) = Ps — £ so that ps = e mod P3/P2 — 1. So if e = ±1 then (p3,P3/p2 — 1) = 1, which 
is the condition (7.7) for the existence of simple dual weight system W*. 

IV. Recall again the descriptions (6.11), (6.12) and (7.14). Since {P3/P2 — 1)(P2 — 
Pi + 1) = Pz/pi - s. Hence P3/P1 = £ mod P3/P2 — 1. So if e = ±1, then {P3/P2 - 
hPs/Pi) = 1- Further, recall -(ps/pi -P3/P2 + 1)(P2 -pi + 1) = Ps -P2P3/P1 -e = 
-£+P3(l -P2/P1)' Hence (ps/Pi -P3/P2 + 1)(P2 - Pi + 1) = £ modps. This implies 
that ps/pi - P3/P2 + 1 is a unit in the ring Z/Zps. Thus (ps/pi - P3/P2 + 1,P3) = 1. 
Therefore the conditions (7.12) for L(M(W)) to be representable by a simple weight 
system W* are satisfied. D 

EXAMPLE 7.11. 
1. Let p be any integer > 2 prime to 7. Put, 

Wi := (7,p, 3p; 7p)    and    W2 := (7,p, 2p; 7p). 

Then they have the same poset: Af (Wi) = Af (W2) = Vi/-^^ ^v7^)» where 

ewi(^) = —ev^i(7) = 1 and ew2(/i) = —eTy2(7) = 2 (use Table A III). So, Wi is simple 
and self-dual but W2 is non-degenerate but not simple. 

2. Many examples of simple non-degenerate weight system, which are not dual 
to any other weight system, are given in the Appendix. 

8. Dual rank vw and genus ao« In this section we give formulae of the dual 
rank vw and the genus ao in terms of, so called, refined coordinates of W, (see (8.4) 
and (8.5)). As a consequence, we get a criterion for i/w to be positive or negative. 

The refined coordinates for W is a system of integers pi,p2,P3,u,v,w,m and 
Qii&iQz describing the weight system W (see (8.1)-(8.3)). It is cumbersome to use 
such coordinates, but, the results in this and next sections, in particular, the integrality 
of the discriminants (Theorem 9.2) are proven only by a use of them. The results 
are closely related to our next goal on eta-products in §14, but will not be used 
immediately. Therefore, some readers are suggested to skip this and the next sections. 

Let W = (a,6,c;/i) be a weight system. Let pi,P2 and ps be the generators of 
the poset M{W) defined in (4.4)-(4.7). We consider the following refinement of p; : 

(8.1) pi = pivwm, P2 = p2fwum and ps = p3uvm 
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where PI,P2,P3T'U>,V,'W and m are positive integers determined by the rule: 

i) Pi 5 P2 and Ps are mutually prime to each other, 
ii) u,v and w are mutually prime to each other, 

iii) (pi, u) = (p2,v) = (p3,w) = 1, 
iy) (qiipivwm) = (q2,P2Wum) — (qsiPzuvm) = 1. 

We call the system of integers PiiP2:P3,'u>,v,w,m and qi, q2, gs the refined coordinates 
for the weight system W. Refined coordinates exist uniquely (put m := gcd(pi,p2jP3)j 
w := gcdfa/m^ps/m), v := gcd(p3/m,pi/m) and iy := gcd(pi/m,p2/m)). The 
word "coordinate" is justified, since the weight system is recovered from the refined 
coordinates as 

(8.2) /i = piP2P3Uvwm, a = qiP2P3U, b = q2P3Piv, c = q3PiP2W, 

or, equivalently 

(8.3) W = (qiP2P3U, q2P3PiV, qspifowipifopsuvwm). 

The weight system W (8.3) is regular, if and only if the coordinates satisfy 

v) qi 3 #2 and #3 are mutually prime to each other, 
vi) either    qi = 1, p2U = 1 & qi \ (wm — #2), or p^u = 1 & qi \ (vm — #3), 

vii) either    52 = 1, P3V = 1 & #2 | (wm — #3), or piv = 1 &;g2 | (wm — gi), 
viii) either    qs = 1, piiu = 1 & ^3 | (vm — (fr), or p2^ = 1 & #3 | (wm — (72)- 

For a proof, see remarks at (1.1) and (4.8). 
THEOREM 8.1. Let the notation be as above. Then one has 

(8.4) i/w = pip2p3uvwm- (p2p3u/qi + Pip3v/q2 + Pip2'w/q3) 

+(piu/q2q3 +p2v/qiq3 +P3w/qiq2)m - uvwm2/q^qs- 

(8.5) 2ao = uvwm2/q1q2q3 - (u/q2q3 + v/qxqs + w/q^m 

+l/gi + 1/^2 + 1M -1. 

Proof. The proof depends on the type of W using the next Table G. One has to 
verify that the formulae c) and d) in the table are the specializations of the formulae 
(8.4) and (8.5) by applying the conditions a) in the table. Details of the calculations 
are left to the reader. □ 

Table G. 

For each type of weight system W, following data are exhibited. 
a) Numerical conditions on the refined coordinates for W to be of the type, and 
explicit description of W. 
b) Explicit formula of the cyclotomic exponents obtained by rewriting the exponents 
given in the Table A, 
c) Explicit formula of the genus obtained by rewriting (3.4), 
d) Explicit formula of the dual rank obtained by rewriting (7.2) 

Type I 
a) Pi ^ 1,P2 ^ Ms 7^ 1,qi=q2 = q3 = 1. 

W = (p2p3U,p3plV,Plp2'W]Plp2p3'U>VWm). 
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b) ew(h) = uvwm2,ew(pi2) = -,wm,ew{p23) = -urn.ewipsi) = -vm. 
c) 2ao = uvwm2 — (u 4- v 4- w;)m + 2, 
d) z/v^ = -uvwm2 4- {p^pzuvw +piu +P2V + psw)™ — (p2p3^ +P3P1V +PiP2^)- 

Type II. 

a) pi ^ l,p2 = 1,P3 # l,n^ l,iy = l,gi = qf2 = 1,93 I w^n- 1- 
W^ = (P3u,p3piv,q3pi]pip3uvm). 

b) ew'(ft) = (ixm - l^ra/^ewQ^) = -m,ew{P3) ~ (um - l)/^, 
c) 2ao = (^^n- - l)(^m — l)/g3 — m 4-1, 
d) z/^ = -uvm2/qs + (P1P3UV 4- piu/q^ 4 ^/gs 4- ps)^ - fe^ 4- PsPi^ + Piloz)- 

Type III. 

a)pi ^ 1,P2 ^Ps = l,w^ l,v = w = l,gi = 1,^2 I um-q3,q3 \ um - gf2, 
W = (u,q2pi,q3pi]pium). 

b) eWr(/i) = m(um - ^ - q3)/q2q3,ew{p2) = -{um - q2 - gsJ/gMs, 
c) 2ao = (m - l)(um - 92 - ^s)/^^, 
d) i/jy = -um2/q2q3 + {PiU + piU/q2q3 + 1/^3 + 1/92)^ - {u+pi/q2 +Pi/q3)- 

Type IV. 

a) Pi =P2 = 1,P3 / l,u^ l,v = iy = l,gi = 1,92 I m-1,9293 |, 
VF = (p3U,q2p3,q3]p3um). 

b) ew(/i) = (m - l)(mu - 92)/9293, ew(P2) = -(m - l)/92, 
c) 2ao = (m - l){um - 92 - 93)/9293, 
d) i/w = -(m - l)(um - UP39293 - 92 - P393)/9293, 

Type V. 

a) Pi = P2 = Ps = 1, u = v = w = 1, m ^ 1, (m, #) = 1, 

^ = (91,92,935 m). 
b) ew(/i) = ((m - 9i)(m - q2)(m - 93)/9i9293 4- l)/m 

= ^2/9i9293 - (1/9192 4-1/9293 + l/939i)ra + l/9i + 1/92 4-1/93, 
c) 2ao = m2/9i9293 - (1/9192 4-1/9293 + l/qsQi)™ 4-1/91 4-1/92 + I/93 - 1, 
d) i/w = -m2/9i9293 4- (l/9i92 4-1/9293 4-1/9391 + 1)^ - l/9i - I/92 - I/93, 

Type VI. 

a) pi + 1,P2 =£3 7^ 1^7^ l,^^l,9i =92 = 93 = 1, 
W = (p3U,p3piv,piW]pip3uvwm). 

b) ew(ft) = (iztum — l)vra,ew(pi2) = —'^^,eTy(P23) = —um, 
c) 2ao = uvwm2 — (u + v + w)m 4- 2. 
d) vw = —uvwm2 4- (P1P3UVW + piu 4- v 4- p3w)m — (p3u 4- P1P3V + piit;). 

Type VII. 
a)pi ^ 1,P2 =P3 = l,w^ l,u^ l,if; ^l,9i = 92 = 93 = 1, 

W = (u,piv,piw;piuvwm). 

b) evy(/i) = m(uvwm — v — w),ew(P23) = —um, 
c) 2ao = uvwm2 — (u + v 4- iy)m 4- 2, 
d) i/^ = —uvwm2 + (piuvw +piu + v + w)m — (u +piv +piw). 

Type VIIL 
a) Pi = P2 = Ps = 1, u ^ 1, u ^ 1, w ^ 1, gi = 92 = 93 = 1, 
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W = (UjV^w^uvwm). 
b) ew(h) = uvwm2 — (u + v + w)m, 
c) 2ao = uvwm2 — (u-\-v + w)m + 2, 
d) vw = (1 — m)(muvw — u — v — w). 

Type IX. 
a) Pi 7^ 1>P2 =^3 = l,w^ 1,^/ l,ii; = l,gi =22 = Ms I um- 1, 

W = (u,piv,qspi\piuvm). 
b) ew(ti) = m(uvm/qs - v/qs - 1), ewiPs) = -(wm - l)/<73, 
c) 2ao = uvm2/q3 - (u/q3 + v/gs + l)m + l/gs + 1, 
d) uw = -uvm2/qs + (piuv +Piu/q3 + v/qs + l)m - (w +piv H-pi/gs). 

Type X. 
a) Pi = p* = 1,P3 ^ 1, u 7^ I? ^ ^ 1? w = 1? Qi = Q2 = 1,03 I ^ra - 1 or vm - 1 

W = (psu^psv^qs^psuvm). 
b) ew(/i) = (urn - l)(vm - l)/<73,ew(pi2) = -m, 
c) 2GO = uvm2/q3 - (u/qs + v/gs + l)m + l/qs + 1, 
d) z/w = -uvm2/qs + fe^'y 4- n/gs -f v/gs + ^3)771 - (psu + ps^; + l/qs)- 

Type XL 
a) Pi = P2 = P3 = 1, u ^ 1, i; / 1, w; = 1, gi = #2 = 1, <73 | um - 1 or vm - 1, 

W = (u,v,qz',pzuvm). 
b) e^(/i) = (^m — l)(vm — l)/^ — m, 
c) 2ao = uvm2/q3 - (u/qs + v/gs + l)m + l/gs + 1, 
d) i/^ = -uvm2/qs + (m; + u/gs + v/qs + l)m - (w + v + l/gs)- 

Type XII. 
a) pi = l,p2 ^ 1,P3 ^ l,v = if; = l,m^ l,gi = 1,^2 I m- 1,^3 I m- 1, 

^ = (P2P3^,g2P3,g3P2;P2P3Ura). 
b) ew(ft) = (m - l)um/q2qs,ew(P2) = (m - IJ/^jCw^) = (m - l)/g3. 
c) 2ao = um2lq2qs - (^/g2g3 + l/gs + 1/02)^ + I/02 + l/gs, 
d) z/^ = (m - 1)(P2P3W +P3/g2 +P2/g3 - ulq2qsm) 

= -um2jq2qs + (P2P3U + ^/g2g3 + P2/g3 + Ps/q2)m - {P2P3U + P3/g2 + P2M). 

Type XIII. 
a) Pi = P2 = Ps = 1, u ^ 1, v = iy = 1, m 7^ 1, gi = 1, 

^ = (u,q2,qs]um). 
b) e^(/i) = (m - l)(um - 02 - Q3)/q2q3, 
c) 2ao = (m-l)(um-q2-qs)/q2q3, 
d) vw = -(m- l)(um - q2 - qs - uq2q3)lq2q3 

= -um2/q2q3 + (u + u/q2q3 + l/gs + l/q2)m - (u + l/g2 + l/gs). 

Type XIV. 
a) Pi =P2 = 1,P3 ^ l,u = v = w = l,m ^ l9qi | m-g2,g2 | m-gi, 

W^ = (giPs, g2P3, gs; psm). 
b) ew(ft) = (m - gi)(m - g2)/gig2g3,ew(pi) = -(m - gi - 02)/02, 
c) 2ao = m2/q1q2q3 - (l/flMs + l/gigs + l/qiq2)m 4- 1/gi 4-1/02 4- l/gs - 1, 
d) z/^ = -m2/gig2g3 4- (PS 4- l/g2g3 + l/gigs +P3/qiq2)m - (ps/gi +P3/g2 4- l/gs). 
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COROLLARY 8.2. 

.v f  > 0    if m < PiP2P3qiq2q3 + (piuqi -f P2vq2 + p^wq-^/uvw - 1 
w \ < 0    if m > PiP2P3qiq2q3 + (pi^tfi + p2vq2 + p^q^/uvw. 

ii)    // vw = 0, then either following a) or b) holds. 
a) m = 1 and W is either of types IV, VIII, XII, XIII or of type V with qi = 1 3z, 
fa/pe XT iw^/i ^3 = 1, type XIV with qi or q2 = 1, 
b) m = {piP2P3^i92^3 + (piuqi + P2vq2 +pz'wqz)luvw - 1}, where {x} := ifte /east 
integer non less than x. 

Proof We regard z/^/ as if it were a polynomial in m of degree 2 by the expression 
(8.4). Then the corollary is proven if we show that vw |m=o< 0 and uw |m=i> 0- In 
fact, 

vw |m=o = -{P2P3u/qi +piP3v/q2 +PiP2w/q3)    and 

vw |m=i = P1P2P3UVW - (p2P3u/qi+piP3v/q2+PiP2'w/q3) 

+ {pi'u>/q2q3 +P2v/qiq3 +P3w/qiq2) - uvw/q^qs 

= {u- 1/u) • Pi/q2q3 + (v- l/v) • ^2/^3^1 + H - l/w) • ^3/^1^2 

+izvK;[pigi - l/vw)(p2q2 - l/wu)(p3q3 - 1/uv) - l]/qiq2q3 

+l/uvwqiq2q3' 

Apparently, uw |m=o is negative. To show the non-negativity of uw |m=ij we need 
some works. In the second expression of vw |m=i> only the second term could possibly 
be negative. Let us list all such cases, and check uw \m=i> 0 in all cases. 

i) case (piqi - l/vw)(p2q2 - l/wu)(pzq3 - 1/uv) = 0. 
This is the case either px = q1 = v = w = 1, P2 — q2 — w = u = 1 01 ps = qs = u = 
v = 1 (in fact, this happens for the types IV, XII, XIII and some special cases of type 
V and XIV). It is easy to check directly that in all those cases, one has vw |m=i= 0. 

ii) case 0 < (piqi - l/vw)(p2q2 - l/wu)(p3q3 - 1/uv) < 1. 
a) If u = v = w = 1, then piqi > 2 for all i and hence vw |m=i> 0, 
b) If u > l,v = w = 1, then piqi > 1. This is possible only for type III. 

One has qi = 1 and i/w |m=i= (pi - l)(w(g2 - l)fe -l) + (u- l)(q2 + q*)) > 0. 
c) If u,v > l,w = 1, then at least two of piqi are 1. All are 1 only for the type XL 
Then uw |m=i= (u - l)(v - 1)(1 - I/qs) > 0 and = 0 only when ^3 = 1. Remaining 
cases are of type IX and X. Then vyy \m=i= {u — l)(^(Pi — 1/^3) +Pi/q3 — 1) > 0? or 

vw |m=i= (v -l)(u- l)(p3 - 1/^3) > 0, respectively. 
d) If u,v,w > 1, then piqi = 1 for all i. This is possible only for type VIII and then 
vw |m=i=0. □ 

REMARK 8.3.   The corollary i) does not state about case when m lies in the 
interval (piftpagi^Ms + (piuqi +P2vq2 +Pzmz)/'u>vw-l,p1p2P3qiq2q3(piV>qi +P2vq2 + 
P3wq3)/uvw). The corollary ii) b) states only the necessity for vw = 0 but not the 
sufficiency. 

9. Discriminants d(W) and d*(W). We introduce the discriminant d(W) and 
the dual discriminant d*(W) for a weight system W as follows. 

(9.1) d(W):=     H    W*™, 
ieM(W) 

(9.2) d*{W):=    JJ    (h/i)-ew{i). 
ieM(W) 
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They will be used in the product formula (10.4) for the signature of W and in the 
duality formula for eta-products (13.3) and (13.3)*. The goal of this section is to 
prove that d(W) and d*(W) are integers. 

The next formula follows immediately from the definition. 

(9.3) d(W) = h2ao'd*(W). 

Proof. d(W)/d*(W) =     U    {h)ew^ = h2a°. □ 
ieM(w) 

This formula, in particular, implies that square free factors of d{W) and d* (W) 
coincide. Furthermore, it implies the next fact. 

ASSERTION 9.1. IfW and W* are dual weight systems. Then, 

(9.4) d(W) = d(W*) = dr(W) = d*(W*) 

Proof.   The definitions of d(W*) and d*(W) coincides (see (7.7)).   Recall that 
ao = 0 if the weight system W has its dual (see §7 Assertion 7.7 1 i)). D 

The main goal of the present section is the next theorem. 
THEOREM 9.2.     The discriminants d(W) andd*(W) are integers. 
Proof The theorem is a corollary of the next theorem, where we give a formula 

(9.5) of the dual discriminant in terms of refined coordinate (pi,p2,P3iu,v^w,m:qi1q2J 

qs) for W (recall (8.1)-(8.3)). We have only to notify that the exponents (um—q2—#3 + 
#2#3)/(72(73 etc. in the formula (9.5) are non-negative (obvious from the expression) 
and integral (for they are, by definition (9.2), integral linear combinations of the 
cyclotomic exponents, depending on the type of W). For d(W) use (9.3). D 

THEOREM 9.3.    Let W be a weight system. One has 

(9 5) d*(W) = ^um~q2~q3+q2q3^q2q3 .^vm~q3~qi+q3qi^q3qi .^wm~qi~q2+qiq2^qiq2 -m 

Proof The proof depends on the type of W. In the following, we calculate d*(W) 
for each type according to the data given in §8 Table G. It turns out that the resulting 
expression of d*(W) is a specialization of the formula (9.5). Details of the verifications 
are left to the reader. We check the condition for d*(W) to be equal to 1 in order to 
prove theorem-bis. 

Type I.    One has pi ^ 1, P2 ^ 1, ps ^ 1 and Qi = Q2 = Qs = 1. Then, 

d*(W) := Pim -Pl171 'Ps171 -piP2P3Uvwm/(l • P2P3U • P3P1V • pifow) 

= Pt™-1 -pT'1 'P™™'1 -m. 

This equals 1 if and only i£ m = u = v = w = 1. 

Type II.    One has p2 — w = 1, pi ^ 1, p3 ^ 1, u ^ 1 and qi = q2 = 1. Then, 

<r(W) .^pt™-1"*' .p™-p1p3uvm/(l-p3u-p3p1v) 

= ^m-l)/,3.-m-l.m> 

This can never be equal to 1. 

Type III.    One has p2 = P3 = v = w = 1, pi ^ 1, u ^ 1 and qi = 1. Then, 

dr(W) := p^™-q2-q3yq2q3 .p^m/il-u) 

= ^m-g2-«3)/^3.ft.m> 

This can never be equal to 1. 
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Type IV.    One has pi = P2 = v = it; = 1, ps ^ 1, u ^ 1, m ^ 1 and #1 = 1. Then, 

dr(W) :=4m"1)/92 •P3um/(l-ftTz) =^m"1)/9a -m. 

This can never be equal to 1. 

Type V.    One has pi = p2 — ps = u = v = w — 1, m 7^ 1. Then. 

d*(W) :=m. 

This can never be equal to 1. 

Type VI.    One has p2 — 1, Pi 7^ 1, pz i1 1, ^ 7^ 1, ^ 7^ 1 and gi = ^2 = #3 = 1. Then, 

d*(W) := p^m -Pi771 -pipsuvwm/(p3u • pip3v ■ piiv) 
-wm—l     -um—l    ^ 

= P3 'Pi 'rn' 

This can never be equal to 1. 

Type VII.    One has p2 = pz = 1, pi 7^ 1, u ^ 1, v 7^ 1, w ^ 1 and qi = q2 = qs = 1. 
Then 

d*(W) :=Pim 'piuvwm/(u'piv • piw = p™™'1 -m). 

This can never be equal to 1. 

Type VIII.    One has pi — p2 = ps = 1, u y£ 1, v ^ 1, -u; 7^ 1. Then 

d*(W) := uvwm/(u - v - w) — m. 

This is equal to 1 if and only if m = 1. 

Type IX.    One has p2 = ps = w = 1, P ^ 1, w / 1, v ^ 1 and qi = q2 — 1. 

d*/TT7\ _(lim—1)/03       - // -       \ -(tim —l)/fl3 

This can never be equal to 1. 

Type X.    One has pi — p2 — w = 1, ps / 1, u ^ 1, v ^ 1 and qi = q2 = 1. Then, 

d*(W) := pj1 • psuvm/(psu • ps^;) = p^-1 • m. 

Then d*(W0 = 1 if and only if m = 1. 

Type XL    One has pi = p2 = ps = w — 1, ii 7^ 1, v / 1. Then 

d*(T47) := uvm/(u - v) = m. 

Then d*(ty) = 1 if and only if m = 1. 

Type XII.    One has pi = v = w = 1, p2 ^ 1, ps 7^ 1, m ^ 1 and ^i = 1. Then, 

<f (WO := p^-1^92 • tf1-1"9* ■ P2Pzum/(up2p3) 

This can never be equal to 1. 

= ?(m-l)/g2.p(m-l)/g3.m_ 
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Type XIIL    One has pi = p2 = Ps = v = w — 1 and u ^ 1, m ^ 1. Then, 

d*(W) := w • m/u = m. 

This can never be equal to 1. 

Type XIV.    One has pi = p2 = ^ = v — w = qi and ps ^ 1, m ^ 1. Then 

cr(P7):=4m-gi-ga)/gig2-i?3-m. 

This can never be equal to 1. 
This completes the proof of Theorem 9.3. □ 
THEOREM 9.4. In the following, we give the list of weight system W with d*(W) = 

1.  There are 4 types: type I, VIII, X and XL 
Among them, only the type I admits ao = 0, and hence, d(W) = 1. 

1. Type I:        W := (jhp3,p3Pi,PiP2]PiP2P3) 
for relatively prime integers pi, p2 and ps > 1. Then, ew(h) = 1 and tpw = (Xuvw — 
1)(AU - 1)(AV - l)(\w - 1)/(A - 1)(A^ - 1)(A^ - 1)(A^ - 1). So ao = 0 and 
fl = u=(pi~ l)(v - i)(w - 1) > 0. 

2. Type VIII:        W := (u,v,w]uvw) 
for relatively prime integers u,v and w (> 1). Then ew(h) = uvw — u — v — w and 
ipw = (Xuvw-l)eW(Xuv-l)(Xvw-l)(Xwu-l)/(X~l). So ao =uvw-u-v-w+2 >0 
and /J, = {uv — l){vw — l)(wu — \),v = uvw — u — v — w — 1>0. 

3. Type X.        W := (um,vm,w',uvm) 
for relatively prime integers u,v (> 1) and w and an integer m > 1 with w \ u - 1 
or w | v — 1, (w,m) = 1. Then, ew(h) = (u — l)(v — l)/w and tpw = (Xuvrn — 
l)eW(\« - 1)(XV - 1)/(A - 1)(XUV - 1). So ao = (u - l)(v - l)/w > 0 and // = 
(u — l){v — l)(uvm — l)/w, v = (u — l)(v - l)m — 1 > 0. 

4. Type XI.        W := (u, v,w]uv) 
for relatively prime integers u,v (> 1) and w with w \ u — 1 or w \ v — 1. Then 
ew(h) = (u- l)(v - l)/w - 1 and <pw = (Xuv - l)6^"1^11 - 1)(AV - 1)/(A - 1). So 
a0 = (u — l)(v — l)/w > 0 and fi = (u — l)(v — l)(uv — w)/w, i/ = uv — u — v — l >0. 

REMARK 9.5. 1. It is a bit surprise to observe that the factors in the powers of 
w, v and w are canceled out in the formula (9.5) of the discriminant. The author does 
not know a significance of this fact. 

2. The formulae (8.4), (8.5) and (9.5) seem to suggest as if there exists a vir- 
tual dual weight system W* for any W so that the formulae describe universally the 
numerical invariants of W*. What is the natural category, which contains weight 
systems as its subcategory and is closed under the duality operation * ? 

10. Signature A(W) of a weight system. We attach to a weight system W 
a finite set of integers A(W), which we call the signature of W (the name has an 
origin in the signature for a Fuchsian group, see remarks at the end of this section). 
The numbers will be identified with the Dolgachev numbers for the 14 unimodular 
exceptional singularities in §13 in case of weight system with ew = — 1. The goal of 
this section is to show a product formula (10.4) for the signature. 

First we fix notation. Let A and B be sets of finite positive integers, where 
the same number may appear multiply. We denote A = B if any integer, ex- 
cept for 1, appears in A and B with the same multiplicity.    The "=" obviously 
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defines an equivalence relation. Put HA := flpGA P an^ ^'^ :=the number of 
elements of A which is not equal to 1. By u * v we denote v times copy of u. 
For instance, {1,2,3,1,2,3} = {2,2,3,3} = {2 * 2,3 * 2}, #'{1,2,3,1,2,3} = 4 and 
n{l,2,3,l,2,3} = 36. 

To a weight system W = (a, 6, c; /i), we attach two sets of integers: 
(10.1) 
A(W) := {a* : a* f ft, 1 < i < 3} U {gcd(a;, a^) * (m(a<, a^; h)-l):  1 < i < j < 3}, 

(10.2) 
i(W/) := {a, : nfo) # 1,1 < i < 3} II {(typ) * (-ew(p)) | p € M(W),n(p) = 2}. 

Here, ai := a,02 = & and 03 := c, and m{k,l]h) := #{{u,v) € Z^Q | h = uk + vl}. 

We will show the equivalence: ^4(PF) = A(W), and the equivalence class will be called 
the signature of W. 

THEOREM 10.1. Let W = (a, 6, c;/i) 6e a primitive weight system, which is not 
of type Ae.  Tften 

(10.3) A(W)=A(W). 

(10.4) IL4(W0 = nl(T^) = a • 6 • c • d(iy)/ft1+2ao = a • b • c • <r(W)/h. 

Proof.  Decompose A(W) = Bi II £2 and A(W) = Si U ,§2, where Bi := {a* : 
^ f h, 1 < 2 < 3},£2 '= {gcd(ai,aJ) * (m(ai,aj;h) - 1) : 1 < i < j < 3},Bi := {a* : 

n(pi) ^ 1,1 < i < 3} and B2 := {(/i/p) * (-ew(p)) I   p e Af(PF),n(p) = 2}. The 
proof of (10.3) is done by the following 3 steps: 
1. Bi C Bi.     2. B2 C B2.     3. (i?i\l?i) = (^2^2)- 

Proof of 1. Since ft/ai = Pi/^i, we may rewrite Bi = {a^ : g^ 7^ 1,1 < z < 3}. 
The fact that n(pi) = 1 implies gi = 1 (§5 Assertion 5.3 ii)), implies Bi C i?i. 

Proof of 2. Take any element p G M(W) with n(p) =2. Without a loss of gen- 
erality, we assume that p =pi2 = lcm(pi,p2)- We have ai = (/i, 01)^1,02 = (^,^2)^2 
and /& = (ft,ai)pi = (h^a2)p2' Note that (h,a\)/(h,0,1,0,2) and ^2 are co-prime, oth- 
erwise the common factor in (72 still devises /i/(/i,a2), which contradicts to the def- 
inition of #3. Similarly, (h, 0,2)/(h, 0,1,0,2) and gi are co-prime. Therefore (01,02) = 
(h,ai,0,2) - (<Zi,<Z2)- Since (ft,£2) = 1 (4.8), we have (01,02) = (/&,01,02). Therefore, 
ft/p = h/lcm(pi,p2) = gcd(h/pi,h/p2) = gcd((h,ai),(h,a2))= (^,01,02) = (01,02). 
We need to show that — evy(p) < m(ai,a2;ft). Actually, this will be proven in the 
next step 3. 

Proof of 3. First, note that if n(pi) — 3 and ft = 1, then by definition o^ = 
qih/pi = 1. Therefore, Bi\Bi = B^ := {o* : n(pi) = 2 and ft = 1,1 < i < 3}. 
On the other hand, let us show that if n(pij) ^ 2 for 1 < i, j < 3 with i ^ j, then 
either (o^oj) = 1 or m(oi,aj; h) < 1. By assumption n(pij) = 3 and hence h = 
Pij = lcm(h/(h,ai),h/(h,aj)) = h/(h,ai,aj). So (/i,ai,aj) = 1 and hence (o^Oj) = 
(h,ai,aj) • (qi,qj) = (ft,^j) and /i = (h,ai)(h.aj)k for some fc. If (ft,gj) 7^ 1, then 
/i ^ (ft, gj) by definition of ft (and qj). So h £ (of, aj) and therefore m(oi, o^; /i) =0. 
This implies that ^2^2 = #2 :— {(oi,aj)*(m(ai,aj;/i) —1—ev^(pi:7) for 1 <z < j <3 
with n(pij) = 2}. So, let us prove B^ = B^. 

Let p G M(W) and n(p) = 2. Assume p = pi2- It is sufficient to show 

m(ai,a2]h) = 1 - ew(p) + #{1 < i < 3 | p£ = p    and ft = 1}. 
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The proof is separated according to the type of the poset Mp := {77 E M(W) \ 77 | p}. 
There are 3 types to consider (cf. the proof of Theorem 5.1). 

i) Mp = W<C ^>[P -P12    ).    In this case, ^ = 42 = 1 but p ^ p1 

and p ^ P2- Since h = pia = P2b, there exists d G N such that h = dp1p2/(pi,P2), 
a = dp2/(puP2) and 6 = dp1/(pllp2). So m(a,6;A) = m(pi/(pi,p2), Ib/ipufr); 
P1P2HPUP2)) = (pi,P2) + 1 =PiP2/pi2 + 1, which is equal to 1 - eiy(p) (cf. (5.2)). 

ii) Mp = (T)—-(gj) (^p = ff2 = P12   J . This case ^ = 1 but p ^ pi. Since 
h = ^a = p2(h,b), one has P2/P1 = a/{h,b) ==: d and ft = pid(h,b),a = d(h,b) and 
6 = q2(h,b), where we note that #2 is prime to P2 and hence to d. Since we know 
that #2 I Pi — Ij one has m(a, 6; ft) = m(d,q2]Pid) = 1 + (pi — l)/g2 + ^fe — 1) = 
1 - ew(j9) + #{1 < z < 3 I Pi = p and ^ = 1} (cf. (5.3)), where 6(x) is either equal 
to 1 or 0 according as x = 0 or not. 

iii) Mp = (l) (p = pi = P2 = P12    ) ■   Since p = p1 = P2, one has (ft, a) = 
(ft, b) = h/p which we denote by d. Then ft = dp, a = dqi, and b = dq2, where 
(^15^2) = 1 (cf. the proof of step 2). Since we know qi \ p — q2 and #2 | P — qi 
(cf. §5 Assertion hi)), one has qiq2 \p — qi—q2- Therefore m(a, b; ft) = m{qi,q2',p) — 
l+(p-(Zi-(Z2)M92+#{l < * < 2 I a = 1} = l-cw(p)+#{l < i < 3 I pi =p,^ = 1} 
(cf. (5.4)). 

This completes a proof of (10.3). 
A proof of (10.4). Since a = qih/pi,b = q2h/p2 and c = tfsft/ps, one has a'b-c = 

qiq2q3h3/piP2P3> Therefore the right hand side of (10.4) is equal to 

P1P2P3 P1P2P3       pe±\w) 

Decompose the last factor into U3j=i(Un(p)=j(p/h)ewip))- The factor for i = 0 or 3 
is equal to ft or 1, respectively. If n(p) = 1, then p = pi for 1 < i < 3. Recalling the 
facts ew(Pi) = 1 and Qi = 1 for n(pi) = 1 (Theorem 5.1 2 and Assertion 5.3 ii), we 
write the formula as: 

=    TT   (Qi—)'    TT   (-)-ew{p) =UB1'UB2=UA(W) = UA(W). 
l<i<3 ■^z p€M(V^)    ^ 

n(Pi)^l n(p)=2 

This completes a proof of (10.4). D 
COROLLARY 10.2. 
1. Under the same setting as in Theorem 8.1, one has 

(10.5) ft'AiW) = 2 + mult (W) - 2a0 - #{1 < % < 3 |  fi(pi) # 1, % = 1}. 

2. Suppose W is simple (cf. §6 Theorem 6.3).    Tften 

{3    if ao = 0 and W is of dual type 
1    ifao = l and W is of type IX and k > 0 
0    if ao = 1 and W zs of type IX and k = 0. 
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The set A{W) is given as follows. 
I- {Pi5P2,P3} = {h/a,h/b,h/c}. 
II- {Pi5P3/P2,(P2-l)pi}. 
///. {pi,Piq2,Piq3}. 
IV.  {P3/P2, (Pi - 1)P3/P2,P2 -Pl+ 1}. 
V- {^1,^2,93} = {a,&,c}. 
XL {qs} = {2k + 1}, {3A; + 1} or {4k + 1} according as W is (6.22. 23 or 24). 
Proof. 1. From the expression (10.2) for A(W) and (10.4) one has 

#'A(W)=#{1<*<3|  n^J^l.ft^l}-    E    ef(P) 
p€M(Vy) 
n(p) = 2 

- 3 -     ^    ew(p) - #{1 < i < 3 I  nfe) ^ l,ft = 1}, 
p€M(W) 
l<n(p)<2 

which implies the formula (10.5) (cf. (7.5) and (3.4)). 
2. The (10.5) implies that ao is at most 1. Then W is either dual type for ao = 0 

or type IX for ao = 1 (see Theorem 6.3). □ 
REMARK 10.3. 
1. Some particular cases of (10.4) were known ([D], [O-W], [S5], [S6]). 
2. The signature A(W) has an origin in a study of normal surface singularity 

with a Cx-action ([Dl-2], [O-W], [P2-3], [S7, (5.6.5)]). Let a weight system W = 
(a, 6, c;/i) be given. Consider an action of t G Cx on (x,y,z) EC3 by t • (x,y,z) := 
{tax,tby,tcz) and define a weighted projective plane P(a,6,c) := {C3\{0}}/Cx. A 
curve C in P(a, 6, c) of degree h is defined by a weighted homogeneous polynomial 

fw(x,y,z) = Eat+6i+cib=/i Cijkrfy'z*' 
For a generic choice of the coefficients of fw, the curve Cw is smooth if and only 

if the weight system W := (a, 6, c;/i) is regular, and its genus is given by OQ ([S6, 
theo. 3]). Consider the surface Xw,o *.= {{x,y,z) E C3 | fw{x,y,z) = 0} with the 
natural projection Xw,o\{Q} —t Gw by Cx-action so that Cw is an orbifold (where 
XVK,O\{0} is smooth, for Cw is smooth). Any singular orbit of Cx-action lies in the 
intersection of Cw with coordinate axises lx^ty and (,z of P(a, 6,c). There is a one- 
to-one correspondence between the set J4(W) and the set Cw H (tx U ty U ttz), where 
the values of A{W) describes the order of the isotropy groups at the points. The pair 
(ao; -A(W)) of the genus ao of Cw and the set i4(W) of orders of isotropy groups, is 
called the signature of the orbifold Cw- In fact, Cw (resp. Xw,o) can be realized as 
the quotient of the Riemann sphere P for ew > 0 or the complex upper half plane 
El for for ew < 0 (resp. —e^y-th root of the canonical bundle of M) by the action 
of a Fuchsian group of the signature (ao; A(W)) ([Mag,p98]) (resp. a lifting of the 
Fuchsian group in the -ew-th covering of PSL{2, E) ([D1-3],[S7,§5]). 

3. The above corollary 2. implies that if 11" is simple, 

{a rational curve with 3 fixed points, if W is dual type 
an elliptic curve with 1 fixed point, if W is type IX,k > 0 
an elliptic curve without a fixed point, if W is type J58. 

Let us give an explicit weighted homogeneous equation of Cw • 
I. xPl + yP2 + zP3 for (pupj) = li^j. 
II.   XPl   + J/W  + yZP3/P2   for p2^ (p^)   =   lj (p2  _  ljp3)   =  L 
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III. x* + yz{yn + z^) for p2 = p^ (pup2) = l,p2 + 1 = (q2 + 1)(<73 + 1), 
(92,93) = 1. 

IV. a;^1 + xyP*'* + y^3^2 for pi^Jtps, (pi - 1,^2) = 1, (P2 - Pi + 1,^3) = 1. 
V. yxk + ^2/^ + xzm for (A:Zm - 1, Im - m + 1) = (A;Zra - 1, mfc - k + 1) = 

(fc/m-1,M-Z + 1) = 1. 
XL re2 + y(y2k+1 - z2){y2k+l - \z2) for k e Z>o and A G C\{0,1}, 

3.3 _!_ ^3^+2 + ^3 _f_ aXyk+iz for fc e Z>o and a3 + 81 ^ 0, 
(^2 _ y2k+l^x2 _ \y2k+l^ + ^2 for ^ G Z>o and A € C^0) j^ 

Note that except for the last type XI, each curve Cw for the dual types I-V is the 
quotient of the sphere or the upper half-plane by the triangle groups (cf. [Mag, 
Chap.II]) 

11. The Cartan matrix of type ADE. First, we recall an observation of 
H. Ochiai [Oc] in its original form. Denote by [n] the function qn — q~n in q. 
Let C be the Cartan matrix of type either A£,D£,EQ,E7 or Eg-    Put $(g)  := 

det f kj/ — C + 2/J where / is the identity matrix. Then $ decomposes into a fi- 

nite product Ui[i/2]di for suitable integers di G Z. Then Ochiai's observation [Oc] 
states: 
i) if di ^ 0, then i \ h, where h is the Coxeter number for C, 
ii) di G {-2,0,2} for any i G N, 
iii) if ij = /i for i,j G N, then d; + dj = 0, 
iv) di ^ 0 for all divisors z of h if C is of type D4, EQ^E7 or .Eg. 
We translate the observation in terms of Coxeter element. Let Cox be a Coxeter 
matrix for the Cartan matrix C and let </?(A) := det(A/ — Cox) be its characteristic 
polynomial. The eigenvalues of Cox are Ui := exp(27ry/^lmi/h) for the exponent 

mi, t = 1, • • • ,£. So ^(A) = ni=i(A - w<)- Decompose it to ^(A) = Ui\h(xi " 1)e(i) 

for some exponents e(i) G Z. Since Cox + Cox-1 is conjugate to C — 2/, one has 

*(<7) = det {(q + g"1)/ - Cox - Cox -1) = "[[(q + g"1 - ^ - ^r1) 
2=1 

£ / * \ 

= l[(q - Ui)(q - wT^/q = g"'    l[(q - ^)       = ^(g)2// 
i=l \i=l / 

=q-' ij(?* - i)»«w=n (^ - i)Vff«)ew=n(?i/2 - i/?i/2)2e(i) 

=n[«/2]aew, 
i\h 

where we used the fact ^ie(i) = Z.   Thus one gets cZ; = 2e(2) for i G N.   So, the 
Ochiai's observation is equivalent to the following statements. 
i)i\h for e(i) ^ 0, 
ii) e(i) G {0, ±1} for any i G N, 
iii) e(i) + e(/i/z) = 0 for i G N i.e. ip = (^*, 
iv) Div (ft) = {z G N : e(i) # 0} for any D4,Ee,E7, Eg. 

These can be easily verified as follows. First, recall that there is a one to one 
correspondence between the root systems of types Ai, Di, EQ, E7 and Eg and the 
weight systems having only positive exponents in such way that the set of exponents 
for them coincides. For such weight systems, one can prove the i)-iv) as follows. 
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i) By definition, one has M(W) C Div (ft) (§4). 
ii) This is the simplicity of W (§1 Assertion 1.2 and §6 Theorem 6.2). 
iii) This is the self-duality of W (§7 Theorem 7.10 1). 
iv) This is a consequence of the classification of weight systems with only positive 
exponents, recalled in Table B. 

Table B. 

Name   Weight d(W)    A(W)     <pw(\) 

(l,M+l-&;    m 

(2,1-2,1-1; 
Di 2(1-1))      4 2 2 £-2 

At+i-l 
A-l 

(A2 ^IHA2-!) 
(^-i-l)(A-l) 

M(W) 

G)— -O+i) 

Z^E3 

(iH^-<ED-^B) 
t odd 

-Sfi 

£7 

(3,4,6; 12) 233 

(4,6,9; 18) 234 

(A12-1)(A3-1)(A2-1) 
(A6-1)(A4-1)(A-1) 

(A18-1)(A3-1)(A2-1) 
(A9-1)(A6-1)(A-1) 

E« (6,10,15; 30)    1 235 (A<50-l)(A6-l)(AJ-l)(A2-l)    fl 
(A15-i)(A10-l)(A6-l)(A-l) 

Converse to the observation iv), a simple weight system W satisfies Div(h) = 
M(W) if and only if W is one of the following cases. 

I- {P2P3 5 PsPi, P1P2; P1P2P3) for three mutually different prime numbers pi, P2 and 
PS- M = (Pi - 1)(P2 - 1)(P3 - 1). 

II- (pi5P1P25Pi (P2 — l);PiP2) for tw0 different prime numbers pi and p2-  M — 
(Pi-i)(pi-P2 + i). 

III. (^2 ,PiQ2, Pi Qs; P1P2) for two different prime numbers pi, P2 and two positive 
integers #2,93 such that ^2 + 1 = (92 + l)(q3 + 1). A* = (Pi - 1)(P2 + !)• 

IV. (p2,p(p — l),p2 — p+ l;p3) for a prime number p. fi = p3 — p2 + p — 1. 
V. (Zra — m + 1, rafc — k +1, kl — I + 1]p) for a prime number p and three positive 

integers k, I and m such that klm = p — 1. fj, = p — 1 = klm. 
XL 
(p, 2, (p — l)/2; 2p) for a prime number p with p = 3 mod 4. /J, = 3p + 1. 
(P> 3,p — 1; 3p) for a prime number p with p = 2 mod 3. /i — 4p + 2. 
Proo/.  Let ft = P^1 • • • P^fk for prime numbers Pi, • • •, P^ and positive integers 

Ei, • • ■, JSjfe. A priori, we see JSj < 3, else the four elements Pi, Pf, Pf and P/ in Div(h) 
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cannot be realized in M(W). Clearly #Div(h) = Yi^ii^i + !)• On the other hand, 
the possible values of #M(W) are only 2,3,4,5,6 or 8. Thus Div(h) = M(W) implies 
a very limited possibility of Ei. Let us list possibilities of pi,P2 and ps according to 
the value TV := #M{W). 

N = 2. Then k = 1 and Ex = 1.      i) pi = P1,p2 = Pi and p3 = Pi. Type V. 

N = 3. Then k = 1 and Ei = 2.      ii) p! = Pi,p2 = P1 and #3 = if, Type XIV. 

hi) pi=P1,p2 = P? and ps = Ph Type XIII. 

These cases cannot be simple (Theorem 6.2). 

N == 4. iv) A; - 2,Ei = £2 = 1. Pi = Pi,P2 = ^2 and pa = P1P2. Type XL 

v)  k = 2:E1=E2 = 1. pi = Pi,P2 = pa = P2, Type III, 

vi) A; = 1 and Ei = 3. 

iV = 6. vii)k = 2 and E1 = 1, £2 = 2. p2 = Px, P2 = P2 and ps = P2
2. Type II. 

N = 8. k = 2 and E1 = 1, ^2 = 3. This is impossible. 

viii) & = 3 and Ei = E2 = E3 = 1. pi = Pi,p2 = P2 and ps = P3. Type I. 

D 
For a sake of Example 13.7, we list the 3 degenerate weight systems having only 

non-negative exponents. They correspond to simply elliptic singularities [S2]. So, 
let us call them elliptic weight systems. All elliptic weight systems have the same 
signature: (ao; ^4(^0) = (1; 0)- The lattice of vanishing cycles for them are described 
by elliptic root systems [S41-S45]. 

Table C. 

name    W 11 d{W)    exponents        y>w(A) M{W) 

E6     (1,1,1; 3)  8     27        O'1'1^      i*=p- © (I) 

Er     (1,1,2; 4)  9      32       0'^^     i^f-i Q^) ® 

E8     (1,2,3; 6) 10     36       ^^      (*-**:»(*-»   (T   ^ -6J 

12. Strange duality of Arnold. We give an interpretation of the Arnold's 
strange duality by the duality of weight system. Still, the original duality remains 
somewhat mysterious. First, we review the strange duality in its original form. 

In [Al], Arnold classified unimodular germs of holomorphic functions. They con- 
sist of three classes: i) three simple elliptic singularities EQ^EJ^ES, ii) cusp singular!- 
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ties Tpqr for p, g, r € N with r + - + j: < 1? and iii) 14 exceptional unimodular singular- 
ities. In each of 1 parameter family of the 14 singularities, there is just one singularity 
which is defined by a weighted homogeneous polynomial f(x,y,z) of 3 variables. The 
corresponding hypersurface XQ (= the zero loci {(x,y,z) G C3 : f{x,y,z) = 0} of /) 
has the following description due to I.V. Dolgachev [Dl-2]. The action of the Schwarz 
triangular group Tpqr (with 1/p -1- l/q + 1/r < 1) on the upper half plane H lifts to 
a free action on the half-space HI := {(u,v) £ C2 : $s(u/v) > 0} so that H/F is a 
complex 2-fold. By adding a cusp point O, M./T U {0} becomes an affine algebraic 
variety with an isolated singularity at 0. Dolgachev has shown that there are 14 
triangular groups, for which M/ru {0} becomes a hypersurface in C3, and which are 
exactly the 14 quasi-homogeneous exceptional singularities XQ. The values p, q and r 
of the triangle are called the Dolgachev numbers. 

On the other hand, Gabrielov [G] has determined the intersection form on the 
middle (= 2-) dimensional homology group of a smoothing Xi (= {(x,y,z) £ C3 | 
f(x,y,z) = 1} for the 14 exceptional unimodular singularities (sometimes called the 
lattice of vanishing cycles for the singularity) as follows. We denote by Tpqr the based 
lattice, whose intersection diagram is of the shape of the letter T with three branches 
of length p, q and r (e.g. Es = T235, E7 = T234, etc). Then the intersection form for 

the 14 exceptional unimodular singularities are of the form Tpqr © , where 

the integers p, q and r are called the Gabrielov numbers*) 
Then Arnold [Al] called a strange duality: there exists an involution a among 

the 14 exceptional singularities, by which the Dolgachev numbers and the Gabrielov 
numbers interchange. The Dolgachev and Gabrielov numbers are recalled in Table D. 
We include in the table the unique weight system W attached to the singularity by 
the relation: XQ ^ Xw (for the uniqueness of W, see [SI, 4.3]). 

Table D. 

Name, Weights, D#, G# Name, Weights, D#, G# 
^12 (3,4,4; 12) 444 444 W'lO (4,5,10; 20) 255 255 
Sl2 (3,4,5; 13) 345 345 Z13 (3,5,9; 18) 335 247 
Sn (4,5,6; 16) 256 344 Z12 (4,6,11; 22) 246 246 
Q12 (3,5,6; 15) 336 33 6 Zu (6,8,15; 30) 238 245 
Qn (4,6,7; 18) 247 335 Eu (3,8,12; 24) 334 239 
Q10 (6,8,9; 24) 239 334 En (4,10,15; 30) 245 238 
w13 (3,4,8; 16) 344 256 En (6,14,21; 42) 237 237 

REMARK 12.1. It was remarked by D. B. Fuks (cf. [A]) that the sum of the 
Dolgachev numbers and Gabrielov numbers for the 14 singularities are 24 for all 14 
singularities. This fact was interpreted by Dolgachev, Nikulin and Pinkham in terms 
of duality between algebraic cycles and transcendental cycles on certain K3 surfaces. 
This leads to further generalizations of the duality by several authors [N][P1][L][E-W]. 

We now give an explanation of the strange duality in terms of weight system. The 
first step is the characterization of the 14 weight systems in Table D as follows. 

ASSERTION 12.2. The weight systems attached to the 14 unimodular exceptional 
singularities are exactly the simple and non-degenerate weight systems having —1 as 
its smallest exponent. 

This is a matter of calculation. Table E gives the list of such weight systems 
together with the numerical data including the characteristic functions and the posets. 
The "*" means that the weight system is self-dual. 
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Table E. 

Weight nw    d(W)    A(W)    ipw(\) M(W) 

(3,4,4; 12)      12      16 444      ^l]]^ © 

*(3,4,5;13)     12     13        345     ^^ © ~® 

(4,5,6; 16)      11     8 256      ^fflliif-l^ ©—©—©—@ 

(3,5,6; 15)      12     9 336      'ffl^jfj-J © 

(4,6,7; 18)      11     6 24 7     <ff Z^S^ ©—©—®—© 

(6,8,9;24) 10 3 2 39      ^^-mx^j   © 

(3,4,8; 16) 13 8 

* (4,5,10,20) 12 5 

(3,5,9; 18) 13 6 

344      <«&# Q-Sh-®-® 

9 , ,        (A
20-1)(A5-1)(A2-1)    (l)^ T10) 

(2 1 T20) 

« ^ c (A18-1)(A2-1) 
000 (A6-1)(A-1) ©-<2>-®-© 

(4,6,115 22)    12     4 2 46      ff^VfcV © 

(6,8,15;30)    11     2 2 38      jff:1
1
)g.-.1$:ij   © 
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(3,8,12; 24)      14   3   3 3 4    ^ 

(4,10,15; 30)    13    2    2 45 

(A24-1)(A3-1)(A2-1) 
(A8-1)(A6-1)(A-1) 

(A30-1)(A3-1)(A2-1) 
(Ai5-i)(A6_i)(A-l) 

*(6,14,21;42)    12    1    23 7    fcxlijfc; 1)(A6-1)(A-1)    ^-^^ 

It was shown that the set {simple and non-degenerate weight system having —1 
as its smallest exponent} is closed under the involution W +± W* (Theorem 7.10 2). 
Comparing Tables D and E, we obtain: 

ASSERTION 12.3. 
2. The dual pairs W «-» W* of the weight systems in Theorem 7.10 2 coincide 

with the dual pairs of strange duality of Arnold. 
3. For the 6 self-dual weight systems, one has the equality Div (h) = M(W). 

It is a natural question whether the duality of weight system explains the strange dual- 
ity. To answer the question, we first notice a fact that the Dolgachev # is elementarily 
determined by the weight system W. 

ASSERTION 12.4. 
4. The set of Dolgachev numbers is equivalent to the signature A(W) defined for 

the weight system W in (10.1). 
Proof This may almost be a triviality now, when we identify the surface M/F 

considered by Dolgachev and the hypersurface Xw \ {0} in C3 defined by the weight 
system W (cf. Remark 10.3 at the end of §10), where the isotropy groups of Cx -actions 
on them has two different expressions: one by the conjugacy classes of isotropy groups 
of the action of F on H, and the other by the singular orbits of Cx -action on Xw \{0} 
given by the points Cw n (4 U ly U 4)(~ A{W)). D 

The following diagram symbolized the relations among the data we study. 

weight system W     <- 

A(W) 

Dogachev numbers    «- 

duality of weight system 
weight system W* 

A(W*) 

->    Gabrielov numbers 
strange duality 

Here the left vertical arrow is explained by Assertion 12.4 and the first horizontal 
arrow is explained in Theorem 7.10 2 (§7).  The right vertical arrow remains to be 
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explained yet, which is proven by Gabrielov [Ga] depending on the classification of 
the 14 unimodular exceptional singularities as formulated in the next assertion. 

ASSERTION 12.5. 
5.  Let W be a simple weight system having —1 as its smallest exponent.   Then 

the lattice of the vanishing cycles for W is isomorphic to TA(W*) ® 

So, if one can give a proof of the Assertion 12.5 directly without a use of classification, 
then it completes the explanation of the strange duality. We ask the following some 
more a general problem: 

For a weight system W, describe in terms of W the lattice of vanishing cycles 
together with the intersection form and the Milnor monodromy action c on it. 

REMARK 12.6. 
1. Converse of the above problem: the data of the monodromy c determine 

M(W) is true, since the characteristic polynomial <p(\) := det(A/ — c) determines 
M(W) (Theorem 5.1). Furthermore, according to Theorem 6.3, the datum of M(W) 
determines W up to finite ambiguities. 

2. Experiences suggest that the Dolgachev numbers have close relations with 
L(M(W)), whereas the Gavrielov numbers have similarity with M(W). Can one 
clarify this as a mathematical statement? 

13. Eta products for a regular system of weights. Let W be a regular 
system of weights. Inspired by finite group theory ([C-N], [Ma], [Ko]), we introduce 
products r]w and rj^ of Dedekind eta-functions. They are modular forms on the upper 
half plane H of weight ao and — CLQ, respectively, which may have poles at cusps. The 
products rjw and (77^ )-1 are holomorphic (resp. vanishing) at all cusps if and only if 
the dual rank vw is non-positive (rep. negative). The level and character of the eta- 
products are explicitly given in Lemma 13.3. The products rjw and 77^ are combined 
by the involution r -> —1/hr (13.4). This leads to an interpretation of the duality of 
weight systems in terms of 77-products (13.5) and (13.5)*. 

Let W be a weight system, and let ew be the cyclotomic exponent (3.1) of its 
characteristic polynomial (pw (2.1). Define the products: 

(13.1) VW(T):=     H    V(ir)eiv{i), 
i€M(W) 

(13.1)* ^w^^ll^^'^^1 

Here 77(r) := g1/24 n^Li(l~^n) ^^ # — exp(27r\/-T/r) is the Dedekind eta-function. 
We call r)w and 77^ the eta-products for W. The product expansions of 77 is absolutely 
convergent for q G C with |^| < 1, so 77vr and 77^ are nowhere vanishing holomorphic 
functions in r G W. :— {r E C : 9(r) > 0}. Since the order of the product in 
77^ and 77^ can be changed freely, one has some multiplicative expressions for the 
eta-products: 

(X) 

(13.2) 77W(r)=^/24    H     X{{l-qin)ew{{) 

i£M{W) n=l 
00 

= q^l™ H VW{qn) 
n=l 
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oo   Mw 

= q^/2i [] !](?" - exp(21rV=lmi//i)) 
n=l i=:l 

(13.2)* ^wir) = I""''24 E 11 (! - 9J'n)-ew(/i/J) 

j|/i n=l 

n=l 

oo      ri/;r+2ao \ 

= ^/24 JJ /     JJ    (g„ _ exp^Tr^m*//*))/^ - l)2a° ) 
n—1       \ i—1 ^ n=l   x     2=1 

where mi,... ,mM (// = /z^) and m^,... ,m*_f.2ao (^ ~ zy^) are ^e exponents and 
dual exponents for W, respectively (cf. (2.2) and (7.5)). Let us give a relation between 
the two eta-products. 

ASSERTION 13.1.   The two eta-products rjw and rj^y are combined by the imagi- 
nary transformation: r -» —l/hr, as follows. 

(13.3) Vwi-l/hr) ■ 7^(T) = {r/V^r /V^WJ- 

(13.3)* nwir) ■ r^(-//IT) = (V=I/r) 0 /^MW0• 

where h = hw is the Coxeter number (§1) and d{W) {resp. d*(W)) are the (resp. 
dual) discriminant ((9.1), (9.2)) for the weight system W. 

Proof    The transformation r -> —l/hr is involutive.  Hence, in view of (9.3), 
(13.3)* is a consequence of (13.3). So we prove only (13.3). 

By a use of the well-known formula 7/(—1/r) = yr/y/^Try(r) for the Dedekind-eta 

function, the first factor of (13.3) is calculated as: 

W(-I//IT)= n v(-i/(hT/i))e^ 
i€M(W) 

e\v{i) 

=     11     Uhr/iV^l) "      '7i(hT/i)ew^ 
ieM(W) ^ ^ 

= Vd'1 • (/ir/^l)ao • l[r,Ur)e^h^ 

= Vd-1.(hT/v=i)ao-r1;v(Tr1 

u 
Suppose W and W* are weight systems which are dual to each other (§7). Then 

by definition of the eta-products, one has 

(13.4) rjw (T) = rib* (r)    and    T^Y (r) = r)W* (r). 

Combining (13.4) with (13.3) and (13.3)*, we obtain another expression of the duality 
of weight system in terms of eta-products. 

'COROLLARY 13.2. Let W and W* be dual weight systems. Then, 

(13.5) Tiw(-yhT)-riw*{T) = VdT1. 
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Here d := d(W) = d(W*). Conversely, the (13.5) characterize the duality between W 
and W* so far their poset is not self-dual. 

Proof We have only to recall the fact: X^wW = ^ao = 0? since W is non 
degenerate (cf. (7.5) and §7 Assertion 7.7 1 i)). The (13.5) is equivalent to (7.7). D 

Next, we discuss the automorphic nature of the eta-products. For a function /(r) 

on the upper half plane H and for A = h *) e GL^(R) and k G Z, put f \k A := 

det(A)k/2(cT + d)-kf(A(r)) with A(T) := (ar 4- 6)/(cr 4- d). If / is holomorphic on 
H and there exist k,N G Z>o such that f \k A = e(d)f for A G ro(iV) := {A = 

(c d) ^ SL2(Z): c = 0 mod iV} where e is a Dirichlet character mod AT", then we call 

/ an almost holomorphic automorphic form of weight k and character e (or, of type 
(&,£)) on the group To(N) (of level iV). The eta-products rjw and l/rjw* are almost 
automorphic forms of weight ao> since one has rj \i/2 A = V(A) • 77 for VA G SL2(Z) 
where V(i4) is a 24th root of unity whose explicit formula is known (cf. [Ra, pl63]). 
An explicit description of level N and character e of the eta-products are given in the 
next lemma (cf. [Sal2 §2 Lemma 1]). 

LEMMA 13.3. The eta-products rjwimwT) and l/rjly (ra^r) are almost holo- 
morphic automorphic forms of weight ao and character ew on the group ro(Nw), 
where mw, nriw, £w and Nw are given as follows. 

(13.6) mw := 24/(gcd(nw, 24),    m^ := 24/ gcd(vw, 24) 

(13.7) Nw := hwnnw'^w 

(fdsf(-iy 

(13.8) £w(d) := < 
d 

_d_ 

dsf 

for d odd, 

for d even. 

Here dsf is the square free part of the discriminant (9.1) and (^) zs the residue symbol 
defined as follows. Ifd>0 and odd, it is the Legendre symbol multiplicatively extended 
in d. If d < 0 then (^) = (j^y) ford<0 and c > 0 and (§) = — (ifr) for d < 0 and 

c<0. Put (^-) :=1. 
The next lemma is the goal of this section. 
LEMMA 13.4. The eta-products r)w (rnr)  and 1/77^(771*7-)  are holomorphic 

(resp. have zero) at all cusp points G Q U {00}; if and only if v(yV) < 0 (resp. 
<0). 

Proof. The following fact may be well known among experts. For a sake of 
completeness, we recall with a sketch of proof (cf. [H-M, Theorem 1]). 

Fact. For all A = (* ^ J G SX2(Z) (c / 0), rjwirnr) \ao A can be developed in a 

Laurent series in the local parameter exp(27ry/—lT/24mhw) whose leading degree is 
given by c • $^(c). Here for anyX € Z^O; put 

(13.9) f-*w(0:=    £    {h-{i,(ifli)ew(i). 
i^M{W) 

Sketch of a proof of the Fact. 
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Put /(T) := r)w(rnT), where m := mw-  Let ^ = ^(v^Too) for A = (ac 
b
d J € 

5L2(Z) and c ^ 0 be a cusp.  For i e M(W), let (^ j) G 5L2(Z) (7°) A, i.e. 

^ € 5L2(Z) s.t. (™1
0)^ = Bi(«'f;). 

Comparing the determinant and the gcd of the first column of both hand sides, 
one gets mi = a^ and (mz,c) = ia*, respectively. Then 

/(r)|«„A=    J]    (f,(mir) |1/2 A)6"'^ 
ieM(w) 

ew{i) 

ieM{W) v \ /    / 

-a- n (iHUflftft t))"'" 

■a-jn(^
i-(?s)r 

— n Wl-f))""' 
i€M(W)   v    v   z J/ / 

= C4-exp(W^T(    ^    ^e(t))r/24).     JJ    ^(r) 

where Ci, C2, C3 and C4 are non-zero constants and Fi(r) is the unit factor of 

77(^r + ^■)) 5 which can be developed into a power series in qi :— exp f 27rv~lr j 

(i E M(W)) with constant term 1. Since 8i\mi\m-hw, all variables are positive powers 
of exp(27rV—Tr/24m/ivK) and fj F^ is expanded in its power series with a constant 
term 1. The degree of the leading term of /(r) |ao A w.r.t. the variable is given by 

^   {oLi/Si)ew{i) j • mhw = (     ^   (o%/mi)ew(i)) • m/i^y 

=    ^    hw(i,c)2ew(i)/i = c-$iy(c). 
iGM(iy) 

D 
We return to the proof of Lemma 13.4. 
Since $vy(l) = — vw (7.2) (that is: the order of pole of rjw at an integral cuspidal 

point is equal to vw), it is necessary to be vw < 0 (resp. < 0) for r]w to be holomorphic 
(cuspidal). To prove the converse, it is sufficient to prove the innequality: 

(13.10) £-<M0>£2-Sir(l) 

for any £ € Z^o- By definition of $w, one has: 

i£M(W) 
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We decompose the sum according to the level n(i) = 0,1,2 or 3. The term for n(i) = 3 
(i.e. i = h) is cancelled automatically. So, the sum is equal to 

?.h-h- £ {e-(h/i)-h-(i,s)2/i) 
n(i)=l 

+  E   {e-(h/i)-h.(i,02/i)\ew(i)\ 
n(i)=2 

=h-(e-i)[i- E v*- 
\ n(i)=l 

n(i)=l 

+ E (£2-(^)2)hyWI-(W 
n(i)=2 

The second and the third terms in the last expression are non-negative. The index 
set / :== {i e M(W) \ n(i) = 1} consists at most of three integers, which are non 
less than 2 and mutually different (cf. (4.4)). So, the factor 1 — J2n(i)=i ^A 0^ ^e 

first term can be negative only when / = {2,3,5} and W is of type Es. The explicit 
formula of f • *w(0 using ew(i) = (-l)n^ for i G M^g) = 23(30) proves (13.10) 
for this case. 

Altogether, the inequality (13.10) is proven. 
These complete a proof of the lemma. D 
In the rest of section, apart from duality, we ask a question on non-negativity of 

Fourier coefficients of eta-products. The following is the conjecture. 
CONJECTURE 13.5. Let W be a weight system. All Fourier coefficients at oo 

of rjQiw - T)" - 77W(T) are non-negative integers, if and only if i/w > ^. All Fourier 
coefficients at oo of'^(ftw-r)^ -^(r) are non-negative integers, if and only if JJ>W > A^- 

Specialization of the conjecture to z/ = 0 is the one given in the introduction. 
Specialization of the conjecture to fi — 0 is the following fact. 

Fact. Fourier coefficients at oo of rf^ij) are non-negative integers. 

This fact is a direct consequence of a product formula of the eta products given 
below. Note that the formula says also that r\w has non-negative Fourier coefficients 
at oo if W is non-degenerate. Since vw + 2ao > 0, this is a particular case of the 
conjecture. It implies that the eta-product for a weight system having its dual has 
non-negative Fourier coefficients at oo. 

ASSERTION 13.6. Let mi,... ,771^ and raj,... ,ra£+2ao be the sets of reduced*^ 
exponents and dual exponents (Def. 7.3) for W, respectively.  Then, 

00     / i/+2ao \ 

(13.11) r]w(r) = qM/24 JJ U1 " qnh)2ao/  H ^ " Qm'+nh)    • 
n=0   \ i=l / 
00     /        fi \ 

(i3.li)*      T,*W(T)=q"M/24 n v n(i - 9*<+nA) • 
n=0   \       i=l ) 

*) Here a reduced exponent fhi is an integer 0 < fhi < h, which represents an 
exponent ra* mod (h). 
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Proof. We prove only (13.11). The proof of (13.11)* is proceeded similarly. The 
multiplicity n(j) of a factor (1 — qj) for j G Z>o in (13.2) is given by:   n(j)  := 

]r       ev^(i), which clearly depends only on gcd(j,h). Recall the definition (7.1) 
iGM(W),i\j 

for (p^(A), and the fact that n(j) is equal to minus of the multiplicity of the h/gcd(j, h) 
th primitive roots of unity in the cyclotomic equation v?^(A) = 0 (cf. (7.4) and 
Assertion 7.2). So the factors for j with (n — l)h < j < nh and n G N are given by 

nh—l v 

(13.12) n (i - ^)»«>=i/ nu - <znfc-m*), 
i=(n-l)h+l i=l 

where we use a fact {mj,... ,m*} = {h - m*, ...,h — m*}. If pcd(j, /i) = ft, then, 

n(j) = n(ft) =    ^    ew(i) = 2ao 

These imply (13.11). D 

EXAMPLE 13.7. We illustrate the non-negativity of Fourier coefficients of r)w for 
the weight systems of types Ue, -B7, .Es and (1,1,2; 5). 

Let VT be a weight system of type EQ, EJ, ES 01 (1,1,2; 5). Since vw — 0, the 
eta-product r)w(T) is a holomorphic automorphic form of weight ao equal to 1 or 
2, respectively (Lemma 13.3). Let Lw{s) = Yl'^>=icw(n)n~s be the Dirichlet series 
attached to the Fourier expansion r]w (mr) = ^2cw{n)qn. We shall determine "Euler 
product expression" of the Dirichlet series. This leads to an explicit formula for the 
Fourier coefficients cw(n) and the non-negativity of them. Results are exhibited in 
the following list. The Fourier expansion of the eta-product for the weight system 
(1,1,2; 5) was studied by Ramanujan (who called the formula very strange). The 
expression of some eta-products including EQ by a use of Eisenstein series was studied 
by Koike in connection with moonshine [Ko]. 

E6: W = (l,l,l;3) 
^6(3r) = 77(9r)3/r?(3r) 

= q + qA + 2q7 + 2q13 + 2q19 + g25 + 2q28 + • ■ • 

%(s) =n(1_(f)p-s)(1_p-s) 

11     (l-p-s)2     11    l-p-2s 
p=l(3)K F     >   p=2(3) P 

CE*\P) - |(ni + 1)... (njfe + i)(i + (-1)^1)... (1 + (-1)^)/^ otherwise, 

for N = ^p™1 - • -p^q™1 - - - q™1 where pi is a prime number with pi = 1 (3) and qi is 
a prime number with qi = 2 (3). 
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ET. ^ = (1,1,2:4) 
^7(8T#7?(32r)27?(16r)/?7(8r) 

= qz + q11 + q19 + 2q27 + qi3 + 2q51 + q™ + q67 + q75 + 

p=l (8) 

LE7(
S)=     11     (l-„~s)2      11      l-v-2s 

—, ,0^V y     )   p=5,7(8) y 

11    (l_p-«)2  ~     11    (l+p-«)2  )  I 
VPS3(8)

V ^     > p=3(8)V    ^     ^   / 

^(^  ^ 

f 0   if n > 0, 

lnti(n< + i)(i-(-i)sf-in')nUK + i) 
I      IlUCl + C-lJ'O/a' otherwise, 

for N = 2>"1 • • -p^q™' ■ ■ ■ q^'^1 • • ■ r'* where pi is a prime number with pi = 3 (8), 
<7; is a prime number with qt = 1 (8) and r; is a prime number with r^ = 5 or 7 (8). 

E8: W = (l,2,3;6) 
VEs (12T>= 7;(72T)r?(36r)7?(24r)/r?(12r) 

= gB + 91T + g29 + g41 + g53 + 2g65 + ^89 + ?101 + ^113 + . . . 

^.w = n 
P=l (12) 

(1-P-S)2 11        1 _ v-2s 

n 
£=7,11(12) 

1 n 

CE.W = < 

( 0   if n or n' > 0, 

i n-=1(ni + i)(i - (-i)E~ "•) nUK +1) 
I      n'=i(l + (-l)Si)/2i otherwise, 

A 

for iV = 2n3n nt=i ^r^ Hizri ^r^ ni=i rii where pi is a prime number with pi = 
5 (12), g^ is a prime number with qi = 1 (12) and r* is a prime number with r^ = 7 or 
11 (12). 

W=(l,l,2;5) 
»7(1,1,2;5)(T)    = V(5T)

B/r](T) 
= q + q2 + 2q3+3q4 + 5q5 + 2q6 + 6q7 + 5q8 + 7q9 + 5q10 + 12q11 + --- 

L(1'1AB)W   -?(l-p-.+i)(l-(§)p-) 

C(M,2;5)W=n((^-(f)"i+1)/(^(f))) 

for the prime decomposition N = Yli=1 p™1 • The Fourier expansion of the eta-product 
^(i,i,2;5) was studied by Ramanujan, who called it a "remarkable identity" [R]. The 
weight system (1,1, 2; 5) belongs to the 4th group of Appendix 1. 



DUALITY WEIGHT SYSTEMS 1037 

Appendix 1. Weight systems of rank less than or equal to 24. 
This appendix is added after discussions with K. Harada, T. Kondo and G. Mason. 

We compare the Frame shape (which is the same as the cyclotomic exponents in the 
present paper) for conjugacy classes of the automorphism group • 0 of the Leech lattice, 
with that of direct sums of weight systems having rank 24 defined below. We refer to 
[C-N], [H-L], [K] and [Ma] for the Frame shape of classes of -0 and related subject. 

By a direct sum of weight systems, we mean a symbol Wi 0 • • • © Wm, where Wi 
are weight systems having the same Coxeter number. The rank (resp. characteristic 
polynomial and discriminant) of Wi 0 • • • © Wm is defined to be the sum (resp. the 
product) of these of the summands Wi. 

In the following, we list up direct sums of weight systems having rank 24 (which 
is proceeded by a help of Table F at the end of Appendix 1). The list is divided into 
the four groups. 

1) direct sum of weight systems having only positive exponents (cf. §10): 

24i4i, 12^2, 8A3, 6A4, 4^5 0^4, 6£>4, 4A6, 2A7®2D5, 3A8, 

2A9 ©D6, 4D6, ,4ii©£>7©£6, 4E6, 2A12, 3£>8, A150D9, 

D1O0 2E7,   Ai7 0£7,   2Di2,   A24,   £>16 0£8,  3^8,^24- 

2) direct sum of dual pairs of simple weight system with e = — 1 (cf. §11): 

2(3,4,4; 12), 2(3,4,5; 13), (4,5,6; 16) 0 (3,4,8; 16), 2(3,5,6; 15), 

(4,6,7; 18) 0(3,5,9; 18), (6,8,9; 24) 0 (3,8,12; 24), 2(4,5,10; 20), 

2(4,6,11; 22), (6,8,15; 30) 0 (4,10,15; 30), 2(6,14,21; 42). 

3) weight system of rank 24 having negative exponents (cf: Table F): 

(3,7,7; 21), (3,7,11;25), (3,11,15; 33), (4,7,12; 28), (4,9,18; 36), 

(4,14,23; 46), (6,9,11; 33), (6,10,23; 46), (6,26,39; 78), 

(10,14,35; 70), (12,15,20; 60). 

4) degenerate weight systems: 

3E6, 2E60 4A2, E6©8A2, 2E7©2A3, ^©5^3, 

2^8 ©£4, E8©2A5©D4, (1,2,2;6)©L>4, (1,1,2; 5) 

We observe the following facts on the table, which are verified directly. 

1. The characteristic polynomial of a direct sum in the lists 1), 2) and 3) is self-dual 
(in the sense at introduction), 

2. The discriminant of a direct sum in the lists 1), 2) and 3) is a square. 

3. The cyclotomic exponents of a direct sum in the list 1), 2) and 3) appears as a 
Frame shape of an element of the Conway group • 0, 

4. All of self-dual Frame shapes for conjugacy classes of -0 appear in this way, except 
for the 4 conjugacy classes: 6A = 6434/l424, 10A = 10252/1222, 1525 = 30 • 10 • 6 • 
2/1.3-5-15 andl8A = 18-9/l-2. 

5. All weight systems in the list 4) are degenerate (<& the characteristic polynomial 
has 1 as its roots & ao > 0).  Therefore, they are not self-dual and their cyclotomic 
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exponents do not appear as a Frame shape of the Conway group -0. The Fourier 
coefficients of eta-products attached to them are non-negative integers (cf. Example 
13.7). 

REMARK A.l 
1. The self-duality of direct sums in the lists 1) and 2) is a consequence of §7 

Theorem 7.10. 
2. The squareness of the discriminant for direct sums in the list 2) is a consequence 

of §9 Assertion 9.1. 
3. Let L = Li 0 • • • 0 Lm be the direct sum of the lattices Li of vanishing cycles 

for Wi. It mayjpe an interesting question whether there exists a unimodular lattice L 
such that L C L C L* (= the dual lattice of L). In the case of 1), this is true because 
of the Niemeier lattice L. In the case of 2), this is true because of the iiTS-lattice L. 
In the case of 3), the discriminants are squares, but we do not know the answer. 

In Appendix 2, we introduce an algebraic surface Xw for each of the weight 
system W in the group 3) so that the lattice of the vanishing cycles is realized as the 
lattice of transcendental cycles of the surface Xw- 

4. The weight system (1,1,2; 5) in the list 4) has a negative exponent —1. But 
since it is degenerate, we classified it in the group 4) but not in 3). The eta-products 
for this case was studied by Ramanujan as remarkable identity [R] (see also Example 
13.7). 

In Table F, we list up all weight systems of rank less or equal to 24 together 
with the data: rank fiw, discriminant d(W), genus ao, signature A(W), characteristic 
polynomial ipwW and the poset M(W). We omit the case e > 0 and the case £ — — 1 
of mult (W) = 1, which are already listed in tables A, B, C and E. A weight system 
having a dual weight system is indicated either by "*" (in case self-dual) or by "**" 
(otherwise) and the dual weight is given in the table. 

Table F. 
£ = -1 

W /i    d(W)    ao       A(W)       ipw(\) M(W) 

(1,1,2; 5) 

(1,2,2; 6) 
£=-2 

24 

20 

55 

2433 

2    2 

1    222 

(A5-!)5 

A-l 
(A6-!)4 

(A3-1)(A-1) 

(D-  © 
© ®-® 

(3,5,5; 15) 16 

(3,5,7; 17) 16 

(3,7,9; 21) 16 

e = -3 

(4,5,7; 19) 18 

(4,5,8; 20) 18 

25 0 555 

17 0 357 

9 0 339 

19 0 45 7 

16 0 448 

(A15-1)(A5-1)    (I 
(*>-l)(A-l) 

(A17-l) 
A-l 

(A21-1)(A3-1)    (I 
(A7-1)(A-1) 

A1*-! 

(A">-1)(A«-1) 
(A5-1)(A-1) 
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(4,7,14; 28)     i8     r   0   277      gcVS-n,!"// 

(4,10,17; 34)    18     4   0   2 4 10    S^VfcV 
£ = -4 

(3,7,7521)       24   49   0   777      (fflijff-j1 

(3,7,11; 25)     24   25   0   3 7 11 A-l 

(3,11,15; 33) 24 9 0 3 3 15 ^^J 
£ = -5 

(6,7,9; 27) 20 9 0 36 7 ^^llj^l"^ 

(6,8,13; 32) 19 8 0 2 6 13 (A
M
-I)(A

4
-I) 

(4,7,16; 32) 25 8 0 44 7 (A"-i)(A-i) 

(6,8,19:38) 20 4 0 268 g^fcV 

(6,16,21; 48)    18     3   0   2 3 21    (A
48
-I)(A

8
-I)(A

3
-I) 

(S; 16', 24; 48)   30     3   0   338      lA^-i{(Ai«-i)(A-i) 

(6,16,27; 54)    19     2    0    2 3 16    (A
M
-IHA

9
-I)(A

2
-I) 

(4;i8;27;54)    25     2    0   249      1A*-I)(AI»-I)(A-I) 

(6,22,33;66)   20     1   0   2 3 11     (A*»-i)(A4i!-i)(As-i)(A-i) 

(4,7,12; 28)     24    16   0   4 4 12    (ffliJiAjff 

(4,9,14; 32)      23    16   0   2 9 14    ^Ta"^^1/ 

(4,9,18; 36)     24     9   0   299      ^i^^j 

©—®-<§)—@ 

(4,14,19; 42)    23     6    0   2 4 19    ff^lg ©-(3M2^@ 
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(4,14,23; 46)    24     4   0   2 4 14      {^L~_%-i) 
e = -7 

(8,9,12;36)     21     4   0   34 8 (A36-1)(A4-1)(A3-1) 

(8,10,15; 40)   20     5   0   2 5 15      (A^-I)(A
5
-I)(A

4
-I) 

(5;8,^0;40);    28     5   0   45 5        \A*»-I)\A»-I)(A-I) 

(8,10,25; 50)    21      2    0    25 8 (A50-1)(A5-1)(A2-1) 
(A25-l)(Ai»-l)(A-l) 

(6,9,11; 33) 24     9    0   36 9        %u~^Ii} 

(6,10,13; 36)        23    12   0   2 10 13    ^f^x-i) 

(6,10,23; 46)        24     4   0    2 6 10      ^^jl^0 

(6,20,27; 60)        22     3   0   2 3 27      ^^Lz^x^ 

(6,20,33; 66)        23     2   0   2 3 20      ^^L^^-S 

(6,*26,39;78)        24     1    0   2 313      ^f^^^mx-il 

(TM6>-#-(§) 

£=-11 

(10,14,35; 70)      24     1   0   25 7 (A70-l)(AT-l)(Ag-l)(Aa-l)     (i 
(Ass-1)(A"-1)(A"'-1)(A-1) 

£= -13 

(12,15,20; 60)      24     1   0   34 5 (A60-l)(A5-l)(A''-l)(A3-l)      (I 
(A20-1)(A15-1)(A1:!-1)(A-1) 
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Appendix 2. Algebraic Surfaces for Weight Systems of Rank 24. 
To each W of the 11 weight systems of rank 24 in the list 3) of Appendix 1, we 

attach an algebraic surface Xw and its lattice Lw of transcendental cycles of rank 
24. In all 11 cases, the number of negative exponents is equal to 2, and hence the 
signature of the quadratic form of the lattice is (4,20). It is remarkable that, in all 
11 cases, the discriminant of the lattice is a square integer. It would be interesting to 
find a characterization of these lattices. 

First, we recall the list of the weight systems together with the data: i) charac- 
teristic polynomial ip = (/?ty, ii) discriminant d — d(W), hi) signature set A = A(W), 
iv) volume vol, and v) exponents. Of course nw = vw = 24 and ao = 0. 

(3,7,7; 21) 

<p = 21 • 7/3 • 1, d = 49, A = {7,7,7}, vol = 4/7, 

exponents : -4, -1,2,3,3,5,6,6,8,9,9,10,11,12,12,13,15,15,16,18, 

18,19,22,25 

(3,7,11; 25) 

if = 25/1, d = 25, A = {3,7,11}, vol = 4/7, 

exponents : -4, -1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 

22,23,26,29 

(3,11,15; 33) 

<p = 33 • 3/11 ■ 1, d = 9, A = {3,3,15}, vol = 4/15, 

exponents : -4, -1,2,5,7,8,10,11,11,13,14,16,17,19,20,22,22,23,25, 

26,28,31,34,37 

(4,7,12; 28) 

ip = 28 • 4/7 • 1, d = 16, A = {4,4,12}, vol = 5/12, 

exponents : -5, -1,2,3,6,7,7,9,10,11,13,14,14,15,17,18,19,21,21, 

22,25,26,29,33 

(4,9,18; 36) 

tp = 36 • 9 • 2/18 • 4 • l,d = 9, A = {2,9,9},vol = 7/18, 

exponents : -5, -1,3,4,7,8,11,12,13,15,16,17,19,20,21,23,24,25,28,29, 

32,33,37,41 

(4,14,23; 46) 

<p = 46 • 2/23 ■ 1, d = 4, A = {2,4,14}, vol = 5/23, 

exponents : -5, -1,3,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39, 

43,47,51 

(6,9,11; 33) 

ip = 33 • 3/11 • 1, d = 9, A = {3,6,9}, vol = 7/18, 

exponents : -7, -1,2,4,5,8,10,11,11,13,14,16,17,19,20,22,22,23,25,28,29, 

31,34,40 

(6,10,23; 46) 

<p = 46 • 2/23 • 1, d = 4, A = {2,6,10}, vol = 7/30, 

exponents : -7, -1,3,5,9,11,13,15,17,19,21,23,23,25,27,29,31,33,35,37, 
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41,43,47,53 

(6,26,39; 78) 

if = 78 • 13 • 3 • 2/39 • 26 • 6 • 1, d = 1, A = {2,3,13}, vol = 7/78, 

exponents : -7, -1,5,11,17,19,23,25,29,31,35,37,41,43,47,49,53,55,59, 

61,67,73,79,85 

(10,14,35;70) 

ip = 70 • 7 • 5 • 2/35 • 14 • 10 • 1, d = 1, A = {2,5,7}, vol = 11/70, 

expomenents : -11, -1,3,9,13,17,19,23,27,29,31,33,37,39,41,43,47, 

51,53,57,61,67,71,81 

(12,15,20; 60) 

<p = 60 -5 -4. 3/20 -15 .12-1, d=l, A ={3,4,5}, vo/= 13/60, 

exponents : -13, -1,2,7,11,14,17,19,22,23,26,29,31,34,37,38, 

41,43,46,49,53,58,61,73 

According to §10 Remark 10.3, any weight system W — (a, &, c; h) defines a smooth 
curve Cw in ^(^j &?c) by a weighted homogeneous polynomial fw of three variables 
(#, 2/, 2) of weight a, 6 and c and of total degree h. The genus g(Cw) (which is shown 
to be equal to ao) turns out to be zero for all of the 11 weight systems. The curve 
Cw is given as an orbifold TwXH, where IV C PSZ^P) is a triangle group with 
the signature set A(W). That is: there are 3 conjugacy classes of elliptic fixed points 
of IV, where the set of orders of the fixed points is A{W). Since the polynomial 
fw consists of 3 monomials (§10 Remark 3), fw is unique up to constant factors 
on coordinates. The afRne equation fw = 0 in C3 defines a surface Xw,o with an 
isolated singular point at the origin. The map fw • C3\Xv^Jo —> C\{0} defines a 
Milnor fibration whose general fiber Xw (given by the afRne equation: fw — 1) has 
a homotopy type of bouquet of yw number of 2-spheres [M]. We consider the middle 
(2-dim.) homology group Lw '-— —#2(^V5^)- The rank(Lw) is given by fiw, and 
the sign (/i+,//o,/i-) of Lw is given by [1+ = #{exponents between 0 and h}, no = 
#{exponents equal to 0 or h}, //_ = #{exponents which exceeds the above range}. In 
fact, //+ = 16 + 4,//o = 0 and /i_ = 4 in all of the 11 weight systems. The discriminant 
of Lw is given by d(W). 

In order to give a geometric description of the lattice Lw, we describe Pinkham's 
compactification of the surface Xw and its smooth model (cf. [Pl~3]). Let Xw be 
the surface in the weighted projective space P(a, 6, c, 1) = C3 U P(a, 6, c) defined by 
the equation fw{x^y^z) + w11. So, Xw = Xw U Cw, where Cw = Xw H P(a,6,c). 
The singularities of Xw are cyclic quotient singularities exactly at the orbifold points 
of Cw by a group of order given by the signature A(W). By blowing up them, we 
obtain a smooth model Xw of Xw, which turns out to be minimal, checked case by 
case for 11 cases. Let DOQ = Xw\Xw be the total transform of the curve Cw in 
Xw- Let ZfjDoo] be the submodule of H2(Xw, %) spanned by irreducible components 
of DOQ. Then we have the description: 

Lw^ZlDoo]*-. 

(cf. [S7 (5.9.1)]). The determinant of the intersection matrix of the irreducible com- 
ponents of -Doo is equal to the discriminant d(W) (checked case by case). So the 
irreducible components are linearly independent in i^C^V?^)- On the other hand, 
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the Picard number for the del Sari surface Xw turns out to be equal to ranA:(Z[jD00]) 
owing to an explicit formula [Shi]. These altogether implies the next statement: 

ASSERTION A.2    The lattice Lw is isomorphic to the lattice of the transcendental 
cycles of the surface Xw whose discriminant is equal to d(W). 

Furthermore, in 9 of the 11 cases, Xw has Kodaira dimension 1 and admits 
an elliptic fibration over a rational curve, and in the remaining two cases, Xw has 
Kodaira dimension 2 and admits genus 2 or 3 fibrations over a rational curve. 

In Table H, for each of 11 weight systems W, we exhibit the data: 
i) Weighted homogeneous polynomial: fw + wh defining Xw- 
ii) The Chern numbers c\ — Kf and C2, geometric genus pg, and the Kodaira 

dimension K of the surface Xw • 
hi) Intersection diagram of the exceptional set EQ of the minimal resolution of 

Xw,o is given by the figure in the left side. Irreducible components of EQ are rational 
curves whose self-intersection numbers are given by the numbers inside the circle. The 
coefficients of the canonical divisor of the resolution are given near to the circle. 

iv) The intersection diagram of DQO is given by the figure in the right hand side. 
Irreducible components of DQQ are relational curves. The coefficients of the canonical 
divisor of the surface Xw are given near at the vertices. 

Table H. 
(3, 7, 7; 21)        Xw := {x7 + y3 + z3 + w21 = 0} 

KooiXu)2 = 0,    c2{Xw) = 36,    pg(Xw) = 2,    K(XW) - 1. 

-2     V.i M)      M      ^2    x 

0—Q—©      ©—©—©—Q 
-2-1 0 1 

(3,7,11; 25)       Xw := {x6 + y + y2z + z2 + w25 = 0} 

Koo{Xw)2 = 0,    c2(Xw) = 36,    pg(Xw) = 2,    K(XW) = 1. 

A-Z) ^2) (-2 

rsX    -2       -1 ow    iw    2^/3 

-2-10     0     1     2 

(4,7,12; 28)        Xw := {x1 + y4 + z2x + w28 = 0} 
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K00{XW),2 = Q,    C2(XW) = 36,    Pg{Xw) = 2,    K{XW) = 1. 

N@-©-@   ©-Q)-@/ 
-3-2-10 0 2 

(4,14,23; 46)       Xw := {A + 2/3a; + z2 + wi6 = 0} 

Koo(Xw)2 = 0,    C2(XW) = 36,    pg(Xw) = 2,    K(XVI) = 1. 

XJ)-© ©-©-©-©-©/ 
-2-10 0 1 2 3 

(6,9,11; 33)       Xw := {s*y + 2/3a; + z3 + w33 = 0} 
-^oo(^)2 = 0,    C2(XU,)=36,    p5(Xm) = 2,    K(XW) = 1. 

©^@ ©-©-©-©-©^@ 
-2 1 2 3 4 5/fi 

©-©-©-©    ©-©/ 
-4        -3 -2-1 0 3 

(6,10,23; 46)       Xw := {x6y + yix + z2 + wi6 = 0} 

Koo(Xw)2 = 0,    C2(XW) = 36,    pg(Xw)=2,    K(XW) = 1. 

-2 12 3 4_        5_^   /       6 
©-©-©     @—@-© 
-3-2-1 0 2 4 

(6,26,39; 78)       Xw := {x13 +y3+z2+ w78 = 0} 
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KooiXv)2 = 0,    C2(XW) = 36,    pg(Xw) = 2,    K{XW) = 1. 

^4 3^ 

©—©4 ©—©—© 
^©-©    ©-©—©-©-©—© 

-2-10 1 2 3 4 5 

(10,14,35^70)       Xw := {x7 +y5+z2+ w70 =0} 

K00(XV,)2 = 1,    C2{XW)=35,    Pg{Xw) = 2,    K{XW)=2. 

"2)6 5^ 

©^©, 2©-4©-fi©-S©^© -12  \       -3 2 4 6 8        /       in 

-4-2 14 7 

(12,15,20; 60)        Xw := {a;5 + y* + z3 + w60 = 0} 

K00{XW)2 = 2,    C2(XW)=M,    pg(Xw) = 2,    K(XW) = 2. 

—14\       -4 3 6 9_    /       10 

^©-© @-Q/ 
-6 -3 2 
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