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THE CUBIC SHIMURA CORRESPONDENCE* 

S. J. PATTERSONt 

1. Introduction. In the theory of metaplectic groups a Shimura correspondence 
describes a relationship between the set of automorphic forms on a metaplectic cover 
of a group and those on a non-metaplectic group. The first example was discovered 
by G. Shimura in 1972 (see [22], [23]) using the converse theorem of Hecke theory. 
A little later Niwa [16] and Shintani [24], [25] discovered an intimate relationship 
between Shimura's correspondence and the theory of general theta functions. This 
discovery opened the way both to some remarkable applications - see, for example 
[30] - and to a wide range of generalizations and applications in connection with 
automorphic forms of higher rank - see [15]. 

The theory of theta functions appears to be rather special and, in the case of 
metaplectic covers of order exceeding 2, inapplicable. Y. Flicker [3] proved a Shimura 
correspondence for n-fold covers of GL2, both locally and globally. This is done at 
the level of characters using the Trace Formula. It can be extended to some extent 
to other groups but we shall not go into these matters here. What is important for 
our purposes is to note that this method yields very little more precise information - 
for example about the Fourier coefficients of the metaplectic forms. 

Recently there has been some very remarkable progress towards a more precise 
theory in the case of three-fold covers. This has its origins in investigations of Kazhdan 
and Savin ([11], [19]) of the representation theoretic basis of the properties of the theta 
representation. It has been developed in a global context by D. Ginzburg, S^Rallis 
and D. Soudry, [4] (see also [5]). It describes a Shimura correspondence for SL2 and 
for ST3 based on special properties of a group of type G2. 

The objective of this paper is to discuss a much more elementary method for 
constructing integral kernels for the Shimura correspondence. Although this paper 
was spurred on by the work of Ginzburg, Rallis and Soudry it appears to be inde- 
pendent of it in the sense that there is no apparent connection between the results 
found here and those of Ginzburg, Rallis and Soudry. Our method is one which is 
entirely carried out in the context of GL2. In fact, we carry it out only over the 
field Q(CL>)(U;

2
 + u + 1 = 0). It is based on combining Hecke theory with Selberg's 

theory of point-pair invariants; it was inspired by a remark of Selberg's ([21], p. 188). 
Unfortunately it can be carried out only in the context of the highest level possible. 

It is not clear if the method described here has a representation-theoretic basis; 
it seems unlikely. On the other hand the results which we obtain here are very 
explicit. Although we shall develop them only in the context of the cubic Shimura 
correspondence they could be applied in a much more general context. For example, 
if one applies them in the case of the 1-fold (i.e. trivial) covering one is led to theta 
functions associated with an indefinite ternary quadratic form of the type described 
in [29]. In the case of a 2-fold cover one is not led to standard theta-functions. In this 
case there are some technical difficulties of the same kind as we shall now describe in 
the cubic case. 

What we construct is a correspondence between automorphic forms rather than 
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between representations. For the method to be applicable one needs some kind of 
Multiplicity One Theorem, which describes the levels of the forms. In the classical 
case this is given by the Atkin-Lehner theory of new-forms but this theory has no 
analogue in the context of metaplectic groups. What we shall do here is to prove a 
very special result of this type. It is based on a construction in [17] and it appears 
to have more significance than is apparent there. Nevertheless no deeper reasons for 
the success of this method are available. 

This part of the paper will be given in group-theoretic language, as is appropriate. 
It takes up §§2,3. In the remainder of the paper we adopt a more "classical" approach 
based on Selberg's method of point-pair invariants. 

This method is, as indicated above, very explicit. It should lead, if not to the- 
oretical results about the Fourier coefficients of cubic metaplectic forms, at least to 
a method by which these can be numerically evaluated. At the present time noth- 
ing beyond the elementary Hecke theory (cf. [12], [13]) is known, nor are there any 
numerical examples available. For this reason it would be very desirable to develop 
techniques for determining these coefficients. 

I would like to thank L.Mohring for some very helpful conversations especially 
concerning the problems discussed at the end of this paper. He also pointed out the 
existence of the paper [26] to me. 

2. The metaplectic cover of GL2. In this section we shall recall some salient 
aspects of Kubota's theory of the metaplectic cover of GL2 and develop aspects par- 
ticular to the ground field (^(V'-S). Recall that F is a local field containing the nth 

roots of 1 then we can define a 2-cocycle on GL2(F) as follows: 

Let x (( a
c    

b
d Y\ = c if c ^ 0,    = d if c = 0 for f a    b  J <E GZ^F).  Let 

( 5 )n,F denote the Hilbert symbol of order n in F, with values in the group of nth 

roots of 1 in F, //n(F). Later, when no confusion should occur, we shall write ( , ) 
in place of (    ,     )n,F- The Kubota 2-cocycle is given by 

(„     „ \      !x(9m)       x(9i92) 
°\9u 92) = 

x(gi)  '^(02) det(^i) J n F 

If F is non-archimedean and Rp denotes the ring of integers of F we set, for ( ,   J 

e GL2(RF), 

= (c> /   .\)     -   ifO<|c|F<l, 
a    b \\ ( d 
a    d 

det , . 
a    a 

= 1, otherwise. 

Kubota showed that if n is invertible in Rp one has 

<r(9u 92) = «(£! 92)/K(9I) 1^(92), 

which gives an explicit splitting of a over GL2(RF)- In fact Kubota also proves that 
the same is true on {g e GL2(RF) '-9 = 1 (mod n2)} even if n is not invertible in 
RF- This is only a rough lower estimate for a group on which a splits. 

Let us now consider the case where F = Q3(y/—3) and n = 3. For convenience 
set A = v^ = 2UJ + 1. Let Fo = Q3 and KQ = GL2(RF0)- Let K{2) be the principal 
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congruence subgroup of level 2 in GL2{RF), i.e. 

K(2) = {geGL2(RF):g = I    (mod A2)}. 

We note that K(2) D KQ is the principal congruence subgroup of level 1 in KQ (as 
A2 = — 3) and so 

[Ko : K{2) H Ko] = (32 - 1)(32 - 3) = 48. 

Thus we have [KQ • K(2) : K(2)] = 48; as KQ normalizes K(2) we see that KQ • X(2) is 
a group. On the other hand [GZ^JRF) : if (2)] = 34(32 - 1)(32 - 3) = 81 • 48. Hence 
Ko - K{2) is of index 81 in GZ^F); we write ifgi := KQ • K{2). 

Next we note that the Kubota function K is defined on K{2).  We extend this 
definition to if si by setting 

ftOtf') = *(<?,<?W)    if 9 G #0, 3' e K{2). 

We have: 
LEMMA 2.1.  The function k is well-defined. Moreover, for 71, 72 G ifgi we /mue 

^(71 > 72) = ft(7i 72)/«(7i)^(72). 

Proof.  If yp' = #1 #1 then ^i = #£, ^^ = (J-1^' where 5 G if0 H if (2).  We see, 
using the cocycle relation, that we have to verify 

and 

K(g')=a(6-\g')-1K(S-1g') 

in order that k be well-defined. The first of these follows as the Hilbert symbol 
restricted to Q£ X Q^ is trivial. The second follows, as one can verify, using the 
relations 

1 + \
A
RF CF

X3 

and 

(l + A2^, 1 + X
2
RF)3,F = 1, 

that K, splits a on if (2). Since K,(8) — 1 as before the second relation follows. 
In order to prove the second statement we have to verify that, if 7! = gi #1,72 = 

£2 92 with 01, ^ e ifo, 01, 02 £ if (2) 

G'teij 01)^(^1) * <r{92i 92)^(92) ' <r(9i9i, P2P2) = cr(0i02, g^^g^Kig^g'i'92* 92)- 

If we use the fact that « splits (7 on if (2) and that cr(0i, 02) = 1 this simplifies to 

K(92
1

9I92) = <T(g'i, 92) ' cr{92,9219'i92)~1 • «(pi)- 

This shows the behaviour of ^ under conjugation. To prove it one first notes the 
general fact that if g G if0 then 

«9(ff') = KGrVflMff.jTVsJMs'.ff) (5' e K(2)) 
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also splits a on K{2). It follows that K
9

 JK is a character of order 3 on K{^). Next we 
observe that the same construction applied to K

9
 yields 

If we write Xgid') = K
9{g1) jK{g') then 

Xhgig') = Xgih^g'fyxhig'), 

for g, h G i^o, ^/ ^ ^(2). To verify that all the Xg are trivial it therefore sufEces 

to prove that this is so for g of the form f j (x 6 i?Fo)j ( n    -, ) (ce G i?^o) or 

^ = ( 1 n J. The first case is straightforward to verify, the second is not particularly 

difficult. The third case is treated by noting that, if 6, c ^ 0 

XE ( ( c    d ) ) = ^' a^ad "" bc^3>F ' (b' d^>F(d ~~ (ad ~ bd)h,F- 

Since A = ad (mod A2) it follows that this expression is 1. The general case (b,d 
possibly 0) follows at once. 

This completes the proof of the lemma. It should be noted that this argument 
(like the statement) is merely a variant on [17], §2. □ 

We^can now begin to formulate the main theorem of this section. Denote by 
G = GL2(F) the 3-fold metaplectic cover of G = GL2{F) in the case F = QsiV^). 
This is defined by a; we write elements of G as pairs (g,(), g G G, £ G ^(F) and 
the multiplication is given by 

(0i, Ci) • {92,(2) = {9192, Ci(2(7(gi,92)). 

The map Ksi -> G] k \-> (k, £(«)) is, by Lemma 2.1, a homomorphism. Let K^ be 
the image of this map; K^ is isomorphic to Ksi- 

The centre of G is Z = {(( JJ    ° J ,c) : a G Fx3, C e Ms^)} (see [10] 0.1). 

We fix an injective homomorphism e : ^{F) -» Cx. Let x be an extension of e to Z, 
trivial on ii"^ D Z. The choice of x is not important for our purposes and we could 
take 

We shall now define a Hecke algebra iJ = HX{G] K^). This consists of locally constant 
functions cp on G which satisfy 

1. <p(9z) = x{zM9)        {geG,zeZ); 
2. (p{k1gk2) = (p{g)        (fa, fa G K^g G G); 
3. y? is compactly supported modulo Z. 

We fix a Haar measure on G/Z; this group is unimodular and the Haar measure is 
therefore left and right invariant. It is determined by the measure of K^Z/Z. We 
define H to have the algebra structure determined by convolution on G/Z, i.e. 

(<Pi*<P2)(g)=   /   <Pi(gh  ^wifydh. 

G/Z 
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Then we have: 
THEOREM 2.2.   The algebra H is commutative. If tp E H, g e G and <p(g) / 0 

then there exist fci,  fe € K^ so that kigk2 is of the form f I ) , C I  with 

ai, a2 G Fx3
1 £ G [13(F). Conversely, if ai, a2 5 C are a5 a6o?;e £/ien we can define 

arzc? 

^i(5)=0f/ff€G'-^1^
a

0
1    ^),c)^8i; 

tften we /iai;e ipi € H. 
Proof The final statement is relatively straightforward and so we shall leave it 

to the reader. We shall first prove the second statement, and from this we deduce the 
commutativity of H. 

Let K — GL2{RF)' Then the set of elements 

T={
1+

XC
A
  din)      <**.<?. D-O.*) 

form a set of representatives for K/KQI or KQI \K. One sees this as there are 34 = 81 
such elements and no element of the form T1~

1
T2,TI ^ T2 lies in K$i. Suppose that 

g G G. Then by the Cartan decomposition there exist 7*1, T2 as above, /ii, /i2 G 
Fx, C G IJLZ(F), ku k2e K^ so that 

^^^(('o1   °2)'
c)r2fc2' 

We can, and shall, assume that \hi\ < |/i2|- By modifying hi, /i2, C if necessary 

we can then assume that TI has the form I j and T2 the form ( j where 

6, c = 0,   ± A. We now seek fcj, k^ G Ksi 

<j?)(o i)c:)-(;0(o 00 ;> 
and examine if the corresponding equation holds in K^. If it does not then ip(g) — 0 
and we have a contradiction. 

J where ^1, 62 = 1(A2).  In this case we find that the equation can be lifted 

if (0, /i2)3,F • (^2, ^1)3"^ — ^ an(^ we conclude that hi, /12 G (1 + A
2
.RF)A

3Z
. By a 

simple modification we may assume that hi, ho G A3Z. In this calculation we use the 
fact that (61, 62)3,F — 1 if 0i, #2 = 1    (mod A2). Next we take 

7/      //1 + A2&     -62A2 \       Mo   ,     ,x2, fci=^    A2        ^^J,    (AM-6A2)3,F 
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One finds that 

^(U1* i)'1 

and that the condition that the equation above can be lifted is that (A2, 1 — bX2)^^ = 
1. As (A, 1 it A3)3>jp 7^ 1 we conclude that a lift is only possible if b = 0. An analogous 
argument shows that c = 0. 

Now   it   follows   that   if   we   let ipm be   the   element   of H supported on 

) , 1 ) K^ and with the value 1 at ( ( 

every element of H is a linear combination of finitely many (pm. We shall show that 
ipm*1?! is of the form c(^m+i + Yl fyPj w^h c ^ 0. As cpo is a non-zero multiple of 

j<m 
the identity in H it will then follow that if is a polynomial algebra generated by (pi. 

Let Si,..., 5r be a set of representatives for 

i^si ( (    n ) ' ^ ) ^81 ai1^ w^^ t^e value 1 at [ [    „      ^  ) , 1 ) for m > 0 then 

then 

*.v*iin((£ ;),i)^((V ; 

^((^),1)^ = y/,((o J)'1)^ 81- 

Suppose that ( , j € Ksi is such that 

^ :)(:i)(v:)ejr- 
Then we see that c = 0    (mod A3).   It follows that a = ±1    (mod A2),  d = ±1 
(mod A2) and b = 0,   ±1    (mod A2). We conclude that 

|(°    ^ :a, d=±l(A2),c = 0,   ± 1(A2), 6 = A36i with h = 0,   ±1(A3)|. 

Let K(j) = {g € GL2(RF) -9 = 1    (mod AJ')}.   Then we see that f ^     ^ j KS1 

A~3    J^nifgi 3 1^(5). Since 

[tfsi : K{2)} = 48, [K(2) : K(5)] = 312 

and, from what we have just seen, 

^J    O*81^3    J).nif8i:«-(5)]=4.311; 

we conclude that 

[tf8i:(A
0

3    ^^(V    J)n#8i] = 36. 
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We shall now write 

We shall now determine a special set of Sj(l < j < 36) of representations KSI/KH- 

First of all suppose that ( , ) G i^si, d ^ 0    (mod A2). We can multiply by an 

element of KH to bring this to the form ( j. There are 27 such elements and we 

can take, as a set of representatives, ( n     0      2 -i       4      J with 6o, &25 ^4 = 0, ±1. 

If d = 0    (mod A2) then 6, c = ±1    (mod A2). We can therefore arrange first of all 
that a = 0, and then that 6, c — 1. We obtain as a set of representatives 

1    d2A2ld4A4)     d2' d4=0'   ±L 

/A3    0\ 
Since a and «: are invariant under conjugation by I 1 j we therefore have for our 

set of 36 = 27 + 9 representatives 

((J   fc + M'+W^,)       Vi2,64=„, ±1 

and 

((? d^+d^)'1)    d2'rf4 = 0' ±1- 

Now let k > m; we shall compute (/?i*v?m f f    n 1,1). This is 

J>i(%>m (fc-1 ((Ao*   J). i))^ 

tribution is where Sj =  ( ( n    1 ) , 1 ) and this only when A: = m + 1.   We have 

Under the assumption that k\m one sees that the only term giving a non-zero con 
10 

therefore proved our assertion and, with it, the theorem. □ 
We obtain from the proof the following corollary: 
COROLLARY 2.3. Let ipi   be   the   element  of H   which   is  supported on K^ 

A3    0\    ^_        ,       ,   „   .       //A3    0 
1   . , 1 ji^si and such that ipi ( ( 1,11=1.   Then H is the algebra 

of polynomials in ipi. 
We can extend the argument above to give the following result: 
PROPOSITION 2.4. Letm > 1; then 
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is the union of 

'XZm    bo + b2X
2 + b3X

3 + ■■■ + frsm-iA3™-1 + &3m+l A3"^1 

and 

d2X
2 + ^A3 + • • • + c/sm-iA3™-1 + <WiA3™+1    A3- ) ' V K^ 

where bo, 62, • • •, hm-i, fam+i, ^2, c/s, • • • ,^3m-i, ^3m+i run through the set 0, ±1. 
The proof is more or less as above and so we shall not give the details here. 

3. The Shimura correspondence. In this section we shall develop the corre- 
spondence of the results of §2 for the Shimura correspondence, first locally and then 
globally.   

We begin by studying some aspects of the representation theory of GL2{F). Let 

H = 

and 

{(0 2)-"^*} 

M(o 2)"■ "'"••}> 
let H, H3 be the corresponding covers. One has [H : H3] = SI2 = 36. Let 

"■-{(t 
0   \ 7 ^    ,   xSZ/i    ,    \2 
d , :a, de±\3*(l-{-\2RF) 

Then [jff : if*] = 81. Then ^3 is the centre of H and H* is a maximal abelian subgroup 
of H. Let a; be a quasicharacter of ^3 extending x and let u* be an extension to H*. 
We shall assume that to is trivial on H3 fl K^ and one can chose CJ* to be trivial on 

fT, H i^g*!. Let N = I ( J    j J : x G F| and B = iJA^, 5* = iI*7V and ^3 = H3N. 

Again we let B, B*, B3 be the correspoding covers. As in [10],1.1 we induce a;* from 
J9* (trivial on the canonical lift of iV) to G: This yields a representation V(UJ) of G 

which does not depend on the choice of a;*.  Let fi f f , J ) = |a/<i|1//2 constant 

functions / : G -> C : 

/(/m^) = (u*lJ)(h)f(g), 

where h € H*, n G iV* (the canonical lift on iV) and p G G endowed with the action 
of G on the right. 

PROPOSITION 3.1. The subspace of K^-invariant vectors in V(LU) is 1-dimensional. 
In the model ofV(u) given above any such vector is supported on B+K^. 

Proof. The proof of this is analogous to, but a little more involved than, the 
analogous case in the "unramified" case - cf. [10], 1.1. We shall leave the details to 
the reader. D 

Let us now write the action of G on V(UJ) as left multiplication. Let <pm be as in 
§2. Then a calculation using Proposition 2.4 shows the following: 
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PROPOSITION 3.2. Let VQ € V(LJ) be K^-invariant  Then 

Vm(g)g vo dg = measiK^Z/Z)iPm(uj)vo, I 
G/Z 

1      0   \*\ .9      ^ f (\^m-i)      0 
+ w    U    Mm)     +|      E UJ 

0    A3-; rS^/a    ^       0 A* 

The analogous result in the "unramified" case was indicated - with a different 
normalization - by Kubota in [12], p. 59. 

We may now conclude from the standard theory of spherical functions (see, for 
example, [6] or [18]), these calculations and Propositions 2.2 and 2.3 the following 
theorem: 

THEOREM 3.3. Let V be an irreducible representation of G with central qua- 
sicharacter x ^nd a non-trivial K^-invariant vector v. Then V is a quotient of some 
V(LJ) as above with UJ\HS fl ifgi = 1- 

A corresponding result holds for G. Now let 

^)="[(Xo   x-i) ) 

for x e Fx3. If ^1^3 fl K^ = 1 then uja(x) is of the form \x\sF with s <E <D. The 

representation V(UJ) is reducible if and only if uja(x) = \x\F ' ; see [10] th. I. 2.9; 
only if u)a.{x) — \x^lz do we have a quotient with a K\x-invariant vector. Under this 
condition there are two possible CJ'S since 

_o   i) )=X((S  °) )u'a(a;) 

for x S F><3. 
If we define CJQ and Xo by 

x    0\\ _     ((x*     0 
o  JJ-^Uo   r "b       n    „        =«        n     .a)   )> (*,¥€*■*), 

and 

a;0\\ x*     0 
0    J    =X       0 xo    ; :    =X    „  Js)   .     (-^x), 

then the Shimura correspondence ([3]) shows that the principal series representation 
1 /3 of G associated with UQ corresponds to V(CJ). If cja(x) = l^l^   then the one dimen- 

sional representation g i-> CJQ ( (      n ) ) | det(p)|^ '" corresponds to the unique 

irreducible quotient VO(CJ) of V^u;); see [3]. 
We shall now translate these results to the language of classical automorphic 

forms. Let H3 denote the upper half-space (D x lR/j\ Let A be the Laplace operator 
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^(^x* + ^2 + ^2) -v^ where x + i y and v are the coordinates. Let T = 6X2(Z[a;]) 

where we identify CJ with e27ri/3; T acts on H3. Let r(3) = {g eT :g = I    (mod 3)} 

and r2 = 51/2(2) • r(3). We can define, for ( , ) 6 r(3) the homomorphism x by 

= 1, (c = 0). 

We can extend x to ^ by x|5L2(Z) = 1 (see [17], §2). 
The group GZ/2((D) also operates on H3 by 

„       NN      /(02? + b)Ccz + d) -f acv2 \det(g)\v 
g((z, v)) = ' 

|cz + d|2 + |c|2t;2      '   |C2? + d\2 + |c|2^2 

where ^ = (        , ); in fact this yields an action of PGZ/2(C) on H3. Note that this 

cannot be done in the case of the action of 6X2 (JR) on H2, the upper half-plane. This 
means that we can examine the action of GL2(Z[a;]) on F-automorphic functions. We 
note that GZ,2(22[tj])/SX2(Z)[t<;]) — A*6(Q(w)) by the determinant map. 

Our objective is to compare F-automorphic forms with trivial character with r2- 
automorphic forms with character x- To do this we have to recall the definition of an 
automorphic form. First of all these are square-integrable functions / (on F \ H3 or 
r2 \ H3) with the appropriate transformation property 

finw)    =f(w) (TGF) 
(resp. ffrw)   = x(rr)fM     (7 e Ts)). 

Moreover / should be an eigenfunction of A 

Af = -S(2-s)f; 

we shall refer, loosely, to s as the parameter of /, and write it as 5/. It is only defined 
up to the equivalence defined by s h-> 2 — 5 on C. Next we require, in the case of F, 
that the action of GL2(Z[a;]) should map / into a multiple of itself.   According to 

whether ( ] acts as ±1 we shall refer to / as even or odd. We note that as 

0    l^Co     3)(V    °) the action of (^    j) is trivial. 

In the case of Fi it is only possible to consider the action of elements of determi- 

nant ±1 as conjugation by I n        j does not preserve %'. We demand that ( 

acts on / by inducing multiplication by ±1. Again we speak of / being even or odd. 
Next we shall consider the action of Hecke operators on /.  Following tradition 

we shall define 

rAi = {(/€M2(Z[a;]):det(5)=/i}; 

we do not assume that g is primitive, i.e. we do not exclude g being of the form vgi 
where gi G M2(Z[a;]) and 1/-6 Z[cc;] is a non-unit. Then we define 

f\Tfi(w)=   Y,   fbW). 
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It is clear that this is again F-invariant. We require that / satisfy 

/IT* = */.(/)•/ 

for some t^(f) € C and all fj, e Z[a;] — {0}. The t^f) are the Hecke eigenvalues of /. 
Let us write 

T^ = {9e M2(ZH) : det{g) = fi, g primitive}. 

Then we can define f\T® as above. It follows that / is also an eigenfunction of this 
operator. Let ^(/) denote the eigenvalue. Then 

6:82\fi 

the factor 6 comes from the units. We recall also that 

T^T^ = - • J2 N(S)TimL2/d*- 
d\ni 
S\fl2 

We recall also that if / is automorphic as above then it has a Fourier expansion of 
the form 

/(*,t;) = A0)t;2-+    £    /(M)^.-i(47r|/x|i;)c(H, 

where K*(*) is the standard Bessel function, e(z) == e2^2^4"2) and s is the parameter 
of /. We chose s to satisfy Re{s) > 1 if Re{s) ^ 1; if Re{s) = 1 then /(0) = 0. In fact 
it is known that in this case the only / with /(0) ^ 0 are the constant functions, as 
follows from [2],p.243 and the Fourier expansion of the Eisenstein series in this case. 
The main theorem of Hecke theory asserts that 

We also have that t^(f) is of the form a + a' with aa' = iV"(/i). One expects that 
|a| = [a'l = -/V(/i)2 (generalized Ramanujan conjecture). 

In the case of metaplectic forms the situation is rather more complicated. We let 

f^ ={g € M2(ZM) : 9 = 7! (^    fj 72, 7i, 72 € r2}. 

We can also extend x ^o T®3 by 

X(7i f ^     1J 72) = X(7i)x(72); 

this is the assertion of [12] Theorem 3, p. 31 and Theorem 2.2 above. Now, if / is 
automorphic under T2 with character % we can define f\T®3 by 

/l^=     E    x(9)f(9H). 
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We shall also demand that / be an eigenfunction of all such Tj,, i.e. for a suitable 

^3 (/) we have 

Although using [13], pp. 37-39 and Proposition 2.5 above one can develop a rela- 
tionship between the Fourier coefficients of / and JP^if) it is more complicated - 
especially in this language - as Fi has 3 cusps, represented by 1, u, CJ

2
; see [17], p. 

127. The i0
3 (/) do not determine the Fourier coefficients in as simple a manner as we 

had above. They only give certain linear relations between them. For our purposes 
we do not need these and so we shall not go into this point further here. 

We can now formulate the cubic Shimura correspondence [3] in this language, 
where we make use of the results given earlier in this section. Let us also agree to 
identify two automorphic forms which are multiples of one another. 

THEOREM 3.4. There is a bijective correspondence between the automorphic 
forms f under F with trivial character, and those f under T2 with character x- If f 
is even (resp. odd) then so is f. If s(f) is the parameter of f, s(f) that of f then 
(s(f) -1) = ±3(5(/) - 1). One has 

The only non-cuspidal automorphic form for F is 1; this corresponds to 6 ([17], The- 
orem 8.1). For all other f we have that Re(s(f)) = 1 and both f and f are cuspidal. 

4. The kernel. In this section we shall construct a kernel representing the cubic: 
Shimura correspondence as given in Theorem 3.4. The basis of this is the theory of 
spherical functions, or, in Selberg's language, point-pair invariants. Let, for w = 
(z,v), w' = (z,,v,) em3 

T( |2f-Z'|2 + (t;_t;/)2 
L(w,w ) = 1— - - • 

vv* 

one then has for g G GL2(C) 

L{g{w),g(w')) =.L(W,K/)- 

In fact H3 is a Riemannian space, PGI^C) acts as isometrics and L is closely related 
to the distance function. Any other function k satisfying k(g(w), g(wf)) — kiw^w1) for 
all <? G PG2(C), wX € H3 is of the form k(w,w') = k^w.w1)). If jfco(0 - 0(rA) 
for a suitable A > 0 as £ —> 00, and <$> is an eigenfunction of A with eigenvalue — s(2—s) 
then 

/ kiw^w'^iw^dGiw') — hk0(s) • <p{w), 

where da((z,v)) =   rn
3' v and m is the 2-dimensional Lebesgue measure on H3. See 

00    00 

[2] for a treatment of this. The function hkQ(s) = TT f    f    ko^d^v8-1^-. Suppose 
0    (.,-1)2 

v 
that m € IN; we define a polynomial pm(x) by 

Pm{v™ + ^_"r — 2) = v + v"1 — 2. 
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If m = 3, the case that will us interest most, 

pm(x) = x3 + 6a;2 + 9x. 

In general we see that pm is an increasing function and p'm (0) = m2. It follows that 
pm has an inverse function qm defined on [0, oof and real analytic at 0. We shall now 
prove the following 

PROPOSITION 4.1. Let ko(Q = exp(-a: • qm(Q)qfm(Q- Then 

2nm. exp(2a) 

Proo/. In 

oo oo 

^o(5) = ^ /       /      exp(-agm(0)9m(0df ' ^"^ 

we substitute ^ —pm[x). This gives us 

oo oo 

hkQ{s)    = TT / / exp(—ax)dx • vs~l — 

o    x       JL   . 
V m -\-y     m —2 

OO 

= — / exp(-a(v™ H-f   - - 2))t;s  i — 
a J i; 

o 

oo 

TT * 777 /* 
= exp(2a) / exp(—a(u + u~l))u 

<* J 
o 

27rm /ri  . __ ,n  x 
= exp(2a)ii:m(5_i)(2a) 

by [31], p. 183. This proves the assertion. D 
We now define 

v2 

k(w,w')Wo) = zr- exp(-47n;o - 2'Kqz{L(w, w,))vo)qf
3(L(w, w;,))e(^o), 

DTT 

where w;o = (^Oj^o)- We write also fiwo^i ^ ) (WQ) so that //(2ro)^o)=:(^0 5 |A*ko)- 

Then the Selberg transform of fe(-, •; u^o) is 

s »-> t;oif3(*-i)(47rvo)e(2;o). 

We shall now show how to construct out of a metaplectic form / the form / which 
corresponds to it by Theorem 3.4. We have that 

= ^(M)-1-EiV((5)2-^)3(/)- 

-l^„m(S-l)^ 
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Next 

/     ]C X(7)&0>7(w'); jWo)f(w,)da{w') 
(Vrs 7er2 r2\iH3 

is equal to 

S-ifMNMlvoK^^ (^\j\vo) e (^o) , 

where s(f) is the parameter of /. If we write s(f) for the parameter of /, we have 
3(s(/) — 1) = ±(s(/) — !)• We apply ?'((l/)3 to both sides of the equation above and 
obtain 

/        J2    x^)k (w,7(w');-woJ f{w,)d(i{w') 

r2\IH3  TGfo^ 

from which we obtain 

If we now define 

Kfaw'iwti^Y,1*^)-2^*)-2  J2 x(7)^^7K);^o), 

then this would suggest that 

f   K{w, w'; wo)f{w,)da{w') = 2 ■ 3* • f(wo)f(w) 

r2\iH3 

if / denotes that automorphic form with f(j) = 1 (the Hecke normalization). If / 
is not a cusp form then, as we have seen, it is the 6 of [17], Theorem 8.1 and in this 
case we would obtain a rather different formula, to which we shall return later. 

We now have to justify the exchange of summation and integration above. To 
this end we shall now prove the following estimate: 

PROPOSITION 4.2. The series defining K(W^W
,
]WQ) converges absolutely and for 

7i,72 € 5L2(Z[a;]), A > 0 we have 

\K(ji(wi),^2(w2);wo)\ 

V V(W1)V(W2)V^J   V ^(^2)^0/   V v(Wl)voJ   V v0 ) 

when v(wo) > A. 
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Proof. We begin with the identity 

where Qw1,w2 'ls ^he Hermitian form with the matrix 

N2+t;| Z2 -Il(M2+V2) -22^1 

Z2 1 -z-izi -Z2 

-Z1(\Z2\)2+V2
2) —ZiZo (|zi|2+t;?)(|«2|2 + t;|) ^2(|2:i|2+V?) 

-Z1Z2 -z\ Z2(|2l|2+«l) kil2 + «? 

where wi = {z\,v\), w^ — {zi^-i)- This has determinant v\ ■ v\ and in fact is 

lv\ 0      0 0 
0 1      0 0   |=t 
0 0 w?w| 0   |J 

\ 0 0      0 «? 

with 

/I ^2       0    0 

r= P       !     ?   0 

\    0 -Zi        0       1 

The identity shows that 

<2u;iiL>2(a, &,c,d) > 2viU2|ad-6c|; 

in particular, if a, b,c,d £ Z[a;], ad — be ^ 0 then 

Qwlw2{aib)c,d) >2viV2- 

If now # = ( , ) G M2(Z[a;]) with det(p) = /x3 then the definition of k shows that 

kiwi, g{w2)\ ^WQ] is equal to 

mmsL ^ (.^^ _ 2s,3 (a^i _ 2) «„„) 

where Q = QWlW2. We use this to estimate A'(~i(i/;i). 72(^2);^o)- If we substitute 
we see that the sum over S is a standard theta-function. Since ^=2- > -4= the theta- 
function is bounded by the terms with \S\ = 1 and so we can ignore the summation 
over 5. What remains is dominated by 

E        A^)"1 • exp f-^fe - 2^ f^0'6,'^ - 2) fe) 
6c = M 

M#0 

3 ViV2\lJ.\3 
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Since we now sum over all possible a, 6, c, d satisfying the restrictions above we can 
drop the 71, 72 from the discussion. Next we note that iV(^) > 1 and ^(f) < 1/9. 
Next, if x > 1 then Pm(x) < 16x3 and so #3(£) > (^0^- If ^ < 1 then pm(a:) < 16a; 
and so ^(O < JQ^. This means that 

qsiO    >(£/16)*,    ife>16, 

>^/16, if^<16. 

If now (a, 6, c, d) is such that 

Q(a,b,c,d) 
 j-jo 2 < 16, 

then we drop the second expression in the exponential. Since 

,   .3 ^ Q(a,b,c,d) 
m   -     lSv1v2    ' 

we see that the summand is bounded by 

1 / 47r        Q(a,b,c,d)i 
nexP    — 
9     ^   >/3-(18)i     (vi^)* 

in these cases. If ^ > 18 then we note that 

«3(£-2)    >(K-2)/16)i 

= ^((l-f)/16)* 

>^/(18)*. 

We therefore obtain the estimate if ^^ ;c\3' — 2 > 16: 

1        /        27r      Q(a,6,c,d)*    N 

We therefore see that our series is dominated by 

^2        exp    -ci • ——r-r—^0 
(i)        v^                I          Q(a,b,c,d)l 

»K 2^        exp    -ci  

where c^ > 0 and ci = —^r— is absolute. 
(18)3v/3 

Next let iV(i?) be the number of (a, &, c, d) such that Q(a, b, c,d) < R V1V2. Since 

.12.,  „.     ,   . ^   \2V2^U^^   ,2    Vi    ,   ,,   ,  ^^ , ^_   ,2        1 Q(a,b,c,d)/viV2 = \c\2viV2 + \a — czi\ hld+c^l \-\b~\-az2 — dzi—cziZ2\ 
Vi V2 V1V2 

and as, for any fixed £ £ C, the number of a € Z[a;] with |a — C|2 ^ -R is bounded by 
A;(l + R) with k = ^ we see that JV(i2) < A:4 • p(i?), where 
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Thus our series is bounded by 

^ fexp(-c1Rho)dN{R) 

after we have allowed the summation to be over all (a, 6, c, d) G Z[<x/|4. Double inte- 
gration by parts shows that this is bounded by 

oo 

k4^ f exp(-c1Rivo)p,{R)dR. 

Since this converges we conclude that one original series was absolutely convergent. 
Moreover, if we replace R by R/VQ we obtain the estimate asserted in the statement. 
This completes the proof of the proposition. □ 

As we shall need it later we record one corollary: 
COROLLARY 4.3. Forwo, wi fixed, 7 e SL2(Z[ti;]) 

K(wu 7(w2);wo) = 0(l) 

as v(w2) —> 00. 
This corollary means that we determine how the integral operator with kernel K 

operates on both Eisenstein series and generalized theta functions. We first have to 
recall some of the fundamental notions. 

First of all T has only the cusp at 00 and we can construct a standard Eisenstein 
series E(w,s) associated with this map. It has the Fourier expansion 

E{{Z,V),S) =,,.+ly-v- 
V3      AQ(u;)(5) 

o 

where ZQ(W)(S) = (27r)~sr(s)C^UJ)(s) and at(fj) = ^iV(d)*. The function ZQ^J 

satisfies the functional equation 

Z^)(s) = 3i-sZ^)(l-s) 

and it follows that 

ls*Z<uu)(s)E({z,v),s)=± 

+      ^2     N(fiX)£^1'a1^8{fjLX)v • Ks-i{ATr\^\v)e(fjLz) 

-3iZQiu)(s)E((z,v),s) = -(3iZQM(5)rs + 3^£ZQ(a;)(2 - s)v2-a) 

/AGA"1Z[a;] 

is invariant under s *-* 2 — 5. 
In the case of r2 with character x there is one essential cusp which we can take 

to be 00. This means that there is one Eisenstein series associated with r2 and x; we 
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shall denote it here by E(w,s). Likewise there is an Eisenstein series associated with 

r2 and x_1 and this we shall denote by E(w, s). The function E(w, s) is denoted by 
EII(W,S) in [17], p. 132. Essentially [17], (3.21) gives the constant term of E(w,s). It 
is slightly easier to use an argument of Hecke's. Let CQ(U;) denote the Dedekind zeta 
function of Q(u;) and let Z^u)(s) = (27r)~sr(s)C(^^(s).  We see from [17], §5 that 

the constant term has the form vs + 7
Q(a;)L5~0x • A(s)v2~s where A is a finite Laurent 

series in 3_3s. The functional equation implies that A(s) • A(2 — s) = 3 and so we 
deduce that A{s) = ±4=. On using the formula [17] (3.21) one can see that only the 

positive sign is possible. Thus we see that the constant term of E{w, s) is 

a   ,      1    ^Q(a;)(3g-3)^2_s 

V3^Q(c)(35-2) 

It follows that 

3^ZQ(a;)(3s-2)£(w,s) 

is invariant under s ^ 2 — s. We also note that the function 5 i->- E(w,s) has a pole 
at 5 = | with residue 

3 

1 1 

33%.)(2) 
0(w), 

where 0 represents the cubic theta function of [17], Theorem 8.1 but normalized to 
have constant term ^v(w)3. The same argument as before shows that if 5 : 0 < 
Re(s) < 2 then 

/ 
K(w, W'\WQ)E{W\ s)d(j{w') 

r2\M3 

is equal to (VQ = v(wo)) 

{3H^ZQH(5l) -EiwotSx) - (Si+^ZQ^^iK1 +3f-*ZQ(ti;)(2-5i)i;g-1)} x 

E(W,8), 

where si =35 — 2. Likewise 

r2\iH3 

is equal to 

{3H^ZQM(Sl)£;(Wo)51)-(3H^ZQ(a,)(SlK
1+3l-*Z(QM(2-SlK

2-Sl)} x 
Ui=2 

e(w). 

These results will allow us to determine the spectral decomposition of K(*, *; WQ). 

For this purpose we need a lemma, and, to avoid having to interrupt the argument 
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later we shall state and prove it here.  First of all we note that E(w: 1) = 0 as the 
constant term of E(w, s) vanishes at s = 1. Then we have: 

LEMMA 4.4.  We have 

^-r / E(w, s)E{w,,2 - S)ZQM(3S - 2)ysds 

(i) 

is equal to 

54    ^M€ZH-{0} V   3 ^(7iH)^(72K))^ 

-   Res   {^,5)^,5) ZQ(fa;) (35- 2)33s-V"s}, 

w;/iere (cr) denotes the path IR —> C; 11-)- a + it anrf 71,72 are summed over ^,00 \r2. 

Proof.  We recall that E{w,s) • ZQ(a;)(35 - 2)3"^ is invariant under 5 i-> 2 — 5; 
using this we see that the integral is 

^r /" B(K;, 2 - s)lV, 2 - ^S3^"^ • 2/sZQ(u;)(4 - 3s)^. 

(i) 

We now replace s by 2 — 5 and obtain 

^ I £(«;, S)^K, a)33<8-V""£Q(U,)(3S - 2)ds. 
(i) 

(Note that this does not follow from the functional equation for E.) We recall that 
for Re(s) > 1 

^GZ[a;]-{0} 

If we now move the line of integration above to (cr) with a > 2 and apply the definitions 

of E, E and that of CQ^) (35 — 2) as above then the assertion follows from the formula 

—- / T(s)u sds = exp(-u). 
TTl J 2m 

W 

Now that we have proved this lemma we can now determine the spectral decom- 
position of K\w, w1'; WQ). This is given in the following proposition which is a raw 
form of the main result of this paper. 

PROPOSITION 4.5. Let fj(j G J) run through the set of cusp forms for T2 and x, 
where J is a countable index set, and we include both even and odd forms. Let fj be 
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the corresponding (Hecke normalized) cusp form for T.  Then we have 

+^-.JE{W,s)fi(w',2 - s)E(wo,3s - 2) • 1 • 3^-1ZQ(w)(3s - 2)ds 

(i) 

+|gy/y) {S^-^K.S, - 2)ZQ(W)(3. - 2) - 32-^ZQM(4 - 3s)} |s=f 

"^   E x(7i)x(72)f(7iH)^(72(w'))^(wo)2exp(—7=   ,    . \^   ,    ,   A,i 
':ib7l,72,M V   V3i;(7i(u;))3t;(72(w'))3 

+ 1   Res   {B(u;,s)^(u;')s)^M(3s-2)33s/2} 

0(w)0(w') (Z 
6\? 

(^QMC^+^-^log.o), 

where 71 and 72 are summed over T2,oo \ T and fi over Z[a;] — {0}.   W^e /ia^e 5e^ 
vo =v(wo). 

Proof. The analysis of Selberg (cf. [2],p.265 and the references given there) shows 
that Yy=K(w,wt : WQ) has a decomposition of the following form 

/»/>') 
Y   II/,ll2   ' 

+ ^T f E(w,s)E(w',2 - s) • 1 • (s^-^^o.Ss - 2)ZQ(a))(3s - 2) 

(i) 

-S^-^Q^CSa - 2)U^-2 _ 32-^ZQM(4 - 3s)^-3s) rfs 

ie(w)0(w') r„35 , „, 
+ ^    I, g ||2 

; {S^-^K.Ss - 2)ZQ(W)(3S - 2) 

-3^-%M(3S - 2)^-2 - 32-^ZQM(4 - 3SK
4-3s}|    4 . 

We call these terms the discrete (or cuspidal), continuous (or Eisenstein) and residual 
contribution to ^75K(w, w'; WQ). We retain the entire first term, the first part of the 
continuous term and, from the residual term 

0(w)0(w>)    1 

0II2 - • {s^-'Eiwo^s - 2)ZQ(W)(3S - 2) - 32-^ZQ(w)(4 - 3s)}|s=4 

The remain two terms from the continuous spectrum. In fact the substitution s i-> 2—s 
shows that they correspond under tu -B- w'. We can compute these using Lemma 4.4; 
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we obtain 

36       7l7^,M V       3    u(7iH)3^(72K))3/ 
+ 1   Res   {s(u;,s)J|(u;',s)ZQM(3s-2)33s/2^-3s}. 

The first of these two terms appears in the formula given in the proposition. If we 
now take the second term along with what remains of the residual term we find 

i   Ites   {E(w,S)E(w',S)%U,)(3S -2)3
3S

/
2
^-

3S
} 

6(w)6(w')   3   „      ,n.  2     6{w)6{w')     1 , 

We now observe that 

i   R=es   {£:(^5)ZQM(35-2)33s/2K-3s-l)} 

= --   Res   E(w,s)>   Res  ^{w'.s) • ZQ(a;)(2)32log'?;o. 
2  *=f 5=| 

However using [17], p. 159, 1. 8 we see that this is 

o 11(9112  ■ i r^f^—W\ r ^MC
2
)
1
^^ ^    II 0 II ^4-32ZQ(U,)(2) J 

1     6(w)6(w'), 
•loguo- 

23-35     || 0 

We still have to discuss the convergence of the sum over J and the integral. Since, in 
the integral the factor ZQ(W)(3S — 2) decays exponentially, the integral converges. 

In the case of the sum over J one knows that the L2-norms of the fj decay expo- 
nentially in |Im(sj)|; see, for example [8], §10. In order to prove the same pointwise 
(and locally uniformly) one observes that 

Ritim^fj = (^(2 - sj) - ti(2 - h))-1 • (sj(2 - SJ) - t2(2 - h))-1!^ 

where R[t) is the resolvent operators (-A-t(2-t))-1 on L2(r\IH3). Since R(ti)R(t2) 
is represented by a smooth kernel we obtain an estimate of the type needed. We leave 
the relatively standard details to the reader. □ 

We now observe that all but the fourth and last terms on the right-hand side of 
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the formula of Proposition 4.5 are F-automorphic in WQ. We therefore define 

1 V-^ 2 
K+(w,w,;wo) = K(w,w,;wo) + -j=   J^   x(7i)x(72M7iH)M72H) 

2 
3 X 

/       N2 /"      27r v(Wo)N(fJL) xv(wo)  exp [-- v    y    v^ 
\/3 ^(71 (u;)) 3 ^(72(w;) 3 

.^(.^...PW + ^-i)^) 

We observe that K+(w, W'^WQ) is explicit in the sense that it is given by an infinite 
series which can be computed to any degree of accuracy. Admittedly this series is not 
as elegant as one would wish, but nevertheless its genesis suggests that it should be 
taken seriously. We now have: 

THEOREM 4.6.  The function ^(W^W'^WQ) satisfies 
a) K+(j(w),w,)wo) = x(7)^+(wX; wo)        (7 G r2); 
b) K+(w,j(w')]Wo) =xh)K+(w,w']Wo)        (7 e T2); 
c) K+(W,W'','Y(WO)) = K+(w,w'iwo) (jeT); 

d)  K+fav/w) = 2V3^ ^y/;^0 -Mwo) 
j II   Jj   II 

If- ~~ 35-1 

+ g(jj;gg|(p/) {3^^(^0,35 - 2)ZQM(3S - 2) - 3^%H(4 - 35)}|s=j 

+ i   Res   {E(^5)^K,5)ZQM(35 -2)3-(
3S+1

)/
2
}; 

e;     /   ^+(^,^>O)/^K)^K)=2V/3/MH/M(^O) 

/• II2 

r\iH3 "   J 

Proo/.    Properties a) and b) are obvious from the definition; d) follows from 
Proposition 4.5. Property c) follows from d). Likewise e) follows from the definition 
of K+ in terms of K and the properties of K established above.  Finally the same 

argument as was used at the end of the proof of Proposition 4.5 shows that      ^112 
II /j II 

is locally uniformly 0(|5j|4). Since the /j are orthogonal, and the L2-norms decrease 
exponentially the convergence follows from the general theory. D 

Theorem 4.6 represents the main result of this paper; the statements c) and f) 
are those which are most interesting. 

5. Discussion. In this section we shall discuss some aspects of Theorem 4.6. 
First of all one should remark that we have only used the fact that we are dealing with 
metaplectic forms of order 3 in rather weak ways. The same argument can be repeated 
in other contexts. If we apply it to non-metaplectic forms then we discover that the 
kernel is in fact a theta-function associated with an indefinite form - cf. [14], [29]. 
This is interesting as it gives an alternative method for proving the transformation 
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property of certain Siegel theta-functions, to the usual methods using Fourier theory 
and, in particular, the Poisson Summation Formula. 

Curiously, in the case of metaplectic forms of order 2 one does not find classical 
theta functions, since the function q2 arises in the kernel. However there is, at present, 
no analogue of the discussion of §2 in this case. 

In all cases the argument given above is restricted to highest level. In order 
to prove results concerning functions of arbitrary level the argument will have to 
augumented by some technique to describe both the behaviour of the level of a form 
under the generalized Shimura correspondence and a corresponding theory of new- 
forms. 

In the formula of Theorem 4.5 one can split K~ into even and odd parts. The odd 
part is then quite attractive as neither the Eisenstein series nor the theta function 
9 plays any role. A rather more interesting transformation of the same type. Let 
C : H3 -> H3 be defined by 

C((z,v)) = (z,v). 

Let g G GZ^C). Then one verifies that 

g(C(w)) = C{g<w)), 

where g is the complex conjugate of #, entry by entry. One verifies easily that 
^(g) = x(9)~l for 9 € IV One therefore concludes that K+(w,C(w,)]Wo) is x- 
automorphic in both w and w'. This allows us to put the formulae into a rather more 
symmetric form. It is worth noting in this context that certain quadratic forms in the 
Fourier coefficients of metaplectic forms seem to be significant. Here one notes first 
and foremost Waldspurger's results in [30]. However, also in the case of biquadratic 
(exceptional) forms one has similar statements; see [1] for a full conjectural statement 
and [27], [28] for those results at present available. In the case of 6-fold covers again 
one has a similar structure, as was discovered empirically by G. Wellhausen [33]; this 
remains entirely conjectured. 

The formula of f) of Theorem 4.6 represents in principle a method of computing 
fj. The integral can be investigated using the Rankin-Selberg method. This leads 
one to evaluating the residue of a sum in which the Fourier coefficients of fj appear. 
Although some simplification are possible the sum remains a complicated one, involv- 
ing Legendre functions, cf. [31], p. 387, Eq. (2), and the author has not, as yet, been 
able to gain any illumination from it. 

One should however note that it is also conceivable to use the formula, either in its 
original form, or in the transformed version as a method of numerically computing the 
fj. These functions are not at all understood, and it would be of considerable interest 
to study the rules of formation of the Fourier coefficients. One does have a form of 
Hecke theory which leads to relations between the different coefficients but these do 
not suffice to determine them. In numerical studies one has first to determine the 
fj. Studies of the spectrum of the Laplace-Beltrami operator can be found in [7] and 
[26], the latter giving the more accurate tables. Unfortunately, just as in the case of 
Maafi wave forms for SX2(Z), there do not seem to be any "arithmetic" automorphic 
forms of level 1, for example, forms associated with a Grofiencharakter of a suitable 
quadratic extension of Q(ci;), but there are at least forms lifted from SL2(7L). This 
has been experimentally observed in [26]; the theoretical basis lies in the converse 
theorems of Jacquet-Langlands and Weil - see [9],Th.l2.2, [32],p.163, although there 
is no information here about the levels of the lifts.  In view of the results of [26] it 
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seems clear that one should be able to prove that forms on SLzCZ.) lift to forms on 
SL2(Z[a;]). This particular class of forms should be especial interest in connection 
with the Shimura correpondence as it indicates that one may be able to apply the 
techniques of metaplectic groups to questions concerning automorphic forms over Q 
and not merely some extension. The invesigation of the arithmetical properties of 
the Shimura lifts of automorphic forms is the most important goals of the theory of 
metaplectic forms. 
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