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COMPLETELY INTEGRABLE SYSTEMS 
WITH A SYMMETRY IN COORDINATES* 

TOSHIO OSHIMAt 

Abstract. We explicitly construct the integrals of completely integrable quantum or classical 
systems whose potential functions are invariant under the action of a classical Weyl group. Our 
potential functions and integrals are expressed by the Weierstrass elliptic function. 

1. Introduction. Many completely integrable quantum or classical dynamical 
systems have been constructed in connection with root systems (cf. [OP1], [OP2], 
[In]). Consequently most of them are invariant under the action of the corresponding 
Weyl groups. Our study is to determine all the completely integrable systems with 
this invariant property. 

Let W be the Weyl group of type An-i with n > 3 or of type Bn with n > 2 or of 
type Dn with n > 4. We identify W with the group of the coordinate transformations 

(xi,... ,xn) *-> (eiav(i),... ,£n^0-(n)) 

of Rn, where a are the elements of the n-th permutation group 6n and 

£1 = • • • = £n = 1 if W is of type ^4n_i, 
ei = ±1, • •• ,en = ±1 if W is of type Bn, 
£i — ±1, • • • ,£n = ±1 and #{z; £i = —1} is even    if  W is of type Dn. 

We study the Schrodinger operator 

(") '--5 E £ + **> 
l<j<n       J 

on W1 with a VF-invariant potential function R(x) which has enough WMnvariant 
commuting differential operators assuring the complete integrability of P. To be 
precise we assume that there exist VF-invariant differential operators Pi,... , Pn with 

] = 0    for   1 < i < j < n 

P€qPi,...,p„] 

• • • dij + Rj   with   ord Rj < j    for 1 < j < n 

(1.2) [Pi,P: 

and 

(1.3) 

such that 

(1.4) Pi=   >;   ^ 
l<ii<---<ij<n 

or 

(1.5) ^=   >;   ^ 
l<ii< — <ij<n 

• • a? + Rj   with   ordiJj < 2j    for 1 < j < n 
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936 T. OSHIMA 

or 

{Pn = di'-dn+Rn    with   ordRn < n, 

Pj =        Y,        dii"' dl + RJ  with   ordi?i < 2^   for 1 < j < n 
l<ii<"-<ij<n 

if the type of W is ^4n_i or 5n or Z^n, respectively. Here C[Pi,..., Pn] is the commuta- 
tive algebra generated by Pi,..., Pn, ordPj denote the orders of differential operators 
Rj and for simplicity we put di = -£^. 

We assume that the coefficients of the differential operators are extended to holo- 
morphic functions on a Zariski open subset of an open connected neighborhood of the 
origin of the complexification Cn of W1. 

The main result of our previous paper [OS] is the following: 
If W is of type An-i with n > S, then 

(1.7) R(x) =     2^    u(Xi ~ xj} 
l<i<j<n 

with 

(1.8) u(t) = Cip(t) + C2. 

If W is of type Bn with n>2, then 

(1.9) R{x) -     ^2     \u{xi-Xj) + u(xi+Xj)\ +   ^2  v(xj)' 
l<i<j<n l£i<^ 

Here if n > 3, we have 

fu(t) =C7ip(t) + C2, 
(1.10) { _ C3p(ty + C4p(t)3 + Cspjt)2 + Cepjt) + Cr 

{v[)~ PW 
or 

(1.11) u(t) = dt-2 + C2t2 + Cs    and   v(t) = C^"2 + C5t
2 + C6 

or 

(1.12) u(t) = Ci    and    v(t)   is any even function. 

If W is of type Dn with n > 47 then (1.9) holds with v = 0 and u is given by 
(1.10) or (1.11). 

Here Ci, C2,. •. are complex numbers and p(£) is the Weierstrass elliptic function 
p(£|2a;i, 2a;2) with primitive half-periods ui and a;2, which are allowed to be infinity. 

The purpose of this paper is to construct the operators Pi,... , Pn mentioned 
above when u or (u, v) is given by (1.8) or (1.10) for any complex numbers Ci, C2,... 
and for any periods of the elliptic function (cf. Theorem 7.2, 7.3 and 7.5), which was 
announced in [OOS]. Hence we shall have the complete integrability of the correspond- 
ing Schrodinger operator (1.1). We remark that if W is of type An-i, the complete 
integrability and the operators Pi,... ,Pn are already known (cf. [Ca], [Su], [OP2], 
[OS], [Et], Theorem 3.2 in this paper). 

Taking the "classical limit", we shall also obtain the integrals of the Hamiltonian 
corresponding to the Schrodinger operator (1.1) because of our simple expression of 
the operators Pi,... ,Pn- 
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When W is of type B2, our argument in this paper is valid but there exist other 
potentials which assure the complete integrability. This is caused by a symmetry 
between u and v. We shall treat this case in another paper (cf. [OOS], [00], [Oc]). 

If u or (u,v) is given by (1.11), the operators Pi,... ,Pn do not exist in general 
and then we need VT-invariant operators of higher orders (cf. [0P2]), which will be 
discussed in future. 

If (u,v) is given by (1.12), the algebra C[Pi.... ?Pn] equals the totality of 6n- 
invariants of C[-\di + v(xi),... , -§c^ + v(xn)]. 

We note that if 2c<;i = V—TTT and 002 = 00. then (1.10) is reduced to 

(       , (u(t) =C'1smh-2t + C!2) 
1 ' 0) \ v(t) = C'3 sinh"2 t + C't sinh"2 2t + C'3 sinh2 t + C£ sinh2 2t + C£ 

with complex numbers C{,... ,07. The system studied by Heckman-Opdam ([Hel], 
[He2], [HO], [Opl] and [Op2]) corresponds to this trigonometric case with C5 = C'Q = 0 
and they proved its complete integrability. When C5 = C'6 = 0, an explicit form of 
Pi,... ,Pn is given by [De]. 

Moreover if UJI = LU2 = 00, then (1.10) is reduced to 

(1U) fu(t)=C{t-2 + Ci, 
U-i4j \ i;(t) = C'3t-

2 + Ci*2 + C'st* + C^6 + C;. 

Here we quote a result in [OS] for the operator which commutes with the Schrodin- 
ger operator P: 

If there exists a nonzero constant UJ such that the W-invariant differential op- 
erators Pi,... ,Pn are invariant by the parallel translation xi ^ xi + CJ, then any 
W-invariant differential operator Q that is also invariant by the same parallel trans- 
lation is contained in C[Pi,... , Pn] if [P, Q] = 0. 

After this paper [Os] was written, [Ch] proved the completely integrability of the 
Schrodinger operator (1.1) with the elliptic potential function attached to the root 
system. If the root system is of type Bn in our situation, the potential considered 
in [Ch] corresponds to the case where v(i) = Csp(t) 4- C4 or v{t) = Csp(2t) + C4 
in (1.10). The method is quite interesting but different from this note constructing 
explicitly all the integrals. 

Lastly we give a brief overview of the following sections. 
In §2 preliminary remarks are made and two results employed throughout are 

established. 
In §3 the two fundamental operators A and An for An-i and Dn are introduced 

and their commutativity is proved by the results in §2. An expansion of An gives the 
commuting differential operators for An-i. 

In §4 the Schrodinger operator is allowed to have a term in the potential only 
depending on the particle position through a given function v. A functional differential 
equation (4.4) is established that will ensure the commutativity of the fundamental 
operators P and Pn for Bn given by (4.2). 

In §5, using the lemmas in §2, we establish solutions of the functional differential 
equation with the assumption u = w which corresponds to the form (1.9). 

In §6 we look at various rational and trigonometric degenerations of the solutions 
of the functional differential equation. 

In §7 we bring the results of the previous sections together and establish the 
commuting differential operators Pi,... ,Pn for Bn and Dn. 



938 T. OSHIMA 

2. Preliminaries. 
First we introduce some notation used in this paper. For an element w of the 

permutation group 6n of the set of indices {1,... , n}, we define w(i) — i for any i G Z 
satisfying i < 1 or i > n and we identify Gn with a subgroup of the group of bijective 
transformations of Z. Then we have naturally ©& C Sn if k < n. 

When we distinguish the Weyl group that we are looking at, we denote it by 
W(An-i), W(Bn) or W(Dn) according to its type. Then VF(^n_i) ^ 6n and 
WiAn-i) C W(Dn) C W(Bn). We define a homomorphism e of W{Bn) to {±1} 
by 

,91, f l        if weW(Dn), 

For the coordinate system (xi,... ,xn) of E" we put 

di = ^-, da=d^---d^    and    |a|=ai + --- + an. 
OXi 

Here a = (ai,... , an) with non-negative integers ai. 
Let P = J2P(x(x)da be a differential operator. Then we put 

(2.2) tP = Y/(-^laldaPa(x) 

and we say that P is self-adjoint if tP = P and skew self-adjoint if tP = —P. For 
w; £ W and a differential operator P, we denote by w(P) the differential operator 
corresponding to P under the coordinate transformation w of Mn. In particular we 
define P~ = w~(P) by w~ G W(Bn) with w~(xi,... ,a;n) = (—a;i,... , — xn) and we 
call P has an even parity if P~ = P and an odd parity if P"~ = —P. Then we note 
that 

*('P) = (P-)- = P,     *(p-) = (^P)",     *(PQ) = ^Q^P,     (PQ)- = P-Q". 

In general the suffix {!,... , k} of a function or an operator (eg. Q{i,... >A;}) means 
that it is a function or an operator of the variables xi,... , #& invariant under if G 6&. 
And for a function or an operator (2{i,...,&} and a subset / of {1,... 5n}, we define 
Qi — w(Q{i,... ,k}) if there exist w G W(An-i) ~ 6n with w;({l,... , fc}) = /. 

Now we review the Weierstrass elliptic function (cf. [WW]), which is 

(2.3) p(z|2Wl>2wa) = l + 2(^5J-^), 

where the sum ranges over all periods u = 2miUi + 2m2^2 (mi, ^2 G Z) except 0. 
We define 

(2.4) UJS = — (CJI 4-^2)    and    CJ4 = 0. 

The Weierstrass elliptic function p(t) satisfies the differential equation 

(p,)2 = ^p3-92P-93 

= 4(p-ei)(p-e2)(p-e3). 
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Here 

(2.6) 

-6 

p(uju) = eu    for v = 1,2,3, 

ei + 62 4- 63 = U, 6163 4- 6263 + 6361 = - —, 616263 = —• 

Moreover we have important formulas 

(2.7) 
p(x)    p'(x)    1 
p(y)   p'(y)   1 
p(z)    p'(z)    1 

= 0    if x + y + z = 0, 

(2.8) 

and 

(2.9) 

/     ,        N ,    (eJ - ej)(ei - efc) (z + tOi) = ej + rV  
P(^) - ej 

if {t)j,A!} = {1,2,3} 

(I2p(.)2-g2)
2 

P(2Z)=        I6p>(t)»        -2p(z)- 

In this paper the periods are allowed to be infinity and hence gi and #2 or ei and 
62 take any complex numbers. Then the condition 

(2.10) (ei - e2)(e2 - e3)(e3 - ei) ^ 0 

holds if and only if the both periods are finite. On the other hand, if ei = 62 = |A2 

and es = -|A2 with A G C, then 

(2.11) p(z|v/=TA-17r, 00) = A2 sinh-2 Xz + |A2. 

In particular, if ei =62 = 63 = 0, we have 

(2.12) p(z|oo,oo) = z-2. 

We note that if (2.10) holds, the function v(t) given by (1.10) is rewritten into 

(2.13) 

with suitable complex numbers C{,... ,C'5 (cf. (2.5) and (2.8)).   Moreover for any 
complex numbers Cj', C2 and C3, it follows from (2.9) that 

(2.14) v(t)=C^p{t) + C!lio{2t) + C^ 

is a special case of (1.10) and the complete integrability of the corresponding Schrodin- 
ger operator was a question in [OP2]. 

Now we prepare 
LEMMA 2.1. Let Vk(t), Uij(t) and Wij(t) be functions with a single variable for 

1 < * < 3 < 3 and 1 < k < 3. Pizt ^ = Vk(xk), v'k = v'k(xk), Uij = nij(a;i - Xj), 
^'ij = ^'(^ ~ ^i)' WiJ — Wijixi + ^') and w'ij — w'ijipi + Xj) for 1 < * < 3 < 3 and 
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1 < k < 3.  Then we have 

(2.15) 

<9l (("12 - Wi2)(«13 - Wtz)) + 52 ((U12 - Wl2)(W23 - ^23)) + ^3 ((«13 - Wi3)(w23 - ^23)) 

Ui2 "12 1 Ui2 1*12 1 ^23 ^23 1 y>i3 -^13 1 
U23 ^23 1 + ^13 -^13 1 + W12 -™'l2 1 + W23 -^23 1 
Ul3 -^13 1 ^23 ^23 1 Wis <3 1 11)12 ^2 1 

(2-16) 

dl ((U12 + Wl2)("l3 - Wl3)) + ^2 (("12 + Wl2)(W23 - ^23)) + #3 ((u13 + Wi3)(u23 + ^23)) 

W12 K2 1 W12 ^12 1 ^23 ^23 1 ^13 -<3 1 
^23 u23 1 + ^13 -K3 1 - ^12 -<2 1 - ^23 -^23 1 
^13 -^13 1 ^23 ^23 1 ^13 ^13 1 ^12 ^12 1 

and 

(2.17)    t;i(ui2 -^12) + 2v1{u'l2 -w
1^) + d2\{vi +V2)(u12 +W12) -2viV2j 

Vl y'l 1 Vl -K 1 
V2 -V2 1 + V2 -V'2 1 

U12 -<2 1 Wl2 ^12 1 

Proof. If we note that uj- = diUij = —djUij and u^- = 9^^- = djWij, then 
equalities (2.15), (2.16) and (2.17) are clear by direct calculations. □ 

In the case when u(t) = Cip(t) + C2, the function u(t) is even and satisfies 

(2.18) 
u(x) u'{x) 1 
u{y) u'ly) 1 
u(z)    u'{z)    1 

= 0   for  x -f y + z = 0, 

which is clear from (2.7). Hence we have 
COROLLARY 2.2. For given even functions u{t), v(t) and w(i), put 

(2.19) 

Then clearly 

(2.20) 

i)J/ 

(2.21) 

or 

(2.22) 

then 

(2.23) 

and 

(2.24) 

^ 

^y = u(Xi - Xj) - w(Xi + Xj), 

vk =v(xk). 

u(t) =w(t) =Cip(t) + Cf2 

i/(^) = Cip(t) + C2    anc?   ^(*) = C3, 

dii^ijipik) + djitpiji/jjk) + dk&ikipjk) = 0 

dii&jipik) + dj((f>ijipjk) + dk(<l>ik</>jk) = 0- 
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ii)// 

(2.25) u(t) = v{t) = w(t) = dptt) + C2 

or 

(2.26) u(t) = ^(t) = Cig)(t) + C2    and   v(t) = C3, 

(2.27) (diVityij + 2vi{dirl)ij) + dj ((vi + ^)^i - 2^^) = 0. 

i/ere t/ie indices i, j and k are mutually different and Ci, C2 and C3 are any complex 
numbers. 

Remark 2.3. The equation (2.18) for u and its generalization are studied by [BP], 
[BBy], [OS] in connection with integrable systems and equations similar to those in 
Corollary 2.2 are discussed in [BBu] 

3. A fundamental integral of type An_i and Dn. 
In this section we use the notation in Corollary 2.2. Put 

(3.1) ^{l,...,2fc} =  2*^    Yl    ^(^12^34^56 •■■^2Jb-l>2fc). 
u>€<52fc 

We sometimes denote by ^ j in place of t/fy- to distinguish the suffices. 
Define 

(3-2) A = -iX:^+    E    <t>: 
j=zl l<i<j<n 

and 

(3.3) An=    J2     (2uY(n-2uY   ^ W^{lt"' ^>^+1'' 'dn)' 

Let A and An be the functions of (x, £) obtained by replacing di by & for i — 1,... , n 
in (3.2) and (3.3), respectively. 

The Poisson bracket of functions /(#,£) and #(#,£) is defined by 

{/..>-t(g£-&£)- 
Then we have 
PROPOSITION 3.1.  Suppose u andw are given by (2.21) or (2.22).  Then 

[An,A] = {An:A}=0. 

Proof. Put Q = [An, A] and suppose (J 7^ 0. Since ^ = (-l)nAn and £A = A, 
£Q = *[An, A] = -f An^A] = (-l)n+1Q. Hence the order of Q equals n - 2m - 1 
with a suitable positive integer m. Then by using (2.20) and (2.23), the coefficient of 
$2m+2 • • • <?n in the 6n-invariant operator Q equals 

2m+l n 

i=l MO j=2m+2 
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2m+l n        2m+l 
=   Yl      J2    ^{l,...,2m+l}\{t}fli0v +      X]       lL   ^{l,...,2m+l}\{t}^^ 

i=l       ^^ i=2m+2   i=l 
l<j<n 

2m+l 

= -13 13        ^{l,..,2m+l}\{2}^^ 

l<i<2m+l 

2m+l 

= -13 13 13 ^{l.-",2m+l}\{ij\Jfe}^*0iV>ii 
2=1 JV^ *^i, ^^j 

l<j<2m+l   l<A;<2m+l 

= " 13 ^{iv ^m+UXfij,*} {di(ipijipik) + dji^ij^jk) + dkiipikipjk)) 
l<i<j<k<2m+l 

which contradicts to the fact that the order of Q equals n — 2m — 1. Thus we have 
[An, A] — 0 and by the same calculation we have also {An, A} = 0. □ 

The following theorem is known but we repeat it here for the completeness. 
THEOREM 3.2 (Type An-i. [OP2], [OS, Theorem 5.2 and Remark 5.3]). Put 

u(t) = Cip(t) + C    and   w(t) = 0. 

Regard An as a polynomial function of C, denote it by Pn(C) and put Pn_i(C) = 
[P„(C),a?i + -' + xn].  Then 

(3.5) [Pn(C),Pn(C")]  -  [Pn(C'),Pn-l(C'')]  =  [Pn-l^^n-iCC")]  = 0 

for any C, C e C. 
Defining Pk by Pn{C) = Eo<L<[f ] pn-2vCu and Pn_i(C) = Eo<i/<[^](2z/+ 

l)Pn_2/y_iCI/, «;e Aave 

._. ft=    E    2^-2^)!   S^P^'^PCXS-^)- 
(^•b) o<j<[|]     ^ v *" ^ee. 

• p(x2j-l - X2j)d2j+l '"dk) 

and Pi,... , Pn are the required operators for the Schrodinger operator (1.1) with (1.7) 
and (1.8) w/ien VF zs o/ type An-i. 

By replacing di and [ , ] % & and { , }; respectively, we have the same claim for 
the corresponding Hamiltonian system. 

Proof. Put Q = [Pn(C),Pn(C
,)] and suppose Q ^ 0. Since <Pn(C) = Pn(C)-, 

we have —tQ = Q~. By Jacobi's identity for [ , ], we have [Q, A] = 0, which implies 
that the coefficients of the terms of highest order in Q are polynomial functions of 
x (cf. [Be, Lemma 2.5] or [OS, Lemma 3.1 and Lemma 3.5]). Hence if ui is finite, 
the coefficients are constant because of their periodicity. Moreover by the analytic 
continuation we can conclude that the coefficients are constant even if ui = oo. This 
contradicts to -*Q = Q- jLQ. Hence we have [Pn(C),Pn(C

/)] = 0. 
Note that [Pn_i(C), A] = -[ft + • • ■ + dn,Pn(C)] + [[Pn(C), A],^ + • ■ • + xn] = 

0.  Hence the same argument as above shows (3.5) by replacing (Pn(C),Pn(C')) by 
(Pn(C),Pn-i(C")) Or (P^iOtPn-xiC)). 

The remaining part of the theorem is clear from the definition of Pn(C). D 
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4.  A functional differential equation. Retain the notation in Corollary 2.2 
and the previous section and put 

(4.1) A{lf...,fc}=    Yl    (2i/)!(fc-2i/)!   ^ w^{h-.^}d2,+i'"dk) 
o<^<[|] week 

for k — 1,... , n (cf. (3.3)). Then we have easily 
LEMMA 4.1. 

A{i,...,fc} = A{i,...,k-i}dk +    2^    ^^A{I,...,A:- i}\{t/}- 
l<v<k-l 

Let ^{i,... ,A;} be suitable symmetric functions of (xi.... , x^) for k = 1,... , n and 
put q0 = 1. For even functions Vj — V(XJ), we examine the condition such that the 
operators 

(4.2) 
j=l l<i<j<n j=l 

n 1 

,     kUn-k)\ 
k=0        v /    ^GSr, 

satisfy [Pn,P] = 0. We denote by A|lv>)fc-}. and P and Pn the functions of (#,£) 
obtained by replacing 9i by & in the above definition of the corresponding operators. 
We introduce symmetric functions T!^... ^j of (zi,... ,Xk) such that 

(4.3) ^{1,...,*:}= X! TIi'--TIu, 
/iU"-U/J/={l,...,A;} 

where the sum runs over all different partitions of {1,... , k). For example 

q0 =T0 = 1,    g^} = T{i},    ^{1,2} = Tji}^} + ^{i,2}5 

^{1,2,3} = ^{l}^{2}7{3} + ^n{l}^{2,3} + ^{2}^{3,1} + ^{3}^{1,2} + ^{1,2,3}- 

THEOREM 4.2.  Retain the above notation. Suppose 

r%} 
fc-i K — 1 

(4.4) ^ 9ibr{1|...fib} = X (2T{1|...|ife_1}(ai^Jfc) + (^T^,...^!})^) 

^ /or    fc = 2,... , n. 

rften[P„,P]={Pn,P}=0. 
Proof. It follows from Proposition 3.1 that 

[p"'p] = [Efc!(n_fc)! E "'fei.....*}^!,...,,,})^ 
n .. 

= Efc!(^I)!  E ^(hi,..,fc}A|fc+1,...,n}, 
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k 

-^—H2+ £ K+EM) 
i/=k-\-l /x=l 

n ^ n k 

= Sfei(n_Mi E «'(«{i.....*}[A{*+i,...,n}. E K + EM 
A;=0      V ;   u;G6n i/=A;+l /x=l 

+ 5[fl? + -" + ^.9{i,...,*}]^fc+1,...,n}). 

Hence by Lemma 4.1 and (2.20) we have 

n-l lb—J. ^ IV 

{■Pn»-P} = Efeifn_^-iv   E u;(29{i,...,fc}(^+i+Eafc+1^+1) 
*;=0     '*• '' t(;€S„ j"=l 

^{*;+2,...,n}A{fc+ii ."}) 

1 

+ E (*_!),(„_*), E «'((ft«{i.....*})A{*+i....,»}&) 
A;=l V J V y   u;e6n 

n ^ As —1 

= E(fc_1)!(n_fc)! E "(2g{w-i}K + 5>^) 

• ^{fc+l,...,n}A{fc,...,n}J 

+ E(Jb-l)!(n-Jfe)!    E   «'((A«{l,....*})(A{*,...,n} 

n 

-   ^  V;A;iA{A.+1)...jn}\{i})A{A.+lv..)n}J 

= E(ife-l)|(n-ib)l   E «'((29{i,....*-i}«i 

+ dkq{l,... ,k}) ^{k+l,... ,n}^{k,... ,n} j • 

Here the last equality follows from 
n 1 n 

n -. £-1 
= ]C(^.l)!(yi,£)!   Yl ^(l3(ft?{i,...,/-i})^^+i,..,n}A{/l...jn}). 

Hence if ^{i,... ,&} satisfy 

dkq{i,...,k} = -2q{it...tk-i}Vk 

(4.5) AC —1 



IiU-UIu={l,...,k-l} 
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for k = 1,... ,n, then {Pn,P} = 0. Under the assumption of the theorem, the right 
hand side of (4.5) equals 

£ (TIl---ThdkT{k} 

,={i,...,fc-i} ^ 

i 

+ J2 (2^ • • • r/„ (djipjk) + (diM, ■ ■ ■ T/j)^*) 

2 afc(r/l...r/l/T{fc} + ^T/l...r/jlUW...rJV 
Jill ••U/l,={l,...,A;-l}       ^ M=l ^ 

which equals the left hand side of (4.5) and hence we have {Pn, P} = 0. 
Thus we have 

n .. • n 

[pw,p]=^fc n_    ^ ™Uw} E (5^+ E ^^) 
A;=0     *V ;" w£en       V i/=k+l l<M<fc 

• A{fc+1,.. ,n}\{i/} + 2 S^^1— ,*}) A{ife+1..- ."} ) 

and therefore [Pn,P] is clearly self-adjoint. Since P and Pn are self-adjoint, [Pn,P] is 
skew self-adjoint. Hence we can conclude [Pn,P] = 0. □ 

REMARK 4.3. Let Th     fc-.   and Th     ^ be solutions of (4.4) for (u,i;,iu) = 

(/,pi,/i) and (/,t/2,/i), respectively. Then' Ck-lC'Tl
{l M + C^C'T^ ^ are 

solutions for (u,v,w) = {Cf^C'gi 4- C,,g2,Ch). Here C, C" and C" are any complex 
numbers and fc = 1,... , n. 

5. Solutions of the functional differential equation. 
In this section we shall construct elliptic solutions of (4.4) in the case when 

(5.1) u(t) = w(t) = Cp(t) + C" 

with C, C7 G C (cf. (2.19)). 
Retain the notation in the previous section and assume (5.1). 
LEMMA 5.1.   Under the notation in Corollary 2.2, the functions 

$0 =1, 

$n  = (-l)n   ^   w(0O1012---0n-lln)      /or     n>l 
ween 

satisfy 

n-l 

(5.2) an$n = So($n-1^0n) + XI (2$n-l(5i^in) + (9j^n-l)^jn) • 
i=i 
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Proof. For j = 1,... , n — 1 

(-l)--1(2$n_1(5j^n) + (djSn-lWjn) 

it;(n-l)=j 

+        X^        (5j(^(n-2)j'0jn))^(0O1012 ' ' * 0n-3,n-2) 

«;(n-l)=j 

w(n—l)^j l<i<n—l 

w(n—l)^j l<i<n—l 

Hence it follows from (2.20) and (2.24) that the right hand side of (5.2) equals 

•n—1 n—1 

^(n-l)^ 

n—1 v 

l<i<n-l 

= {-ir( J2 5n(n^(^_M)) 
w(n)=n 

n—1 \ 

^66n-i A;=l ^ju 
KKn-1 

= ^n^n- 

Thus we have the lemma. D 
LEMMA 5.2.  Suppose there exist a symmetric function g(s,t) of (s,t) such that 

(5.3) 2i;i(81^12) + (flivi)^i2 = 82(2^12 - (^1+^2)012) 

by denoting gij — g(xi,Xj). Put 

Sly = -2vu 

(5-4) 5^li...ifc} = 2(-l)*  Y, ™{Mi2<l>23---<t>k-i,k)    for    k>l. 
wesj. 
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Then 

(5.5) ,_! 

(5.6) 2ui(9i^i2) + (0iui)^i2 = 92(2Ai;ii;2 - (ui +^2)^12) 

lyzt/i a complex number X, then 

(S{1} =-2v1, 
k-l 

djbS{i,...>fc} = E (2S,{i,...,fc-i}(9i^) + (9JS{i,...,ife-i})^) 
(5.7) 

i=i 

61/ putting 

(5.8) 5{iv..jfc} E (-Ar-1^-!)^.-'^    for   fc>l. 
/iU-U/„={l,...,«;} 

ii) // t/iere eiisi ewen functions f(t) and h(t) and complex numbers A, A' and A" 
suc/i that 

( 2vl{dxipl2) + (ait;i)^i2 = a2(2A71/2 +2A"(/i1 +/i2) - (vi +«2)0i2), 
(5.9)      { 2f1{diil>12) + (dxf 1)^12 =d2{-(f1 + /2)012), 

I 2/11(^1^12) + (ai/n)Vi2 = 52(2A(/1 + /2) - (/ii + /i2)^12), 

the following functions S{1 ^^^y satisfy (5.7). 

/1n/2={i,...,*!} 

Jiuj2n/3={i>...,fc} 

S{i^fk} = 2(-l)k Y, ™{fi<f>i2<t>23--'fa-i,k)i 
week 

5{i>...ffc} = 2(-l)* X) v{hi<l>i2<h3-~<t>k-i,k), 
week 

D{ltmm.tk}=2(-l)k   Y   ^(012023 •■■^fc-l.fc)- 
u^GSfc 

ifere w;e pitt /j = /(XJ) anc? ftj = h(xj) for j > 1 and S'r^ = — 2fi, S'J^ = —2hi and 
D{1} = -2. 

Proof. Owing to (5.3) and (2.20) and Lemma 5.1, the right hand side of (5.5) 
equals 

jfe-i 

2(-i)*"1 E ^^E^^12'--^-2^-1^^ 
week j=i 



948 T. OSHIMA 

k-1 

+ (dm)012 • • • (t>k-2,k-l^lk +5^1 (9j(0i2 ' * * (t>k-2,k-l))ll)jk) 
3=1 

- 2(-l)A;      2J     wldkiVkfalfa • ' • <})k-2,k-l - 2gik(f>12 ' • ' <t>k-2,k-l) 
we<3k-i 

k-l 

- Vi0i2 • • ■ (I)k-2,k-l(di1pik) - 2^^1012 * * ' <l>k-2,k-l(djll>jk) 
3=2 

k-l 

J=l 

= 2(-l)A;      2^      ^f dk(vk<f>kl(t>12 • "(t>k-2,k-l - 2gik(i>12 • • ' (t>k-2,k-l 
week.!    ^ 

it;/(l)=l 

= &(5{V. ,*}-(-!)*       ]C      M^1^12023---^-2,.-l)). 

Hence we have (5.5) and if (5.6) holds, we have 

(-1)*      Yl     4w(9lk^l2(f>23 ' ' ' (t)k-2,k-l) = A^i^^ ^-i}^} 
w€<Sk-i 

and therefore the right hand side of the second equation of (5.7) equals 

j=\ /in-u/„={i,... ,fc-i} 

+ {djSi-'-siWjk) 

E      (-Ar^^-ijiEft^-^uw-^ 
/iU-U/I/={l,...,A;-l} M=l 

= «*(     E     (-Ar-1^-!)^--^^) 
/iU-n/I/={i,...1jfe} 

Now suppose (5.9). Then by denoting 

/1U/2={l,...,fe} 

/1U/2={I,...,A;} 
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S{i,..,*} = E (5/^/^/3 +DhS'hDh +DhDl2S'h) 
/iU72U/3={l,...,fc} 

and 

F^ - (-IJ^ftS^,.-..,*} - E (25fll...lfc-1}fli^ + (aiS{
v
lf...|fc-1})^)) 

for z/ = 1,... , 4, it follows from (5.5) that 

Fk = 5fc(A/S{i,... .jfc-i}5^} + ^"^{i,... .ik-i}^*} + ^"^{i,... .fc-i}^}), 
Fk = ^(•Sf{i>...jib-i}5{ife}),_ 

/iU/2={l,...,fc-l} 

^4 - dk{ Y, &'IxDI:kDw -I- ^S^Ctfc} + DhDl2S'w). 
/in/2={i,...,*-i} 

Since dk^S'^D^ + JD^S^)!^^}) = 0 in the above, we have 

i^1 - A'Fl - VFl + 2AA,,it = 0, 

which implies (5.7). Thus we have completed the proof of the lemma. D 
DEFINITION 5.3. For given even functions / and g of t, we define 

*{!,...,*}(/,£) =     E     ^(/(^iM^i -^2)^(^2 -^3)--^(^-i -Xk)), 
weW{Bk) 

©{il...,*}(/^)=     E     (-ir-1^-!)!^!/^)---^^/^) 
/1U-U/I/={1,...,*;} 

for fc > 1.   Here we note that 0{i}(/,#) = *{i}(/,^) = 2/(2:1) and @0{f,g) = 

PROPOSITION 5.4. Suppose 

Co 

with Co,... , C5 G C.   T/ien (4.4) /io/ds &y putting 

u(t)=w{t)=C6p(t),    vW=£CiP(* + w;)- 

r{if... |fc} = (-Cs)^-1 ( Y0{I,.. ,*} (i, P(*)) - E ^©{i.- .*} (P(* + "i)> P(*))) • 

Proof. Suppose C5 = 1. If v(t) = p(t -f a;^) with 1/ = 1,... ,4, the assumption 
(5.3) in Lemma 5.2 holds with gi2 = viV2> In fact (2.27) means (5.3) if v(i) = p(t) 
and then the coordinate transformation Xj *-> Xj + UJV for j = 1,... ,n implies the 
case when v(t) — p(t + &„). If v is constant, then (5.3) is also valid with #12 = ^1^2- 
Hence the proposition follows from Lemma 5.2 and Remark 4.3. D 

Remark 5.5. Since we may put #12 = 0 in the above proof when v is constant, we 
may replace 0{i,...,jfe}(l,p(t)) by ${1,... ,*}(!, p(t)) in Proposition 5.4. 
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6. Degenerate solutions of the functional differential equation. 
We give trigonometric and rational solutions of (4.4): 
PROPOSITION 6.1. For complex numbers \, Co,. •. , C5 with \^0, put 

u(t) =w(t) = Cs sinh"2 A*, 

v(t) = Ci sinh-2 Xt + C2 cosh"2 A^ + C3 sinh2 A£ + -j- sinh2 2\t--£, 

g(s, t) = C5 (Ci sinh-2 Xs • sinh-2 Xt - C2 cosh-2 Xs • cosh"2 Xt 

+ C4(sinh2 Xs + sinh2 Xt + 2 sinh2 As • sinh2 Xt)}. 

T/^en (5.3) holds. Moreover we have (4.4) with 

Tj = (-C5)#/-1 ( Y1
/(!) - C'IIJ (sinh"2 At) - C2r/(cosh"2 Xt) 

- C3T/(sinh2 At) - CiTf(\ sinh2 2At)) 

6?/ putting 

r/(i) = §/(!, p), 

T/(sinh~2 At) = 0/(sinh"2 At.p), 

r/(cosh-2 At) = -e/(- cosh-2 At, p), 

T/ (sinh2 At) = $/ (sinh2 \t,p), 

T?{\ sinh2 2At) = $/(± sinh2 2At, p) -    ^    (2$^ (sinh2 At, p) ■ $/2 (sinh2 At, p) 
/lU/2=/ 

$/, (sinh2 At, p) - $/a (1, p) + $/! (1, p) • $/a (sinh2 At, p)), 

«;/iere /c{l,...,n};p = sinh"2 At anrf the last sum runs over different partitions. 
Proof. We can prove (5.3) by direct calculations but here we do it in a different 

way. First note that we may assume that C5 and one of the numbers Ci,... , C4 equal 
1 and that the other 4 numbers are 0. Also by a simple change of coordinates we may 
assume A = 1. 

Now put ^(t) = p(t) — ei. Then if v(t) — p(t + Uj) — ei we have (5.3) with 
gi2 = V1V2 for j = 1,... ,4. If ei = 62 — \ and 63 = —|, then p(t) — ei = sinh-2 t 
and 

/. ,      x                           .  (e3 -ei)(e3 -62) 
p(t + ws) - ei = 63 - ei + 7-7  

P(*J - ^3 
1 _2 

= -1 H 375 = - cosh     t. 
sinh zt-f 1 

Hence if u(t) — sinh-2t and v{t) — sinh-2 t or — cosh-2t, we have (5.3) with #12 = 
^1^2- 

—   3'  ^^  ~"   3  ~ c'  ^'6  ~       3 Put ei = I, e2 = h - e, es = -f + e with 0 < |e| << 1. Then it follows from 
(2.8) that 

/x \ (ei " e2)(ei - 63) . ,2 x ,    / \ p(t + ui) - ei = 7-7^ ^ =esinh^t-t-o(£). 
p(t) - ei 
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Hence putting v(t) — p(t -f- LUI) — ei, the coefficients of e in (5.3) proves (5.3) for 
(u,v) = (sinh-21, sinh2 t) with p(5,t) = 0. 

Next suppose v(t) — (p(t -f CJI) - ei) + (p(t + CJ2) - e-i) + (ei - 62). Then 

2 PW - e3 
p(t) ~ 6! p(t) - 62 ^ (p(t) - ei)(p(t) - 62) 

9 sinh-2 ^4-1        , 9x      6:2   .  , o rt , 9x 
= e2 —A— + o(e2) = — sinh2 2t + o(£2) 

sinh    t 4 

and (5.3) holds with 

g(s,t) = (p(5-hcji) -ei)(p(t + a;i) - ei) + {p(s + CJ2) - ei)(p(* + ^2) - ei) 

= (esinh2 s)(e sinh21) + (—esinh2 s — s)(—esinh2 t — s) + o(£2) 

= £2(1 + sinh2 s + sinh21 + 2 sinh2 s • sinh21) + o(e2). 

Hence we have (5.3) if 

J g(s, t) = sinh2 5 + sinh2 t -f 2 sinh2 5 • sinh2 t, 
\ (w, v)  = (sinh-2 t, i sinh2 2t) 

The remaining part of the proposition is clear from Lemma 5.2 and Remark 4.3. We 
can also get it from Proposition 5.4 by considering the limit as above. D 

Remark 6.2. Since 

sinh As 4- sinh At 4- 2 sinh As • sinh At 

— sinh2 As • sinh2 At + cosh2 As • cosh2 At - 1, 

we may put 

Tf{\ sinh2 2At) = $/(£ sinh2 2At, p) 

-    ]r    ($Il(sinh2 At,p) • $/2(sinh2 At,p) + $^(cosh2 At,p) • $/2(cosh2 At,p)\ 
/lU/2=/ 

in Proposition 6.1. 

PROPOSITION 6.3.  For complex numbers Co,... ,£5, pwt 

w(t) = ^(t) =C75t""2, 

v{t) = Cit"2 + Cst2 + Cst4 + Qt6 - ^, 

p(a,t) = C6(C7is-2t-2 + C3(s2 + i2) + C4(s
4 + t4 +Zs2t2)). 

Then (5.3) holds. Moreover we have (4.4) with 

Tj = (-Cs)*1-1 (^T/(l) - CiTfit-2) - C2Tf{t2) - C3T?(t4) - CiTfit6)) 

by putting 

Tni) = *i(i,p), 
T!(t-2) = eI(t-

2,p), 

T;(t2) = $/(*2,p), 

T/(t4) = $/(t4,p)-        Y,        (*/1(t2,p)-*/2(l,p) + *J1(l,p)-*/2(*2,p)), 
/lU/2 = {l,...,*} 
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/1U/2 = {1)...,*} 

+ *Il(t
4,p)-*l2(l,p) + *Jl(l,p)-$i2(t*,p)) 

+ Yl 6(*/1(t2
>A0-*j!,(l,p)-*j,(l,p) 

/in/2U/3={i,...,fc} 

+ $/l(l^)-$/2(i
2,/!))-$/3(l,p)+$/l(l,p)-$/2(l,p)-$/3(i2)/9)), 

i^/iere /c{l,...,n};/o = t~2 and the sums run over different partitions. 
Proof. Note that the proof proceeds in the same way as in the proof of Proposi- 

tion 6.1. Put u(t) = A2 sinh-2 Xt. Then for 

v(t)     = A2 sinh"2 Xt, 
g(s, t) = A4 sinh-2 Xs • sinh-2 Xt 

or 

or 

or 

v(t)     = A"2 sinh2 Xt, 
g(s,t) =0 

v(t)     = A"4(| sinhJ 2Xt - sinh2 At), 
g(s11) = A~2(sinh2 As + sinh2 At + 2 sinh2 Xs • sinh2 At) 

<;(*)     = A-6(l - 2 sinh2 At + f sinh2 2At - cosh-2 At), 
g(s, t) = A-4 (cosh2 As • cosh2 At + sinh2 As • sinh2 At 

+ cosh-2 As • cosh-2 At — 2), 

we have (5.3). By the analytic continuation of these u(t), v(t) and g(s, t) to A = 0, we 
have (5.3) for u(t) = t-2 and v(t) = t-2 or t2 or t4 or t6 with g(s,t) = s^t'2 or 0 or 
s2 -I-12 or s4 + t4 4- 3s2t2, respectively. In fact, for example, we have 

A"6(l - 2 sinh2 At + - sinh2 2At - cosh"2 At) 
4 

= A-6 (1 - sinh2 At + sinh4 At - (1 + sinh2 At)-1) 

= A-6 sinh6 At + o(A) = t6 + o(A), 

A"4 (cosh2 As • cosh2 At 4- sinh2 As • sinh2 At + cosh-2 As • cosh-2 At — 2) 

= A-4 ((1 + sinh2 As)(l + sinh2 At) + (1 + sinh2 As)-1(l + sinh2 At)-1 

+ sinh2 As • sinh2 At - 2 J 

= A-4 ((sinh2 As + sinh2 At)2 + sinh2 As • sinh2 At) + o(A) 

= s4 + t4 + 3s2t2+o(A). 

The remaining part of the proposition is clear from Lemma 5.2 and Remark 4.3. We 
can also get it from Proposition 6.1 by taking the limit at A = 0. □ 

7. Integrals of type Bn and Dn. 
The argument in the preceding sections gives the integrals when W is of type Bn 

or Dn. 
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DEFINITION 7.1. For given even function u(t) and symmetric functions T.^...^} 
of (xi,... , Xk) for k = 1,... , n, define W(Bn)-invariant differential operator 

by 

^ A;!(rz - jfc)! 

A{i,..,fc}=    Yl    2HHk-2jY     ^     ^H^(u(a:i-x2M^3-^4)--- 
0<j<[|] ■"" ii;eW(J3fc) 

• U(X2J-1 - X2j)d2j+ld2j+2 '"dkU 

9{l,...,fc}= E Th-'TIv, 
/iU-U/v={l,...,ife} 

where 

to = 1,   ^{1} = 7{1}5   ^{12} = ^{l}^n{2} + r{l,2}» • • • 

^({i,...,*}) = ^(r{i,... ,*})»     ^({i,...,*}) = ^(A{i,... ^J    for    w G Sn. 

Replacing 9i by ^ for z = 1,... ,n in the definition of A^^...^} and P{u,T), we 
define functions A^>p! ^-j. and P(u,T) of (£,£), respectively. 

THEOREM 7.2 (Elliptic Potentials: Generic cases of Type Bn). Put 

(7.1) 

f u(t) = C5p(t), 

and de/me P„(Co) = P(w,T) and Pn(Co) = P(u,T) by 

T{1,... ,*} = (-C5)
k^ (^T^,... ifc} (1) - £ ^Tft,... ifc}(p(t + Wi))), 

/iU-UJI,={l,...,*;} 

wew(Bk) 

Then 

(7.2) [PnWMC')] = {Pn{C),Pn(C')} = 0 

for C, C e C. 
Le£ Pj &e the coefficient of CQ~

J
 in Pn(Co).   Then Pi,... ,Pn are tte required 

commuting differential operators (1.5) /or £/ie Schrodinger operator 

I   n    Q2 n 

(7.3) P = - - Y, g^ +    ^     Hm - XJ) + w(^i + ^i)) + S ^^^ 
j=l        3        l<i<j<n k=l 

in the case when W is of type Bn. 
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By using Pn(Co) in place of Pn(Co), we have integrals Pj of the Hamiltonian 

1     n n 

(7.4) ^ = -2^2^+    J2     (uixi-x^+uixi+xj^+^vixk), 
j=l l<i<j<n k=l 

where A, • • • ,-Pn are functionally independent and satisfy {Pi,Pj} = 0. 
Proof Theorem 4.2 and Proposition 5.4 imply 

(7.5) [Pn(Co),P]=0. 

Fix C, C e C and put Q = [Pn(C),Pn(C
f)]. Then we have [Q,P] = 0 and Q' = 

—tQ = Q and therefore we have Q = 0 as in the proof of Theorem 3.2. 
Since ^{i,...,^} is a monic polynomial of Co with degree /c, it is clear that Pj for 

,7 = 1,... ,n satisfy (1.5). The remaining part of the theorem is also clear. □ 
THEOREM 7.3 (Type Dn). Suppose W is of type Dn. Then by putting Ci = 

C2 = C3 = C4 = 07 the operators Pi,... ,Pn-i in Theorem 7.2 and Pn = A{i}#..jn} 
are the required commuting differential operators (1.6) for the Schrodinger operator 

1   n    d2 

(7.6) p = __^_+     Y,     {uixi-xrf+uixi+Xj)) 
j=l        3        l<i<j<n 

with the function u(t) given by (7.1). Here the periods of p(t) are allowed to be 
infinity. 

Proof Theorem 7.2 and Proposition 3.1 prove [Pj, P] = 0 for j = 1,... , n. Then 
the commutators Qj = [Pj,Pn] satisfy QJ = ^Qj — (-l)nQj and [Qj,P] = 0 and 
hence Qj = 0 as in the proof of Theorem 3.2. D 

Remark 7.4- i) In Theorem 7.2 we have Pn = Pn(0) and 

n      n 

(7 7\ Pn~k     ^^ ilti - i)Kn - j)l   ^ ^r {'•') i=k j=i      XJ Jy JJ   «;€e„/1U-U/fc={l,...,i} 

wd-Cs)*-^-"^ (1) • • • Tj? (l)g{i+1,... J}Af .+li... in}) 

for fc = 1,... , n — 1, where ^{i+i,... j} are defined by putting Co = 0. 
ii) Because of the uniqueness of C[Pi,... , Pn] in terms of (u, v) (cf. [OS, Theo- 

rem 6.5]), the existence of the commuting differential operators Pi,... , Pn for (1.10) 
which satisfy (1.5) is guaranteed by the analytic continuation of the parameters #2 
and gs of p(t) even if UJI or CJ2 is infinite. We have explicitly given the analytic con- 
tinuation. In fact Theorem 4.2, Proposition 6.1, Proposition 6.3 and the proof of 
Theorem 7.2 imply the following theorem. 

THEOREM 7.5 (Degenerate cases of Type Bn). Suppose 
i) Trigonometric Potentials: 

f u(t) = C5 sinh-2 At, 

(7'8)       j v(t) = Ci sinh"2 Xt + C2 cosh"2 Xt + C3 sinh2 Xt + ^ sinh2 2At - y. 

lyzY/i a non-zero complex number X or 
ii) Rational Potentials: 

u(t) =C5t-
2, 

v(t) = Ci*"2 + C2*2 + C3*4 4- C4*6 (7-9) 1 -./^ - ^*-2 j. ^^2 a. r7^4 4- ^^6 - —. 
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Then for the function T{lv<.j^} defined in Proposition 6.1 or Proposition 6.3, we 
have the same statements as in Theorem 7.2. 

[Be 

[BBy] 

[BBu 

[BP; 

[Ca] 

[Cti 

[De 

[Et; 

[Hel 

[He2; 

[HO 

[In 

[Oc 

[00 

[OOS 

[OP1 

[OP2 

[opi; 

[Op2; 

[o« 

[os; 

[si 

[Su 

[ww; 
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