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DISCRETE SCHRODINGER OPERATORS AND TOPOLOGY* 

S. NOVIKOVt 

0. Introduction. During the last 3 years the present author made a series of 
works [1, 2, 3, 4, 5, 8, 6, 7, 9] dedicated to the study of the unusual spectral prop- 
erties of low-dimensional continuous and discrete (difference) Schrodinger Operators. 
Some of these works were done in collaboration with A. Veselov, I. Taimanov and I. 
Dynnikov. First, let me briefly describe the list of problems discussed in these works. 

1. Euler-Darboux-Backlund (EDB)-Transformations as nonstandard spectral 
symmetries for the 1-dimensional Schrodinger Operators and its discrete analogs on 
the lattice Z. Problem of cyclic chains, its solutions for the special cases. Exactly 
solvable spectral problems for some operators. EDB Transformations for the nonsta- 
tionary Schrodinger Equation and the problem of cyclic chains (see [12, 13, 14, 15, 
16, 2, 8, 17]). 

2. Laplace Transformations for the 2D stationary Schrodinger operators in the 
double-periodic magnetic field and potential, acting on the space of eigenfunctions of 
one energy level. Problems of cyclic, semicyclic and quasicyclic chains. The possibil- 
ity to have two exactly solvable highly degenerate energy levels as a maximal possible 
solvability for the spectral theory in the Hilbert space L2{R2) (except the Landau 
case in constant magnetic field and trivial potential)? Discretization of the Laplace 
transformations: square lattice is compatible with hyperbolic equations; equilateral 
triangle lattice is compatible with elliptic self adjoint operators. Exactly solvable op- 
erators. See [1, 2, 3, 4, 6]. 

3. The second order operators on simplicial complexes. Factorizations and 
Laplace Transformations. The cases of 2-manifolds with 2-colored triangulation and 
multidimensional equilateral lattices. Zero modes problem. First order equations in 
the simplicial complexes and nonstandard discretization of connections, combinatorial 
curvature. See [6, 7]. 

4. Schrodinger Operators on simplicial complexes. The combinatorial analog 
of Wronskians-the Symplectic Wronskians or SWronskians in our terminology; 
their topological properties. Special case of graphs with finite number of tails. Scat- 
tering Theory and Symplectic Geometry. See [5, 9]. 

This work is a direct continuation of [5, 9] (the idea was quoted in these papers 
communicated to the present author by I. Gelfand in 1971 as a reaction to the au- 
thors works [10, 11], where Symplectic Algebra was used for the needs of Differential 
Topology). We extend here the definition and topological properties of the Wron- 
skians (Symplectic Wronskians or SWronskians) to the broad class of operators on 
the simplicial complexes. 

1. Finite order selfadjoint combinatorial operators — symplectic wron- 
skians and topology. Let us consider any locally finite simplicial complex K where 
any simplex belongs to the finite number of simplices only. 

By definition, the Distance between two simplices of any dimensions <i(cr, a') 
is equal to zero if and only if they coinside. It is equal to 1/2 if and only if one of them 
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belongs to the boundary of the other one.  It is equal to 5/2 if s is such a minimal 
number s that there exists a simplicial path, i. e. sequence of simplices 

a = (JQ > 01,..., <Js — o 

with d^Oj'+i) = 1/2,$ = 0,l,...,s- 1. 
The Operators L of the order less or equal to fc we define by the formula 

(i) ivw = E6—'^ 
dfoO < ik/2 

Here ^(cr) belongs to some space of real or complex scalar-valued or vector-valued 
functions on the set of simplices. 

The operator L is Symmetric iff b%^G, = fr^/:(7. 
The operator is Real iff all coefficients b are real. 
For the Second Order Operators we have exactly d(<T, a') < 1 for the nontrivial 

coefficients b^^. Some nontrivial coefficients should be such that d = 1 exactly. For 
the Homogeneous Operators of some order k we have d = k/2 for all nontrivial 
coefficients. 

In the previous works we restricted our attention to the case where all nonzero 
coefficients b^.^s are concentrated on the simplices of some specific dimensions p, s. 
In this case the operator maps the space of functions (or vector-functions) on the set 
of p-simplices into the space of functions (vector-functions) on the set of s-simplices: 

(2) L : Cp -> Cs 

We call them the operators of the type p, s . The most interesting classes are as 
follows: 

1. The second order selfadjoint (i. e. Schrodinger) Operators for p = s. 
2. The first order operators of the type p, s. Especially interesting is the case 

p ± 1 = 5, but other cases also appeared before (see [6]). 
The symmetric (hermitian) matrix-function V(a) = ba:(T will be called Potential. 
Let us consider the real operators acting on the /-component vector-valued functions 
i/>(cr), where a G K, tp = (ipi) £ Cz, j = 1,..., /, and cr is a simplex of any dimension. 
The operator L acts on the space C* = (BpCp(K) where summation is extended to 
all dimensions (it is a full set of vector-valued cochains). 

In the standard way we define a " baricentrical" subdivision of the simplicial com- 
plex K. We put new vertices (O-simplices) in the centers of all original simplices of 
all dimensions k > 0. After that new edges connect the centrum of every simplex 
with all new vertices located on its boundary. The new fc-simplices of any dimen- 
sion are exactly the cones looking from the centers of the old simplices into the new 
k — 1-simplices already constructed by the induction on the boundary. We denote the 
baricentrical subdivision of the simplicial complex K by K1. 

Consider now any real symmetric operator L : C(K) -)• C{K) of the order k, 
acting on the space of all vector-valued cochains. 

Any such operator can be treated as an Operator L' = L of the type 
(0,0) acting on the zero-dimensional cochains in the baricentrical subdivi- 
sion K' : 

L' : C0(iO -> C^K') 
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Take any pair of solutions for the equation 

For every pair of vertices aa' G K' fix a unique naturally oriented path 
/((jja') (i. e. 1-chain [/]) such that <9[/(cr, cr')] = a1 — cr. Let for conveniency 
this path be the one of the minimal lengh. For the cases d(aa') < 1 such a 
path is unique. It is always unique for any pair of vertices in every simply-connected 
Graph (tree). It is also unique for the pairs of vertices if the distance between them 
is small enough: d(a, a1) < l/2c?o where do is a size of the smallest 1-cycle, do/2 is 
the number of edges in it. 

DEFINITION 1. The Symplectic Wronskian (SWronskian) for the pair of solutions 
for the operator V of the type (0,0) in any simplicial complex K1 is a one-dimensional 
(possibly infinite) simplicial chain W(il),(j)) in the complex K' defined by the formulas 
below: 

(3) WOM^E^'W^) 
oa' 

For the locally finite complex and finite order operator 1/ this sum makes sense as 
an infinite chain in this complex. We consider the operators L acting on the 
simplices of any dimension in the complex K as the operators L' acting 
on the vertices of the baricentrical subdivision K'. Therefore we defined 
the SWronskians for all selfadjoint real operators of any finite order k > 1 
acting on the spaces of vector—valued functions on the set of simplices of 
all dimensions. 

THEOREM 1. The Symplectic Wronskian (SWronskian) defined above as a C- 
valued finite or infinite 1-chain in K' is in fact an open cycle, i. e. dW — 0. This 
cycle is a bilinear skew-symmetric functional of the pair of solutions for the equation 
Lif) — Xip^Lcj) = A0. 

REMARK 1. Let any solution LI/J = Xip be given describing in the sense of 
Quantum Mechanics the stationary state of electron, living in the simplicial com- 
plex K with Hamiltonian L and energy A. This state defines a Quantum Current 
J(i/;) = W(^,T/i) along the arcs in K' satisfying to the Kirchhof Law in every ver- 
tex. 

Proof of the theorem. Consider the expression Yli 0z(cr)(^/?/,)z(cr) ~ ^ {L^Y {(?) for 
the pair of vector-functions. We can easily see that all zero order terms containing 
ba-.a disappear from this expression obviously for the real operators. 
For any vertex a of the complex K' we should consider all 1-simplices of K' meeting 
each other in the vertex cr. By definition of the Wronskian, we have 

a" 

where either cr is a nontrivial face of a" or vise versa, i. e. <i(cr, a") — 1/2. At the same 
time, (Lip)a = J^, b(T:afilj{a'. Canceling from the expression (f)(a)Lip(a) —ifj((j)L(l)(a) 
all zero order terms, we group others in such a way that our expression looks as a 
sum of the "elementary Wronskians" J2a" ^W'^o-cr'- 
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After that we memorize that t/>,'0 are in fact the solutions for the equation Lcj) — 
\(j)^Lip — A^, so our expresssion is equal to zero. Theorem is proved. 

COROLLARY 1. Let K is a Graph, i. e. dimK = 1. For any second order 
operator L acting on the full space of vector-valued cochains C = (7° ® C1 and any 
pair of solutions if;,<f) for the spectral problem, their SWronskian is an open cycle (i. 
e. open homology class) in the same Graph 

W(<f)^)eH°pen(K,C) 

Proof For graphs every simplicial 1-cycle in K' is in fact a simplicial 1-cycle in 
the original graph K. 

REMARK 2. Let us point out that we already proved and used this observation for 
the scattering theory on the graphs-see [5, 9]. However, in these works we considered 
strictly homogeneous second order operators only, acting on the spaces of vertices 
C0 -> C0 or edges C1 -> C1 separately. We also defined in [9] the SWronskians 
for the higher order operators acting on the space of vertices and SWronskians for the 
strictly homogeneous second order operators on the simplices of every fixed dimension. 
Here we extend the class of admissible operators. In particular we may work with 
operators L : C* —> C* mixing cochains of the different dimensions. 

All previous authors' definitions of the Wronskians as a symplectic 
(skew-symmetric bilinear) vector-valued 2-forms are the partial cases of 
this one. 

For any simplicial complex K there is a famous self adjoint first order operator 
L = d + d* : C(K) -> C(K) where d = 5* : Ck -> C^1 and d* = d : Ck -> C*"1 for 
every value of the dimension k. Its square is a direct sum or the Laplace -Beltrami 
Operators A^ = dd* -f d*d : Ck -> Ck- For the finite complexes zero modes of 
the operators L,A give certain "Harmonic" basis for the Homology (Cohomology) 
Groups Hk(K, R). Both these Operators are selfadjoint. They are the Euler-Lagrange 
operators for the quadratic functionals: 

(4) SAWO =< ^, A^;.>=< dip, dip > + < d*ip,d*ip > 
SL{iP)=<iP,{d + d*)iP> 

In the elasticity theory for the isotropic media the linear combinations appear 
Xdd* +/jid*d acting on 1-forms, where A, fi are the Lame' parameters (in the continuous 
case). 

REMARK 3. For the zero modes of the Laplace-Beltrami Operators Afc on the finite 
simplicial complexes we can easily prove that their SWronskian is always identically 
equal to zero. 

EXAMPLE 1. In the works [2, 4, 6, V factorizations and Laplace Transformations 
were considered on the 2-colored (black and white) triangulated two-manifolds M2 for 
the different classes of Schrodinger Operators. In the case of vertices we consider the 
operators L : ip(P) = ^2p, bp:p'ipp' where P' is such that d(P,P') — 1. These real 
selfadjoint operators can be factorized in the Laplace-type ("weak") form L = QQt-{-V 
where V is a "potential", i. e. multiplication by the real function, and Q1 : Co —> 
Qbiack j^ means that foig jirst order operator Q maps functions on the set of vertices 
into the functions on the set of the black triangles. Such an operator is defined by the 
set of all coefficients cp:T where T is a black triangle and P is one of its vertices. So 
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the simplicial complex K in this case is M2 minus white triangles. It has the same 
vertices and edges as M2, but twice less number of triangles. In the case V = 0 the 
ground level (if it is equal to zero), can be found from the square integrable solutions 
for the first order Triangle Equation Q1^ = 0. Especially interesting is the classical 
case of the equilateral lattice Z2 considered as a triangulation of R2. 

For the Graphs K = T several examples were considered in the work [9], especially 
for the graphs with finite a number of infinite tails. We shall come to this later in 
connection with the Scattering Theory. 

Let us consider here the special case of the discretized line with vertices numerated 
by the even numbers 2n = cr°,n G Z and edges numerated by the odd integers 
2n + l = all = [2n, 2n + 2], n G Z. So we have a lattice Z' of the integers as a complex 
K'. The operator L in K determines the operator L' in K' as a (0,0) type one: 

(£»>) = £ bln+s^(n + s),-k<s<k 

We choose a basis Cm of the solutions 

Cl
m.p,i = l...,Z,raG Z,p = -A: + l,-ft + 2,...,fc-l,k 

in the form: 

(5) (Cin.pY(m + s)=^6ps 

Let us compute the Symplectic Wronskian form in this important case. This 
form is a scalar-valued skew-symmetric bilinear form because there is only one basic 
geometrical cycle, the oriented line itself. 

THEOREM 2. The Symplectic Wronskian form written in the basis Cm of the 
solutions C^.p for any given integer m admits two k-dimensional Lagrangian Planes 
L± (i. e. this form is equal to zero on these planes), with basises C^.p G L+ for 
p= — fc +1,..., 0 and Cl

m.p G L_ for p = 1,..., k. For the SWronskian scalar product 
between these two planes we have 

WiCl.p, C>m.g) =0,q-p>k,p<0,q>l 

W(Cin;p,Cin.,q)=b%+Ptm+q,q-p<k 

In particular, this form is nondegenerate if and only if the Operator V has everywhere 
nondegenerate higher order terms 

detC+^0 

for every n G Z. 
Proof. We can easily verify the form of this matrix from the definition of the 

basis and SWronskian above. The matrix of SWronskians can be considered naturally 
as a number-valued one because there is only one canonical open geometrical 1-cycle 
on the line R = K = K' oriented in the direction of n —> -foo. We compute the 
value of SWronskians W{(j)^ ip) for all solutions from our basis on the 1-edge [01]. 
Therefore only those pairs of vertices should be considered which contain the segment 
[01]. Otherwise the elementary SWronskian for the pair of vertices would not contain 
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[01]. It means in particular that we may have a nonzero SWronskian in our basis 
only between the subspaces L+ and L_. The value of the spectral parameter A does 
not affect this matrix in the given basis. Let us point out that the matrix SWm 

of SWronskians W/r(Z/+,Z/_) in our basis is a block-triangle one, where the matrices 
&m+p;m+p+A;jP = —A; + 1,...,0 are positioned along the diagonal. We have zero 
SWronskians below this block-diagonal part. Therefore the determinant of this matrix 
is a product 

detSWm=    H   (det^+pim+p+fc)
2 

p=-k+l 

This implies the nondegeneracy of the Symplectic form given by the SWronskians. 
Therefore our theorem is proved. 

The SWronskian form is equal to constant along the line according to the theorem 
1. We have following 

COROLLARY 2. The Evolution Map Tmjm+i(A) from the basis Cm to the basis 
Cm+i, given by the equation Lip = Xip is a Linear Symplectic Transformation. 

This theorem, of course, is very clear. It is valid also for the nonlinear systems, 
as we shall see later. Its continuous analog has been known many years. However, 
even in the continuous case there was some difficulcy in finding the canonically adjoint 
("Darboux") basis, following the " Ostrogradski Transformation" for the vector-valued 
higher order variational problems (B. Deconinck pointed this out to me). We don't 
try to find a canonical basis, but nondegeneracy of the Symplectic form is very easy 
in our case. The nonlinearity is unimportant in these problems. Probably, no one 
considered the discrete variational problems in classical mathematics. This business 
was used in the Theory of Solitons for the discrete linear second order systems in the 
theory of "Toda Lattice" and "Discrete KdV" since the works [18, 19, 20]. It was 
started for the second order nonlinear systems in [21, 22]. For the discrete systems 
of higher order we do not know any literature. Our main idea is that for the graphs 
and simplicial complexes instead of line as a time we have a Symplectic form taking 
values in the linear space of the open one-cycles Z°pen(K'', C). 

Consider now any Graph Y which is presented as a regular Z-covering over the 
finite Graph Fi with free simplicial action of the monodromy group Z generated by 
the map F : 

P : F -> Yi,F : F -» T,FP = PF 

THEOREM 3. Any Operator of the finite order in the Graph F with free Z-action 
and finite factor can be presented as a higher order vector-valued operator on the 
discretized line-lattice Z. The operators with Z-invariant coefficients (i. e. operators 
whose coefficients are coming from the Graph T\) will be presented as operators with 
constant coefficients on the discretized line. 

We call this presentation a Direct Image of the operator on the lattice Z. 
Proof. For the proof, we construct a map / : F -> R commuting wth free in- 

action. It certainly exists. First of all we choose "initial vertices" in one-to-one 
correspondence with vertices of the factor-space Fi. It is good to choose them in 
the "Fundamental Domain" of the minimal size for the group Z in F, starting from 
any initial vertex. We map all these initial vertices into 0 G Z. After that we map 
all other vertices following the group action. The continuation to the 1-skeleton of 
F is easy:  for any edge its boundary vertices already mapped into R.   The linear 
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continuation is unique. It might happen that image of the edge is an interval n, n -f k 
where k > 1. Therefore the original edge should be subdivided in k parts. After 
that we have a simplicial Z-invariant map. Any function on the vertices of the Graph 
F can be naturally and tautologically presented as a vector-valued function ^n on 
the vertices of the discretized line Z with the number of components of vector i^n 
numerated by the vertices from /~1(n) G F. After this presentation of the functional 
space, we can see that the same operator looks as an operator of finite order on the 
lattice Z. Theorem is proved. 

2. Scattering and Symplectic Geometry. As it was pointed out in paragraph 
1, any combinatorial Schrodinger Operator L of the order k, acting on the functions on 
the set of simplices of any dimension, can be considered as an operator L' of the order 
2k acting on the vertices of the baricentrical subdivision K'. Therefore it depends 
on the 1-skeleton of the complex K' only. So we shall consider any higher order real 
selfajoint operator L acting on the vertices of the Graph F. For the Scattering Theory 
we need to consider the following picture: 

1. Our Graph F has a finite number N of "tails" (i. e. subgraphs Zj, j = 1,..., iV, 
isomorphic to the "half" of the special "line-like" graphs Kj-graphs with free action 
of the group Z generated by the map Fj, and finite factor Kj/Z). In particular, 
the map Fj is well defined far enough into the tail. After removal of the tails, what 
remains is a finite subgraph F'. 

2. All coefficients of the Operator L rapidly enough tend to constants (i. e. Fj- 
independent) in every tail Zj, j = 1,..., iV. So, far enough in every tail Zj we have an 
operator LjS with asymptotically constant coefficients. The vertices in every tail Zj 
are numerated by the positive integers n > 0 and by the finite number of vertices of 
the factor-graph Kj/Z. The map fj : Kj —>■ R is given of the tail into the discretized 
line (see the end of paragraph 1), commuting with the action of Z. Therefore our 
operator far enough in the tail is presented as an operator on the discretized line. 

DEFINITION 2. The solution ip for the equation Lip = Xip belongs to the spec- 
trum of the operator L in the Hilbert Space L2(T) of the square integrable complex 
vector-functions on the Graph iff its growth in the tails is less than exponential, i. e. 
there exists a number s such that \ipj,n\ < ns for 0,11 tails Zj and n -> +00, n E Z. 

The solution ip belongs to the discrete spectrum of the operator L iff 
SO-GP IV;(cr)|2 < 00. In particular, it is sufficient to require that V • n \ipj,n|2 < 00 for 
all tails Zj. The eigenfunction is singular iff it is equal to zero in all tails. 

For the operators Lj8 with constant coefficients we describe all solutions through 
the one symplectic matrix Tj = Tj^jn+i defined in paragraph 1. This matrix expresses 
the basis Cn through the basis Cn+i in the neighboring point. We obviously have 
the discrete evolution for any n < m where Tj^jm depends on m — n only for the 
operators with constant coefficients: 

rpas          rpas rpas nras   rpm—n 
1 j;m,n       'L j;n,n+l-L j\n+l,n+2 • * • -*■ j:m—l,m       -L j 

Therefore the eigenvalues /ij;r(A) of the matrices T^A) in the tail Zj determine the 
asymptotic properties of the eigenfunctions in the tails except of the "singular part" 
nonvisible from the tails. The structure of operator L inside of the graph leads to the 
algebraic relations between the tails. 

According to the modern textbook literature (see [23] paragraph 4), the eigenval- 
ues of the generic real one-parametric A-family of the symplectic matrices Tj (A) are 
crossing in the isolated points A* E R the so-called " codimension 1 degeneracies": 
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Path 1. It may have a pair of Jordan blocks of length 2 corresponding to the pair 
of real eigenvalues /ii = (z^)-1 7^ ±1; 

Path 2. It may have a pair of Jordan blocks of length 2 corresponding to the pair 
of unimodular complex eigenvalues //1 = fc 7^ ±1; 

Path 3. It may have a unique Jordan block of length 2 corresponding to the 
eigenvalue /J,I = ±1. 

All other eigenvalues remain simple during these processes. 
Let us remind that the eigenvalues of any symplectic matrix are invariant under 

the complex conjugation // -» ft and inversion fi —> fi~l. 
Therefore the symplectic 2M x 2M-matrix Tj(X) has in the generic point A* of 

the A-line: 
I. some number s of the nonmultiple unimodular eigenvalues \fjLi\ = 1 in the upper 

halfplane /m(//j) > 0 (and their complex adjoint), not equal to the ±1. 
II. 2p nonmultiple nonreal eigenvalues inside of the unit circle |/i| < 1 and the 

same number outside of the unit circle. 
III. q nonmultiple real eigevalues inside of the unit circle and the same number 

outside of the unit circle. 
So we have the total dimension 2M equal to 2M — 2s -f 4p + 2q. 
EXAMPLE 2. a) For the second order scalar operators or first order 2-vector- 

valued operators we have 2M — 2. Therefore p = 0. We have either s = 1 or q = 1. 
In the isolated points A* our generic family is passing through the Jordan block of 
length 2 with eigenvalue ±1. 

b) For the case 2M = 4 we may have for p, q, s the following possibilities: 

(p,g,5) = (l,0,0);(p,(z,5) = (0,2,0);(p,(z,5) = (0,l,l);(p,(7,«) = (0,0>2) 

In the isolated points this family may pass through the Jordan blocks of the types 
and multiplicities described above corresponding to the multiple eigenvalues on the 
unit circle, on the real line or in the special points ±1. For the Paths 1-3 we have: 

Path 1 transforms (p, q, s) into (p + 1, q — 2, s) or vice-versa; two real eigenvalues 
collide with each other inside of the unit circle and transform into the complex adjoint 
pair or inverse process. This process is unimportant for the Scattering Theory. 
Only Paths 2 and 3 where the number s changes are important for the Spectral theory 
in the Hilbert Space Z^CF). 

We do not see any spectral singularity in the point A* critical for Path 1. 
Path 2 transforms (p, q, s) into (p + l,q, s — 2) or vice-versa; two unimodular 

eigenvalues collide with each other in the upper part of the circle and transform into 
the pair inside and outside of this circle or inverse process. The structure of the 
Continuum Spectrum may be drastically changed in this point. 

Path 3 transforms (p, q, s) into (p, q + 1, s — 1) or vice-versa; two real eigenvalues 
collide with each other in the point ±1 and transform into the unimodular complex 
adjoint pair or inverse process. This path also changes the structure of the spectrum. 

We assume that the family Tj(X) is generic in the sense described here, 
for all tails Zj. Let us point out that our families I) (A) have very special A- 
dependence. Therefore this assumption in fact should be verified in the future for 
the generic operators with constant coefficients. It is certainly true for the second 
order scalar operators-it is almost obvious and was used in the literature many times. 
For the higher order operators and matrix operators we shall return to this in the 
later publications. 
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DEFINITION 3. The solution tp for the equation Lip = \ip is a point of the regular 
discrete spectrum iff in every tail Zj it belongs asymptotically to the linear span of 
the eigenspaces corresponding to the eigenvalues ofTj(X) inside of the unit circle for 
every j. 

Let us consider now the special important case: 
All asymptotic operators L?3 coinside with each other L^s = Las; 
For the asymptotic operator Las there is a nonempty interval [AQ, AI] C R on the 

A-line such that for all A E [AQJAI] the corresponding matrix Tj = T(A) belongs to 
the case where s > 0. Here M — kL where 2k is an order of L and I is its vector 
dimension. 

Let Has be a direct sum of the Hamiltonian (Symplectic) Spaces corresponding 
to the different tails: 

Has = eji^flf' 

with natural skew-symmetric scalar-valued nondegenerate product defined by the 
SWronskians in every tail Zj. For every solution ip for the equation Lip — Xip on 
the whole graph T we have its asymptotic value: 

ip->ipas e Has 

where tpj8 G Hjkl is this solution in the tail Zj. 
THEOREM 4. The subspace Las C i^as of the asymptotic values for all solutions 

with given value of the spectral parameter X, is a Lagrangian subspace of the half 
dimension equal to Nkl (i. e. the SWronskian scalar product is identically equal to 
zero in it, < Las,Las >= 0. ) 

Proof. This Theorem appeared the first time in the work [5] for the special cases. 
The general proof is more or less the same as in this special case. Essentially the 
property of the asymptotic plane to be Lagrangian is a Topological Phenomenon, 
following directly from the fact that the SWronskian is a cycle. For any pair of 
solutions for the equation Lip — Xip,L(p = Xcp on the whole graph F we have a cycle 
of the form: 

W((p,ip) = Tj cijZj + {finite) 

i=i 

where Zj is a tail as a geometric cycle near infinity. Let me remind that far enough 
in the tail our operator is presented as one on the discretized line. However, only 
differences can be extended to the cycles on the whole graph. Therefore we can 
express our SWronskian through the differences only: 

t=N 

W(iP,cP) = ^ hiz, - zt) + (finite) 
t=2 

Comparing these formulas, we see that 

<Vas,0as>=^aJ=O 
3 

by the definition of the scalar product <, > in the space Has. 
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It is easy to see that the plane Las of the asymptotic value of the solutions 
extended to the whole graph F is given by the number of equations equal to the half 
of the dimension of the space Has. At the same time, we established the fact that this 
plane is Lagrangian (i. e. the scalar product in it is equal to zero). The dimension 
of Lagrangian plane is always less or equal to the half. Therefore it is equal to half 
exactly. Our theorem is proved. 

Let us point out that the complexified asymptotic space Has in any noncritical 
real point A has natural direct decomposition (with scalar product of different parts 
equal to zero): 

HaS = H-\. 0 H- 0 Hbounded 

where the subspaces are defined in the following way: 
Subspace H- has dimension (2p + q)N. It contains all asymptotic solutions with 

decay in every tail Zj, j = 1,..., N for n -> +oo; 
Subspace H+ contains the solutions corresponding to the eigenvalues of the 

asymptotic monodromy matrix T(A) outside of the unit circle, |/i| > 1; they are 
increasing for n -» oo in every tail. The dimension of this subspace is also (2p + q)N] 

Subspace Hiounded of the dimension 2siV corresponds to the unimodular eigen- 
values; after complexification there is a natural decomposition 

^bounded = -"in 0 -H-out 

on the waves t/^m and ipjyout coming inside and outside correspondingly in the tail Zj. 
It means precisely that the in-part corresponds to the eigenvalues /J, of the monodromy 
matrix T with positive real parts and the out-part is complex adjoint. We have 
vector-functions ipjiin = tpj^ut ^0T ^e rea^ ^ suc^ ^at ^ov the different indices i they 
correspond to the different eigenvalues in the same tail Zj, and have zero symplectic 
scalar product, 

<titin,ll>iout>="MSit,"*0 

DEFINITION 4. We call the interval on the real line generic and nonsingular 
if the following requirements are satisfied: 

it does not contain critical points (i. e. the numbers (p, g, s) are not changing in 
it, and all eigenvalues are nonmultiple); 

the intersection of the Lagrangian Plane Las(X) with the subspace iJ_ 0 bounded 
has the dimension exactly equal to sN; 

the projection of this intersection on the subspace generated by the vectors ipjin 

for all j,i should be 'onto' (after complexification). 
For the Generic Operators the spectrum consists of such intervals separated 

by the isolated points which should be passed transversally in the natural sense (see 
above their Jordan structure, but we require transversality for the interaction of the 
different tails also).   Obviously, for the real big enough |A| we always have 
5 = 0. 

Therefore there is a finite number of finite intervals with nonzero values of s > 0 
only. 

DEFINITION 5. Let the Scattering Matrix Sj^(X) for any generic nonsingular 
interval on the X-line be defined using the complex basis of the intersection 

LaS(X) D (H- 0 Htounded) 
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taken in the form 

4 = ^j;in + Yl Si^j';outmodulo(H-) 

THEOREM 5. The Scattering Matrix S defined above is a Unitary Symmetric 
Matrix for the real generic nonsingular values of X. 

The proof of this theorem is parallel to the special case of second order operators 
(see [9]). 

J4S it was written already in [5], it follows directly from the Lagrangian property 
of the plane Las G Has. Take the basis ^in + S^out in the complexification of this 
plane for real A. Different vectors of this basis have a zero scalar product with each 
other. This property implies that the matrix S is symmetric S* = S. From the reality 
we have ipout — ipin and 

$ = Ipout + Slpin 

is complex adjoint to the previous basis.  The basis 

s~~l(i) = ^)in + s~1ii)out 

is coinside with the first one. Therefore we have 5_1 = S and S1 = S. One may 
think that we took a real basis on the Lagrangian plane in the form 

Aipin + AipouUS = A-1A 

It follows from the Lagrangian property that A can be taken as a unitary matrix A G 
UkiN- By unitarity, we have A1 = A~1 and S = BB1^ — A~1 G UNM- Multiplying 
the matrix B from the right by the arbitrary real orthogonal matrix B' = BO, we see 
that 

B,(B,)t = BOOtBt = BBt 

Therefore the Scattering Matrix S depends on the Lagrangian Plane only. This plane 
may be identified with a point in the space U/O. 

So, the proof is exactly the same as in [9] for the Strongly Stable Case where 
s = M,p = q = 0. For the general case with s > 0 we have to use the fact that 
the SWroskians of any vector in the subspace H- with themselves and with any 
vector from the subspace if bounded are identically equal to zero. It is completely 
obvious because any eigenfunction from the subspace if _ is exponentially decreasing 
far enough in the tail. Therefore this additional term in the definition of the basis 
above for S — matrix is completely negligible. Theorem is proved. 

REMARK 4. For the case p 4- q > 0 we may meet a new type of singularities 
where the projection of the intersection of the Lagrangian Plane Las(X) with subspace 
if bounded © if- into the space if bounded has a rank smaller than ks (here k is a number 
of tails).  This case corresponds to the discrete spectrum drawn in the continuous one. 

Appendix A. Nonlinear discrete systems on graphs (by S. Novikov and 
A. Schwarz). As already mentioned in paragraph 1, the Symplectic Geometry of 
Discrete Second Order Lagrangian Systems on the discretized line R (i. e. on the 
lattice Z) was started in work [21, 22] (the pioneering work of Aubrey is quoted in 
[21, 22] where specific important example, the so-called "Frenkel-Kontorova model", 
was investigated). 
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It was explained at the end of paragraph 1 and in paragraph 2 how to extend 
this construction to the higher order linear systems on the discretized line and on the 
general Graphs. Let us discuss here Nonlinear Discrete Lagrangian Systems on 
Graphs. Consider as before any locally finite Graph F presented as a 1-dimensional 
simplicial complex without ends (i. e. any vertex belongs to at least two edges). 
Suppose the following data are given: 

Family of manifolds Mlp numerated by the vertices P G F; 
Family X of the sets Q of vertices Pj G Q such that the maximal distance 

dmax(Pi,Pj)between the vertices in any set Q is equal to D; normally this family 
contains exactly all " maximal" sets of the perimeter D containing all minimal paths 
between two vertices if the ends belong to Q; it should not contain any minimal paths 
longer than D, and any minimal path in it should be extendable to the path of the 
length D; 

Family of C00-functions (the Density of Lagrangian) 

AQ :   Y[ Mpj -> R 

Using this data, we define an Action for any function ip on the set of vertices such 
that ip(P) G Mp: 

S{rl>(P)}= 52AQMPi1,...),PieQ 
Qex 

For the infinite graphs this sum often does not exist, but we define the Euler- 
Lagrange Equation in the standard way: 

6S OS 
#(P)      dipp 

Therefore only the sets Q containing the point P are involved in the calculation of 
the last variational derivative (which is an ordinary partial derivative for the discrete 
systems). We call the union of the sets Q containing the vertex P a Combinatorial 
Neighborhood Up of the Point P of the order D. 

There are different possibilities here: 
I. The equation above is sufficient to express the function ip(P) through the values 

ip(Pj) in the neighboring points Pj G Up. This situation looks typical for Elliptic- 
Type Problems like the Dirichlet Boundary Problem and so on. For example, if the 
manifolds Mp. are compact for all vertices, we may take a minimum. We can do this 
also in many cases if all functions AQ are nonnegative (or bounded from below). 

II. The equation above is sufficient for the Nondegenerate expression of T/^. 

in any point Pj on the boundary of the combinatorial neighborhood UQ through other 
points in the combinatorial neighborhood Up, where d(P,Pj) = D. This situation 
we call Dynamical . In some cases, beginning from the property of the last type, 
we may define also the Hyperbolic Type. Let me point out that the Dynamical 
situation was considered in paragraph 1 for the linear systems: in this case 
the nondegeneracy of the Symplectic Form, generated by the SWronskian, was proved. 

THEOREM 6. Let the nonlinear Discrete Euler-Lagrange System and its solution 
'ip(P) be given. Consider the linearized self-adjoint operator L near the solution ip and 
two solutions for the equation: 

L(8tl)a) = 0,a = l,2 
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The SWronskian W((J^i,(J^2) defines a closed differential vector-valued 2-form SW 
with values in the space H°pen(r,C), on the space of solutions for the Nonlinear 
Discrete Euler-Lagrange System above1. For the discretized line this form is nonde- 
generate for the nondegenerate Dynamical Type Systems. 

For the second order translation invariant systems (see below) on the discretized 
line our theorem follows from work [21, 22]. As A. Veselov pointed out to me, for 
the higher order translationally invariant systems on the discretized line this theorem 
also can be extracted from [21, 22]-see the article in Russian Math Syrveys, pp 6-7. 
We shall publish full proof of this theorem in separate paper. 

DEFINITION 6. We call the Discrete Action S and the Variational Problem above 
The Second Order Translation Invariant Problem in any Graph if all manifolds 
Mlp are equal to the same manifold M, all sets Q contain the same number of points 
equal to two D — 2, and all functions AQ are equal to the same function A(Pi,P2) of 
two variables (i. e. defined in M x M). 

REMARK 5. We can define the Translation Invariant Systems of any order for the 
discretized line-lattice Z. In the case of order four we can define them for the locally 
homogeneous Graphs, where all vertices meet the same number of edges equal to m. 
The function AQ for every set Q has m + 1 variables, i. e. it maps M x M x ... M 
into R. 
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