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RIBBON GRAPHS, QUADRATIC DIFFERENTIALS ON RIEMANN 
SURFACES, AND ALGEBRAIC CURVES DEFINED OVER Q* 

M. MULASEt  AND M. PENKAVA* 

Abstract. It is well known that there is a bijective correspondence between metric ribbon graphs 
and compact Riemann surfaces with meromorphic Strebel differentials. In this article, we prove that 
Grothendieck's correspondence between dessins d'enfants and Belyi morphisms is a special case of 
this correspondence through an explicit construction of Strebel differentials. For a metric ribbon 
graph with edge length 1, an algebraic curve over Q and a Strebel differential on it is constructed. It 
is also shown that the critical trajectories of the measured foliation that is determined by the Strebel 
differential recover the original metric ribbon graph. Conversely, for every Belyi morphism, a unique 
Strebel differential is constructed such that the critical leaves of the measured foliation it determines 
form a metric ribbon graph of edge length 1, which coincides with the corresponding dessin d'enfant. 

0. Introduction. In this article we give a self-contained explanation of the re- 
lation between ribbon graphs (combinatorial data), algebraic curves defined over Q 
(algebraic and arithmetic data), and Strebel differentials on Riemann surfaces (ana- 
lytic data). 

For a given Riemann surface, we ask when it has the structure of an algebraic 
curve defined over the field Q of algebraic numbers. A theorem of Belyi [1] answers 
this question saying that a nonsingular Riemann surface is an algebraic curve defined 
over Q if and only if there is a holomorphic map of the Riemann surface onto P1 that 
is ramified only at 0, 1 and oo. Such a map is called a Belyi map. 

Grothendieck discovered that there is a natural bijection between the set of iso- 
morphism classes of connected ribbon graphs and the set of isomorphism classes of 
Belyi maps. Thus a ribbon graph defines a Riemann surface with a complex structure 
and, moreover, its algebraic structure over Q. If we start with a Belyi map, then 
the corresponding ribbon graph is just the inverse image of the interval [0,1] of P1. 
Grothendieck called these graphs child's drawings (dessins d'enfants). We refer to 
[12] for more detail on this subject. 

Another correspondence between ribbon graphs and Riemann surfaces, this time 
between metric ribbon graphs and arbitrary Riemann surfaces, has been known since 
the work of Harer, Mumford, Penner, Thurston, Kontsevich and others (see [3]). In 
this second correspondence, a ribbon graph arises as the union of critical leaves of a 
measured foliation defined on a Riemann surface by a meromorphic quadratic differ- 
ential called a Strebel differential [2, 14]. When the Riemann surface is defined over Q, 
it coincides with the same surface that is given by the Grothendieck correspondence 
between ribbon graphs and algebraic curves defined over Q. 

In this paper we give constructive proofs of these facts using canonical coordinate 
systems arising from Strebel differentials on a Riemann surface. The child's drawings, 
Belyi maps and Strebel differentials are related in a very simple way, and they are 
explicitly described in terms of simple formulas. 

Although these formulas could be written down in a few pages (see Section 6), for 
the sake of completeness we have included a detailed description of the theory which 
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relates metric ribbon graphs and moduli spaces of Riemann surfaces with marked 
points. 

In Section 1, we give a definition of ribbon graphs and their automorphisms. 
Thurston's orbifolds and their Euler characteristics are defined in Section 2. With 
these preparations, in Section 3 we prove that the space of all isomorphism classes of 
metric ribbon graphs (i.e., ribbon graphs with a positive real number assigned to each 
edge) is a differentiable orbifold. Since a simplicial complex can be arbitrarily singular, 
this statement is not trivial. In Section 4, we review Strebel differentials on a Riemann 
surface, and construct a canonical coordinate system. The natural bijection between 
the space of metric ribbon graphs and the moduli space of Riemann surfaces with 
marked points is given in Section 5 by means of an explicit construction of the Strebel 
differential in terms of canonical coordinates corresponding to a metric ribbon graph. 
Finally, in Section 6, we give an explicit formula for the Belyi map corresponding to 
an arbitrary ribbon graph in terms of these canonical local coordinates. 

The correspondence between metric ribbon graphs, quadratic differentials and the 
moduli space of Riemann surfaces is well-known to specialists. Moreover, formulas for 
these correspondences may have appeared in the literature. Nevertheless, the authors 
believe that our formulation of this correspondence is more precise, and leads to a 
simple and clear formulation of some properties of algebraic curves defined over Q, 
which may be useful for further study. 

After submitting the manuscript, the authors learned that our results in Section 6 
were independently obtained by L. Zapponi in his doctoral thesis of 1998 [16]. We 
also refer to [5] for related topics. 

ACKNOWLEDGEMENT. The authors thank Bill Thurston for explaining his work 
[13] to them. They are also grateful to Francesco Bottacin and Regina Parsons who 
have made valuable suggestions and improvements to the article. The work is par- 
tially supported by funding from the University of California, Davis, the University 
of Wisconsin, Eau Claire, and the NSF. 

1. Ribbon graphs. A graph is a finite collection of points and line segments 
connected in certain ways, and a ribbon graph is a graph drawn on an oriented 
surface. A more careful definition of these objects is necessary when we consider their 
isomorphism classes. 

DEFINITION 1.1. A graph F = (V,£,2) consists of a finite set V = {Vi, V^,- • • ,K} 
of vertices and a finite set E of edges; together with a map i from £ to the set 
(V x V)l&2 of unordered pairs of vertices, called the incidence relation. An edge and 
a vertex are said to be incident if the vertex is in the image of the edge under i. The 
quantity 

ajk = {i^iVjiV^l 

gives the number of edges that connect two vertices Vj and Vk. The degree; or valence; 

of a vertex Vj is the number 

which is the number of edges incident to the vertex. A loop, that is, an edge with only 
one incident vertex, contributes twice to the degree of its incident vertex. The degree 
of every vertex is required to be positive (no isolated vertices). The degree sequence 
of F is the ordered list of degrees of the vertices: 

(deg(V1),deg(Vr
2),---,deg(K))) 
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where the vertices are arranged so that the degree sequence is non-decreasing. 
In this article, for the most part, we shall consider only graphs whose vertices all 

have degree at least 3. 

FlG. 1.1. A graph consisting of 3 vertices and 6 edges. 

DEFINITION 1.2. A traditional graph isomorphism 0 = (a,/3) from a graph 
r = (V,£,i) to another graph V = (V',£',2') is a pair of bijective maps 

a : V -^> V        and       /3 : £ -^ £' 

that preserve the incidence relation, i.e., a diagram 

£   —*—►   (VxV)/62 

(1.1) P[i 

S'  > (V x V')/62 
i' 

commies. 
The traditional graph automorphism is not the natural notion when we consider 

graphs in the context of Riemann surfaces and Feynman diagram expansions. The 
reason is that the above definition of a graph does not distinguish between the half- 
edges, so that one cannot distinguish which vertex is associated to which half-edge, and 
thus the group of traditional group automorphisms is smaller than the automorphism 
group we will need to consider. One can treat the notion of graphs with distinguished 
half edges independently, but it is possible to embed the theory of such graphs within 
the ordinary definition of graphs by introducing the notion of the edge refinement of 
a graph F = (V,£,i), which is the graph 

r£ = (v]lv£>£l[s,i£) 

with the middle point of each edge of F added as a degree 2 vertex, where V^ denotes 
the set of all these midpoints of edges. The set of vertices of F^ is the disjoint union 
V]J Vf, and the set of edges is the disjoint union £U^ because the midpoint VE 

divides the edge E into two parts. The incidence relation is described by a map 

(1.2) ie:£l[£-^VxVe, 

because each edge of F^ connects exactly one vertex of V to a vertex of Vs. An edge 
of Ts is called a half-edge of F. For every vertex V G V of F, the set %1({V} x V^) 
consists of half-edges incident to V. Note that we have 

deg(V) = \q1({V}xV£)\. 

DEFINITION 1.3. Let F = (V,£,i) be a graph without vertices of degree less than 
3. The automorphism group Aut(r) is the group of traditional graph automorphisms 
of the edge refinement Ts ■ 
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FIG. 1.2. Edge refinement of the graph of Figure 1.1, with 9 vertices and 12 edges. 

For example, the graph with one degree 4 vertex and two edges has (Z/2Z)3 as its 
automorphism group, while the traditional graph automorphism group is just Z/2Z 
(Figure 1.3). 

FIG. 1.3. A graph and its edge refinement. 

DEFINITION 1.4. LetT be a graph. Two edges Ei and E2 are connected if there is 
a vertex VofT such that both Ei and E2 are incident to V. A sequence of connected 
edges is an ordered set 

(1.3) (Ei,E2, - - - ,Ek) 

of edges of T such that Ej and Ej+i are connected for every j = 1, 2, • • • , k — 1. A 
graph T is connected if for every pair of vertices V and V of T, there is a sequence 
of connected edges (1.3) for some integer k such that Ei is incident to V and Ek is 
incident to V. 

In this article we consider only connected graphs. 
DEFINITION 1.5. A ribbon graph (or fatgraph^) is a graph T = (V,£,i) together 

with a cyclic ordering on the set of half-edges incident to each vertex ofY. 
A ribbon graph can be represented on a positively oriented plane {i.e. a plane 

with counter-clockwise orientation) as a set of points corresponding to the vertices, 
connected by arcs for each edge between the points corresponding to its incident 
vertices, arranged so that the cyclic order of edges at a vertex corresponds to the 
orientation of the plane. Intersections of the arcs at points other than the vertices 
are ignored. The half edges incident to a vertex can be replaced with thin strips 
joined at the vertex, with the cyclic order at the vertex determining a direction on 
the boundaries of the strip (Figure 1.4). 

FIG. 1.4.  Oriented strips determined by the cyclic order at a vertex. 

The strips corresponding to the two half edges are connected following the ori- 
entation of their boundaries to form ribbons, determining a figure which is no longer 
planar, but is an oriented surface with boundary given by the boundaries of the rib- 
bons (Figure 1.5). 
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FlG. 1.5. Oriented surface with boundary determined by a ribbon graph. 

Thus a ribbon graph can be considered as an oriented surface with boundary, as 
is illustrated by Figure 1.6. 

FIG. 1.6. Ribbon graph of Figure 1.1 as an oriented surface. 

DEFINITION 1.6. An automorphism of a ribbon graph T is an automorphism of 
the underlying graph that preserves the cyclic ordering of half-edges at every vertex. 

Since we deal mainly with ribbon graphs from now on, we use the notation AutfT) 
for the automorphism group of a ribbon graph F. The characteristic difference between 
a graph and a ribbon graph is that the latter has a boundary. 

DEFINITION 1.7. LetT — (V,£,z,c) be a ribbon graph, where c denotes the cyclic 
ordering of half-edges at each vertex. A directed edge E is an ordering E~ and E+ 

of the half-edges that form the edge E. A boundary component (hole) ofT is a cyclic 
sequence of connected directed edges 

(EQ,EI, • • • ,Eq-i,Eq = 2£o) 

such that the half-edges E^ and E^+1 are incident to a vertex Vi of T, with E* 
immediately preceding E~^1 with respect to the cyclic order assigned to the half-edges 
atVi. 

The ribbon graphs of Figure 1.5 and Figure 1.6 have only one boundary com- 
ponent. We denote by b(T) the number of boundary components of a ribbon graph 
F. 

DEFINITION 1.8. The group of ribbon graph automorphisms of F that preserve 
the boundary components is denoted by Aut^F), which is a subgroup of Aut(r). 

Since a boundary component of a ribbon graph is defined to be a cyclic sequence 
of directed edges, the topological realization of the ribbon graph has a well-defined 
orientation and each boundary component has an induced orientation that is com- 
patible with the cyclic order. Thus we can attach an oriented disk to each boundary 
component of a ribbon graph F so that the total space, which we denote by C(r), is 
a compact oriented topological surface. 

The attached disks and the underlying graph F of a ribbon graph F define a cell- 
decomposition of C(r). Let ^(F) denote the number of vertices and e(r) the number 
of edges of F. Then the genus ^(C(r)) of the closed surface C(r) is determined by a 
formula for the Euler characteristic: 

(i.4) t;(r)-c(r) + 6(r) = 2-2p(C(r)). 
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The ribbon graph of Figure 1.5 has two vertices, three edges and one boundary 
component. Thus the surface C(r) is a torus. 

FIG. 1.7.  Cell-decomposition of a torus by a graph drawn on it. 

The ribbon graph of Figure 1.6 has three vertices, six edges and one boundary 
component. Thus the genus of the closed surface C(r) associated with this ribbon 
graph is 2. 

FIG. 1.8. Cell-decomposition of a surface of genus 2 by a ribbon graph. 

In Section 3 we study metric ribbon graphs, which are ribbon graphs with a 
metric, that is, an assignment of a positive real number (length) to each edge of the 
graph. The set of all metrics on T determines a topological space homeomorphic to 
R+ , on which the automorphism group of the ribbon graph acts. We wish to study 
the structure of the space of isomorphism classes of metrics under this action. A 
graph automorphism can act trivially on the space of metrics on F, and this happens 
precisely when the automorphism preserves the edges of F, but possibly interchanges 
some of its half-edges. Let us determine all ribbon graphs that have a non-trivial 
graph automorphism acting trivially on the set of edges. 

DEFINITION 1.9. A ribbon graph F is exceptional if the natural homomorphism 

(1.5) 0r : Aut(r) —> 6 e(r) 

of the automorphism group of F to the permutation group of edges is not injective. 
Let F be an exceptional graph and a G Ker(</>r) a nontrivial automorphism of 

F. Since none of the edges are interchanged by cr, the graph can have at most two 
vertices. If the graph has two vertices, then a interchanges the vertices while all edges 
are fixed. The only possibility is a graph with two vertices of degree j, (j > 3), as in 
Figure 1.5 and in Figure 1 below. 

FIG. 1.9. Exceptional graph type 1. 

If j is odd, then it has only one boundary component, as in Figure 1.5. The genus 
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of the surface C(r) is given by 

(1-6) 3(C(r)) = til. 

For an even j, the graph has two boundary components, as in Figure 1, and 

(1-7) 5(C(r)) = J-=^. 

In both cases, the automorphism group is the product group 

(1.8) Aut(r)=:Z/2ZxZ/jZ, 

with the factor Z/2Z acting trivially on the set of edges. 
When F has two boundary components, then 

Auta(r) = Z/jZ, 

which is a factor of (1.8). Note that Aut^F) acts faithfully on the set of edges in 
this case. Of course, in the case of one boundary component, Auta(r) coincides with 
Aut(r), so it does not act faithfully. 

To obtain the one-vertex case, we only need to contract one of the edges of the 
two-vertex case considered above. The result is a graph with one vertex of degree 2A;, 
as shown in Figure 1.10. 

FIG. 1.10. Exceptional graph type 2 

When k is even, the graph has only one boundary component, and the genus of 
the surface C(r) is 

(1-9) g(C{T)) = |. 

If k is odd, then the graph has two boundary components and the genus is 

(i-io) 9(C(r)) = ^. 

The automorphism group is Z/(2A:)Z, but the action on E^. factors through 

Z/(2A0Z—►Z/fcZ. 

Here again, in the 2 component case the automorphism group fixing the boundary, 
Auta(r) = Z/kli, acts faithfully on the set of edges. 

We have thus classified all exceptional graphs.   These exceptional graphs ap- 
pear for arbitrary genus g.  The graph of Figure 1 has two distinct labelings of the 
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boundary components, but since they can be interchanged by the action of a ribbon 
graph automorphism, there is only one equivalence class of ribbon graphs with labeled 
boundary over this underlying ribbon graph. The automorphism group that preserves 
the boundary is Z/4Z. Thus the space of metric ribbon graphs with labeled boundary 
is M+/(Z/4Z). The change of labeling, or the action of 62, has a non-trivial effect on 
the graph level, but does not act at all on the space M^_/(Z/4Z). The space of metric 
ribbon graphs is also E^_/(Z/4Z), which is not the 62-quotient of the space of metric 
ribbon graphs with labeled boundary. 

The other example of an exceptional graph, Figure 1.10, gives another interesting 
case. This time the space of metric ribbon graphs with labeled boundary and the space 
of metric ribbon graphs without referring to the boundary are both 1R^./(Z/3Z). The 
group 62 of changing the labels on the boundary has again no effect on the space. 

The analysis of exceptional graphs shows that labeling all edges does not induce 
labeling of the boundary components of a ribbon graph. However, if we label all 
half-edges of a ribbon graph, then we have a labeling of the boundary components as 
well. We will come back to this point when we study the orbifold covering of the space 
of metric ribbon graphs by the space of metric ribbon graphs with labeled boundary 
components. 

2. Orbifolds and the Euler Characteristic. A space obtained by patching 
pieces of the form 

smooth open ball 
finite group 

together was called a V-manifold by Satake [11] and an orbifold by Thurston [15]. 
From the latter we cite: 

DEFINITION 2.1. An orbifold Q = (X(Q), {C/J^/, {Gi};Gj, {(j)i}iei) is a set of 
data consisting of 

1. a Hausdorff topological space X(Q) that is called the underlying space, 
2. a locally finite open covering 

iei 

of the underlying space, 
3. a set of homeomorphisms 

<t>i ' Ui —> Ui/Gi. 

where Ui is an open subset of W1 and Gi is a finite group acting faithfully on 

Ui. 
Whenever Ui C Uj, there is an injective group homomorphism 

and an embedding 

such that 

Jij  ' ^i r ^ j 

4>ij : Ui —y Uj 
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for every 7 G Gi and x G Ui, and such that the diagram below commutes. 

Ui/Gi ±t±il% Uj/MGi) 

883 

Ui/Gi 

Ui 
inclusion -> 

UJ/GJ 

Uj- 

The space Q is called an orbifold locally modeled on Rn modulo finite groups. 
An orbifold is said to be differentiable if the group Gi is a finite subgroup of the 
orthogonal group 0{n) acting on En, and the local models W1 /Gi are glued together 
by diffeomorphisms. 

DEFINITION 2.2. A surjective map 

TT : Qo —> Qi 

of an orbifold Qo onto Qi is said to be an orbifold covering if the following conditions 
are satisfied: 

1. The map IT induces a surjective continuous map 

TTIXCQO)—>X(Ql) 

between the underlying spaces, which is not generally a covering map of the 
topological spaces. 

2. For every x G Qo, there is an open neighborhood U C Qo, an open subset 
U C W1, a finite grouQ Gi a subgroup Go C Gi, and homeomorphisms U ^> 
U/Go and ^(U) -^ U/Gi such that the diagram below commutes. 

U 

U/Go 

-^->  7r(C/) 

1 

 ► UIG1 

3. For every y G Qi, there is an open neighborhood V of y, an open subset 
V C Mn, a finite group G^, a subgroup GQ C G,

1, and a connected component 
U' of7r~1(V) making the diagram below commute. 

V U'     - 

•i 
V/O'0 - 

If a group G acts on a Riemannian manifold M properly discontinuously by isometries, 
then 

1- 

TT : M M/G 



884 M. MULASE AND M. PENKAVA 

is an example of a differentiable covering orbifold. 
Givenjpoint x of an orbifold Q, there is a well-defined group Gx associated to it. 

Let U = U/G be a local open coordinate neighborhood of x E Q. Then the isotropy 
subgroup of G that stabilizes any inverse image of x in U is unique up to conjugation. 
We define Gx to be this isotropy group. When the isotropy group of x is non-trivial, 
then x is said to be a singular point of the orbifold. The set of non-singular points 
is open and dense in the underlying space X(Q). An orbifold cell-decomposition of 
an orbifold is a cell-decomposition of X(Q) such that the group Gx is the same along 
each stratum. We denote by Gc the group associated with a cell C. 

Thurston extended the notion of the Euler characteristic to orbifolds. 
DEFINITION 2.3. If an orbifold Q admits an orbifold cell-decomposition, then we 

define the Euler characteristic by 

(2.i) x(Q).= x;(-i)*m(<7)T^-f 

The next theorem gives us a useful method to compute the Euler characteristic. 
THEOREM 2.4. Let 

n : Qo —->• Qi 

be a covering orbifold.   We define the sheet number of the covering TT to be the cardi- 
nality k = |7r~1(2/)| of the preimage 7r~1(y) of a non-singular point y £ Qi.  Then 

(2.2) x{Qi) = Jx(Qo). 

Proof We first observe that for an arbitrary point y of Qi, we have 

*- £ m 
x:iT(x)=y 

Let 

01=11^ 
3 

be an orbifold cell-decomposition of Qi, and 

K-I(cj) = ]lcij 
i 

a division of the preimage of Cj into its connected components. Then 

*x(Q1)=fcx;(-i)dim(Ci)i?^i 

= S(_l)-i»(ci)Sl%l     1 
j y'\Gcij\\Gci\ 

= E(_1)dim(c,)     1 

- X(Qo). 
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COROLLARY 2.5. LetG be a finite subgroup of&n that acts on R™ by permutation 
of the coordinate axes.  Then R™ /G is a differentiable orbifold and 

(2.3) K/G) = (-1)" 
|G|   ' 

REMARK. We note that in general 

unless G acts on R™ faithfully. 
EXAMPLE 2.1. Let us study the quotient space R™/6n.  We denote by 

A(123'--n) 

the interior of a regular n-hyperhedron of (n — 1) dimensions. Thus A(12) is a line 
segment, A(123) is an equilateral triangle, and A(1234) is a regular tetrahedron. The 
space R™  is a cone over A(123 • • -ri): 

Rl = A(123---n) xR+. 

The closure A(123---n) has n vertices xi,--- ,a;n. Let X12 be the midpoint of the 
line segment X1X2, X123 the barycenter of the triangle AX1X2X3, etc., and £123...n the 
barycenter of A (123 • • • n). 

The (n — 1)-dimensional region 

(2.4) F = CH(xUX12,X123r--  ,^123-n), 

which is the convex hull of the set of n points {^1,^125^123? • • * , #i23---n}> is the fun- 
damental domain of the &n-action on A(123 ■ • • n) induced by permutation of vertices. 
It can be considered as a cell complex of the orbifold R!J:/6n. It has (n^1) k-cells for 
every k (Figure 2.1). 

FIG. 2.1. A(1234). 

The isotropy group of each cell is easily calculated.   For example, the isotropy 
group of the 2-cell CH(xi2Xi23Xi23...n) is 

6(12) x 6(456 ■■•n), 
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where (5(a6c- • • z) is the permutation group of the specified letters. The definition 
of the Euler characteristic (2.1) and a computation using (2.2) gives an interesting 
combinatorial identity 

X (!£I&n) =-X(A(123• • • n)/6n) 
n—1 -. 

(2.5) fHv     ' ,     ^^ molmil - - • mk\ \        ' k=0 ran+miH \-mi,=n 
= -E(-1)*      E 

fc=0 

(-i)" 

fc=0 mo+miH ]-mk=n 
mo>l,mi>l,"- ,mfc>l 

n! 

The (£)n-action of the cell-decomposition of 

A(123-.-n)/6n 

gives a cell-decomposition of A(123 • • -n) itself, and hence a cell-decomposition ofR™ . 
We call this cell-decomposition the canonical cell-decomposition ofR+, and denote 
it by n(E^). For every subgroup G C 6n; the fixed point set of an element of G is 
one of the cells ofD(W^). In particular, n(EJ) induces a cell-decomposition of the 
orbifold W^/G, which we call the canonical orbifold cell-decomposition ofW^/G. 

3. The Space of Metric Ribbon Graphs. The goal of this section is to show 
that the space of all metric ribbon graphs with fixed Euler characteristic and number 
of boundary components forms a differentiable orbifold. The metric ribbon graph 
space could a priori have complicated singularities, but it turns out that it only has 
quotient singularities given by certain finite group actions on Euclidean spaces of a 
fixed dimension. This is due to the behavior of the local deformations of a metric 
ribbon graph. The deformations of a metric ribbon graph which we will discuss below 
are related to certain questions in computer science. We refer to [13] for more detail. 

Let RGg^n denote the set of all isomorphism classes of connected ribbon graphs 
F with no vertices of degree less than 3 such that 

{x{T)=v{T)-e{T)=2-2g-n 
(3   ) \biT) = n, 

where v(r), e(r) and b(T) denote the number of vertices, edges and boundary com- 
ponents of F, respectively. If an edge E of Y is incident to two distinct vertices Vi and 
V2, then we can construct another ribbon graph V G RGg,n by removing the edge 
E and joining the vertices Vi and V2 to a single vertex, with the cyclic order of the 
joined vertex determined by the cyclic order of the edges incident to V\ starting from 
the edge following E up to the edge preceding 2£, followed by the edges incident to 
V2 starting with the edge following E and ending with the edge preceding E. The 
ribbon graph V is called a contraction of Y. A partial ordering can be introduced 
into RGg,n by defining 

(3.2) r2 -< Y1 

if r2 is obtained by a series of contractions applied to Fi. Since contraction decreases 
the number of edges and vertices by one, a graph with only one vertex is a minimal 
graph, and a trivalent graph (a graph with only degree 3 vertices) is a maximal 
element. Every graph can be obtained from a trivalent graph by applying a series of 
contractions. 
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The inverse operation to the contraction of a ribbon graph is expansion. Every 
vertex of degree d > 4 of a ribbon graph F can be expanded by adding a new edge as 
shown in Figure 3.1. 

x - X 

FIG. 3.1. The arrow indicates contraction of an edge. The inverse direction is expansion of a 
vertex. 

In the process of expansion of a ribbon graph F, we identify two expanded graphs 
if there is a ribbon graph isomorphism from one to the other that preserves all the 
original half-edges of F. Thus when we expand a vertex of degree d > 4, there 
are d(d — 3)/2 ways of expanding it by adding an edge. The situation is easier to 
understand by looking at the dual graph of Figure 3.2, where the arrows again indicate 
the contraction map. 

FIG. 3.2. A series of expansions of a vertex of degree 7 and the dual graphs. 

Consider the portion of a ribbon graph consisting of a vertex of degree d > 4 and 
d half-edges labeled by the numbers 1 through d. We denote this portion by *d- The 
dual graph of *d is a convex polygon with d sides. The process of expansion by adding 
an edge to the center vertex of *d corresponds to drawing a diagonal line between two 
vertices of the d-gon, as in Figure 3.2. The number d(d — 3)/2 corresponds to the 
number of diagonals in a convex d-gon. Expanding the graph further corresponds 
to adding another diagonal to the polygon in such a way that the added diagonal 
does not intersect with the existing diagonals except at the vertices of the polygon. 
The expansion process terminates after d — 3 iterations, the number non-intersecting 
diagonals which can be placed in a convex d-gon. Note that such a maximal expansion 
is trivalent at the internal vertices, and its dual defines a triangulation of the polygon. 
The number of all triangulations of a d-gon is equal to 

_ f2d ~ 4 

TV d-2 

which is called the Catalan number. 
A metric ribbon graph is a ribbon graph with a positive real number assigned to 

each edge, called the length of the edge. For a ribbon graph F G RGg^, the space 
of isomorphism classes of metric ribbon graphs with F as the underlying graph is a 
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differentiable orbifold 

El(r) 

where the action of Aut(r) on R+ ' is through the natural homomorphism 

(3.4) f:Aut(r)—>6e(r). 

For the exceptional graphs Tex in Definition 1.9, we have 

(3.5) "M-  _ ^N- 
Aut(rex)      Aut(r)/(Z/2Z)' 

For integers g and n satisfying 

(3.6) 

we define the space of isomorphism classes of metric ribbon graphs satisfying the 
topological condition (3.1) by 

Me(r) 

(3-7) RG^=     II     J^y 

Each component (3.3) of (3.7) is called a rational cell of RG™^. The rational cells 
are glued together by the contraction operation in an obvious way. A rational cell has 
a natural quotient topology. 

Let us compute the dimension of RG™^'   We denote by Vj(T) the number of 
vertices of a ribbon graph T of degree j. Since these numbers satisfy 

-(2-2g-n) = -v(r) + e(r) 

— E^n + ^E^) 

= E(H"'(r)' j>3   V / 

the number e(r) of edges takes its maximum value when all vertices have degree 3. 
In that case, 

3i;(r) = 2e(r) 

holds, and we have 

(3.8) dimiRG™1) = r max Je(r)) = 6g - 6 + 3n. 

To prove that RG™f is a differentiable orbifold, we need to show that for every 
element rmet G RG™**, there is an open neighborhood Ue(Tmet) of rmet, an open disk 
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^e(rmet) C E6^-6+3n
) and a finite group Gr acting on Ue(Tmet) through orthogonal 

transformations such that 

^(rmet)/Gr-t/e(rmet). 

DEFINITION 3.1. Let Tmet e RG™£ be a metric ribbon graph, and e > 0 a 
positive number smaller than the half of the length of the shortest edge of Tmet. The 
e-neighborhood ?7€(rmet) ofTmet in RG™^ is the set of all metric ribbon graphs F^ 
that satisfy the following conditions: 

1. T <T'. 
2. The edges ofT'mQt that are contracted in rmet have length less than e. 
3. Let E' be an edge of T^ that is not contracted and corresponds to an edge 

E ofrmet of length L. Then the length V of E' is in the range 

L-e<L'<L + t. 

REMARK. The length of an edge of Y'met that is not contracted in rmet is greater 
than e. 

The topology of the space RG™^ is defined by these e-neighborhoods. When rmet 

is trivalent, then C/e(rmet) is the e-neighborhood of E^: ' in the usual sense. 
DEFINITION 3.2. Let Y G RGgjn be a ribbon graph and Tg its edge-refinement. 

We choose a labeling of all edges ofTz, i.e., the half-edges ofT. The set Xyr consists 
of F itself and all its expansions. Two expansions are identified if there is a ribbon 
graph isomorphism of one expansion to the other that preserves the original half-edges 
coming from T£. The space of metric expansions ofT, which is denoted by X™*, ^ 
the set of all graphs in Xy? with a metric on each edge. 

To understand the structure of XJ?^*, let us consider the expansion process of a 
vertex of degree d > 4. Since expansion is essentially a local operation, the whole 
picture can be seen from this local consideration. Let *d denote the tree graph con- 
sisting of a single vertex of degree d with d half-edges attached to it. Although *d 
is not the type of ribbon graph we are considering, we can define the space X™* of 
metric expansions of *d in the same way as in Definition 3.2. Since the edges of *d 
correspond to half-edges of our ribbon graphs, we do not assign any metric to them. 
Thus dim(X^) = d — 3. As we have noted in Figure 3.2, the expansion process 
of *d can be more effectively visualized by looking at the dual polygon. A maximal 
expansion corresponds to a triangulation of the starting cf-gon by non-intersecting 
diagonals. Since there are d — 3 additional edges in a maximally expanded tree graph, 
each maximal graph is a metric tree homeomorphic to M.+

_3. There is a set of d — 4 
non-intersecting diagonals in a d-gon that is obtained by removing one diagonal from 
a triangulation Ti of the d-gon, or removing another diagonal from another trian- 
gulation T2. The transformation of the tree graph corresponding to Ti to the tree 
corresponding to T2 is the so-called fusion move. If we consider the trivalent trees as 
binary trees, then the fusion move is also known as rotation [13]. 

Two (d - 3)-dimensional cells are glued together along a (d — 4)-dimensional cell. 
The number of (d — 3)-dimensional cells in X^d is equal to the Catalan number. 

THEOREM 3.3. The space X™** is homeomorphic to Ed~3
; and its combinatorial 

structure defines a cell decomposition of ]Rd~3, where each cell is a convex cone with 
vertex at the origin. The origin, corresponding to the graph *d, 2*5 the only 0-cell of 
the cell complex. 

The group Z/dZ acts on X™** through orthogonal transformations with respect to 
the natural Euclidean structure of Rd~3 . 
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FIG. 3.3. Fusion move and contraction. 

REMARK. In [13], the rotation distance between the top dimensional cells oiXy^ 
was studied in terms of hyperbolic geometry, which has a connection to the structure 
of binary search trees. 

Proof. Draw a convex d-gon on the xy-pl&ne in xyz-space. Let V be the set of 
vertices of the d-gon, and consider the set / € Mv of all functions 

An element / G 

(3.9) 

/ : V —► R 

= Rd can be represented by its function graph 

Graph(f) = {(VJiV)) | V G V} C E3. 

Let us denote by CH(Graph(f)) the convex hull of Graph(f) in E3. If we view the 
convex hull from the top, we see a d-gon with a set of non-intersecting diagonals. 

FIG. 3.4.  The convex hull of the function graph of f G Mv and its view from the top. 

Viewing the convex hull from the positive direction of the £-axis, we obtain a map 

(3.10) £:EV —^X^, 

where we identify Xy*d with the set of arrangements of non-intersecting diagonals of 
a convex d-gon. A generic point of Ev corresponds to a triangulation of the d-gon as 
in Figure 3.4, but special points give fewer diagonals on the d-gon. For example, if / 
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is a constant function, then the function graph Graph(f) is flat and the top view of 
its convex hull is just the d-gon without any diagonals in sight. 

This consideration leads us to note that the map f factors through 

TTPV Pr    v     ^L 
Affine(R2,R) 

(3.11) 

Mv   —i—>      Xy*d, 

where 

Affine(E2,E) s M3 

is the space of afflne maps of E2 to M. Such an affine map induces a map of V to M, 
but the image is flat and no diagonals are produced in the d-gon. 

The map 77 of (3.11) is surjective, because we can explicitly construct a function 
/ that corresponds to an arbitrary element of Xy*d. We also note that the inverse 
image of an m-diagonal arrangement (0 < m < d — 3) is a cone of dimension m with 
vertex at the origin. It is indeed a convex cone, because if two points of 

(3.12) — TRrf-3 

Affine(E2, E) 

correspond to the same diagonal arrangement of Xy*d, then every point on the line 
segment connecting these two points corresponds to the same arrangement. To see 
this, let V = {Vi, V2, • ■ • , V^}, and let a function / G Ev satisfy 

f(Vd-2) = fiVi-J = f(Vd) = 0. 

Then / can be thought of an element of the quotient space (3.12). Take two such 
functions / and g that correspond to the same m-diagonal arrangement of the d-gon. 
The line segment connecting these two functions is 

(3.13) ht=f + t(g-f), 

where 0 < t < 1. This means that the point ht(Vj) G E3 is on the vertical line 
segment connecting f(Vj) and g{Vj) for all j = 1,2,3, • • • , d — 3. Thus the top roof of 
the convex hull CH(Graph(ht)) determines the same arrangement of the diagonals 
on the d-gon as CH(Graph(f)) and CH(Graph(g)) do. 

Since the inverse image of an m-diagonal arrangement is an m-dimensional convex 
cone, it is homeomorphic to E™. Hence Xy*d defines a cell decomposition of Ed_3, 
which is homeomorphic to X™**, as claimed. 

The convex d-gon on the plane can be taken as a regular d-gon centered at the 
origin. The cyclic group Z/dZ naturally acts on V through rotations. This action 
induces an action on Ev through permutation of axes, which is an orthogonal trans- 
formation with respect to the standard Euclidean structure of W1. A rotation of V 
induces a rotation of the horizontal plane E2, thus the space of affine maps of E2 to E 
is invariant under the Z/dZ-action. The action therefore descends to the orthogonal 
complement Affine(E2,E)-L in Ev. Thus Z/dZ acts on 

X?* = Affine(E2,l ■pd-3 
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by orthogonal transformations with respect to its natural Euclidean structure. 
D 

EXAMPLE 3.1. The space of metric expansions of a vertex of degree 6 is a cell 
decomposition o/R3. There are nine 1-cells, twenty-one 2-cells, and fourteen 3-cells. 
In Figure 3.5, the axes are depicted in the usual orientation, with the vertical axis 
representing the z coordinate. The Z/Glj-action on M3 is generated by the orthogonal 
transformation 

FIG. 3.5. The space of metric expansions of a vertex of degree 6. 

THEOREM 3.4. Let T e RGg,n. Then 

(3.14) X£f =* E^   X ]R60-6+3n-C(r) _ 

The combinatorial structure of Xy? determines a cell decomposition o/IK^: x 
£6£-6+3n-e(r) ^g group Aut(r) acts on X™1 as automorphisms of the cell complex, 
which are orthogonal transformations with respect to its natural Euclidean structure 
through the homeomorphism (3.14)- The action of Aut(r) on the metric edge space 
E^: ' may be non-faithful (whenY is exceptional), but its action on i^6^-6+3n-e(r) is 

always faithful except for the case (g^n) = (1,1). 
Proof The expansion process of F takes place at each vertex of degree 4 or more. 

Since we identify expansions only when there is an isomorphism fixing all original 
half-edges coming from F, the expansion can be done independently at each vertex. 
Let *(1), • • • , *(v) be the list of vertices of F and dj the degree of *(.;). We arrange 
the degree sequence of F as 

(3,3,-•• ,3,4,4, ••• ,4,--- ,ra,ra,-.- ,ra). 

Note that 

ns + 77,4 H h nm = v = v(T) 

is the number of vertices of F. Then 

x^ = K;(r) xg *£&•)' 
J=I 
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and the second factor is homeomorphic to 

v m 

]ixh*h) - n (^"T"=^cod'im{r\ 
3=1 ^=3 

where 

m 

codimfT) = 6^ - 6 + 3n - e(r) = ^(^ - 3)nM. 

The group 

772 

G(r) = JJ 6„Mx Z/MZ 

acts naturally on HjUi -^"^m through orthogonal transformations because each factor 
Z/fiZ acts on Xy^.^ through orthogonal transformations if dj = fj,, and the symmetric 

group <Sn^ acts on (E^_3)n/' by permutations of factors, which are also orthogonal 
transformations. 

Since Aut(r) is a subgroup of G(r), it acts on fljUi -^^m through orthogonal 

transformations. It's action on R^ ' is by permutations of axes, thus it is also orthog- 

onal in the standard embedding of E+(r) into Re(r). Therefore, Aut(r) acts on X^f 
through orthogonal transformations with respect to the natural Euclidean structure 
ofX£f. 

The action of Aut(r) on Rcodim(r) is faithful because all half-edges of T are labeled 
in Xy^, except for the case (g,n) = (1,1). There are only two graphs in RGi^i, and 
both are exceptional. Thus the Aut(r)-action on X™* has a redundant factor Z/2Z 
foriiGi,!. D 

THEOREM 3.5.  The space 

nrimet _       TT % 

of metric ribbon graphs is a differentiable orbifold locally modeled by 

(3.15) 
Xmet 

Aut(r)' 

Proof. For every ribbon graph F G RGg,n, there is a natural map 

(3.16) £r : X?? —»• RG™n\ 

assigning to each metric expansion of F its isomorphism class as a metric ribbon graph. 
Since the Aut(r)-action on X™* induces ribbon graph isomorphisms, the map (3.16) 
factors through the map /xr of the quotient space: 

"y-met 

(3.17) x^-^j^^RG^. 
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The inverse image /^(^(rmet)) of the e-neighborhood U€(Tmet) is an open subset 
of Xy^ that is homeomorphic to a disk. We claim that 

(3-18) Mr •       Aut(r) > Ut(rmet) 

is a homeomorphism for every metric ribbon graph rmet if e > 0 is chosen sufficiently 
small compared to the shortest edge length of Fmet. 

Take a point r^iet £ I7e(rmet), and let 

J-met ^ Mr   (I met)' J — ^-J^, 

be two inverse images. The ribbon graph isomorphism a that brings r^iet to r^iet 

preserves the set K of contracting edges. Since rJ
met modulo the contracting edges K 

is the graph rmet, 5 induces an automorphism a £ Aut(r). Thus a factors into the 
product of an automorphism a of T and a permutation of K. As an element of Xy^, 
a permutation of contracting edges in K fixes the element. Thus r^et is an a-image 
of F^^ in X™*- This shows that (3.18) is a natural bijection. 

Since the topology of the space of metric ribbon graphs is determined by these 
e-neighborhoods, the map //p is continuous. Thus for a small enough e, we have a 
homeomorphism (3.18). 

The metric ribbon graph space is covered by local coordinate patches 

(3-i9) U  ^ C^m^) = RG^ 

where 

r'—l/TT /n        \\ ymet 
^'(^(Fmet))   c 

Aut(r)        Aut(r) 

is a differentiable orbifold. Let 

1 met ^ Mr      A„+/r.\  ) n ^r  Aut(r)    J   ^ v    Aut(ro 
be a metric ribbon graph in the intersection of two coordinate patches. Then T" y T 
and F" y rf. There is a small 6 such that 

Mr" {    Aut(r»)    ) c Mr {    Aut(r)    JnMr' {    Autcn 
If we label the edges of T" that are not contracted in F, then we have an embedding 

Xmet   r-  vmet 
yr" ^ A^r 

that induces 

/^'(^(Cet))   r ^'(^(rmet)) 
Aut(r") Aut(r) 

These inclusion maps are injective diffeomorphisms with respect to the natural dif- 
ferentiable structure of Xy^- The same is true for F" and F'. This implies that the 
local coordinate neighborhoods of (3.19) are patched together by diffeomorphisms. □ 
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REMARK. The local map /xr of (3.18) is not a homeomorphism if e takes a large 
value. In particular, 

Xmet 

Aut(r) 

does not map injectively to RG™£ via the natural map /xr- 
THEOREM 3.6.  The Euler characteristic of RG™^ as an orbifold is given by 

|Aut(r)r (3.20) X(RG^)=    2    TA^W>        (9,n)?(l,l). 
reRG 

For (g,n) — (1,1), we have 

(,21)      x(Borr)=^^_i_=__+_=_. 

Proof. Since the Aut(r)-action on E^: ' is through the representation 

Aut(r)-^6e(r), 

we have the canonical orbifold cell decomposition of M^; ^/Aut(r) defined in Ex- 
ample 2.1. Gluing all these canonical cell decompositions of the rational cells of 
the orbifold RG™^, we obtain an orbifold cell decomposition of the entire space 
RG™^. To determine the isotropy subgroups of each orbifold cell, we need the lo- 
cal model (3.18). We note that the Aut(r)-action on Jl^ 1{U€(Tmet)) is faithful if 

(#>n) T^ (1> !)• K Aut(r) acts on M^: ^ faithfully, then the contribution of the rational 

cell E+(r) /Aut(r) to the Euler characteristic of RG™^ is 

(-l)e(r) 

|Aut(r)r 

But if F is exceptional, then the rational cell 

Hjr> _     E;(r) 

Aut(r)      Aut(r)/(Z/2Z) 

is itself a singular set of X™pt/Aut(r). The contribution of the Euler characteristic 
of RG™n from this rational cell is thus 

(-l)e(r) _ (-l)e(r) 
2-|Aut(r)/(Z/2Z)| " |Aut(r)|' 

Summing all these, we obtain the formula for the Euler characteristic. 
The case of (g,n) = (1,1) is still different because all graphs in RGi^i are ex- 

ceptional. The general formula (3.20) gives —1/6 4-1/4 = 1/12, but since the factor 
Z/2Z of Aut(r) acts trivially on X^\ the factor 2 has to be modified. D 

The computation of (3.20) was first done in [4] using a combinatorial argument, 
and then in [9] and [8] using an asymptotic analysis of Hermitian matrix integrals. 
The result is 
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(3 22) V     (-l)e(r)    .     (2g + n-3)!(2g)(2g-l) 

rikjAut(r)r (25)!n! 

for every g > 0 and n > 0 subject to 2 — 2g - n <0. 
Let RGBg^n denote the set of isomorphism classes of connected ribbon graphs 

with labeled boundary components subject to the topological condition (3.1), and 

El(r) 

(3-23) RGB™;=   H   A^n 
reRGBg,n 

AllW) 

the space of metric ribbon graphs with labeled boundary components, where 

Auta(r) 

is the automorphism group of a ribbon graph F preserving the boundary labeling. 
The same argument of the previous section applies without any alteration to show 
that RGB™^ is a differentiable orbifold locally modeled by 

-v^met 

Autoiry 

The definition of the space of metric expansions Xy^1 does not refer to the labeling 
of the boundary components of a ribbon graph F, but it requires labeling of all half- 
edges of F. As we noted at the end of Section 1, labeling of the half-edges induces an 
order of boundary components. Thus every expansion of F appearing in X^p has a 
boundary labeling that is consistent with the boundary labeling of F. 

THEOREM 3.7. For every genus g > 0 and n > 1 subject to (3.6); the natural 
forgetful projection 

(3-24) pr : RGB™* —> RG™* 

is an orbifold covering of degree n\. 
Proof Let F be a ribbon graph. We label the boundary components of F, and 

denote by B the set of all permutations of the boundary components. The cardinality 
\B\ of B is n!. The automorphism group Aut(r) acts on the set B, and by definition 
the isotropy subgroup of Aut(r) of each element of B is isomorphic to the group 
Auta(r). The orbit space B/Aut(F) is the set of ribbon graphs with labeled boundary. 
Thus the inverse image of the local model X^pt/Aut(r) by pr-1 is the disjoint union 
of |£/Aut(r)| copies of X^/AutotT): 

|B/Aut(r)|-copies 

met 

Since the projection restricted to each local model 

pr : 
Xmet vmet 

Auta(r) Aut(r) 
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is an orbifold covering of degree |Aut(r)/Auta(r)|, the map 

(-v^met   \ v-met 

is an orbifold covering of degree 

|jB/Aut(r)| • |Aut(r)/Auta(r)| = \B\ = nl. 

Since the projection of (3.24) is just a collection of prp of (3.26), 

pr : RGBf£ —► RG™* 

is an orbifold covering of degree n! as desired. D 
As an immediate consequence, we have 
COROLLARY 3.8.   The Euler characteristic of RGB™„   is given by 

(3.27) X{RGBffl=nl.X(RG?2). 

4. Strebel differentials on Riemann surfaces. A Riemann surface is a patch- 
work of complex domains. Let us ask the question in the opposite direction: If we 
are given a compact Riemann surface, then how can we find coordinate patches that 
represent the complex structure? In this section we give a canonical coordinate sys- 
tem on a Riemann surface once a finite number of points on the surface and the 
same number of positive real numbers are chosen. The key technique is the theory of 
Strebel differentials [14]. Using Strebel differentials, we can encode the holomorphic 
structure of a Riemann surface in the combinatorial data of ribbon graphs. 

Let C be a compact Riemann surface. We choose a finite set of labeled points 
{pi,P2,'" iPn} on C, and call them marked points on the Riemann surface. The 
bridge that connects the complex structure of a Riemann surface and combinatorial 
data is the Strebel differential on the Riemann surface. Let Kc be the canonical sheaf 
of C. A holomorphic quadratic differential defined on C is an element of H0(C, K®2), 
where K®2 denotes the symmetric tensor product of the canonical sheaf. In a local 

coordinate z on (7, a quadratic differential q is represented by q — f(z)(dz) with 
a locally defined holomorphic function f{z). With respect to a coordinate change 
w = w(z), the local expressions 

q = f(z)(dz)   =g(w)(dw) 

transform by 

' dw(z) 
(4.1) f(z) = g{w(z)) 

dz 

A meromorphic quadratic differential on C is a holomorphic quadratic differential q 
defined on C except for a finite set {pi, • • • ,pn} of points of C such that at each 
singularity pj of g, there is a local expression q = fj(z)(dz) with a meromorphic 
function fj that has a pole at z = pj. If fj(z) has a pole of order r at pj, then we say 
q has a pole of order r at z = pj. 
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Let q — f(z)(dz)   be a meromorphic quadratic differential defined on C. A real 
parametric curve 

(4.2) 7 : (a, 6) 3 * i—> 7W = * € C 

parameterized on an open interval (a, 6) of a real axis is a horizontal leaf (or in the 
classical terminology, a horizontal trajectory) of q if 

(4.3) 

for every t G (a, 6). If 

(4.4) 

/W.))('^)>o 

/W0)|'^)  <» 

holds instead, then the parametric curve 7 of (4.2) is called a vertical leaf of q. The 
collection of all horizontal or vertical leaves form a real codimension 1 foliation on 
the Riemann surface C minus the singular points and zeroes of q. There are three 
important examples of the foliations for our study. 

EXAMPLE 4.1. Let q — (dz) . Then the horizontal lines 

a(t) — t + d, 

are the horizontal leaves of q, and 

P{t) =it + c, 

te 

te 

are the vertical leaves for every c G M. Each of these defines a simple foliation on the 
complex plane C. In Figure 4-1, horizontal leaves are described by straight lines, and 
vertical leaves are indicated by broken lines. 

1 \tl xX -y 

FIG. 4.1. Foliations defined by (dz)2. 

If a quadratic differential q = f(z)(dz)2 is holomorphic and non-zero at z = ZQ, 

then on a neighborhood of ZQ we can introduce a canonical coordinate 

(4.5) 
J Z(\ 

It follows from (4.1) that in the ^-coordinate the quadratic differential is given by 
q = (dw)2. Therefore, the leaves of q near ZQ look exactly as in Figure 4.1 in the 
canonical coordinate. This explains the classical terminology of horizontal and vertical 
trajectories. We remark here that although the coordinate w(z) is called canonical, 
still there is an ambiguity of coordinate change 

(4.6) w(z) -w(z) + a 
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with an arbitrary complex constant a. 
Using the canonical coordinate, it is obvious to see the following: 
PROPOSITION/4.1. Let S be an open Riemann surface and q a holomorphic 

quadratic differential on S. Then for every point p 6 5, there is a unique horizontal 
leaf and a vertical leaf passing through p. Moreover, these leaves intersect at a right 
angle with respect to the conformal structure of S near p. 

When a holomorphic quadratic differential has a zero, then the foliation behaves 
differently. 

EXAMPLE 4.2. Let q — zm(dz)2.  Then (m + 2) half rays 

ak : (0, oo) 3 t \—>t- exp (    "**   ] G C, & = 0,1, • • • , ra + 1 
\m + 2J 

give the horizontal leaves that have z — 0 on the boundary (the straight lines of 
Figure 4-2), and another set of (m + 2) half rays 

(in    I    /TTl fc \ 

 —    G C, k = 0,1, • • • , m + 1 
ra + 2   J 

gives the vertical leaves (the broken lines of Figure 4.2). 

FIG. 4.2. Horizontal and vertical leaves of z3(dz)2. 

The foliation becomes quite wild at singularities of q. However, the situation is 
milder around a quadratic pole with a negative real coefficient . 

EXAMPLE 4.3. Let q = — (^)  .  Then every concentric circle centered at 0, 

a(t) =reit,        t e E,r > 0, 

is a horizontal leaf, and all the half-rays 

P(t) =teid,        t >O,O<0 < 27r, 

give the vertical leaves.   We note that all horizontal leaves are compact curves (Fig- 
ure 4-3). 

The fundamental theorem we need is: 
THEOREM 4.2 (Strebel [14]). Let g and n be integers satisfying that 

(4.7) 
<?>0 

n> 1 

2-2g-n<0, 

and (C, (pi,--- ,Pn)) a smooth Riemann surface of genus g with n marked points 
Pi,'" iPn- Choose an ordered n-tuple (ai,--- ,an) G MJ of positive real numbers. 
Then there is a unique meromorphic quadratic differential q on C satisfying the fol- 
lowing conditions: 
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FIG. 4.3. Horizontal compact leaves and vertical leaves of—\(dz)2. 

1. q is holomorphic on C\ {pi, • • • ,Pn}- 
2. q has a double pole at each pj, j = 1, • • • , n. 
3. The union of all noncompact horizontal leaves forms a closed subset of C of 

measure zero. 
4. Every compact horizontal leaf a is a simple loop circling around one of the 

poles, say pj, and it satisfies 

(4.8) 
J a 

where the branch of the square root is chosen so that the integral has a positive 
value with respect to the positive orientation of a that is determined by the 
complex structure of C. 

This unique quadratic differential is called the Strebel differential. Note that the 
integral (4.8) is automatically a real number because of (4.3). Every noncompact 
horizontal leaf of a Strebel differential defined on C is bounded by zeros of g, and 
every zero of degree m of q bounds m + 2 horizontal leaves, as we have seen in 
Example 4.2. 

Let 7(£) be a noncompact horizontal leaf bounded by two zeros ZQ — 7(^0) and 
zi =7(^1) of q = f(z)(dz)2. Then we can assign a positive real number 

(4-9) L(7)= r^q=  t JWm 
J ZQ Jto dt 

by choosing a branch of yffjz) near ZQ and z\ so that the integral becomes positive. 
As before, the integral is a real number because 7 is a horizontal leaf. We call £(7) 
the length of the edge 7 with respect to q. Note that the length (4.9) is independent 
of the choice of the parameter t. The length is also defined for any compact horizontal 
leaf by (4.8). Thus every horizontal leaf has a uniquely defined length, and hence the 
Strebel differential q defines a measured foliation on the open subset of the Riemann 
surface that is the complement of the set of zeroes and poles of q. 

Around every marked point pj there is a foliated disk of compact horizontal leaves 
with length equal to the prescribed value aj. As the loop becomes larger in size (but 
not in length, because it is a constant), it hits zeroes of q and the shape becomes a 
polygon (Figure 4.4). 

Let the polygon be an m-gon, 71, • • ■ ,7m the noncompact horizontal leaves sur- 
rounding pj, and a a compact horizontal leaf around the point. Then we have 

(4.10) oi=L(a)=L(7i) + .--L(7ro). 

We note that some of the 7^ 's may be the same noncompact horizontal leaf on the 
Riemann surface C.   The collection of all compact horizontal leaves surrounding pj 
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FIG. 4.4. A foliated disk with compact horizontal leaves. 

forms a punctured disk with its center at pj. Glue all these punctured disks to 
noncompact horizontal leaves and the zeroes of the Strebel differentials, and fill the 
punctures with points {pi, • • • ,Pn}- Then we obtain a compact surface, which is the 
underlying topological surface of the Riemann surface C. 

COROLLARY 4.3. Let g andn be integers satisfying (4.7), and 

(4.11) (C,,(pi,P2,--- ,Pn)5(ai,a2,--- ,an)) 

a nonsingular Riemann surface of genus g with n marked points and an ordered n- 
tuple of positive real numbers. Then there is a unique cell-decomposition nq of C 
consisting of v 0-cells, e 1-cells, and n 2-cells, where v is the number of zeroes of the 
Strebel differential q associated with (4-11), o.nd 

e = v — 2 + 2g + n. 

Proof. The 0-cells, or the vertices, of D^ are the zeroes of the Strebel differential q 
of (4.11). The 1-cells, or the edges, are the noncompact horizontal leaves that connect 
the 0-cells. Since each 1-cell has a finite positive length and the union of all 1-cells 
is closed and has measure zero on C, the number of 1-cells is finite. The union of 
all compact horizontal leaves that are homotopic to pj (together with the center pj) 
forms a 2-cell, or a face, that is homeomorphic to a 2-disk. There are n such 2-cells. 
The formula for the Euler characteristic 

v — e + n = 2 — 2g 

determines the number of edges. D 
The 1-skeleton, or the union of the 0-cells and 1-cells, of the cell-decomposition 

nq that is defined by the Strebel differential is a ribbon graph. The cyclic order of 
half-edges at each vertex is determined by the orientation of the Riemann surface. A 
vertex of the graph that comes from a zero of degree m of the Strebel differential has 
degree m + 2. Thus the graph we are considering here does not have any vertices of 
degree less than 3. Since each edge of the graph has the unique length by (4.9), the 
graph is a metric ribbon graph. 

Let us give some explicit examples of the Strebel differentials. We start with a 
meromorphic quadratic differential which is not a Strebel differential, but nonetheless 
an important example because it plays the role of a building block. 

EXAMPLE 4.4.  Consider the meromorphic quadratic differential 

(4.12) 9o = 
1      (dQ2 

4*2 C(l - C) 

1 
4^ 

1      1 m2 
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on IP1. It has simple poles at 0 and 1, and a double pole at oo. The line segment [0,1] 
is a horizontal leaf of length 1/2. The whole F1 minus [0,1] and infinity is covered 
with a collection of compact horizontal leaves which are confocal ellipses 

(4.13) £ = a cos 9 + - -f ib sin 9, 

where a and b are positive constants that satisfy 

We have 

a2 = b2 + ^ 

1  ldcr -iw 47r2C(i-C)      47r2 

under (4-13).  The length of each compact leaf is 1 

FIG. 4.5. Horizontal leaves of -T^-TW/T- ■'   AIT
2
 C(l-C) 

EXAMPLE 4.5. Recall the Weierstrass elliptic function 

p(z) = -o +      5^      f 7  
z2       ,     , ^2   U*-™- 

(4.14) 
(m,n)€Z^ 

(m,n)^(0,0) 

nr)2      (m 4- nr)2 

^2       20 28       1200        6160 

defined on the elliptic curve 

(4.15) £T = 
C 

Z©Zr 

o/ modulus T with 7m(r) > 1, w/iere 52 and gz are defined by 

60 
(4.16) 92 =   E 

(m,n)eZ2 

(m,n)^(0,0) 

(m 4- nr)4 ,     and   g3=       ^ 
140 

(m,n)GZ2 

(m,n)#(0,0) 

(771 + nr)6 
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Let z be a coordinate on ET. It is customary to write 

U! = 1/2,    CJ2 = (1 + r)/2,        CJ3 = r/2 

and 

ej^piuj),        j = 1,2,3. 

T/ie quantities g2, Qs and ej ;5 satisfy the following relation: 

4a:3 - ^2^ -93= 4(a; - ei)(x - 62)(x - 63). 

Let its consider the case when r — i — v — 1. We have #2 — 4, #3 = 0, ei = —63 = 1 
and 62 = 0. /n particular, the elliptic curve is defined over Q. T/ie Weierstrass 
p-function maps the interior of the square spanned by OjCJi,^,^ biholomorphically 
onto the upper half plane, and the boundary of the square to the real axis (see for 
example, [10]). A Strebel differential is given by 

(4.17) 9 = -Ap(z)(dz)2. 

The series expansion of (4-14) tells us that the horizontal leaves near 0 are closed 
loops that are centered at the origin. The differential q has a double zero at UJ2, which 
we see from the Weierstrass differential equation 

p\zf = 4pO)3 - 4p(z) = 4 (p(z) - ei) (p(z) - e2) (p(z) - 63). 

The real curve (JO\ + it is a horizontal leaf, because on the edge uJiuJi the Weierstrass 
function p{z) takes values in [62, ei]. The curve a;3+t is also a horizontal leaf, because 
on the edge LJ3UJ2 the function p(z) takes values in [63,62]. In the above consideration 
we used the fact that p(z) is an even function: 

P(z) = Pi-*)- 

An extra Z/2Z symmetry comes from the transformation property 

p{iz) = -p{z). 

To prove that (4>lrt) is indeed a Strebel differential, we just note that q is the 
pull-back of the building block qo of (4-12) via a holomorphic map 

(4.18) 0: JSi-^P1. 

Indeed, 

4    , w , ,2        1       (dp2)2 

47r2p2(l-p2)- 

The inverse image of the interval [0,1] is the degree 4 ribbon graph with one vertex, 
two edges and one boundary component (Figure 4-6)- 

Another interesting case is r = e7™/3, which corresponds to g2 = 0, #3 = 4; and 

ei = l,    e2 = e2"/3,    e3=e*"i'3. 
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0)2 

0 co, i 

FIG. 4.6. Elliptic curve of modulus T = i and a ribbon graph on it. 

0 «! co 

FIG. 4.7.  Weierstrass p-function for g2 = 0,93 = 4. 

Again the elliptic curve is defined over Q.   The zeroes of p(z) are 

^1+^2+^3                          2(u;i +(JU2 +^3) 
0 =     and    2p =  . 

T/ie Weierstrass function p(z) maps the line segment puJi onto [0,1], puJ^ to 0e2, and 
pcJs to Oes, respectively (Figure 4-V- 

A Strebel differential is given by 

(4.19) 9= 2! (z)(dz)2, 

and the non-compact leaves form a regular hexagonal network,  which possesses a 
Z/3Z-symmetry (Figure 4-8)- 

FIG. 4.8. A honeycomb. 

We note that (4-19) is the pull-back of the building block qo via a map 

Indeed, we have 

E^i/3 -^P1. 

9    , w. ,2        1       (dp3)2 

g = -p{z)(dz)2 =    h ^ 
47r2 p3(l - p3)' 
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We can now construct the canonical coordinate system by using the Strebel dif- 
ferential once we give n marked points on a Riemann surface and an n-tuple of real 
numbers. Let (C, (piiP2, • * ■ 5Pn)) (^1,02? ■ • • ian)) be the set of data of (4.11), and q 
the Strebel differential associated with the data. We recall that for every point of a 
vertical leaf there is a horizontal leaf intersecting perpendicularly at the point (Propo- 
sition 4.1). Since the set of compact horizontal leaves of q forms an open dense subset 
of C, which is indeed the disjoint union of punctured open 2-disks, every vertical leaf 
of q extends to one of the points pj. In particular, a vertical leaf starting at a zero of 
q should end at one of the poles. 

THEOREM 4.4. The set of all vertical leaves that connect zeroes and poles of 
q, together with the cell-decomposition D^ of C by the noncompact horizontal leaves, 
defines a canonical triangulation A^ of C. 

Proof. The cell-decomposition D^ of C defined by the noncompact horizontal 
leaves of q defines a polygonalization of C. Each polygon Figure 4.4 has a unique 
center, which is a pole of q. The vertical leaves that connect zeroes and poles supply 
the edges necessary for a triangulation of each polygon (Figure 4.9). □ 

FIG. 4.9.  Triangulation of a polygon 

Let F^ denote a ribbon graph consisting of zeroes of q as vertices and noncompact 
horizontal leaves of q as edges. By the property of the Strebel differential, we have 

(4.20) 
X{Tq)=v(Tq)-e(Tq) = 2-2g 

6(rg)=n. 

In particular, the closed surface associated with the ribbon graph Tq is the underlying 
topological surface of the Riemann surface C. For every edge E of Tq, there are two 
triangles of Ag that share E. Gluing these two triangles along E, we obtain a diamond 
shape as in Figure 4.10. This is the set of all vertical leaves that intersect with E. Let 
V and V be the endpoints of E, and give a direction to E from V to V. We allow 
the case that E has only one endpoint. In that case, we assign an arbitrary direction 
to E. For a point P in the triangles, the canonical coordinate 

(4.21) z = z{P) -I', VQ 

maps the diamond shape to a strip 

(4.22) UE = {z G C I 0 < Re(z) < L} 

of infinite height and width L in the complex plane, where L is the length of E. We 
identify the open set UE as the union of two triangles on the Riemann surface C by 
the canonical coordinate z (Figure 4.10). The local expression of q on UE is of course 

(4.23) q = {dzf 
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FlG. 4.10.  Triangulation and a canonical coordinate system of a Riemann surface. 

Let the degree of V be m.   We note that every quadratic differential has an 
expression 

(4.24) 
rrr 

q='Jl-w™-Z(dw)2 

around a zero of degree m — 2. So we use (4.24) as the expression of the Strebel 
differential q on an open neighborhood Uy around V with a coordinate w such that 
V is given by w = 0. On the intersection 

UEM/V, 

we have 

(4.25) 
rrr 

q=(dz)2 = -^-wm-2(dw)2 

from (4.23) and (4.24).   Solving this differential equation with the initial condition 
that z = 0 and w = 0 define the same point V, we obtain the coordinate transform 

(4.26) w = w(z) = cz = rz2/™ 

where c is an rath root of unity. Thus UE and Uy are glued on the Riemann surface 
C in the way described in Figure 4.11. 

w = w(z) 

FIG. 4.11.  Gluing a strip to a neighborhood of a vertex by w = w(z) = z2'3. 

Since we have 

f VQ = aj 

around a quadratic pole pj, we can choose a local coordinate u on an open disk Uj 
centered at pj such that 

(4.27) q = - 47r2   u2 
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The coordinate disk Uj, which is the union of the horizontal leaves that are zero- 
homotopic to pj, can be chosen so that its boundary consists of a collection of edges 
Ei, - • - lEp for some fi. Let Zk be the canonical coordinate on UEk- Equations (4.23) 
and (4.27) give us a differential equation 

(4.28) 

Its solution is given by 

(4.29) 

(dzk)
2 = 

a)  {duf 
47r2 w 

u = u(zk) = 7e — ^-izk/aj 

where 7 is a constant of integration. Since the edges Ei, • • • , E^ surround the point 
Pj, the constant of integration for each Zk is arranged so that the solution u of (4.29) 
covers the entire disk. The precise form of gluing function of open sets UEk 's and Uj 
is given by 

(4.30)      u = u(zk) = exp hiri   1       ^      + _    ^ 

where the length Lk satisfies the condition 

at = Li +L2 H h Ln. 

k = 1,2,"- ,11, 

u = u(zd 

FIG. 4.12.  Gluing a strip to a neighborhood of a pole by u = u(zi) = exp(27r22;i/aj). 

The open coordinate charts t/^'s, C/y's and C/j's cover the whole Riemann surface 
C. We call them the canonical coordinate charts. 

DEFINITION 4.5.  The canonical coordinate system of the data 

(C>(Pi,P2r- )Pn),(ai,a2,--- ^n)) 

is the covering 

(4.31) C = \JUEU\JUVUUUJ 
E V j=l 

of the Riemann surface C by the canonical coordinate charts,  where the union is 
defined by the gluing functions (4-26) and (4-30). 

We note that the canonical coordinate z we have chosen for the strip UE around 
an edge E depends on the direction of the edge. If we use the opposite direction, then 
the coordinate changes to 

(4.32) z^L-z, 

where L is the length of E, as before. This change of coordinate does not affect the 
differential equations (4.25) and (4.28), because 

(dzf = (d(L-z))2. 



908 M. MULASE AND M. PENKAVA 

5.  Combinatorial description of the moduli spaces of Riemann surfaces. 
We have defined the space of metric ribbon graphs with labeled boundary components 
by 

Ee(r) 

RGB^t=   U   wry- 

The Strebel theory defines a map 

(5.1) a : Wg,n x KJ: —» RGB™*, 

where 9Jlg:n is the moduli space of Riemann surfaces of genus g with n ordered marked 
points. In what follows, we prove that the map a is bijective. Since a is a map between 
two differentiable orbifolds, it is more desirable to establish that the map is indeed 
a diffeomorphism of orbifolds. However, such an attempt is beyond the scope of our 
current investigation. 

The case of (g,n) = (1,1) is in many ways exceptional. For (g,ri) = (0,3), all 
Strebel differentials are explicitly computable. Thus we can construct the identifica- 
tion map 

$010,3 x K = RGB^p 

directly. This topic is studied at the end of this section. We also examine the orbifold 
covering RGB^f -> RGfiff there. 

The product group MJ acts naturally on Tig,n x EJ. Therefore it acts on the space 
RGB™^ through the bijection a. However, the R+ -action on RGB™^ is complicated. 
We give an example in this section which shows that the action does not preserve the 
rational cells. 

THEOREM 5.1.   There is a natural bijection 

mg,n x Rl = RGB™1. 

Proof. The proof breaks down into three steps. In Step 1, we construct a map 

(5.2) JJ      E;(r) —^JOT^nXRJ. 
reRGBg,n 

We then prove that the map descends to 

(5.3) f3 : RGB™* —» Wlg,n x M^ 

by considering the action of the graph automorphism groups preserving the boundary 
order in Step 2. From the construction of Step 1 we will see that /? is a right-inverse 
of the map a of (5.1), i.e., a o ft is the identity of RGB™^. In Step 3 we prove that 
(3 is also a left-inverse of the map a. 

STEP 1. Our starting point is a metric ribbon graph Tmet with labeled boundary 
components. We label all edges, and give an arbitrary direction to each edge. To each 

directed edge E of Tmet, we assign a strip 

U^ = {zeC\0< Re(z) < L} 
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of infinite length and width L, where L is the length of E (see Figure 5.1). The 

open real line segment (0,L) C U-fi is identified with the edge E. The strip U-g has a 
complex structure defined by the coordinate z, and a holomorphic quadratic differential 
(dz)2 on it. Every horizontal leaf of the foliation defined by this quadratic differential 

is a horizontal line of length L. If we use the opposite direction of E, then U-g should 
be rotated 180° about the real point L/2, and the coordinate is changed to L — z. 

FIG. 5.1. A strip of infinite length with horizontal leaves. 

Let V be a degree m vertex ofT. There are m half-edges attached to V, although 
some of them may belong to the same edge. Let 1,2, ••• ,m be the cyclic order of 
the half-edges chosen at V. We give a direction to each edge by defining the positive 
direction to be the one coming out from V, and name the edges Ei, E2, • ■ • , Em. If 
an edge goes out as a half-edge number j and comes back as another half-edge number 
k, then we use the convention that Ej — E^, where E^ denotes the edge Ek with 
the opposite direction.  We denote by Lj the length of Ej. 

Let us place the vertex V at the origin of the w-plane. We glue a neighborhood of 
the boundary point 0 of each of the strips U-g , • • • , U-g    together on the w-plane by 

(5.4) w = e2^-1)/™^2/™ j = 1,2, • • • , m. 

An open neighborhood Uy of w = 0 is covered by this gluing, if we include the 
boundary of each U-g .   It follows from (5.4) that the expression of the quadratic 

differential (dzj)2 changes into 

(5.5) (dzj)2 = ^wm-\dw)2 

in the w-coordinate for every j. So we define a holomorphic quadratic differential q 
on Uy by (5.5). Note that q has a zero of degree m — 2 at w = 0. At least locally 
on Uy, the horizontal leaves of the foliation defined by q that have V as a boundary 
point coincide with the image of the edges Ei, • • • ,Em via (5.4) > 

Next, let us consider the case when edges Ei^E^r '' ,Eh form an oriented 
boundary component B of T, where the direction of E & is chosen to be compatible 
with the orientation of B. Here again we allow that some of the edges are actually 
the same, with the opposite direction. As before, let Lk be the length of Ek, and put 

(5.6) as =L1+L2 + --Lh. 

This time we glue the upper half of the strips U-g , • • • , U-g (or the lower half, if the 
edge has the opposite direction) into the unit disk of the u-plane by 

f2m \ 
(5.7) u = expf—(L1+L2+ ■•• + £*-!+**)! ,        fc = l12,--. ,/i. 
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We note that the entire unit disk on the u-plane, which we denote by UB, is covered 
by this gluing, if the boundary lines of the strips are included. 

It follows from this coordinate transform that 

(5.8) idzk)2 = .AM2. 
47r2   u2 

Thus the holomorphic quadratic differential q naturally extends to a meromorphic 
quadratic differential on the union 

UBu{Jutk 
k=l 

which has a pole of order 2 at u = 0 with a negative real coefficient. The horizontal 
leaves of the foliation defined by q are concentric circles that are centered at u = 0; 

which correspond to the horizontal lines on U-fi through (5.7). Note that the length 
of a compact horizontal leaf around u = 0 is always OB. 

Now define a compact Riemann surface C(rmet) by gluing all the Uy 's, UB 'S and 
the strips U-^ 's by (5.4) and (5.7): 

(5.9) C(rmet)= IJ        UvU       U       Utu U UB' 
V: vertex of T E: edge of F B: boundary 

component of T 

Since there are two directions for every edge E, both the upper half part and the lower 
half part of a strip U^ are included in the union of all UB 'S. Thus the union (5.9) is 
compact. The Riemann surface C(rmet) has n = b(T) marked points each of which is 
the center of the unit disk UB- The ordering of the boundary components of the ribbon 
graph determines an ordering of the marked points on the Riemann surface. Attached 
to each marked point we have a positive real number as - The Riemann surface also 
comes with a meromorphic quadratic differential whose local expressions are given by 
(dzj)2, (5.5), and (5.8). It is a Strebel differential on C(rmet). The metric ribbon 
graph corresponding to this Strebel differential is, by construction, exactly the original 
graph rmet, which has a natural ordering of the boundary components. Thus we have 
constructed a map (5.2). 

STEP 2. Let us consider the effect of a graph automorphism f G Auta(r) on (5.9). 
Let pi,-" ,pn be the marked points of C(Tmet), and oi,--- ,an the corresponding 
positive numbers.   We denote by Ei, — - ,Ee the edges of T, and by U-^ , • • • , U-^ 
the corresponding strips with a choice of direction.  Then the union of the closures of 
these strips cover the Riemann surface minus the marked points: 

C(rmet)\W-- ,Pn}={jU^j. 
3=1 

A graph automorphism f : Tmet —t Tmet induces a permutation of edges and flip of 
directions, and hence a permutation of strips U^ , • • • , U-g and a change of coordi- 
nate Zj to Lj — Zj. Iff fixes a vertex V of degree m, then it acts on Uy by rotation of 
angle an integer multiple of 2'ir/m, which is a holomorphic automorphism of Uy. The 
permutation of vertices induced by f is a holomorphic transformation of the union of 
Uy 's- Since f preserves the boundary components of F, it does not permute UB 'S, 

but it may rotate each UB following the effect of the permutation of edges.   In this 
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case, the origin ofUs, which is one of the marked points, is fixed, and the orientation 
of the boundary is also fixed. Thus the graph automorphism induces a holomorphic 
automorphism of C(rmet) \ {pi, • • • ,Pn}- This holomorphic automorphism preserves 
the ordering of the marked points. Thus we conclude that (5.2) descends to a map (3 
which satisfies a o f} = id. 

STEP 3. We still need to show that j3 o a is the identity map of Wig>n x E" ; but 
this is exactly what we have shown in the previous section. 

This completes the proof of Theorem 5.1. D 
EXAMPLE 5.1. Let us consider the complex protective line P1 with three ordered 

marked points, to illustrate the equality 

met 

and the covering map 

OTo,3 x E; = RGB^ 

T>ri TDTnet        .   -D/^imet 

The holomorphic automorphism group of P1 is PSL(2,C), which acts on P1 triply 
transitively.  Therefore, we have a biholomorphic equivalence 

(F1,(pi,P2,P3)) = (P1, (0,1, 00)). 

In other words, 9Jlo,3 is just a point.    Choose a triple (ao5ai5aoo)  of positive real 
numbers.  The unique Strebel differential is given by 

(5.10) Q= - 

1 
4^ 

dx . 
— )   +6 
x 

dx 
+ c 

dx 
x(l — x) y 

where 

The behavior of the foliation of the Strebel differential q depends on the discriminant 

ab + be + ca = - (ao + ai + aoo) (ao +000 — 01) (ai + ^oo — ^o) (ao + ai — aoo) • 

CASE 1.   ab + be 4- ca > 0.   The graph is trivalent with two vertices and three 
edges, as given in Figure 5.2.  The two vertices are located at 

(5.11) 
a ± i\Jab + be -f- ca 

^+6 ' 

and tte length of edges L\, L2 and L3 are given by 

(5.12) 
£1 = ! (ao + Goo - ai) = I (\/Q -T C -f y/a + b - y/b + c) 

< L2 = I (ai 4- floo - oo) = \ {y/b-r c A- y/a + b — y/a + c) 

OQO L3 = I (ao 4- ai — aoo) = | (V^ + c -r y/b + c — y/aA- b) . 

Note that positivity 0/L1, L2 and L3 follows from ab+bc+ca > 0. T/ie space 0/ metric 
ribbon graphs with ordered boundary in this case is just R\ because there is only one 
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FlG. 5.2.  The critical horizontal leaves of the Strebel differential for ab -f be + ca > 0. 

ribbon graph with boundary order of this type and the only graph automorphism that 
preserves the boundary order is the identity transformation. 

The natural &3-action on the space of (aoj^ij&oo) induces faithful permutations 
of Li, L2 and L3 through (5.12). The geometric picture can be easily seen from 
Figure 5.3. The normal subgroup Z/3Z 0/63 acts on F1 as rotations about the axis 
connecting the north pole and the south pole, where the poles of Figure 5.3 represent 
the zeroes (5.11) of the Strebel differential. Note that the three non-compact leaves 
intersect at a zero of q with 120° angles. The action of the whole group 63 is the 
same as the dihedral group JD3 action on the triangle AOloo. i4s a result, ©3 acts 
faithfully on (Z/i,Z/2, £3) as its group of permutations. 

FIG. 5.3. A degree 3 graph on a sphere. 

The special case (ao^ij^oo) — (2,2,2) is of particular interest.   The Strebel dif- 
ferential (5.10) is the pull-back of the building block qo of (4-12) via a rational map 

(5.13) C: 4(x2 - x + I)3 

27a;2(l -x)2 

and the ribbon graph Figure 5.2 is the inverse image of the interval [0,1] of this map. 
CASE 2. ab + be + ca = 0. There are three ribbon graphs with labeled boundary 

components in this case, whose underlying graph has 1 vertex of degree 4 and two edges 
(Figure 5.4)- The vertex is located at a/(a + b). Each of the three graphs corresponds 
to one of the three factors, (ao -f aoo — fli), (ai + ^oo — ao), and (ao + &! — «oo); of 
the discriminant being equal to 0. For example, when (ao 4- ai — Qoo) = 0, and the 
lengths of the edges are given by 

Li = ao = \Ja -f c 

L2 = ai = y/b + c 

Ls = 0. 
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The Gs-action on (00,01,000) interchanges the three types of ribbon graphs with 
boundary order in Case 2. The automorphism group of the ribbon graph of Case 2 is 
Z/2Z, and only the identity element preserves the boundary order. 

FIG. 5.4. Case ab + bc-\- ca = 0. 

CASE 3. ab + be + ca < 0. The underlying graph is of degree 3 with two vertices 
and three edges, but the topological type is different from Case 1 (Figure 5.5). The 
two vertices are on the real axis located at 

a ± ^/—{abJr bc + ca) 

There are again three different ribbon graphs with ordered boundary, each of which 
corresponds to one of the three factors of the discriminant being negative. For example, 
if (oo + CLI — OQO) < 0, then the length of edges are given by 

L\ = ao = y/a + c 
L2 = ai = \/b + c 

L3 — | (-ao - ai +000) = I (-y/aT~c- y/b + c + Vo + b) . 

Ls is positive because ab + be + ca < 0. 

Li L2 

FIG. 5.5. Case ab + be + ca < 0. 

In Case 2 and Case 3, the automorphism group of the ribbon graph without ordered 
boundaries is Z/2Z. In every case, we can make the length of edges arbitrary by a 
suitable choice 0/(00,01,000). The discriminant ab + bc+ca divides the space E^. of 
triples (00,01,000) into 7 pieces: 3 copies o/E^. along the ao, ai and a^ axes where 
the discriminant is negative, the center piece of E^_ characterized by positivity of the 
discriminant, and 3 copies of E^_ separating the 4 chambers that correspond to the 
zero points of the discriminant (Figure 5.6): 

(5.14)      E^=Etn4ni^]j4[]pdnE+iiM+- 

The product group E+ acts on the space of (ao,ai,aoo) by multiplication, but the 
action does not preserve the canonical rational cell-decomposition of RGB^f'. Indeed, 
this action changes the sign of the discriminant. 

The three E^. ;s along the axes are equivalent under the &^-action on the space of 
(00,01,000), and each has a &2symmetry. The three walls separating the chambers 
are also equivalent under the (Bs-action, and again have the same symmetry.   Only 
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the central chamber is acted on by the full 63.  Thus we have 

ml     E^U^+LI^+LJ^+IJ^+1J^+L[^+ 

(5.15) I 

Rl/es        1^/63 LIi^-/62UiR+/S2. 

FIG. 5.6. Partition of RGB™f =R^. 

The multiplicative group M+ acts naturally on the ribbon graph complexes RG^ 
and RGB™n  by the multiplication of all the edge lengths by a constant.  Since the 

graph automorphism groups Aut(r) and Auta(r) act on the edge space E^; ^ through 
a permutation of coordinate axes, the multiplicative M+ -action and the action of 
the graph automorphism groups commute. Therefore, we have well-defined quotient 
complexes RG^/R^ and RGB™t/R+. Since E+(r) is a cone over the (e(r) - 1)- 
dimensional regular e(r)-hyperhedron A(123- • •e(r)) and since the graph automor- 
phism groups act on the hyperhedron, the quotient of each rational cell is a rational 
simplex 

A(123---e(r)) 
Aut(r) 

Thus the quotient complexes RG™^/'B+ and RGB™n/R+ are rational simplicial com- 
plexes. 

These quotient complexes are orbifolds modeled on 

X£f/E+ 
G      ' 

where G denotes either Aut(r) or Auta(r). From (3.14), we have 

X^/Rt      A(123 • • • e(r)) x Ecodim(r) 
(5.16) 

Aut(r) Aut(r) 

Since A(123 • • •e(r)) is homeomorphic to E^; ^~ , the quotient complexes are topo- 
logical orbifolds. 

On the moduli space 9Jl5,n x EJ, the multiplicative group IR+ acts on the space 
of n-tuples E" through the multiplication of constants. The action has no effect on 
Wlg,n. Thus we have the quotient space 

^;XM+ =tOIfl,nxA(123---n). 
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The bijection of Theorem 5.1 is equivariant under the R-f -action, and we have 

,5,7) ^xA,™....).   J     MEfi 

This gives us an orbifold realization of the space 9Jl5)n x A(123- • -n) as a rational 
simplicial complex. When n = 1, the space A(l) consists of just a point. Therefore, 
we have a rational simplicial complex realization 

6. Belyi maps and algebraic curves defined over Q. We have shown that 
a metric ribbon graph defines a Riemann surface and a Strebel differential on it. One 
can ask a question: when does this Riemann surface have the structure of an algebraic 
curve defined over Q? Using Belyi's theorem [1], we can answer this question. 

DEFINITION 6.1. Let C be a nonsingular Riemann surface. A Belyi map is a 
holomorphic map 

f : C —> P1 

that is ramified only at 0, 1 and oo. 
THEOREM 6.2 (Belyi's Theorem [1]). A nonsingular Riemann surface C has the 

structure of an algebraic curve defined over Q if and only if there is a Belyi map onto 
P1. 

COROLLARY 6.3. A nonsingular Riemann surface C has the structure of an 
algebraic curve defined over Q if and only if there is a Belyi map 

f :C —+F1 

such that the ramification degrees over 0 and 1 are 3 and 2, respectively. Such a Belyi 
map is called trivalent. 

Proof. Let C be an algebraic curve over Q and h : C —> P1 a Belyi map. Then 
the composition / = 0 o h of h and 

,   ™i >     4(z2 - x +1)3     ral 

of (5.13) gives a trivalent Belyi map. We first note that 

d( _    4(:E-2)(:r + l)(2:r-l)(a;2-a: + l)2 

dx 27x3(l-x)3 

Thus the ramification points of </> are x — — 1, x — 1/2, x — 2, and 

l±iV3 

The critical values of (j) are 

<p{-i) = #1/2) = m = i 
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and 

'l±i\/3N 

= 0, 

and the ramification degrees at 1 and 0 are 2 and 3, respectively, (j) sends {0, l,oo} 
to oo, at which it is also ramified. Since h is not ramified at e^77/3, —1, 1/2, or 2, 
the composed map / is ramified only at 0, 1, and oo with the desired ramification 
degrees. 

The inverse image of the interval [0,1] via </> is a ribbon graph of Figure 6.1. This 
graph is obtained by adjoining two circles of radius 1 that are centered at 0 and 1 
together with a common boundary at 1/2. D 

FIG. 6.1.  The inverse image of [0,1] via £ = 27 i(i- v2 ' 

of radius 1 at 1/2. 

It is obtained by joining two circles 

DEFINITION 6.4. A child's drawing, or Grothendieck's dessin d'enfant, is the 
inverse image of the line segment [0,1] by a Belyi map. 

THEOREM 6.5. Let Tmet be a metric ribbon graph with no vertices of degree less 
than 3. It gives rise to an algebraic curve defined over Q if all the edges have the same 
length, which can be chosen to be 1. The metric ribbon graph determines a unique 
Belyi map 

f : C(rmet) —► F1 

such that the child's drawing associated with f is the edge refinement ofTmet. The 
Strebel differential q on C(rmet) is the pull-back of the building block qo of (4-12) via 
the Belyi map, i.e., 

„=r(-J£Z 
V4J-!«1 - O 

Conversely, every nonsingular algebraic curve over Q can be constructed from a 
trivalent metric ribbon graph with edge length 1. 

Proof. Let rmet be a metric ribbon graph whose edges all have length 1, C(rmet) 
be the Riemann surface defined by the metric ribbon graph, and q the Strebel differ- 
ential on C(rmet) whose noncompact leaves are rmet. We take the canonical triangu- 
lation Aq of Theorem 4.4 and the canonical coordinate system of Definition 4.5. 

For every edge E of rmet, we define a map from a triangle with base E into F1 as 
follows. The triangle can be identified with the upper half of the strip of Figure 5.1. 
So we define 

(6.1) {z E C I 0 < Re(z) < 1, Im(z) > 0} 9 z t—> ( = sin2(7rz) e 
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We note that (6.1) is equivalent to 

(6.2) {dz)2=g0=A        Sd02_ 
47r2C(l-C) 

We wish to show that this map consistently extends to a holomorphic Belyi map 

f:C(Tmet)^V\ 

The map (6.1) extends to the whole strip in an obvious way. The point z = 1/2 
is mapped to C — !> at which the map is ramified with ramification degree 2. 

At a vertex V to which E is incident, the canonical coordinate is given by 

w __ cylnik/m   2/Tn 

as in (5.4), where m is the degree of V and k is an integer. In terms of the w- 
coordinate, the map (6.1) is given by 

C = sin2(±7r^m/2) = 7r2wm + • • • . 

This expression does not depend on the choice of an edge attached to V, hence the 
map (6.1) extends consistently to a neighborhood of V. The map is ramified at ( = 0 
with local ramification degree m. 

Finally, let us consider a boundary component of rmet consisting of k edges. From 
(5.7), we have a local coordinate u on the boundary disk that is given by 

(l-Kiij + z) 
u = exp ' 

where j is an integer. Then 

V        * 

^log.-i. 

Jlix   i   p—2ix 

Noting that 

sin2(:r) = — 

we have 

(6.3) t = -\(uk+u-k-2). 

This map sends u = 0 to £ = oo, and is independent of the choice of edge around u = 0 
and branch of the logarithm function. The map (6.3) is equivalent to the relation 

_Jf_ (duf _       {dQ2       _ 
47r2   u2    ~ 47r2C(l-0 " ^ 

We have thus shown that the map (6.1) extends to a holomorphic map / from the 
whole Riemann surface C(rmet) onto P1 that is ramified only at 0,1, oo. The unique 
Strebel differential q is given by f*qo. 

Conversely, let C be a nonsingular algebraic curve defined over Q. Let 

/ : C —> F1 
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be a trivalent Belyi map. Then the inverse image of the interval [0,1] via / is the edge 
refinement of a trivalent metric ribbon graph on C whose edge length is 1 everywhere. 
It is the union of noncompact leaves of the Strebel differential /*#o on C. Starting 
from this child's drawing, we recover the complex structure of C. D 

We have already given two examples of genus 1 in Section 4 and one example of 
genus 0 in Section 5. 

Theorem 6.5 does not completely characterize which metric ribbon graphs cor- 
respond to algebraic curves defined over Q. Furthermore, in Grothendieck's dessin 
d'enfant graphs which have vertices of degree 2 and 1 also appear. It is possible to 
incorporate the vertices of degree 2 coming from these child's drawings in terms of 
usual ribbon graphs (those with no vertices having degree less than 3) by sharpening 
the statement of the theorem as follows. 

COROLLARY 6.6. Let Tmet he a metric ribbon graph, such that the ratios of the 
lengths of its edges are all rational, (so they can be chosen to be positive integers). 
Then there is a unique Belyi map f : C(rmet) —> P1, such that ifTmet is the metric 
graph obtained by replacing each edge of length n with n edges of length 1 by inserting 
n — 1 vertices of degree 2 in the edge, then the child's drawing associated with f is the 
edge refinement ofrmet. In addition, the Strebel differential q on C(rmet) is given by 
q = f*qO' 

Proof. Essentially, the only change in the proof of the theorem needed is to replace 
the map sin2(7rz) from the strip associated with an edge E with the map sin2(n7rz). 
This will add n — 1 additional zeros on the edge, each with ramification degree 2. D 

To obtain the complete classification of metric ribbon graphs which correspond 
to algebraic curves defined over Q, we shall have to consider ribbon graphs which 
have vertices of degree 1. In the theory of Strebel differentials, vertices of degree 1 
correspond to poles of order 1 of the quadratic differential. There is a uniqueness 
theorem concerning Strebel differentials which have poles of order at most 2 as well. 
See Theorem 7.6 in [7] for a precise statement of the result. 

For our purposes, we really only need to address the question of how to construct 
a Riemann surface corresponding to a metric ribbon graph. The reader can easily 
verify that the construction of a Riemann surface corresponding to a metric ribbon 
graph given in Theorem 5.1 still applies when we allow the graphs to have vertices 
of degree 1 or 2. Furthermore, the construction also yields a quadratic differential, 
which has poles of order 1 for vertices of degree 1, and neither a pole nor a zero for 
vertices of degree 2 (although they will lie on the critical trajectories). 

The same methods as in Theorem 6.5 allow one to construct a Belyi map from 
the Riemann surface corresponding to this more general type of ribbon graph, by 
associating the metric ribbon graph with all edges having length 1 to the graph. 
Putting this all together, we come up with the following. 

THEOREM 6.7.  There is a one to one correspondence between the following: 
1. The set of isomorphism classes of ribbon graphs. 
2. The set of isomorphism classes of child's drawings. 
3. The set of isomorphism classes of Belyi maps. 

This correspondence is given as follows. A ribbon graph T corresponds to a metric 
ribbon graph rmet with all edges having length 1, giving rise to a Riemann surface 
C(rmet) and a Strebel differential q which is the pullback of the quadratic differential 
qo by the unique Belyi map from C^Fmet) to P1 whose associated child's drawing is 
the edge refinement of Tmet. Moreover, this correspondence between ribbon graphs and 
Belyi maps agrees with the Grothendieck correspondence. 



Ribbon Graphs and Algebraic Curves over Q 919 

Grothendieck's use of the terminology child's drawing to illustrate the relationship 
between graphs and algebraic curves emphasizes how strange and beautiful it is that a 
deep area of mathematics can be described in such simple terms. In our construction, 
we have shown how to take a child's drawing, associate a metric ribbon graph to it, 
construct a Riemann surface equipped with a quadratic differential, as well as a Belyi 
map from this surface to P1. It is amazing how much information is concealed within 
such a simple picture. 
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