BREAKDOWN OF A SHALLOW WATER EQUATION*

H. P. MCKEAN[†]

1. Introduction. The 1-dimensional shallow water equation:

dn

2)

$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} + \frac{\partial p}{\partial x} = 0 \quad \text{with "pressure"}$$
$$p(x) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} \left(v^2 + \frac{1}{2} v'^2 \right) dy$$

An

was noted by FOKAS-FUCHSTEINER [1981] as being formally integrable. CAMASSA-HOLM [1993] rediscovered it from a hydrodynamical point of view and developed it to a large degree, both there and in CAMASSA-HOLM-HYMAN [1994]. Their most striking discovery is that it has (peaked) solitons $v(t, x) = \frac{1}{2} p e^{-|x-q-pt/2|}$ with constant q and p, capable of being superposed in an elementary way, as sums $v(t,x) = \frac{1}{2} \sum_{i=1}^{n} p_i(t) e^{|x-q_i(t)|}$, where now the q's and p's obey the equations $q^{\bullet} = \partial H/\partial p$, $p^{\bullet} = -\partial H/\partial q$ of the geodesic flow in the co-tangent bundle of \mathbb{R}^n , equipped with the inverse metric tensor $\frac{1}{2}e^{|q_i-q_j|}$: $1 \leq i, j \leq n, i.e.$, with Hamiltonian $H = \frac{1}{2} |p|^2 + \frac{1}{4} \sum p_i p_j e^{-|q_i-q_j|}$. From this, it is only a little jump to the realization that the full shallow water flow in, e.g., $C^{\infty}_{\downarrow}(\mathbb{R})$ is just a transcription of the geodesic flow in the group $D(\mathbb{R})$ of (smooth proper) diffeomorphisms of the line, equipped with an analogous Riemannian geometry; see MISIOLEK [1998] for the more general case $v \in \mathbb{R} + C^{\infty}_{\perp}(\mathbb{R})$ with the attendant BOTT-VISASORO group, and compare ARNOLD-KHESIN [1998] for background and other illustrations of the general principle involved. Not much of that is needed here: it will suffice to observe a) if v(t) obeys the shallow water flow in, e.g., $C^{\infty}(\mathbb{R})$ and if Q(t,x) solves $Q^{\bullet} = v(t,Q)$ with $Q_0(x) \equiv x$, then Q is a diffeomorphism of the line¹, imitating the identity near $x = \pm \infty$, and obeying the geodesic flow in $D(\mathbb{R})$, and b) the shallow water flow, expressed by means of m = v - v'' as in *) $m^{\bullet} + (mD + Dm)v = 0$, has first integrals in the form $m(Q) Q'^2(x) \equiv m_0(x)^2$ *) shows that m(Q) retains the general shape of $m_0(x)$, independently of t > 0, illustrating the utility of the diffeomorphism for the study of the flow; indeed, it is the principal tool for the question posed here: When, and if so how, does the shallow water flow breakdown?

Now, unlike KdV, breakdown is common enough as already noted in CAMASSA-HOLM [1993]: for example, if $\int_{-\infty}^{\infty} (v^2 + v'^2) dx \equiv H < \infty$, this being a constant of motion, then, from 5) below in the form $\frac{d}{dt}v'(Q) \leq \frac{1}{2}v^2(Q) - \frac{1}{2}v'^2(Q)$, you see that $v'_0(x_0) < -\sqrt{H}$ at any place $x_0 \in \mathbb{R}$ implies $v'_0(t, x_0) \downarrow -\infty$ at some finite time.

To fix ideas, let us suppose that either $v_0 \in C^{\infty}(\mathbb{R})$ is of period 1 or else $v_0 \in C^{\infty}(\mathbb{R})$ $\mathbb{R} + C^{\infty}_{\downarrow}(\mathbb{R})$, the latter being the most interesting case physically, and let us also simplify life by requiring that $m \equiv v_0 - v_0''$ has only a finite number of (proper) changes of sign (per period). Then the solution exists in its function class for all time $0 \le t < \infty$ only if the points x_{-} where $m_0(x_{-}) < 0$ lie wholly to the left of the points

^{*}Received December 8, 1998; accepted for publication February 5, 1999.

[†]CIMS, 251 Mercer Street, NYC, U.S.A. (mckean@cims.nyu.edu). The work presented here was performed at the Courant Institute of Mathematical Sciences with the partial support of the National Science Foundation under NSF Grant No. DMS-9112664, which is gratefully acknowledged.

 $^{{}^{1}}Q'^{\bullet} = v'(t,Q) Q' \text{ and } Q'_{0} \equiv 1 \text{ forces } Q'(x) > 0.$ ${}^{2}\frac{d}{dt}m(Q) Q'^{2} = [m^{\bullet}(Q) + m'(Q) Q^{\bullet}] Q'^{2} + 2mQ^{\bullet}Q'^{\bullet} = 0, \text{ as you will check.}$

 x_+ where $m_0(x_+) > 0$ (which never happens in the periodic case unless m_0 is of one sign). Contrariwise, if m_0 is not of such a shape, then the solution breaks down at some time $T < \infty$: in fact, as $t \uparrow T$, $v'(t,Q) \downarrow -\infty$ at one or more of the (time independent) roots x_0 of m(Q) = 0; simultaneously, $Q'(t,x_0) \downarrow 0$, and more—Q(t,x)flattens out in the largest interval $a \leq x \leq b$ containing x_0 in which $m_0(x) \equiv 0$. This is how the diffeomorphism comes to the "edge" of the group; in particular, the geodesic flow in $D(\mathbb{R})$ is incomplete. The existence of v(t,x) : t < T, $x \in \mathbb{R}$ is not discussed here: That is covered by the methods of CONSTANTIN-ESCHER [1998] and CONSTANTIN-McKEAN [1998]. The present paper deals only with breakdown; it is a technical amplification of McKEAN [1999] which reviewed the whole connection with the diffeomorphism group and explained the breaking in a simple case.

Acknowledgment. It is a pleasure to thank A. Constantin for listening with much patience to rough version of the proof described below.

2. Preliminaries. Keep in mind the constants of motion $m(Q) Q'^2 = m_0(x)$ and the moral they convey: that the points x_0 where m(Q) changes sign are fixed in time. Note also the duality: that if v(t,x) is a solution, then so is -v(t,-x). This will cut down the number of cases to be treated. Now come some little tricks which will be continually in use. They obtain up to the breaking time $T \leq \infty$.

3)
$$\frac{d}{dt}e^{Q}(v'-v)(Q) = -\frac{1}{2}e^{Q}(v'-v)^{2}(Q) - \frac{1}{2}\int_{-\infty}^{Q}e^{y}(v'-v)^{2}(y)\,dy.$$

4)
$$\frac{d}{dt}e^{-Q}(v'+v)(Q) = -\frac{1}{2}e^{-Q}(v'+v)^2(Q) - \frac{1}{2}\int_Q^\infty e^{-y}(v'+v)^2(y)\,dy.$$

5)
$$\frac{d}{dt}v'(Q) = \frac{1}{2}v^2(Q) - \frac{1}{2}v'^2(Q) - \frac{1}{4}\int_{-\infty}^{\infty} e^{-|Q(x)-y|}(v'\pm v)^2(y)\,dy,$$

in which the ambiguous signature is that of y - Q(x).

6)
$$|v|$$
 is bounded, independently of time, by a fixed constant C.

7) v' is bounded above by $2C + \max v'_0$.

8)
$$v'$$
 is bounded below by $-C$ if breakdown does not take place.

Proof. $e^Q(v'-v) = -\int_{-\infty}^Q e^y m(y) \, dy$. Now differentiate by t, using $Q^{\bullet} = v(Q)$ and $-m^{\bullet} = (mv)' + \frac{1}{2} (v^2 - v'^2)'$, and integrate by parts to obtain 3). 4) follows by duality. 5) is obtained by combining 3) and 4). 6) is plain if $v \in C^{\infty}_{\downarrow}(\mathbb{R})$: then $H = \int_{-\infty}^{\infty} (v^2 + v'^2) \, dx$ is a constant of motion and $v^2 = 2 \int_{-\infty}^x vv' \leq H$. The periodic case is similar with constant of motion $H = \int_0^1 (v^2 + v'^2) \, dx$ and $v^2 \leq 2H$. Likewise, if $v = c + w \in \mathbb{R} + C^{\infty}_{\downarrow}(\mathbb{R})$, then c and $H = \int_{-\infty}^{\infty} (w^2 + w'^2) \, dx$ are constants of motion and $|v| \leq |c| + \sqrt{H}$. 7) now follows from 3), 4), and 6): $e^{\pm Q} (v' \mp v)(Q)$ decreases with time and one of e^Q are e^{-Q} exceeds 1, so $v'(Q) \leq e^{\mp Q} (v'_0 \mp v_0)(Q) \pm v(Q)$, etc. 8) follows from 5) and 6) by the reasoning of sect. 1:

$$\frac{d}{dt}v'(Q) \le \frac{1}{2}v^2(Q) - \frac{1}{2}v'^2(Q) \le \frac{1}{2}C^2 - \frac{1}{2}v'^2(Q)$$

drives v'(Q) down to $-\infty$ in finite time at any place where $v'_0(x)$ falls below -C.

3. Proof of Breakdown. It is to be proved that breakdown takes place if there is any positive "mass" m_0 to the left of some negative mass. Let x = 0 be chosen as in the figure so that $m_0(x)$ and so also m(Q) is positive near $x_- < 0$ and negative

near $x_+ > 0$, a single interval containing x = 0 being permitted for $m_0(x)$ to vanish. The picture is self-dual. Now if (v' - v)(Q) is ever negative at x = 0, then 3) in the form

$$\frac{d}{dt} e^{Q} (v' - v)(Q) \le -\frac{1}{2} \left[e^{Q} (v' - v)(Q) \right]^{2} e^{-Q}$$

implies $\int_0^\infty e^{-Q} dt < \infty$ in the absence of breakdown; likewise, if (v' + v)(Q) is ever negative at x = 0, then $\int_0^\infty e^Q dt < \infty$; and since $\int_0^\infty e^{\pm Q} dt$ cannot both converge, so you can assume $(v' - v)(Q) \ge 0$ at x = 0 at all times $t \ge 0$, by duality. Now distinguish two cases according as (v' + v)(Q) is ever negative at x = 0 or not.

Case 1: $(v' + v)(Q) \ge 0$ at x = 0 at all times $t \ge 0$. $(d/dQ) e^Q (v' - v)(Q) = -e^Q m(Q)$ is ≤ 0 between x_- and x = 0, so $(v' - v)(Q) \ge 0$ there, and (v' + v)(Q) likewise; in particular, $v'(Q) \ge |v(Q)|$ for $x_- \le x \le 0$, and, in the absence of breakdown, so that $v'(Q) \ge -C$ by 8), 5) implies

$$+\infty > \int_0^\infty dt \, e^{-Q(x)} \int_0^{Q(x)} e^y (v'-v)^2(y) \, dy$$
 between $x = x_-$ and $x = 0$.

Fix $x_{-} < a < c < b < 0$ with $c = \frac{1}{2}(a+b)$ and $m_0(x) > 0$ between a and b. Then with x = c in the last display,

$$+\infty > \int_0^\infty dt \, e^{-Q(c)} \int_{Q(a)}^{Q(c)} \left[e^y \left(v' - v \right) \right]^2 e^{-y} \, dy$$

$$> \int_0^\infty dt \, e^{-Q(c)} \left[e^Q (v' - v) \text{ at } x = c \right]^2 \int_{Q(a)}^{Q(c)} e^{-y} \, dy$$

$$= \int_0^\infty dt \left[(v' - v)(Q) \text{ at } x = c \right]^2 \times \left[e^{Q(c) - Q(a)} - 1 \right].$$

This contradicts the fact that $m_0(x) > 0$ for $a \le x \le b$, as will be seen in a few easy steps.

STEP 1 uses $(v' - v)(Q) \ge 0$ to obtain the simple bound:

$$\left[\int_{c}^{b}\sqrt{m_{0}(x)} dx\right]^{2} = \left[\int_{c}^{b}\sqrt{m(Q)} dQ\right]^{2}$$
$$\leq \int_{c}^{b}m(Q) dQ \times [\Delta Q \equiv Q(b) - Q(c)]$$
$$= \int_{c}^{b}(v - v' + v' - v'') (Q) dQ \times \Delta Q$$
$$\leq [(v' - v) (Q) \text{ at } x = c] \times \Delta Q.$$

STEP 2. Now let v(Q) be negative at x = b. Then $v'(Q) \ge |v(Q)|$ implies $v(Q) \le 0$ down to x = a, so from $Q^{\bullet} = v(Q)$ and $Q'^{\bullet} = v'(Q)Q'$, it appears that

$$Q'' = Q' \int_0^t v''(Q) Q' dt' = Q' \int_0^t (v - m)(Q) Q' dt' < 0,$$

whence

$$\left[\int_{c}^{b} \sqrt{m_{0}}\right]^{4} \leq \left[\left(v'-v\right)^{2}(Q) \text{ at } x = c\right] \times 2\left[e^{Q(b)-Q(c)}-1\right]$$
$$\leq \left[\left(v'-v\right)^{2}(Q) \text{ at } x = c\right] \times 2\left[e^{Q(c)-Q(a)}-1\right],$$

and now the summability of the last line forces meas $(t \ge 0 : v(Q) \le 0$ at x = b) to be finite; in particular, $\int_0^\infty v_-(Q) dt > -\infty$ at x = b, by 6). Obviously, there is nothing special about x = b: the same is true at x = a by a self-evident reprise. This was the goal of Step 2.

STEP 3 will confirm that $\int_0^\infty v_+(Q) dt$ is also finite at x = a: (v'-v)(Q) is positive between x_- and 0 and decreases there in view of v'' - v' = -m + v - v' < 0, so

$$\exp\left[\int_0^t v'(Q) - \int_0^t v(Q)\right] = Q' e^{x-Q} \text{ is } \ge 1 \text{ and decreases, too.}$$

Then

$$1 \le Q'(b) e^{b-Q(b)} \le \frac{1}{b-a} \int_a^b e^{x-Q(x)} dQ$$
$$\le \frac{e^b}{b-a} \times e^{-Q(a)}$$

and now this estimate, controlling $Q(a) = a + \int_0^t v_-(Q) + \int_0^t v_+(Q)$ from above, confirms $\int_0^\infty v_+(Q) dt < \infty$.

STEP 4. But this means that Q is bounded, not only if x = a, but at x = c as well, by a self-evident reprise, and now $\left(\int_{c}^{b} \sqrt{m_{0}}\right)^{4}$ as seen in step 2, is over-estimated

 $^{{}^{3}}v_{-}$ is the negative part of v.

 $^{^{4}}v_{+}$ is the positive part of v.

by a constant multiple of $e^{Q} (v' - v)^{2} (Q)$ at x = c, this being summable by 3) and the fact that $(v' - v) (Q) \ge 0$. That is the contradiction.

Case 2: $(v'-v)(Q) \ge 0$ at x = 0 for all $t \ge 0$ and (v'+v)(Q) < 0 at x = 0 for, e.g., t = 0. Then 4) shows that, in the absence of breakdown, $\int_0^\infty e^Q dt < \infty$ at x = 0and so also for $x \le 0$, Q being increasing in x, in which case, $\int_0^\infty e^{-Q} dt = +\infty$ and $e^Q (v'-v) \ge 0$ for every $x \le 0$, by 3). Now $\int_0^\infty e^Q dt < \infty$ for $x \le 0$ only if

$$\infty > \int_0^\infty e^Q Q' dt = \int_0^\infty \exp\left[\int_0^t \left(v' + v\right)(Q) dt'\right] dt \quad a.e.,$$

from which you learn that (v'-v)(Q) turns strictly negative, and stays that way, by 4), at sometime $T(x) < \infty$, for almost all $x \leq 0$; moreover, the fact that $e^{-Q}(v'+v)(Q)$ decreases for $x_{-} \leq x \leq 0$ implies that T(x) is finite and decreasing in the half-open interval $x_{-} < x \leq 0$. Two subcases are now distinguished according to the behavior of $\Delta Q = Q(b) - Q(a)$ for $x_{-} < a < b < 0$.

Case 2.1: ΔQ is bounded from above for every choice of $x_{-} < a < b < 0$ (as it must be in the periodic case when $\Delta Q \leq Q(1) - Q(0) = 1$). Now $\infty > T(a) = 0$, say, in which case (v' - v)(Q) > 0, $(v' + v)(Q) \leq 0$, and v(Q) < 0 for all $a \leq x \leq b$ and $t \geq 0$. Now comes a familiar type of trick:

$$\left[\int_{a}^{b}\sqrt{m_{0}}\,dx\right]^{2} = \left[\int_{a}^{b}\sqrt{m}\,dQ\right]^{2} \le \int_{a}^{b}m(Q)\,dQ \times \Delta Q$$
$$\le \int_{a}^{b}-v''(Q)\,dQ \times \Delta Q$$
$$= -v'(Q)\Big|_{a}^{b} \times \Delta Q$$

from which it appears that, in the absence of breakdown, ΔQ is also bounded from below, by 7) and 8). But also Q'' < 0 as in Step 2 of Case 1, v being negative, from which you learn that 0 < Q'(b)/Q'(a) < 1 and that

$$\frac{d}{dt} \frac{Q'(b)}{Q'(a)} = v'(Q) \Big|_a^b \times \frac{Q'(b)}{Q'(a)} < 0 \text{ is summable.}$$

Q'' < 0 and the boundedness of ΔQ for every choice of $x_- < a < b < 0$ come into play once more to check that Q'(b)/Q'(a) is bounded below, and now a contradiction is obtained: $v'(Q)|_a^b$ is summable, but

$$\left[\int_{a}^{b}\sqrt{m_{0}}\right]^{2} \leq v'(Q)|_{a}^{b} \times \text{ the upper bound of } \Delta Q \text{ is not.}$$

Case 2.2: Q(b') - Q(a') is unbounded above for some $x_{-} < a' < b' < 0$. Now pick $x_{-} < c < a < b < a'$ with T(c) = 0 for simplicity and $m_0(x) > 0$ between c and b. Note that v(Q) is negative, as before, so that v''(Q) < v(Q) < 0, m(Q) being positive, and also that Q'' < 0. A variant of the familiar $\left[\int_a^b \sqrt{m_0} dx\right]^2 \leq \int_a^b m(Q) dQ \times \Delta Q$ is

now used. It reads

$$\begin{bmatrix} \int_{a}^{b} \sqrt{m_{0}(x)} \, dx \end{bmatrix}^{2} \leq \int_{a}^{b} m(Q) \left[Q(x) - Q(c) \right] dQ \int_{a}^{b} \frac{dQ}{Q(x) - Q(c)}$$

$$< \int_{Q(c)}^{Q(b)} -v''(x) \left[x - Q(c) \right] dx \, \ell g \, \frac{Q(b) - Q(a)}{Q(a) - Q(c)}$$

$$< \frac{-\left[v'(Q) \text{ at } x = b \right] \times Q(b) - Q(c)}{-\left[v(Q) \text{ at } x = c \right]} \right\} \times \ell g \, \frac{b - a}{a - c},$$

Q'' < 0 being used to appraise the logarithm. I propose to show that v'(Q) > 0 at x = b and that v(Q) = o(1) at x = c for suitable $t = t_1 < t_2 < etc. \uparrow \infty$. This will be contradictory. Chose these "special" times so that $Q(b') - Q(a') \uparrow +\infty$. Then $Q(a') - Q(b) \uparrow +\infty$, too, since Q'' < 0, and you can also assume (d/dt) [Q(a') - Q(b)] > 0 at special times. But

$$\frac{d}{dt} [Q(a') - Q(b)] = \int_{b}^{a'} v'(Q) \, dQ \le [v'(Q) \text{ at } x = b] \times [Q(a') - Q(b)]$$

so v'(Q) is positive at x = b for special times and stays positive down to x_{-} in view of v''(Q) < 0. This is half the battle. Next, fix d < c. Then -v(Q) decreases between d and c, so

$$0 < -[v(Q) \text{ at } x = c] \times [Q(c) - Q(d)] < -\int_{d}^{c} v''(Q) \, dQ,$$

in which the right hand side is bounded in the absence of breaking, and since $Q(c) - Q(d) \uparrow +\infty$ by reason of Q'' < 0, you may conclude that v(Q) = o(1) at x = c for special times. The proof is finished.

4. How It Breaks Down. The conditions for breaking are now established, but how does it happen?

Return to fig. 1 with m(Q) > 0 for $x_{-} < x < a$, m(Q) = 0 for $a \le x \le b$, and m(Q) < 0 for $b < x < x_{+}$; necessarily, $a \le 0 \le b$. $T < \infty$ is the breaking time, *i.e.*, the moment when v'(Q) gets out of hand, assuming that this takes place between x_{-} and x_{+} . Breakdown can happen only in this way, as will be seen.

Item 1. $v'(Q) \equiv w$ is bounded above, by 7), and 5) in the form $m^{\bullet} \leq \frac{1}{2}C^2 - \frac{1}{2}w^2$ shows that it can get out of hand only by an ultimate decrease to $-\infty$, in the style of w = a negative constant $\times (T-t)^{-1}$ or worse, in which case $Q'(t,x) = \exp \int_0^t v'(Q) \downarrow 0$ as $t \uparrow T$, and conversely: if $Q' \downarrow 0$ as $t \uparrow T < \infty$, then w = v'(Q) is ultimately very negative and 5) drives it down to $-\infty$.

Item 2. Q(T-,x) exists everywhere, v being bounded, and $e^Q(v'-v)(Q)$ decreases/increases where m(Q) is positive/negative, from which you see that breakdown occurs, if at all, at points where m(Q) changes sign, from positive to negative: x = 0 is such a point.

Item 3. v'(Q) at x = 0 now decreases to $-\infty$ as $t \uparrow T$ and carries with it the slope v'(Q) at the general point x of the (maximal) interval [a, b] where m(Q) = 0, v'' = v being bounded there; in particular, Q(x) flattens out in the whole interval $a \le x \le b$, by item 1.

Item 4 is the converse: if Q(x) flattens out in any interval $a \le x \le b$, then $m_0(x)$ and so also m(Q) vanishes there; simultaneously, $v'(Q) \downarrow -\infty$.

Proof. Let Q(x) flatten out in $a \le x \le b$ with $x_- < a < b \le 0$, say, and take c < d properly between a and b. Then

$$\left[\int_{c}^{d} \sqrt{m_{0}} \, dx \right]^{2} \leq \int_{c}^{d} m(Q) \left[Q(b) - Q(x) \right] dQ \int_{c}^{d} \frac{dQ}{Q(b) - Q(x)} \\ \leq \int_{c}^{b} \left(v - v'' \right) (Q) \left[Q(b) - Q(x) \right] dQ \times \ell g \frac{Q(b) - Q(c)}{Q(b) = Q(d)} \\ \leq C \times \frac{1}{2} \left[Q(b) - Q(a) \right]^{2} \\ + v'(Q) \text{ at } x = a \times \left[Q(b) - Q(a) \right] \\ - v(Q) \Big|_{a}^{b} \right\} \times \ell g \frac{Q(b) - Q(c)}{Q(b) - Q(d)} \\ \leq \text{ a constant multiple of } \sqrt{Q(b) - Q(a)} \times \ell g \frac{Q(b) - Q(a)}{Q(b) - Q(d)}$$

owing to the control of v'(Q) above, by 7), and to the elementary estimate $|v(b) - v(a)|^2 \leq \int_a^b (v')^2 \times (b-a)$, the integral being controlled by the proper constant of motion in all function classes. Now $Q'' = Q' \int_0^t v''(Q)Q'$ is bounded above by a multiple K of Q' for $a \leq x \leq b$ in view of m = v - v'' > 0 and 7); in particular, $Q'e^{-KQ}$ is decreasing in x, so the flattening out of Q in [a, b] implies that, for $t \uparrow T$, $Q' \downarrow 0$ and so also $v'(Q) \downarrow -\infty$, uniformly in [a, b].

Now use 5) for w = v'(Q) in the form $w^{\bullet} = -\frac{1}{2}w^2 + 2V$, with $V = \frac{1}{4}v^2(Q)$ etc., and write $w = 2\psi^{\bullet}/\psi$ with $\psi(0) = 1$, say, and $\psi^{\bullet}(0) < 0$, fixing the variable x between a and b. Then $\psi^{\bullet\bullet} = V\psi$, $\psi(T-) = 0$, and $\psi^{\bullet}(T-) < 0^5$, reflecting the fact that $w \downarrow -\infty$ as $t \uparrow T$. It follows that v'(Q) behaves like -2/(T-t) or nearly so as $t \uparrow T$, so Q' is no worse than $(T-t)^{3/2}$ for $a \le x \le b$. But now $\int_c^d \sqrt{m_0}$, as seen in the big display, is over-estimated by $(T-t)^{3/4} \ell g(T-t)$ and so vanishes, and $m_0(x) = 0$ in whole of [a, b], the subinterval [c, d] having been chosen as you will.

5. A Little Example. This falls outside the function classes admitted above but never mind. v(t, x) is soliton/anti-soliton pair

$$\frac{1}{2} p e^{-|x+q|} - \frac{1}{2} p e^{-|x-q|},$$

symmetric about x = 0, with positive q = q(t) and p = p(t), $q^{\bullet} = -p(1 - e^{-2q})$, $p^{\bullet} = p^2 e^{-2q}$, and the constant of motion $H = \frac{1}{2}p^2(1 - e^{-2q})$. With $\Theta = T - t$, you find $q = \ell g ch \Theta$, $p = ch \Theta/sh \Theta$ and, for $x > \ell g ch T = q(0)$, $e^Q = e^x + ch \Theta - ch T$, as you may check. In particular, Q flattens out and $v'(Q) \downarrow -\infty$ in the interval $|x| \le q(0) = \ell g ch T$, precisely.

 $^{{}^{5}\}psi^{\bullet}(T-)=0$ implies $\psi\equiv 0$ which is not the case.

H. MCKEAN

REFERENCES

- V. I. ARNOLD AND B. A. KHESIN, Topological Methods in Hydrodynamics, Appl. Math. Sci., 125, Springer-Verlag, New York, 1998.
- R. CAMASSA AND D. D. HOLM, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), pp. 1661–1664.
- [3] R. CAMASSA, D. D. HOLM, AND J. HYMAN, A new integrable shallow water equation, Adv. Appl. Math., 31 (1994), pp. 1–33.
- [4] A. CONSTANTIN AND J. ESCHER, Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation, CPAM, 51 (1998), pp. 475-504.
- [5] A. CONSTANTIN AND H. P. MCKEAN, A shallow-water equation on the circle, CPAM, to appear 1999.
- [6] A. FOKAS AND B. FUCHSTEINER, Symplectic structures, their Bäcklund transformations, and hereditary symmetries, Physica D., 4 (1981), pp. 47-66.
- [7] G. MISIOLEK, A shallow water equation as geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), pp. 203-208.