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BREAKDOWN OF A SHALLOW WATER EQUATION* 

H. P. MCKEANt 

1.  Introduction. The 1-dimensional shallow water equation: 

dv        dv      dp 
1) —-+i> — + — =0    with "pressure" 

ot        ox     ox 

2) pW = 5/~e-l«-H^ + I^ dy 

was noted by FOKAS-FUCHSTEINER [1981] as being formally integrable. 
CAMASSA-HOLM [1993] rediscovered it from a hydro dynamical point of view and 
developed it to a large degree, both there and in CAMASSA-HOLM-HYMAN [1994]. 
Their most striking discovery is that it has (peaked) solitons v(t, x) = ipe-^-^-^/2' 
with constant q and p, capable of being superposed in an elementary way, as sums 
v(t,x) — \ X^ILi PiWe^-9*^!, where now the g's and p's obey the equations q* — 
dH/dp, p* — -dH/dq of the geodesic flow in the co-tangent bundle of IRn, equipped 
with the inverse metric tensor ^e\qi~qj\ : 1 < i, j < n, i.e., with Hamiltonian 
H = | \p\2 + j ^PiPj e~\qi~qj\. From this, it is only a little jump to the realiza- 
tion that the full shallow water flow in, e.g., (^(R) is just a transcription of the 
geodesic flow in the group D(R) of (smooth proper) diffeomorphisms of the line, 
equipped with an analogous Riemannian geometry; see MISIOLEK [1998] for the 
more general case v <E E + C^E) with the attendant BOTT-VISASORO group, and 
compare ARNOLD-KHESIN [1998] for background and other illustrations of the gen- 
eral principle involved. Not much of that is needed here: it will suffice to observe a) 
if v(t) obeys the shallow water flow in, e.g., C00(R) and if Q(t, x) solves Q0 = v(t, Q) 
with Qo(x) = x, then Q is a diffeomorphism of the line1, imitating the identity near 
x = ±oo, and obeying the geodesic flow in £)(M), and b) the shallow water flow, 
expressed by means of m = v — v" as in *) m* -f [mD + Dm) v = 0, has first integrals 
in the form m(Q) Q,2(x) = mo(x).2 *) shows that m(Q) retains the general shape of 
mo(x), independently of t > 0, illustrating the utility of the diffeomorphism for the 
study of the flow; indeed, it is the principal tool for the question posed here: When, 
and if so how, does the shallow water flow breakdown? 

Now, unlike KdV, breakdown is common enough as already noted in CAMASSA- 
HOLM [1993]: for example, if J_00(v

2 + v'2) dx = H < oo, this being a constant of 

motion, then, from 5) below in the form ^v'iQ) < ^v2(Q) — ^v'2(Q), you see that 
v'oixo) < —y/H at any place XQ G M. implies V'Q^^XQ) I — oo at some finite time. 

To fix ideas, let us suppose that either VQ G C00^) is of period 1 or else VQ G 
M 4- C?0^), the latter being the most interesting case physically, and let us also 
simplify life by requiring that m = VQ — V'Q has only a finite number of (proper) 
changes of sign (per period). Then the solution exists in its function class for all time 
0 < t < oo only if the points X- where mo(x-) < 0 lie wholly to the left of the points 
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1Q/9 = v'(t,Q)Q' and Q'0 = 1 forces Q'{x) > 0. 
2^ra(Q)Q'2 = [m^Qj-fm^QjQ*] Q'2 +2mQ^Q,^ =0, as you will check. 
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x+ where mo(x+) > 0 (which never happens in the periodic case unless mo is of one 
sign). Contrariwise, if mo is not of such a shape, then the solution breaks down at 
some time T < oo; in fact, as t t T, vr(t,Q) \, —oo at one or more of the (time 
independent) roots XQ of m{Q) = 0; simultaneously, Q'(t,xo) ^ 0, and more—Q(t,x) 
flattens out in the largest interval a < x < b containing XQ in which mo(x) = 0. 
This is how the diffeomorphism comes to the "edge" of the group; in particular, the 
geodesic flow in D(R) is incomplete. The existence of v(t,x) : t < T, x G E is not 
discussed here: That is covered by the methods of CONSTANTIN-ESCHER [1998] 
and CONSTANTIN-McKEAN [1998]. The present paper deals only with breakdown; 
it is a technical amplification of McKEAN [1999] which reviewed the whole connection 
with the diffeomorphism group and explained the breaking in a simple case. 

Acknowledgment. It is a pleasure to thank A. Constantin for listening with 
much patience to rough version of the proof described below. 

2. Preliminaries. Keep in mind the constants of motion m(Q) Q'2 = mo(x) 
and the moral they convey: that the points XQ where m(Q) changes sign are fixed in 
time. Note also the duality: that if v{t,x) is a solution, then so is —v(t,—x). This 
will cut down the number of cases to be treated. Now come some little tricks which 
will be continually in use. They obtain up to the breaking time T < oo. 

3) jt e« («' - „) (Q) = -1 e« („' - vf (Q) - l- £ ey (v> - v)2 (y) dy. 

4) _e-«(u' + w)(Q) = _-e-«(u'+v)2(Q)_-y    e-y{vl+v)2{y)dy. 

5) | v'{Q) =l-v\Q)-1- V»(Q) - ± j     e-W(«)-yl („' ± vf{y) dy, 

in which the ambiguous signature is that of y — Q{x). 

6) \v\ is bounded, independently of time, by a fixed constant C. 

7) v' is bounded above by 2(7 + max^g. 

8) v' is bounded below by —C if breakdown does not take place. 

Proof e^i/ - v) = — J_    ey m(y) dy. Now differentiate by t, using Qm = v(Q) 

and -m* = (mv)' + | (v2 — v'2) , and integrate by parts to obtain 3). 4) follows 
by duality. 5) is obtained by combining 3) and 4). 6) is plain if v G C^0(E): then 
H = f^iv2 + v12) dx is a constant of motion and v2 = 2 f*^ vv' < H. The periodic 

case is similar with constant of motion H = J0 (v
2 4- v'2) dx and v2 < 2H. Likewise, 

ifv = c + weR+ C^ (E), then c and H = J^(w2 + w'2) dx are constants of motion 

and \v\ < \c\ 4- VH. 7) now follows from 3), 4), and 6): e±Q (v' =F v)(Q) decreases 
with time and one of eQ are e~Q exceeds 1, so vf(Q) < e^® (V'Q T VO)(Q) ± v(Q), etc. 
8)follows from 5) and 6) by the reasoning of sect. 1: 

f/iQ) < lv*(Q) -^(Q) <\C2 -l-v'HQ) 

drives v'(Q) down to —oo in finite time at any place where ^o(^) falls below — C. D 

3. Proof of Breakdown. It is to be proved that breakdown takes place if there 
is any positive "mass" mo to the left of some negative mass. Let x — 0 be chosen as 
in the figure so that mo (a;) and so also m(Q) is positive near X- < 0 and negative 
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mo(x) or m(Q) 
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X- > —oo x = 0 X+  < 00 

near x+ > 0, a single interval containing x — 0 being permitted for m^x) to vanish. 
The picture is self-dual. Now if (v' — v)(Q) is ever negative at x — 0, then 3) in the 
form 

jt eV - vXQ) < -1- [e^K - ^)(Q)]2 e"0 

implies /0 e ^dt < oo in the absence of breakdown; likewise, if {v' + v)(Q) is ever 
negative at x = 0, then /Q

00
 e® dt < oo; and since f^0 e^® dt cannot both converge, so 

you can assume (V — v)(Q) > 0 at x = 0 at all times £ > 0,by duality. Now distinguish 
two cases according as (vf + v)(Q) is ever negative at x = 0 or not. 

Case 1: (v' + v)(Q) > 0 at x = 0 at all times £ > 0. (dldQ)eQ(v' - v)(Q) = 
—e(^m{Q) is < 0 between x- and x = 0, so (?/ - i;)(Q) > 0 there, and (v' + 
v)(Q) likewise; in particular, v'(Q) > \v(Q)\ for X- < x < 0, and, in the absence of 
breakdown, so that i/(Q) > -C by 8), 5) implies 

roo rQ(x) 
+oo >   /    dte~Q^  / e27^ -v)2(y)dy between 

Jo Jo 
x — X- and x — 0. 

Fix :£_<a<c<&<0 with c = |(a + 6) and mo (a;) > 0 between a and b.  Then 
with a; = c in the last display, 

> /     dte-W /        [ey (v'- v)Y e-y dy 
Jo JQ{a) 

roo pQ(c) 
> dt e-Q^ [eQ (v' - v) at x = c]    /        e-y dy 

Jo JQ(a) 
roo 

= dt [(v' - v)(Q) at x = cf x \eQ^-Q^ - ij . 

This contradicts the fact that mo(x) > 0 for a < x < 6, as will be seen in a few easy 
steps. 



870 H. MCKEAN 

STEP 1 uses (v' - v)(Q) > 0 to obtain the simple bound: 

'    nb 

/  Vm{. 
J c 

x) dx /   VMQ)dQ 
J c 

< I m(Q) dQ x [AQ = Q(b) - Q(c)] 

=  f  (v - vl + v' - v") (Q) dQ x AQ 

< [(vf - v) (Q) at x = c] x AQ. 

STEP 2.   Now let v(Q) be negative at x = b.   Then vf(Q) > \v(Q)\ implies 
v(Q) < 0 down to x = a, so from Q* = i;((5) and Q'9 = v'(Q) Q', it appears that 

Q" = Q' f v"{Q) Q' dtf = Q' [ (v- m)(Q) Q' dt' < 0, 
Jo Jo 

whence 

J c 

< [(v' - vf (Q) at x = c] x 2 [eW)-^c) - ll 

< [(</ - ^)2 (Q) at x = c] x 2 [eQ^-QM - l] , 

and now the summability of the last line forces meas (t > 0 : v(Q) < 0 at x = &) to be 
finite; in particular,3 JQ

00
 V-(Q) dt > —oo at x = &, by 6). Obviously, there is nothing 

special about x = b: the same is true at x = a by a self-evident reprise. This was the 
goal of Step 2. 

STEP 3 will confirm that4 f™ v+(Q) dt is also finite at x = a: (?/ —1>) (Q) is 
positive between x_ and 0 and decreases there in view of v" — v' = —m + v — v' < 0, 
so 

exp fv'iQ)- fv 
Jo Jo 

(Q) = Q'e I 0x-Q is > 1 and decreases, too. 

Then 

l<Q'(&)e»-W)<_L- f 
b-aja 

Sx-Q(x) dQ 

b — a 

and now this estimate, controlling Q(d) = a + /0 v-(Q) + /0 v+(Q) from above, 
confirms J^0 v+(Q) dt < oo. 

STEP 4. But this means that Q is bounded, not only if x = a, but at a: = c as 

well, by a self-evident reprise, and now (Jc y/moj   as seen in step 2, is over-estimated 

3v- is the negative part of v. 
4v+ is the positive part of v. 



BREAKDOWN OF A SHALLOW WATER EQUATION 871 

by a constant multiple of e^ (v' — v)   (Q) at x = c, this being summable by 3) and 
the fact that (v' — v) (Q) > 0. That is the contradiction. 

Case 2: (t/ - v) (Q) > 0 at x = 0 for alU > 0 and (V + v) (Q) < 0 at x = 0 for, 
e.g., t = 0. Then 4) shows that, in the absence of breakdown, J^0 e® dt < oo at x = 0 
and so also for a: < 0, Q being increasing in a:, in which case, Jg00 e~Q dt = +oo and 

eQ (^^ — f) > 0 for every x < 0, by 3). Now JQ
00
 e^ dt < oo for x < 0 only if 

oo > 
rOO nOO r    /'i 

/    eQQldt=        exp   /   («'+ w) (Q) di' 
-/o Jo Uo 

dt    a.e.. 

from which you learn that (v' — v) (Q) turns strictly negative, and stays that way, 
by 4), at sometime T(x) < oo, for almost all x < 0; moreover, the fact that 
e-^ (v' -f v) (Q) decreases for X- < x < 0 implies that T(x) is finite and decreasing 
in the half-open interval X- < x < 0. Two subcases are now distinguished according 
to the behavior of AQ = Q(b) - Q(a) for X- < a < b < 0. 

Case 2.1: AQ is bounded from above for every choice of X- < a < b < 0 (as it 
must be in the periodic case when AQ < Q(l) — Q(0) = 1). Now oo > T(o) = 0, say, 
in which case (V — v) (Q) > 0, (v' + v) (Q) < 0, and v(Q) < 0 for all a < x < b and 
t > 0. Now comes a familiar type of trick: 

J a 

n 2 

/modx 
rb pb 

I   VmdQ     <  /   m(Q)dQxAQ 
J a J a 

< f -v"(Q)dQxAQ 
J a 

= -v'(Q)\baxAQ 

from which it appears that, in the absence of breakdown, AQ is also bounded from 
below, by 7) and 8). But also Q" < 0 as in Step 2 of Case 1, v being negative, from 
which you learn that 0 < Q/(6)/Q/(a) < 1 and that 

^^ = ^)LxQiy<0lssummable- 
Q" < 0 and the boundedness of AQ for every choice of X- < a < b < 0 come into 
play once more to check that Q'(b)/Q'(a) is bounded below, and now a contradiction 
is obtained: t/(Q)|a is summable, but 

«/ a 
^ v,(Q)\ba x  ^e upper bound of AQ    is not. 

Case 2.2: Q{b') — Q(a') is unbounded above for some X- < a! < b' < 0. Now 
pick rE_<c<a<&<a/ with T(c) = 0 for simplicity and mo(x) > 0 between c and 6. 
Note that v(Q) is negative, as before, so that v"(Q) < v{Q) < 0, m(Q) being positive, 

and also that Q" < 0. A variant of the familiar   Ja ^yrnodx     < Ja m(Q) dQ x AQ is 
l2 
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now used. It reads 

nb dQ 
f  Vmo(x)dx     < [ m(Q)[Q(x)-Q(c)]dQ f 

< [^ -v"ix) [x - Q(c)] dx Zg gff'ffij 
JQ{C) QW - Q{c) 

-[v'(Q)citx = b]xQ(b)-Q(c)  } b-a 
< } X £g , 

- [v(Q) at x = c] J a-c 

Q" < 0 being used to appraise the logarithm. I propose to show that ?/(Q) > 0 at 
x = b and that v(Q) =0(1) at x — c for suitable t = ti < ^ < etc. t oo. This will be 
contradictory. Chose these "special" times so that Q(b,) — Q(af) t +oo. Then Q(a') — 
Q{b) t +oo, too, since Q" < 0, and you can also assume (d/dt) [Qia') — Q(b)] > 0 at 
special times. But 

d^ 

di 
[Q{a') - Q(b)} =  /    v'(Q) dQ < [v'(Q) at x = b] x [Q(a') - Q(b)] 

so vr(Q) is positive at x = b for special times and stays positive down to X- in view 
of v"(Q) < 0. This is half the battle. Next, fix d < c. Then —v(Q) decreases between 
d and c, so 

0 < - [v(Q) at x = c] x [Q(c) - Q(d)] < - [ v"(Q) dQ, 
Jd 

in which the right hand side is bounded in the absence of breaking, and since Q{c) — 
Q{d) t +oo by reason of Q" < 0, you may conclude that v(Q) = o(l) at x = c for 
special times. The proof is finished. 

4. How It Breaks Down. The conditions for breaking are now established, 
but how does it happen? 

Return to fig. 1 with m(Q) > 0 for X- < x < a, m(Q) = 0 for a < x < b, and 
m(Q) < 0 for b < x < x+) necessarily, a < 0 < b. T < oo is the breaking time, i.e., 
the moment when T/(Q) gets out of hand, assuming that this takes place between X- 
and #+. Breakdown can happen only in this way, as will be seen. 

Item 1. v'(Q) = w is bounded above, by 7), and 5) in the form m9 < \C2 — \w2 

shows that it can get out of hand only by an ultimate decrease to — oo, in the style of 
w — a negative constant x (T-t)-1 or worse, in which case Q'it^x) — exp J0 v'iff) ^ 
0 as 11 T, and conversely: if Q1 | 0 as 11 T < oo, then w = v'(Q) is ultimately very 
negative and 5) drives it down to — oo. 

Item 2. Q(T—,x) exists everywhere, v being bounded, and eQ (v' — v)(Q) de- 
creases/increases where m(Q) is positive/negative, from which you see that breakdown 
occurs, if at all, at points where m(Q) changes sign, from positive to negative: x = 0 
is such a point. 

Item 3. i/(Q) at x = 0 now decreases to -oo as t f T and carries with it the 
slope v'(Q) at the general point x of the (maximal) interval [a, b] where m(Q) = 0, 
v" = v being bounded there; in particular, Q(x) flattens out in the whole interval 
a < x < b, by item 1. 

Item 4 is the converse: if Q(x) flattens out in any interval a < x < b, then mo(x) 
and so also m(Q) vanishes there; simultaneously, v'(Q) I — oo. 
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Proof.  Let Q(x) flatten out in a < x < b with X- < a < b < 0, say, and take 
c < d properly between a and b. Then 

pd rd rd 

/   y/Tf^dxl   <       m(Q)[Q(b)-Q(x)}dQ 
Jc Jc Jc 

dQ 

< /   (v-v")(Q)[Q(b)-Q(x)}dQxeg 

Q(b) - Q{x) 

Q(b) - Q(c) 
Q(b) = Q(d) 

<    Cx±[Q(b)-Q(a)}2 

+    v'(Q) at x = a x [Q(b) - Q(a)] 

-   t;(Q)|60 

} x£g 

< a constant multiple of \/Q(b) — Q(a) x ig 

Q(b) - Q(c) 
Q(b) - Q(d) 

Q(b) - Q(a) 
Q(b) - Q(d) 

owing to the control of v'iQ) above, by 7), and to the elementary estimate \v(b) - 
v{a)\2 ^ / {v')2 x (b — a)? the integral being controlled by the proper constant of 

motion in all function classes. Now Q" = Q' f0 v"(Q)Qf is bounded above by a 
multiple K of Q' for a < x < b in view of m — v — v" > 0 and 7); in particular, 
QI e~KQ -g decreasing in x, so the flattening out of Q in [a, b] implies that, for 11 T, 
Q' I 0 and so also v'(Q) I — oo, uniformly in [a, b]. 

Now use 5) for w — v'(Q) in the form w* — — \ w1 + 2V, with V = | v2(Q) etc., 
and write w = 2i{jm/ijj with ^(0) = 1, say, and ^"(O) < 0, fixing the variable x between 
a and b. Then ^•# = Vip, ip{T-) = 0, and V(T-) < 05, reflecting the fact that 
w I -oo as 11T. It follows that v^Q) behaves like —2/(T - £) or nearly so as 11 T, 
so Q' is no worse than (T — t)3/2 for a < x < b. But now / v/mo, as seen in the big 
display, is over-estimated by (T — t)3/A lg(T — t) and so vanishes, and mo(x) = 0 in 
whole of [a, 6], the subinterval [c, d] having been chosen as you will. 

5. A Little Example. This falls outside the function classes admitted above 
but never mind. v(t,x) is soliton/anti-soliton pair 

symmetric about x = 0, with positive q = q(t) and p = p(t), q* = —p(l — e~2q), 
p* = p2 e-2q, and the constant of motion H = \p2 (l - e"2*). With 0 = T - t, you 
find q = £gchQ,p = chQ/shQ and, for a; > EgchT = q(0), eQ = ex +chQ-chT, 
as you may check. In particular, Q flattens out and v'lQ) \. —oo in the interval 
M ^ ^(0) — tgchT, precisely. 

5V(T- : 0 implies ip = 0 which is not the case. 
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