BREAKDOWN OF A SHALLOW WATER EQUATION*

H. P. MCKEANt

1. Introduction. The 1-dimensional shallow water equation:

$$
1
$$

1)
\n
$$
\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} + \frac{\partial p}{\partial x} = 0 \quad \text{with \text{ "pressure"}}
$$
\n2)
\n
$$
p(x) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} \left(v^2 + \frac{1}{2} v'^2 \right) dy
$$

was noted by FOKAS-FUCHSTEINER [1981] as being formally integrable. CAMASSA-HOLM [1993] rediscovered it from a hydrodynamical point of view and developed it to a large degree, both there and in CAMASSA-HOLM-HYMAN [1994]. developed it to a large degree, both there and in CAMASSA-HOLM-HYMAN [1994]
Their most striking discovery is that it has (peaked) solitons $v(t, x) = \frac{1}{2} p e^{-|x-q-pt/2|}$ with constant *q* and *p*, capable of being superposed in an elementary way, as sums $v(t,x) = \frac{1}{2} \sum_{i=1}^{n} p_i(t) e^{|x-q_i(t)|}$, where now the *q*'s and *p*'s obey the equations $q^{\bullet} =$ $\partial H/\partial p$, $p^2 = -\partial H/\partial q$ of the geodesic flow in the co-tangent bundle of \mathbb{R}^n , equipped with the inverse metric tensor $\frac{1}{2}e^{|q_i-q_j|}$: $1 \leq i, j \leq n$, *i.e.*, with Hamiltonian $H = \frac{1}{2} |p|^2 + \frac{1}{4} \sum p_i p_j e^{-|q_i - q_j|}$. From this, it is only a little jump to the realization that the full shallow water flow in, *e.g.*, $C^{\infty}_{\downarrow}(\mathbb{R})$ is just a transcription of the geodesic flow in the group $D(\mathbb{R})$ of (smooth proper) diffeomorphisms of the line, equipped with an analogous Riemannian geometry; see MISIOLEK [1998] for the more general case $v \in \mathbb{R} + C^{\infty}_{\perp}(\mathbb{R})$ with the attendant BOTT-VISASORO group, and compare ARNOLD-KHESIN [1998] for background and other illustrations of the general principle involved. Not much of that is needed here: it will suffice to observe a) if $v(t)$ obeys the shallow water flow in, *e.g.,* $C^{\infty}(\mathbb{R})$ and if $Q(t, x)$ solves $Q^{\bullet} = v(t, Q)$ with $Q_0(x) \equiv x$, then Q is a diffeomorphism of the line¹, imitating the identity near $x = \pm \infty$, and obeying the geodesic flow in $D(\mathbb{R})$, and b) the shallow water flow, expressed by means of $m = v - v''$ as in \ast) $m^{\bullet} + (mD + Dm)v = 0$, has first integrals in the form $m(Q)$ $Q'^2(x) \equiv m_0(x)^2$ \rightarrow) shows that $m(Q)$ retains the general shape of $m_0(x)$, independently of $t > 0$, illustrating the utility of the diffeomorphism for the study of the flow; indeed, it is the principal tool for the question posed here: *When, and if so how, does the shallow water flow breakdown?*

Now, unlike KdV, breakdown is common enough as already noted in CAMASSA-HOLM [1993]: for example, if $\int_{-\infty}^{\infty} (v^2 + v'^2) dx \equiv H < \infty$, this being a constant of motion, then, from 5) below in the form $\frac{d}{dt}v'(Q) \leq \frac{1}{2}v^2(Q) - \frac{1}{2}v'^2(Q)$, you see that $v'_0(x_0) < -\sqrt{H}$ at any place $x_0 \in \mathbb{R}$ implies $v'_0(t, x_0) \downarrow -\infty$ at some finite time.

To fix ideas, let us suppose that either $v_0 \in C^{\infty}$ $\downarrow -\infty$ at some finite time.

(\mathbb{R}) is of period 1 or else $v_0 \in$ To fix ideas, let us suppose that either $v_0 \in C^{\infty}(\mathbb{R})$ is of period 1 or else $v_0 \in \mathbb{R} + C^{\infty}_{\downarrow}(\mathbb{R})$, the latter being the most interesting case physically, and let us also simplify life by requiring that $m \equiv v_0 - v''_0$ has only a finite number of (proper) changes of sign (per period). *Then the solution exists in its function class for all time* $0 \leq t < \infty$ *only if the points* x_{-} *where* $m_0(x_{-}) < 0$ *lie wholly to the left of the points*

^{*} Received December 8, 1998; accepted for publication February 5, 1999.

^{1&}quot;CIMS, 251 Mercer Street, NYC, U.S.A. (mckean@cims.nyu.edu). The work presented here was performed at the Courant Institute of Mathematical Sciences with the partial support of the National Science Foundation under NSF Grant No. DMS-9112664, which is gratefully acknowledged.

 $^{1}Q'$ **c** = $v'(t,Q)Q'$ and $Q'_0 \equiv 1$ forces $Q'(x) > 0$.
 $^{2}Q''(x) = (m \cdot (Q)) + m'(Q)Q''(x)$

 $Q'^{\bullet} = v'(t, Q) Q'$ and $Q'_0 \equiv 1$ forces $Q'(x) > 0$.
 $\frac{d}{dt} m(Q) Q'^2 = [m^{\bullet}(Q) + m'(Q) Q^{\bullet}] Q'^2 + 2mQ^{\bullet} Q'^{\bullet} = 0$, as you will check.

 x_+ where $m_0(x_+) > 0$ (which never happens in the periodic case unless m_0 is of one sign). *Contrariwise, if* m_0 *is not of such a shape, then the solution breaks down at some time* $T < \infty$: *in fact, as t* \uparrow *T*, *v'*(*t,Q*) \downarrow $-\infty$ *at one or more of the (time independent) roots* x_0 *of* $m(Q) = 0$; *simultaneously,* $Q'(t, x_0) \downarrow 0$ *, and more*— $Q(t, x)$ *flattens out* in the *largest* interval $a < x < b$ *containing* x_0 *in which* $m_0(x) \equiv 0$. This is how the diffeomorphism comes to the "edge" of the group; in particular, the geodesic flow in $D(\mathbb{R})$ is incomplete. The existence of $v(t, x): t < T$, $x \in \mathbb{R}$ is not discussed here: That is covered by the methods of CONSTANTIN-ESCHER [1998] and CONSTANTIN-McKEAN [1998]. The present paper deals only with breakdown; it is a technical amplification of McKEAN [1999] which reviewed the whole connection with the diffeomorphism group and explained the breaking in a simple case.

Acknowledgment. It is a pleasure to thank A. Constantin for listening with much patience to rough version of the proof described below.

2. Preliminaries. Keep in mind the constants of motion $m(Q)Q^2 = m_0(x)$ and the moral they convey: that the points x_0 where $m(Q)$ changes sign are fixed in time. Note also the duality: that if $v(t, x)$ is a solution, then so is $-v(t, -x)$. This will cut down the number of cases to be treated. Now come some little tricks which will be continually in use. They obtain up to the breaking time $T \leq \infty$.

3)
$$
\frac{d}{dt}e^{Q}(v'-v)(Q) = -\frac{1}{2}e^{Q}(v'-v)^{2}(Q) - \frac{1}{2}\int_{-\infty}^{Q}e^{y}(v'-v)^{2}(y) dy.
$$

4)
$$
\frac{d}{dt}e^{-Q}(v'+v)(Q) = -\frac{1}{2}e^{-Q}(v'+v)^2(Q) - \frac{1}{2}\int_{Q}^{\infty}e^{-y}(v'+v)^2(y)\,dy.
$$

4)
$$
\frac{d}{dt}e^{-\frac{u}{v}}(v'+v)(Q) = -\frac{1}{2}e^{-\frac{u}{v}}(v'+v)^{2}(Q) - \frac{1}{2}\int_{Q}e^{-y}(v'+v)^{2}(y)
$$

\n5)
$$
\frac{d}{dt}v'(Q) = \frac{1}{2}v^{2}(Q) - \frac{1}{2}v'^{2}(Q) - \frac{1}{4}\int_{-\infty}^{\infty}e^{-|Q(x)-y|}(v'+v)^{2}(y)dy,
$$

in which the ambiguous signature is that of $y - Q(x)$.

6)
$$
|v|
$$
 is bounded, independently of time, by a fixed constant C .

7) v' is bounded above by $2C + \max v'_0$.

8)
$$
v'
$$
 is bounded below by $-C$ if breakdown does not take place.

Proof. $e^{Q}(v' - v) = -\int_{-\infty}^{Q} e^{y} m(y) dy$. Now differentiate by *t*, using $Q^{\bullet} = v(Q)$ and $-m^{\bullet} = (mv)' + \frac{1}{2} (v^2 - v'^2)'$, and integrate by parts to obtain 3). 4) follows by duality. 5) is obtained by combining 3) and 4. 6 is plain if $v \in C^{\infty}_{\downarrow}(\mathbb{R})$: then $H = \int_{-\infty}^{\infty} (v^2 + v'^2) dx$ is a constant of motion and $v^2 = 2 \int_{-\infty}^x vv' \leq H$. The periodic case is similar with constant of motion $H = \int_0^1 (v^2 + v'^2) dx$ and $v^2 \leq 2H$. Likewise, *if* $v = c + w \in \mathbb{R} + C^{\infty}_{\downarrow}(\mathbb{R})$, then *c* and $H = \int_{-\infty}^{\infty} (w^2 + w'^2) dx$ are constants of motion and $|v| \leq |c| + \sqrt{H}$. 7) now follows from 3), 4), and 6): $e^{\pm Q} (v' \mp v)(Q)$ decreases with time and one of $e^{\hat{Q}}$ are e^{-Q} exceeds 1, so $v'(Q) \leq e^{\mp Q} (v'_0 \mp v_0)(Q) \pm v(Q)$, etc. 8)follows from 5) and 6) by the reasoning of sect. 1:

and 0) by the reasoning of seci. 1:
\n
$$
\frac{d}{dt}v'(Q) \le \frac{1}{2}v^2(Q) - \frac{1}{2}v'^2(Q) \le \frac{1}{2}C^2 - \frac{1}{2}v'^2(Q)
$$

drives $v'(Q)$ down to $-\infty$ in finite time at any place where $v'_0(x)$ falls below $-C$. D

3. Proof of Breakdown. It is to be proved that breakdown takes place if there is any positive "mass" m_0 to the left of some negative mass. Let $x = 0$ be chosen as in the figure so that $m_0(x)$ and so also $m(Q)$ is positive near $x - < 0$ and negative

near $x_+ > 0$, a single interval containing $x = 0$ being permitted for $m_0(x)$ to vanish. The picture is self-dual. Now if $(v'-v)(Q)$ is ever negative at $x=0$, then 3) in the form

$$
\frac{d}{dt}e^{Q}(v'-v)(Q) \leq -\frac{1}{2}\left[e^{Q}(v'-v)(Q)\right]^2 e^{-Q}
$$

implies $\int_0^\infty e^{-Q} dt < \infty$ in the absence of breakdown; likewise, if $(v' + v)(Q)$ is ever negative at $x = 0$, then $\int_0^\infty e^Q dt < \infty$; and since $\int_0^\infty e^{\pm Q} dt$ cannot both converge, so you can assume $(v'-v)(Q) \geq 0$ at $x = 0$ at all times $t \geq 0$, by duality. Now distinguish two cases according as $(v' + v)(Q)$ is ever negative at $x = 0$ or not.

Case 1: $(v' + v)(Q) \ge 0$ at $x = 0$ at all times $t \ge 0$. $(d/dQ)e^{Q}(v'-v)(Q) =$ $-e^{Q} m(Q)$ is ≤ 0 between x_{-} and $x = 0$, so $(v' - v)(Q) \geq 0$ there, and $(v' +$ *v*)(*Q*) likewise; in particular, $v'(Q) \geq |v(Q)|$ for $x - \leq x \leq 0$, and, in the absence of breakdown, so that $v'(Q) \geq -C$ by 8), 5) implies

$$
+\infty > \int_0^\infty dt \, e^{-Q(x)} \int_0^{Q(x)} e^y (v'-v)^2(y) \, dy
$$
 between $x = x_-$ and $x = 0$.

Fix $x_{-} < a < c < b < 0$ with $c = \frac{1}{2}(a + b)$ and $m_0(x) > 0$ between a and b. Then with $x = c$ in the last display,

$$
+\infty > \int_0^\infty dt \, e^{-Q(c)} \int_{Q(a)}^{Q(c)} \left[e^y \left(v' - v \right) \right]^2 e^{-y} \, dy
$$

>
$$
\int_0^\infty dt \, e^{-Q(c)} \left[e^Q(v' - v) \text{ at } x = c \right]^2 \int_{Q(a)}^{Q(c)} e^{-y} \, dy
$$

=
$$
\int_0^\infty dt \left[(v' - v)(Q) \text{ at } x = c \right]^2 \times \left[e^{Q(c) - Q(a)} - 1 \right].
$$

This contradicts the fact that $m_0(x) > 0$ for $a \le x \le b$, as will be seen in a few easy steps.

STEP 1 uses $(v'-v)(Q) > 0$ to obtain the simple bound:

$$
\left[\int_{c}^{b} \sqrt{m_{0}(x)} dx\right]^{2} = \left[\int_{c}^{b} \sqrt{m(Q)} dQ\right]^{2}
$$

$$
\leq \int_{c}^{b} m(Q) dQ \times [\Delta Q \equiv Q(b) - Q(c)]
$$

$$
= \int_{c}^{b} (v - v' + v' - v'') (Q) dQ \times \Delta Q
$$

$$
\leq [(v' - v) (Q) at x = c] \times \Delta Q.
$$

STEP 2. Now let $v(Q)$ be negative at $x = b$. Then $v'(Q) \geq |v(Q)|$ implies $v(Q) \leq 0$ down to $x = a$, so from $Q^{\bullet} = v(Q)$ and $Q'^{\bullet} = v'(Q) Q'$, it appears that

$$
Q'' = Q' \int_0^t v''(Q) Q' dt' = Q' \int_0^t (v - m)(Q) Q' dt' < 0,
$$

whence

$$
\left[\int_c^b \sqrt{m_0}\right]^4 \le \left[\left(v'-v\right)^2(Q) \text{ at } x = c\right] \times 2\left[e^{Q(b)-Q(c)} - 1\right]
$$

$$
\le \left[\left(v'-v\right)^2(Q) \text{ at } x = c\right] \times 2\left[e^{Q(c)-Q(a)} - 1\right],
$$

and now the summability of the last line forces meas $(t \geq 0 : v(Q) \leq 0$ at $x = b$) to be finite; in particular,³ $\int_0^\infty v_-(Q) dt > -\infty$ at $x = b$, by 6). Obviously, there is nothing special about $x = b$: the same is true at $x = a$ by a self-evident reprise. This was the goal of Step 2.

STEP 3 will confirm that $\int_0^\infty v_+(Q) dt$ is also finite at $x = a$: $(v'-v)(Q)$ is positive between x_{-} and 0 and decreases there in view of $v'' - v' = -m + v - v' < 0$, so

$$
\exp\left[\int_0^t v'(Q) - \int_0^t v(Q)\right] = Q' e^{x-Q} \text{ is } \ge 1 \text{ and decreases, too.}
$$

Then

$$
1 \le Q'(b) e^{b-Q(b)} \le \frac{1}{b-a} \int_a^b e^{x-Q(x)} dQ
$$

$$
\le \frac{e^b}{b-a} \times e^{-Q(a)}
$$

and now this estimate, controlling $Q(a) = a + \int_0^t v_-(Q) + \int_0^t v_+(Q)$ from above, $\text{confirms } \int_0^\infty v_+(Q)\, dt < \infty.$

STEP 4. But this means that *Q* is bounded, not only if $x = a$, but at $x = c$ as well, by a self-evident reprise, and now $\left(\int_c^b \sqrt{m_0}\right)^4$ as seen in step 2, is over-estimated

 $\frac{3v}{v}$ is the negative part of *v*.

 $4v_+$ is the positive part of *v*.

by a constant multiple of $e^Q (v' - v)^2 (Q)$ at $x = c$, this being summable by 3) and the fact that $(v'-v)(Q) \geq 0$. That is the contradiction.

Case 2: $(v' - v)(Q) \ge 0$ at $x = 0$ for all $t \ge 0$ and $(v' + v)(Q) < 0$ at $x = 0$ for, $e.g., t = 0.$ Then 4) shows that, in the absence of breakdown, $\int_0^\infty e^{Q} dt < \infty$ at $x = 0$ and so also for $x \leq 0$, Q being increasing in x , in which case, $\int_0^\infty e^{-Q} dt = +\infty$ and e^{Q} $(v^{\prime} - v) \ge 0$ for every $x \le 0$, by 3). Now $\int_{0}^{\infty} e^{Q} dt < \infty$ for $x \le 0$ only if

$$
\infty > \int_0^\infty e^{Q} Q' dt = \int_0^\infty \exp \left[\int_0^t (v' + v) (Q) dt' \right] dt \quad a.e.,
$$

from which you learn that $(v'-v)(Q)$ turns strictly negative, and stays that way, by 4), at sometime $T(x) < \infty$, for almost all $x < 0$; moreover, the fact that by 4), at sometime $T(x) < \infty$, for almost all $x \leq 0$; moreover, the fact that $e^{-Q}(v' + v)(Q)$ decreases for $x \leq x \leq 0$ implies that $T(x)$ is finite and decreasing in the half-open interval $x - < x \leq 0$. Two subcases are now distinguished according to the behavior of $\Delta Q = Q(b) - Q(a)$ for $x - \langle a \rangle \langle b \rangle$

Case 2.1: ΔQ is bounded from above for every choice of $x - \langle a \rangle \langle b \rangle$ as it must be in the periodic case when $\Delta Q \leq Q(1) - Q(0) = 1$. Now $\infty > T(a) = 0$, say, in which case $(v'-v)(Q) > 0$, $(v'+v)(Q) \leq 0$, and $v(Q) < 0$ for all $a \leq x \leq b$ and $t \geq 0$. Now comes a familiar type of trick:

$$
\left[\int_{a}^{b} \sqrt{m_0} \, dx\right]^2 = \left[\int_{a}^{b} \sqrt{m} \, dQ\right]^2 \le \int_{a}^{b} m(Q) \, dQ \times \Delta Q
$$

$$
\le \int_{a}^{b} -v''(Q) \, dQ \times \Delta Q
$$

$$
= -v'(Q)\Big|_{a}^{b} \times \Delta Q
$$

from which it appears that, in the absence of breakdown, ΔQ is also bounded from below, by 7) and 8). But also $Q'' < 0$ as in Step 2 of Case 1, *v* being negative, from which you learn that $0 < Q'(b)/Q'(a) < 1$ and that

$$
\frac{d}{dt}\frac{Q'(b)}{Q'(a)} = v'(Q)\Big|_a^b \times \frac{Q'(b)}{Q'(a)} < 0 \text{ is summable.}
$$

 Q'' < 0 and the boundedness of ΔQ for every choice of $x - < a < b < 0$ come into play once more to check that $Q'(b)/Q'(a)$ is bounded below, and now a contradiction is obtained: $v'(Q)|_a^b$ is summable, but

$$
\left[\int_a^b \sqrt{m_0}\right]^2 \le v'(Q)|_a^b \times \text{ the upper bound of } \Delta Q \quad \text{is not.}
$$

Case 2.2: $Q(b') - Q(a')$ is unbounded above for some $x - \langle a' \rangle \langle b' \rangle \langle 0$. Now pick $x_{-} < c < a < b < a'$ with $T(c) = 0$ for simplicity and $m_0(x) > 0$ between c and b. Note that $v(Q)$ is negative, as before, so that $v''(Q) < v(Q) < 0$, $m(Q)$ being positive, and also that $Q'' < 0$. A variant of the familiar $\left[\int_a^b \sqrt{m_0} \, dx\right]^2 \leq \int_a^b m(Q) \, dQ \times \Delta Q$ is

now used. It reads

$$
\left[\int_{a}^{b} \sqrt{m_{0}(x)} dx\right]^{2} \leq \int_{a}^{b} m(Q) \left[Q(x) - Q(c)\right] dQ \int_{a}^{b} \frac{dQ}{Q(x) - Q(c)}
$$

$$
< \int_{Q(c)}^{Q(b)} -v''(x) \left[x - Q(c)\right] dx \ \ell g \frac{Q(b) - Q(a)}{Q(a) - Q(c)}
$$

$$
< \left[-\left[v'(Q) \text{ at } x = b\right] \times Q(b) - Q(c)\right] \times \ell g \frac{b - a}{a - c},
$$

 $Q'' < 0$ being used to appraise the logarithm. I propose to show that $v'(Q) > 0$ at $x = b$ and that $v(Q) = o(1)$ at $x = c$ for suitable $t = t_1 < t_2 < etc.$ $\uparrow \infty$. This will be contradictory. Chose these "special" times so that $Q(b') - Q(a') + \infty$. Then $Q(a') Q(b)$ $\uparrow +\infty$, too, since $Q'' < 0$, and you can also assume (d/dt) $[Q(a') - Q(b)] > 0$ at special times. But

$$
\frac{d}{dt}[Q(a') - Q(b)] = \int_b^{a'} v'(Q) dQ \leq [v'(Q) \text{ at } x = b] \times [Q(a') - Q(b)]
$$

so $v'(Q)$ is positive at $x = b$ for special times and stays positive down to x_{-} in view of $v''(Q) < 0$. This is half the battle. Next, fix $d < c$. Then $-v(Q)$ decreases between *d* and c, so

$$
0 < -[v(Q) \text{ at } x = c] \times [Q(c) - Q(d)] < -\int_d^c v''(Q) dQ,
$$

in which the right hand side is bounded in the absence of breaking, and since $Q(c)$ – $Q(d) \uparrow +\infty$ by reason of $Q'' < 0$, you may conclude that $v(Q) = o(1)$ at $x = c$ for special times. The proof is finished.

4. How It Breaks Down. The conditions for breaking are now established, but *how does it happen?*

Return to fig. 1 with $m(Q) > 0$ for $x - \langle x \rangle \langle a, m(Q) = 0$ for $a \leq x \leq b$, and $m(Q) < 0$ for $b < x < x_+$; necessarily, $a \leq 0 \leq b$. $T < \infty$ is the breaking time, *i.e.*, the moment when $v'(Q)$ gets out of hand, assuming that this takes place between x_{-} and x_+ . Breakdown can happen only in this way, as will be seen.

Item 1. $v'(Q) \equiv w$ is bounded above, by 7), and 5) in the form $m^{\bullet} \leq \frac{1}{2}C^2 - \frac{1}{2}w^2$ shows that it can get out of hand only by an ultimate decrease to $-\infty$, in the style of shows that it can get out of hand only by an ultimate decrease to $-\infty$, in the style of $w =$ a negative constant $\times (T-t)^{-1}$ or worse, in which case $Q'(t,x) = \exp \int_0^t v'(Q) \downarrow$ 0 as $t \uparrow T$, and conversely: if Q' $(t)^{-1}$ or worse, in which case $Q'(t, x) = \exp \int_0^t v'(Q) \downarrow$
 $\downarrow 0$ as $t \uparrow T < \infty$, then $w = v'(Q)$ is ultimately very negative and 5) drives it down to $-\infty$.

Item 2. $Q(T-,x)$ exists everywhere, v being bounded, and $e^{Q}(v'-v)(Q)$ decreases/increases where *m(Q)* is positive/negative, from which you see that breakdown occurs, if at all, at points where $m(Q)$ changes sign, from positive to negative: $x = 0$ is such a point.

Item 3. $v'(Q)$ at $x = 0$ now decreases to $-\infty$ as $t \uparrow T$ and carries with it the slope $v'(Q)$ at the general point *x* of the (maximal) interval [a, b] where $m(Q) = 0$, $v'' = v$ being bounded there; in particular, $Q(x)$ flattens out in the whole interval $a \leq x \leq b$, by item 1.

Item 4 is the converse: if $Q(x)$ flattens out in any interval $a \leq x \leq b$, then $m_0(x)$ and so also $m(Q)$ vanishes there; simultaneously, $v'(Q) \downarrow -\infty$.

Proof. Let $Q(x)$ flatten out in $a \leq x \leq b$ with $x - \leq a \leq b \leq 0$, say, and take $c < d$ properly between *a* and *b*. Then

$$
\left[\int_{c}^{d} \sqrt{m_{0}} dx\right]^{2} \leq \int_{c}^{d} m(Q) \left[Q(b) - Q(x)\right] dQ \int_{c}^{d} \frac{dQ}{Q(b) - Q(x)}
$$

\n
$$
\leq \int_{c}^{b} \left(v - v''\right)(Q) \left[Q(b) - Q(x)\right] dQ \times \ell_{g} \frac{Q(b) - Q(c)}{Q(b) = Q(d)}
$$

\n
$$
\leq C \times \frac{1}{2} \left[Q(b) - Q(a)\right]^{2}
$$

\n+ $v'(Q)$ at $x = a \times \left[Q(b) - Q(a)\right]$
\n- $v(Q)\Big|_{a}^{b}$
\n
$$
\leq a \text{ constant multiple of } \sqrt{Q(b) - Q(a)} \times \ell_{g} \frac{Q(b) - Q(a)}{Q(b) - Q(d)}
$$

owing to the control of $v'(Q)$ above, by 7), and to the elementary estimate $|v(b) |v(a)|^2 \leq \int_a^b (v')^2 \times (b-a)$, the integral being controlled by the proper constant of motion in all function classes. Now $Q'' = Q' \int_0^t v''(Q)Q'$ is bounded above by a multiple *K* of *Q'* for $a \le x \le b$ in view of $m = v - v'' > 0$ and 7); in particular, $Q' e^{-KQ}$ is decreasing in *x*, so the flattening out of *Q* in [a, b] implies that, for $t \uparrow T$, $Q' \downarrow 0$ and so also $v'(Q) \downarrow -\infty$, uniformly in [a, b].

0 and so also $v'(Q) \downarrow -\infty$, uniformly in [a, o].
Now use 5) for $w = v'(Q)$ in the form $w^* = -\frac{1}{2}w^2 + 2V$, with $V = \frac{1}{4}v^2(Q)$ *etc.*, and write $w = 2\psi^{\bullet}/\psi$ with $\psi(0) = 1$, say, and $\psi^{\bullet}(0) < 0$, fixing the variable *x* between *a* and *b*. Then $\psi^{\bullet} = V\psi$, $\psi(T-) = 0$, and $\psi^{\bullet}(T-) < 0^5$, reflecting the fact that $w \downarrow -\infty$ as $t \uparrow T$. It follows that $v'(Q)$ behaves like $-2/(T - t)$ or nearly so as $t \uparrow T$, so Q' is no worse than $(T-t)^{3/2}$ for $a \le x \le b$. But now $\int_c^d \sqrt{m_0}$, as seen in the big display, is over-estimated by $(T - t)^{3/4} \ell g(T - t)$ and so vanishes, and $m_0(x) = 0$ in whole of $[a, b]$, the subinterval $[c, d]$ having been chosen as you will.

5. A Little Example. This falls outside the function classes admitted above but never mind. $v(t, x)$ is soliton/anti-soliton pair

$$
\frac{1}{2} p e^{-|x+q|} - \frac{1}{2} p e^{-|x-q|},
$$

symmetric about $x = 0$, with positive $q = q(t)$ and $p = p(t)$, $q^{\bullet} = -p(1 - e^{-2q})$. $p^* = p^2 e^{-2q}$, and the constant of motion $H = \frac{1}{2}p^2(1 - e^{-2q})$. With $\Theta = T - t$, you $\int_{0}^{1} f(x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{0}^{1} f(x$ as you may check. In particular, *Q* flattens out and $v'(Q) \downarrow -\infty$ in the interval $|x| \leq q(0) = \ell q \, ch \, T$, precisely.

 ${}^5\psi^{\bullet}(T-) = 0$ implies $\psi \equiv 0$ which is not the case.

874 H. MCKEAN

REFERENCES

- [1] V. I. ARNOLD AND B. A. KHESIN, *Topological Methods in Hydrodynamics,* Appl. Math. Sci., 125, Springer-Verlag, New York, 1998.
- [2] R. CAMASSA AND D. D. HOLM, *An integrable shallow water equation with peaked solitons,* Phys. Rev. Lett., 71 (1993), pp. 1661-1664.
- [3] R. CAMASSA, D. D. HOLM, AND J. HYMAN, *A new integrable shallow water equation,* Adv. Appl. Math., 31 (1994), pp. 1-33.
- [4] A. CONSTANTIN AND J. ESCHER, *Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation,* CPAM, 51 (1998), pp. 475-504.
- [5] A. CONSTANTIN AND H. P. MCKEAN, *A shallow-water equation on the circle,* CPAM, to appear 1999 .
- [6] A. FOKAS AND B. FUCHSTEINER, *Symplectic structures, their Bdcklund transformations, and hereditary symmetries,* Physica D., 4 (1981), pp. 47-66.
- [7] G. MISIOLEK , *A shallow water equation as geodesic flow on the Bott-Virasoro group,* J. Geom. Phys., 24 (1998), pp. 203-208.