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PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS WITH 
FIBRED BOUNDARIES* 

RAPE MAZZEOt  AND RICHARD B. MELROSE* 

Abstract. Let X be a compact manifold with boundary. Suppose that the boundary is fibred, 
(f) : dX —)■ V, and let x £ C00{X) be a boundary defining function. This data fixes the space of 'fibred 
cusp' vector fields, consisting of those vector fields V on X satisfying Vx = 0(x2) and which are 
tangent to the fibres of 0; it is a Lie algebra and C=C(A') module. This Lie algebra is quantized to the 
'small calculus' of pseudodifferential operators ^(A"). Mapping properties including boundedness, 
regularity, Fredholm condition and symbolic maps are discussed for this calculus. The spectrum of 
the Laplacian of an 'exact fibred cusp' metric is analyzed as is the wavefront set associated to the 
calculus. 

Introduction. Algebras of pseudodifferential operators can be used to investi- 
gate local regularity of solutions to partial differential equations and to relate such 
local matters to more global properties. On a compact manifold with boundary there 
are a number of different natural algebras of pseudodifferential operators which gen- 
eralize the 'standard' algebra of pseudodifferential operators on a compact manifold 
without boundary. Amongst these are the calculus of b-pseudodifferential operators 
[11] (b=boundary), [14], the scattering calculus [15] and the uniformly degenerate (or 
zero) calculus [7] and [9]. The distinction between the terms 'calculus' and 'algebra' 
is not great here. The former is preferred because all of the algebras we discuss have 
natural, and useful, extensions to somewhat larger spaces of operators in which not 
every pair of elements can be composed. If the manifold has more structure, for ex- 
ample if its boundary admits a fibration, then there are other possibilities, such as the 
edge calculus [8] which interpolates between the b and uniformly degenerate calculi. 
In this paper we shall discuss another algebra of this general type; it is associated to 
a fibration of the boundary and a choice of boundary defining function up to second 
order at the boundary, or more precisely to a trivialization of the conormal bundle to 
the boundary over each fibre. The extreme cases, in terms of the fibre dimension of 
the fibration, of this algebra correspond to the 'cusp' algebra, of operators naturally 
associated to (finite volume) hyperbolic cusps, and the scattering algebra, of operators 
associated to Euclidean scattering theory. 

The purpose of this paper is to give a concise yet complete treatment of this 
'fibred-cusp' algebra, along with a few of the most basic consequences. More sophis- 
ticated applications will be taken up elsewhere. In this introduction we shall give an 
outline of some of the salient features of the algebra which will be proved in full later 
in the paper. 

Let X be a compact C00 manifold with boundary and suppose that the boundary 
has a smooth fibration 

(1) (f):dX^Y, 

where Y is the space of fibres. Suppose also that x G C00(X) is a choice of boundary 
defining function, i.e. x > 0, dX = {x — 0} and dx ^ 0 at dX. In particular, x fixes a 
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trivialization of the conormal bundle to the boundary. Associated with this structure 
is the space of fibred cusp vector fields 

V*(X) = {V e C^iXiTX^Vx e x^iX) and Vp 

is tangent to (f)'1 (0(p)) V p € dX}. 

As shown below, V<s>(X) is a Lie algebra and C00(X) module which is projective 
in the sense that there is a C00 vector bundle ®TX over X with natural vector bundle 
map L<$> : ®TX —> TX, which is an isomorphism over X0 = X \ dX, and is such that 

C00(X'*TX) = i<l,oV*(X). 

That is, V*(X) can be naturally identified with C00(X^TX). The identifier '$' will 
be used to denote objects which are naturally associated to V$(X). Note that V<&(X) 
determines the map 0, but does not completely determine the defining function x. 

There are two extreme cases to keep in mind as a guide to this discussion, occur- 
ring when (j) is one of the 'trivial' (or universal) fibrations. The first is when Y = {pt} 
and the second when Y = dX. In the former case, V$(X) determines, and is de- 
termined by, the defining function x up to the equivalence x* ~ x if x' = ex + x2g, 
where c > 0 is constant and g G ^(X). This will be called the cusp algebra. In 
the latter case, the Lie algebra is independent of the choice of x and is called the 
scattering algebra. The algebra of pseudodifferential operators associated to it is dis- 
cussed in [15] and [19] and in local form on En goes back at least to Shubin [22]. 
When X is the upper half-sphere, the interior of which may be identified with Mn via 
istereographic compactification W1 <-)• SJ, the scattering algebra is generated by the 
translation-invariant vector fields. 

Since V$(X) is a Lie algebra and C00(X) module it is natural to consider the 
enveloping algebra, Diff^(X), consisting of those operators on C00(X) which can be 
written as finite sums of products of elements of V<$>(X) and C00(X). It is filtered by 
i;he subspaces Diff^(X) which have elements expressible as sums of products involv- 
ing at most k factors from V$(X). Let $T*X be the dual bundle to ®TX and let 
pk(*T*X).C C^^T^X) be the space of functions which are homogeneous polyno- 
mials of degree k on the fibres. The principal symbol map extends from the interior 
i,o cr^j. : Diff|(X) —> Pk(®T*X). This map is multiplicative and gives a short exact 
sequence delineating the filtration 

(3) 0 —> Diff^X) -> Diff|(X) ^4 Pk(*T*X) —► 0. 

We microlocalize this algebra of differential operators to obtain the filtered algebra 
of fibred-cusp, or <£-, pseudodifferential operators 

DiSi(X) C ^i(X) 

where ^^(X) is defined for each m £ E. Again there is a multiplicative symbol map 
delineating the filtration 

(4) 0 —► S^pO ^ **(*) ^ Sm(*T*X)/S'm-1(*T*X) —► 0 

where Sm(E), for any vector bundle E, is the space of symbols of order m. The 
construction of $y(X) is effected geometrically. More specifically, these spaces of 
operators are characterized by the regularity properties of their Schwartz' kernels. 
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These, in turn, are defined as conormal distributions on a space, X|, which is a 
resolution of X2. This resolution is obtained from the ordinary 'double space' through 
a sequence of blow-ups. One of the main facts about $J(X), that it is closed under 
composition, is proved using a resolution X% of the ordinary triple space X3, as we 
shall explain later. 

Whether a particular element in $J(X) acts as a Fredholm operator, say on L2, 
is no longer determined solely by the invertibility of its image under the symbol map 
(3) or (4). In fact, there is a second symbol map, the range of which is in general no 
longer a commutative algebra. To introduce this normal operator, we first describe 
the space of operators in which it lies. 

If F is any compact manifold without boundary and W is a real vector space, 
then the space v^m(F x W) of all pseudodifferential operators on the C00 manifold 
F x W is well defined. This is not an algebra because we have imposed no growth 
restrictions on the kernels. A special subclass consists of those elements which are 
invariant under translation in W, and therefore loosely speaking act by convolution 
in the W factor and as ordinary pseudodifferential operators in F. Now consider 

(5) *Zs(w){F)c*m{FxW) 

consisting of those translation invariant operators with convolution kernels on F2 x W 
which are rapidly decreasing with all derivatives at infinity. These spaces form a 
filtered algebra in the usual way and we call them the W-suspended pseudodifferential 
operators on F\ even though they act on functions on F x W. They are invariant under 
diffeomorphisms of F and linear transformation of W. This means that we can define 
^wvn-tfC^^O' where 0 : X' —)■ Y is any fibration, W —> Y a vector bundle, 
and G — X' Xy W the fibre product, where elements are defined as in (5) on the 
fibres of G and depend smoothly on the base variable in Y. 

If (f) : dX —> Y is the fibration (1), and L<$> : ®TX —> TX is the natural inclusion 
map, set 

(6) ^Npdx = {v£ *rpx, p e dx- t^{v) = 0}. 

Although this is defined as a bundle over dX, in fact it is the lift to dX of a bundle, 
^NY, over y, 

(7) *NdX = 4)*{*NY), 

and hence is of the form just described. The normal homomorphism, which we will 
define later, takes values in the corresponding space of suspended operators, and there 
is a multiplicative short exact sequence 

0 —> x^iX) -4 mX) ^ *?us(*XY)-«(dX) —► 0. 

The symbol and normal operator together are sufficient to capture the Fredholm 
property for these differential or pseudodifferential operators. 

THEOREM 1. An element P e S&%(X) is Fredholm as an operator on L2(X) if 
and only if it is fully elliptic in the sense that its symbol &<$>£ is invertible and in 
addition its normal operator N<p(P) is invertible as an element of^^^^Y)-^-^-)' 

We will state and prove a more general result for pseudodifferential operators of 
any order acting on sections of a vector bundle. This raises the following fundamental 
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PROBLEM 1. Find an explicit index formula for fully elliptic <f>-pseudodifferential 
operators in terms of the symbol and normal operator. 

This has been done in full generality in only one case, where Y = dX, i.e. for 
the scattering calculus. This is discussed briefly in [17], where it is reduced to the 
Atiyah-Singer theorem. In the other extreme case, where Y = {pt}, the calculus is 
essentially that of manifolds with cylindrical ends. The index theorem in this setting 
for Dirac operators is that of Atiyah, Patodi and Singer [1]. There is a somewhat 
non-explicit index formula for general fully elliptic pseudodifferential operators here 
due to Piazza [20]. In [16] a definition of the eta invariant in this context is given, 
and [18] contains an index formula in terms of it. 

Beyond these index questions, another reason for developing these calculi of op- 
erators is to analyze the regularity of solutions to related differential equations. We 
formalize this process using the notion of a wavefront set, which is defined by microlo- 
cal invertibility properties of $-pseudodifferential operators. In the analytic category 
the wavefront set (singular spectrum) was introduced by Sato, see [21]; in the C00 

category it is due to Hormander [6]. 
To describe this consider again the structure bundle ®TX and its dual $r*X. The 

stereographic compactification of a vector space to a ball, or half-sphere, is linearly 
covariant, and so we can define the fibre wise compactification any vector bundle. 
Since X is a manifold with boundary the compactification $ T*X is a manifold with 
corners up to codimension two. The restriction to the boundary of the bundle $T*X 
has as quotient ®N*dX which is, as noted above, naturally the lift of a bundle $iV*F 
over the base Y. This is the parameter space for the normal operator. The disjoint 
union of the part 'at infinity' of the bundle $T*X and the compactification, ®N Y, 

is the carrier of the ^-wavefront set 

WF<s>(u) = WF£ U WF| C C$. 

It has properties and utility similar to the usual wavefront set. 
The authors thank Andras Vasy for helpful comments and Michael Singer for a 

careful reading of the manuscript. 

1. Fibred cusp algebras. We begin our more detailed discussion by analyzing 
the space of vector fields defined by (2). Thus, X is a compact C00 manifold with 
boundary and as in (1), 0 is a fibration of the boundary. If the boundary is not 
connected we denote by Mi(X) the set of boundary components. Then each boundary 
hypersurface H e Mi(X) has a specified fibration <£# : H —> YH- There need be 
no relationship between these fibrations. For the most part we shall simplify the 
discussion by supposing that dX is connected, but when confusion might arise in the 
general case we make a precise statement. 

In addition to the fibration, we also suppose that a boundary defining function 
x € C00(X) is given. As will be discussed shortly, the structure we describe does not 
depend on all the information in x. Consider V<$>(X) defined by (2) which should now 
be written more carefully as 

V*(X) = {V eC^iX-.TXy.Vx e x^iX) and Vp 

is tangent to fa1 (<l>(p)) V p e H, V H G Mi(X)}. 
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LEMMA 1.  Suppose p G dX and 2/1,. •. ,yi are local coordinates in Y near (j){p). 
Let yi,... ,yi E C00(X) be functions satisfying yj — (p*(yj) on dX near p and choose 

■ £ — 1 functions zi,...,Zk such that x,yj^Zi give local coordinates in X.  Then = n ■ 

near p, V$(X) is spanned by 

(1.1) 
d d       d 

x 
dx'     dyj '  dzi 

Proof. Since the differentials of x and the yj must be independent at p there do 
indeed exists functions zi completing them to a coordinate system. A general vector 
field on X is locally 

for C00 coefficients a,bj,Ci. Then Vx = a, so the first condition on V in (2) is that 
a = 0(x2), i.e. a — x2a' where a' is C00 near p. Locally the fibres of $ are the surfaces 
y =const, in x — 0. Thus if V G V$(X) then bj — xb1-. This shows that the elements 
in (1.1) span V*{X) locally over C™{X). D 

Lemma 1 actually shows that V$(X) is projective, and this means that we can 
interpret this space of vector fields as the full set of sections of some vector bundle. 
For any p G X let lp(X) C C00(X) be the ideal of functions vanishing at p. Then 
denote by Xp • V$(X) C V&(X) the finite linear span of products, aV, for a G Xp(X) 
and V G V$(X), and set 

*TPX = V*(X)/VV*(X). 

LEMMA 2. i^or each p G X, ^TpX 25 A vector space of dimension dimX, and the 
disjoint union 

*TX = l_\ *TPX 
vex 

has a natural structure as a smooth vector bundle over X. There is a natural linear 
map LP : ®TpX —> TpX which is an isomorphism when p G X0 = X\9X; these 
maps define a smooth bundle map t : ®TX —> TX with the property that for every 
V G C^iX'^TX) there is a unique V G V$(X) C ^(X'^TX) such that 

LpVp = Vp\/pex0. 

Conversely, each V G V$(X) defines a section V G C^^X'^TX). 
Proof Over the interior of X the elements of V$(X) are unconstrained, and so 

*TpX = TpX for p G X0. We write this identification as LP : ®TpX —> TpX. Near a 
boundary point p we have shown that V G V$(A'") has a unique smooth decomposition 
in terms of the vector fields (1.1). Thus V G lP'V<p(X) if and only if its decomposition 
has coefficients vanishing at p. This means that (the residue classes of) x2-§^, x-jpr 

and ^7 give a basis of ®TpX, and therefore this vector space has dimension dimX. 
In fact, these sections clearly give ®TX the structure of a vector bundle near p, where 
any smooth section is (locally) given by an element of V&{X) and conversely. It 
remains only to show that this vector bundle structure is independent of the choice 
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of the local coordinates. This follows simply by inserting the change of coordinate 
formula for vector fields into the basis (1.1). □ 

Generally we shall ignore the map L and identify V<f>(X) with C00(X;*TX) as 
this lemma permits us to do. As noted in the introduction 

LEMMA 3.  The space V^(X) is a Lie subalgebra o}Cco{X]TX). 
Proof. If V, W G V$(X), then by definition they are tangent to the fibres of (f) in 

dX. Because tangency to a submanifold persists for commutators, [V, W] also has this 
property. Similarly, since Vx — x2a and Wx = x2b for some functions a, b G C00^), 

[V,W]x = V(Wx) - W{Vx) = V(x2a) - W(x2b) 

= x2(Va - Wb) + 2x(a - b)(V - W)(x) = x2(Va - Wb) + 2x3(a - b)2. 

D 
As noted above, the algebra V$(X) is determined by 0 and the choice of a bound- 

ary defining function. Conversely, V$ determines cj) but it does not completely de- 
termine x. In fact two boundary defining functions x and x' determine the same Lie 
algebra V$(X), and hence the same 'boundary structure' relative to 0, if and only 
if x' = ax, with a\dx G ^C00^). Thus if we let C$>(X) C C00^) be the space of 
smooth functions on X which are constant on each leaf of 0 at the boundary then 
this means x' G xCT(X). 

The Lie algebra V$(X) has a natural ideal, consisting of those elements which 
vanish at the boundary as vector fields in the usual sense. In terms of the basis (1.1), it 
is spanned by x2dx and xdyj and xdZi near each boundary point and is unconstrained 
in the interior. Over the boundary it spans the subbundle (6). This ideal is the span 
over C00(X) of a smaller subalgebra 

(1.2) W*(X) = {V G V*(X); V G xC^iX.TX) and Vx G xC^(X)}. 

This latter condition is clearly independent of the choice of x defining V$(X), i.e. 
W(j.(X) is an invariantly defined subspace of the latter. Since W$(X) is a C^(X)- 
module (and not a C00(X) module) the subbundle of ^TQXX it defines is naturally 
the lift of a bundle from Y. This is the bundle ^NY in (7). 

There is a direct representation of the fibre ®TpX, p G dX, of the dual bundle 
which is useful later. For p G OX let Ip(X) C C^iX) be the ideal of functions 
vanishing on the fibre through p and JP(X) C Ip(X) the smaller ideal of functions 
with restriction to 4>~1{(j){p)) vanishing to second order at p. Note that IP(X) only 
depends on the fibre through p but JP(X) depends also on the location of p within 
this fibre. If x is an admissible boundary defining function then there is a canonical 
isomorphism 

given by applying V G V$(X) and evaluating at p; this follows from (1.1). 
Let Diff^(X) be the space of operators on C00(X) generated by C00(X) and 

products of up to m elements of V$(X). The local structure of these operators is easy 
to determine. 

LEMMA 4. In the local coordinates near a boundary point described in Lemma 1, 
any P G Diff^X) may be written 

(1.3) P=       Y,       pa,0,q{x,y,Z){x2DxY{xDyfDa
z,        Dt = ~. 

H + l/3|+9<m 
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Conversely, if P € Diffm(X) and this holds in a neighbourhood of each boundary 
point, thenP eDi^(X). 

Proof. This follows by induction on m. Certainly (1.3) holds when m = 0. In 
general, Diff^+1(X) is the span of V*(X) • Diff^(X) and Diff^pQ. Using the local 
representation of V<f>(X) given by (1.1) and the representation (1.3) for DiffJ^X), the 
same result follows directly for Diff£+1(X). D 

Note that the order of the various factors in (1.3) is immaterial, because changing 
it would just change the coefficients slightly. The main properties of this space of $- 
differential operators will be discussed in more detail once we have defined the space 
of $-pseudodifferential operators. 

2. ^-pseudodifferential operators. We now turn to the definition of the 
'small' calculus of $-pseudodifferential operator. These can be thought of as 'sym- 
bolic' functions of the vector fields in V<$>(X) in the same sense that, by (1.3), the 
^-differential operators are polynomial functions in these vector fields. Our definition 
of this calculus is quite geometric; this has the virtue that many of the main properties 
we need to develop, in particular the fact that this space of operators is closed under 
composition, may be proved directly and also quite geometrically. 

Following a general 'microlocalization' principle for algebras of this type, the 
operators in V$(X) will be characterized by the lifts of their Schwartz kernels from X2 

to a space X| which is obtained by a resolution process, more specifically by blowing 
up a sequence of p-submanifolds in X2. Here the p-submanifolds (for 'product') are 
those around which the manifold with corners has a product decomposition, they may 
be thought of as properly embedded. The point of this geometric resolution is that it 
encodes the approximate local homogeneities of <£-differential operators, and so it is 
natural to define the ^-pseudodifferential operators by requiring that their Schwartz 
kernels also have the same approximate local homogeneities, i.e. lift to well-behaved 
distributions on Xf. We refer to [3], [12], [9] and [4] for a discussion of the process of 
blowing up a p-submanifold in a manifold with corners. 

As already noted, all our constructions proceed independently at each boundary 
hypersurface of X, and so it is sufficient to suppose that dX = H is connected. 

The Schwartz kernel of any operator on C00(X) is a distribution on X2. Of course, 
we are particularly interested in the behaviour of these operators, and hence kernels, 
near the boundary. We use the notation 

L(H) = HxX, R(H) = X x H 

or simply L, R when H is understood. For any manifold with corners Z, let Mk(Z) 
denote set of boundary components of codimension k. In particular {L, i?} = Mi(X2). 
Because X is a manifold with boundary, X2 has boundary components only up to 
codimension two. Amongst these, only the faces B(H) G M2(X2), 

B = B(H)=HxH CX2, 

which are the ones intersecting the diagonal, are of interest to us. The other manifold 
of primary importance in this discussion is the diagonal 

D = {(z,z)eX2}. 

An important feature of this geometry is that these submanifolds do not intersect 
normally. We resolve this by blowing up B to get the b-double space 

(2.1) Xl = [X2;B};Pl: Xf^X2. 
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This compact manifold with corners is obtained by taking the disjoint union of X2 \ B 
and the inward-pointing spherical normal bundle of B and endowing this set with 
the (unique) minimal C00 structure for which smooth functions on X2 and polar 
coordinates in X2 around B all lift to be smooth. 

We next describe the lifts of the submanifolds of X2; we shall use the same letters 
to denote the lifts but add a subscript 'b' when necessary to distinguish between a 
manifold and its lift. 

First, the 'front face' of X2, which is produced by the blow-up of B is denoted 

Bh = ((32
h)-

l{B) = SN+B. 

By definition it is a quarter circle bundle over B. In fact, since the fibred-cusp 
structure specifies the 1-jet of a defining function x for the boundary H of X, this 
bundle is naturally trivial over B 

(2.2) 56 = £x[-l,l]s. 

To see this, note that if x and x' are the lifts to X2 of the given boundary defining 
function from the left and right factors of X, respectively, then TVi? is spanned by 
dx and dx>. The interior normal bundle N+B is therefore {(p, adx + a'c^/); a, a' > 0} 
and it is then easy to check that (2.2) follows, if we use s = ^T^T- 

Next consider L and R; the inverse images of these boundary faces under ft2 

contain Bb. We define instead their lifts to exclude the interior of the front face: 

Lb = cl ((/?6
2)-1(Z)\i?6) = cl ((/36

2)-1(L\B) 

Rb = cl ((Z?2)-1^)^) = cl ((ft2)"1 (/A*)) 

where cl denotes the closure. These are boundary hypersurfaces of X2 and all of the 
boundary hypersurfaces of X2 have been enumerated, so that 

M1(X
2)=      U     {Lb(H),Rb(H),Bb(H)}. 

tfeMi(X) 

We also define the lifted diagonal 

Db = d{(f32
br

l(D\DnB))cXl 

As noted earlier, the diagonal itself does not intersect the boundary normally. How- 
ever, Db is a closed embedded p-submanifold, and the only boundary hypersurfaces 
it meets are the diagonal front faces Bb{H). In this sense the blow-up of X2 to X2 

resolves the 'geometry' on X2 consisting of the boundary faces and the diagonal. This 
blow-up is the basis for the direct definition of the b-calculus, see [14]. 

There are however further degeneracies, associated to the fibred-cusp algebra, 
which need to be resolved. These occur along the fibre diagonal of the front face 
B = H x i7, given by 

{(M') ££; (t>(h) = (j){ti) inY}. 

Using the product decomposition (2.2) this lifts to the submanifold 

(2.3) $ = $(#) = {(/i, h', 0)eBb = Bx [-1, l]s; 4(h) = Hti)}, 
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which is an embedded, closed submanifold in the interior of B&, hence is a p-submani- 
fold of X%. For any manifold with corners Z we denote by V&(Z) the Lie algebra of 
smooth vector fields which are tangent to each of the boundary faces. 

PROPOSITION 1. The Lie algebra V^X) lifts to X'l from either factor to a Lie 
subalgebra ofVb{Xl) transversal to Di. In each case the elements of the lift ofV$(X) 
constitute the subset of the lift of Vb(X) consisting of those vector fields which are 
tangent to $. 

Proof Using local coordinates x, y, z, x', y', z', as in Lemma 1, on both the left 
and right factors of X, gives coordinates 

(2.4) X ,5 = 
X — X 

X -j-x' 
7, y,y ,z,z  in Xb, 

on Xjj valid near 5 = 0. The vector fields in (1.1) lift to 

,1 + 5  d      d 
-(l^)2^ 

1 — 5 dyj' dzj ' 

and these are clearly tangent to $ = {x* = 0, 5 = 0,^ = y'}. On the other hand, the 
basic generating set of vector fields on V&(-Y) is 

(2.5) 

these lift to 

xdx, dy., dZi\ 

-(i-52)as, afe> dZj 

which are clearly transversal to Z}& = {5 = 0,?/ = y',z — z'}. If such a lift is tangent 
to $ then it is easily seen to be the lift of an element of V<$(X). D 

It follows from (2.4) that $ is the flow out of dDb under the lifts of V$(X) from 
the left and right factors. It is therefore the minimal submanifold to which these lifted 
vector fields are tangent. 

r2 

In the second (and final) stage of the fibred boundary blow-up we define 

(2.6) X! = [X6
2;$],        l3*-b:Xl 

There is also a full blow-down map 

l3*=fa-bol3b:Xl—>X2. 
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LEMMA 5. The Lie algebra V$(X) lifts, from either the left or right factor of X to 
a Lie subalgebra ofVb(X\). The diagonal D lifts to a closed embedded p-submanifold 

(2.7) D^ = d0^(Dn(X2r) 

and the lifted algebra is transversal to the lifted diagonal. 
Proof. These statements are all trivial in the interior of X^, which is diffeomorphic 

to the interior of X2. Since all constructions are local near fibres of 0 it suffices to 
consider the model product fibred-cusp structure 

X = [0,l)xxYyxFz. 

Near its front face, X^ is also a product 

(2.8) X* ~ [-1,1], x [0,1W x Y2 x F2. 

The boundary fibre diagonal is the submanifold 

$ = {0} x {0} x Diagy xF2. 

The second blow-up occurs only in the first three factors of (2.8). This effectively 
reduces the problem to the case F = {pt}. In the first blow-up, (2.1), if r = x 4- x' 
then , 4 

x = x(l + s)r, x' = -(1 - s)r, s = ——• 
1 I X + x'       • ■ 

As noted in Proposition 1, the basis fields (1.1) lift smoothly to X2 as 

x2dx i(H-s)2r2ar4-i(l + 5)2(l-5)ras 

xd\ Vj ^ + s)rdyr 

Since the lifts of smooth coefficients are smooth, we can instead consider near $ the 
simpler basis 

(2.9) r(rdr 4- (1 - s)ds), rd, Vj' 

which also spans the lift of V*(X) over C00(X6
2). 

Since these vector fields are tangent to $ = {r = 0,5 = 0,y = y}, they lift 
smoothly under the blow-up of $. Near the lifted diagonal the variables r, 5 = s/r, 
Yj = (yj - y'j)lr give local coordinates and in terms of these the vector fields in (2.9) 
become 

r2dr - rSds - rY • dy 4- (1 - rS)ds, dyj • 

Since the lifted diagonal itself is {5 = 0, Y = 0}, this shows that the lift of V<f>(X) 
from the left factor (and hence by symmetry also from the right factor) is transversal 
bo the lifted diagonal D®. Q 
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Notice that D$ ~ X, with the diffeomorphism given by TT O /3| where TT is either 
the left of the right projection from X2 to X. The transversality in Lemma 5 shows 
that there are natural isomorphisms from the normal and conormal bundles of D$ in 
X\ to the ^-tangent and cotangent bundles of X covering this identification, 

*TX ~ ND®, *T*X ~ iY*D$. 

Now that X| has been defined, we consider the structure of the lifts of the 
Schwartz kernels of $-differential operators to this space. The fundamental case to 
understand is the identity operator. In local coordinates its Schwartz kernel (on X2) 
is 

Kld = S(x - x')S(y - y')5(z - z) dx'dy'dz' 

=>u(x,y,z)=   / Kidu{x',y',z'). 

From now on we identify this distribution with the operator Kid = Id. It is more 
convenient to write it in terms of a '^-density' {x')~^2^dx'dy'dz' where I = dimF : 

Id = (x'Y+Hix - x')5(y - y')8(z - z')^ 

i4 = (x1)-1'2 dx'dy'dz'. (2-10) • '^-1-2 

Consider its behaviour when lifted from the interior of X2 to Xjj. It is supported 
on the diagonal D, so it suffices to consider a neighbourhood of {5 = 0} in (2.7). Since 
x — x' — rs and x + x' = r, (2.10) becomes 

Id = r^l - Sy
+26(s)5(y - y')8(z - z')&V*)- 

Because (1 — s)5(s) = (5(5), the factor (1 — s)^+2 may be dropped. 
Next, consider the lift from X2 to X|. Of course, the support of Id is contained 

in the ^-diagonal D$. In terms of the coordinates r, S = s/r, Y = (y — y')/r valid 
near D<$> (along with y',z,z') we have 

(2.11) Id - 5(S)5(Y)5{z - z'WM). 

The density factor is simply a smooth, non vanishing, section of the lift from the right 
factor of the density bundle x~i~2dxdydz; that is of the $ density bundle. 

For any embedded p-submanifold M in a manifold with corners X, the smooth 
(5-functions on M are the elements of a space 

V0(M)=Cco(X)'fi 

where fi is any non-vanishing (5-function with smooth coefficients, as in (2.11). The 
delta functions of order at most k are obtained by differentiation 

Vk(M)=Bif[k{X)'fjL. 

In fact it is only necessary to differentiate across M. Thus if V is any Lie algebra of 
smooth vector fields which is transversal to AL in the sense that for any section of 
TMX JTM — NM there is an element of V which projects to it along M, then 

©*(M) = 5^Vi-M. 
3<k 
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By Lemma 5, V$ lifts to X| to give such a Lie algebra transversal to D<$>. Thus 

(2.12) P*(Z?*)<g>i4=Diff!.Id. 

The choice of initial smooth density on M is of course irrelevant; moreover, since it 
is in the right factor, the differentiations on the right in (2.12) do not affect it. The 
space on the right here is, by definition, the space of Schwartz kernels of Diff|(X), 
and so we conclude 

PROPOSITION 2. The Schwartz' kernels of the elements o/Diff|(X) lift to X| 
to be precisely the space Vk(D<$>) • v'^ of all smooth 8-functions on D<$> up to order k 
with a right $ -density factor. 

This result can be extended directly to operators on other bundles. Thus if E 
and F are vector bundles over X then Diff^(X; E, F) consists of all the differential 
operators from sections of E to sections of F which are given by matrices with elements 
in Diff$(X) in local trivializations. It follows that 

Diff|(X; E,F) = C00^; F) • Diff|(X) • C00^; E*). 

The space on the right here is the finite linear span of (ordered) products of elements 
from each of the three component spaces, hence is simply the tensor product over 
C^iX). If Hom(£,F) is the bundle over X2 with fibre hom(Ep,Fp>) = E* 0 Fp< at 
(p,^) then it is also true that 

(2.13) Diftl(X;E,F)=Vk(D*)-C™(Xl;feRom(E,F)®*n') 

-^(JD$)./?;C00(X|;Hom(E,F)^$^,), 

where ^fl' is the lift of the ^-density bundle from the right factor. 
This gives the following normalization. 
COROLLARY 1. The lifts to X| of Schwartz kernels of elements o/Diff|(X; E, F) 

coincides with the space 

(2.14) Vk(D*) -C00 (Xi'^omiE'iF)®*^ . 

On a manifold without boundary this identification of the kernels of differential 
operators becomes 

Diff^A^EJF) EE Vk(D)'C00 (X2;Hom(£;F) 0 fi') , 

where again ft' the density bundle lifted from the right factor. To obtain the space of 
pseudodifferential operators in the boundaryless case, one replaces Vk(D), which is the 
space of polynomials in all smooth vector fields, by Ik{X2,D), the space of conormal 
distributions, which may be thought of as symbolic functions of these vector fields. 
Clearly 

Vk{D) Clk{X2,D), 

and in fact, Vk(D) may be characterized as that subspace of conormal distributions, 
whose elements have supports contained in D. 

Although conormal distributions are initially defined with respect to submani- 
folds of the interior, which do not intersect the boundary, we may define conormal 
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distributions with respect to any interior p-submanifold, simply by requiring that they 
extend across the boundary as conormal distributions for some (hence any) extension 
of the submanifold. Thus Ik(X^, £>$; G) is defined for any vector bundle G over X|, 
and its elements are smooth outside D<$>. Letting = denote equality in Taylor series 
we define the microlocalization of Diff$(X) (or V<j»(a;)), to be the following space of 
$-pseudodifferential operators: 

DEFINITION 1. For any m G M the space of <$>-pseudodifferential operators of 
order m (in the small calculus) is 

(2.15)    *£(*;£,F) = {Ke Im(Xl,D^I3% (Hom(£;F)) ® *tt) ; 

if = 0 atdXl\E(Xl)}, 

where ff(-X"|) is the front face produced by the blow up (2.5). There is some ambiguity 
in the definition of /m, depending on whether symbols of type 1,0 or the smaller 
space of 1-step poly homogeneous (i.e. classical) symbols are used. When absolutely 
necessary, we shall denote the polyhomogeneous space by 

^(X;E,F)C^(X]E,F). 

Generally the statements we make are valid with either interpretation of I771. 

3. Action of $-pseudodifFerential operators. Combining Corollary 1 and 
Definition 1 we have 

(3.1) Dittl(X;E,F) C *|(X;E,F) V k G N 

as spaces of kernels. We wish to interpret these Schwartz kernels as operators so that 
(3.1) still holds. 

For simplicity take E = F = C. Then the spaces in (2.14) and (2.15) can be 
rewritten as 

©*(£>*)• C£P(J^/JJ*fi')) 

j™(xiz^).cn*2;/^'), 
respectively, where (^(X2; (3^0,') is the space of sections vanishing to infinite order 
at all boundary faces except ff(X|). 

Consider the lift of a non-vanishing density from X to the left factor of X2 

and then to X|. Using the diffeomorphism which exchanges factors, the computation 
leading to (2.14) shows that the tensor product identification p*LQ®p*R®rL = H extends 
from the interior of X2, and so of X|, to give an isomorphism of spaces of sections 

(3.2) cr (Xl;0l(pin®p*R*a))=C?(Xl;a). 
That is, the singular Jacobian factors arising all occur at faces other than ff (X|) and 
have finite order singularities, which are absorbed by the infinite order vanishing at 
these faces. 

Fixing any 0 < v G C00^;^), the action of P G Diff|(X) on u G C00^) can 
then be written 

Pwv = (7ri,)*(-P * ^L
V
 ' KRU) 
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where (3.2) is used to identify the product on the right as a density on X| and 
KL — PL 0 P$> Generalizing from this, we see that in order to define the action of 
^-pseudodifferential operators it suffices to establish the following result about push- 
forward: 

LEMMA 6. Push-forward to the left factor defines a continuous linear map 

(TTL), : Im(Xl,Dz) -C^iX^n) —► C™(X;n). 

and hence using (3.2) 

(3.3) (7rL)* :/-(X|,^).d^(X|;/3S7r^n) —> C^X), 

Proof. This is a special case of the push-forward theorems discussed in [13]. To 
apply these theorems, we need to know that TTL and TTR are b-fibrations, and this is 
established below. The singularities of the kernel of D<$> are integrated out since TTL is 
a smooth map which is transversal to the lifted diagonal. This transversality follows 
from Lemma 5 which shows that the lift of V$(X) from the right factor is transversal 
to D<$> and spans the null space of the differential of TT^. From the general properties 
of conormal distributions 

(TTL), : Im(Xl,D*) 'C™(U;n) —> C™(X) 

if U is a small neighbourhood of the diagonal. For such a neighbourhood C™(JJ) C 
Cff?(-X"|) so it suffices to consider the case m = —oo, i.e. to show that 

(3.4) (7rL).:Cr(*!;n)—^(Xjfi). 

Notice that (3.4) is not quite trivial since it is not the case that (TTL)* maps 
C^iXli ft) into C00(X; ft). As discussed in [13] a result such as (3.4) follows from two 
facts 

TTL is a b-fibration and if H G Mi(-X') then 

TTJ^
1
 (il) fl ff is a boundary hypersurface of X|. 

The second condition here just means that / G C^(X|) vanishes to infinite order 
on all of 7r^1(iir) except for the one boundary hypersurface, which is the front face 
corresponding to H in (2.5). 

Thus it is only necessary to show that TTL — PL 
0 (3$ is a b-fibration (for the 

definition of this and other terms here we refer to [13]). Both PL and /3$ are surjective 
b-maps and b-submersions, and so TTL is also a b-submersion. It remains only to see 
that no boundary hypersurface of X| is mapped into a boundary face of codimension 
two or more in X, but since X does not have any such faces this is automatically the 
case. D 

Tensoring with the general coefficient bundle we deduce the elementary mapping 
properties of ^-pseudodifferential operators. 

PROPOSITION 3. Using the identification (3.2), each element A e ^(X\E,F) 
defines a continuous linear operator 

(3.5) A : C^iX- E) —> C00^; F) 
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which restricts to A : ^(X^E) —¥ ^(X'^F) and extends by continuity in the 
distributional topologies to 

AiC-^iX-E) ^C-^iX-F) and 
(3.6) . . 

A:C-00(X:E)—^C-00{X;F). 

These actions are consistent with the inclusion (3.1). 
Proof. The discussion above proves (3.5), since any element can be decomposed 

as a finite sum of products 

tf£(X;E.F) = CTO(X; F) • 9%(X) • C00^; E*). 

That Au e C^iX; F)ifue C00^; E) follows from the observation that if 0 G C00(X) 
andu ZC^^X-.E) then 

Pfou) = (7rW-P)ti 

where, directly from Definition 1, TTJ^^ • P e ^{X\E,F) if P G ^^(X;E,F). Now, 
if it G C^-X"; E) it can be written as a finite sum, iz = ^ • (j)jUj,Uj G C00^; £?) and 

If 0 6 C^iX) then 

Tr^.C^CXDcC00^!); 

the extra vanishing at ff (X$) comes from the first factor. From this it follows that 

Kl(x~k) • n*R<l>P € 9%(XiE,F) V Jfe G N,     V 0 G C00(X), 

hence x'^Pu G C00^^), i.e. Pu G C^p^F). 
Again from Definition 1, the formal adjoint of P G ^(X;.E,P) with respect to 

smooth inner products on E and F and a density on X is an element of ^^(X; P, JB). 
Thus the mapping properties (3.6) follow by duality. D 

The singular function x/x' on X2, where x G C0O(X) is a boundary defining 
function on the left factor and x' is the same function on the right factor, lifts to 
be C00 up to the interior of the front face of X$, and hence up to the front face of 
X|. Since it has only a finite order singularity at the other boundary hyper surf aces, 
^(x/x1) is a multiplier on ^(X;^, P). This means in particular that 

Pd-.C^idX-E) —tC^idX^F) 

Pdu = Pu\dx,u G C^XjP) with u = u\dx 

is well defined, regardless of the extension u of u. This corresponds to the map 
obtained by restricting an element of V$(X) to the boundary. Below it is augmented 
appropriately to define the normal operator, which is the boundary symbol in this 
context. Before doing this, however, we first discuss the ordinary symbol map for 
$-pseudodifFerential operators. 

For conormal distributions the symbol map 

/m(X;G)-^5[M](^*G;ni(7Y*G)®7r*(nix)), 
(3.8) ! x 

M = m+ - dim X dim G 
4 2 
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was introduced by Hormander. It is normalized on half-densities. Here 

5[M](A) = 5M(A)/5M-1(A) 

for any conic manifold A, is the quotient. For the case G = Dq> C X| it has already 
been shown in Lemma 5 that N*D<p ^ ®T*X. The (singular) symplectic form on 
$T*X trivializes the bundle ®Q = a;~^~2n so (3.8) leads to the desired map 

(3.9) (7*im : *£(*;£,F) —► sM(*T*X;ir*hom(E,F)). 

This generalizes the symbol map for differential operators obtained by taking the 
leading part of (1.3) as a polynomial on $T*X. It gives a short exact sequence 

0 —■» Vg^iXiEtF) ^ V%{X\E,F) ^ SH(*T*X;7r*hom(£,F)). 

For the polyhomogeneous spaces, ^^(XjE, F) the symbol becomes a homogeneous 
section of hom(E,F) lifted to $T*X\0. Letting Z = *S*X be the boundary 'at 
infinity' of the radial compactification ®T*X this allows the symbol map to be written 

<Tp*,m : V&iX] E, F) —> C^tZ; (iV*Z)m 0 TT* hom(£?, F)), Z = *5*X. 

Next let us note how the action of $-pseudodifferential operators can be written 
locally. 

PROPOSITION 4. If x € C00(X) has support in a coordinate patch, U, based at 
a boundary point p G dX with coordinates x,y,z as in Lemma 1 then the localized 
action of P € tf£(X) on u G C~(?7) takes the form 

(3.10) xPu = / Px(z,5,^,5,y,z - z')v(x(l + xS),y- xY,z')dSdYdz' 

where v(x, y, z) is the coordinate representation ofu and the kernel Px is the restriction 
to U x RN of a distribution on W1 x En_fc x Rk which has compact support in the 
first and third variables, is conormal to {S = 0,Y = 0} x {z = z'} (which is the 
origin in the second two factors) and is rapidly decreasing with all derivatives as 
1(5,^)1—> oo. 

Proof The kernel of the localized operator can be taken to be xPX- Any part 
of the kernel, on X|, away from Dq> and ff(X|) is smooth as a function on X2 and 
vanishes rapidly at the boundary. Localizing on X| this gives a smooth section of 
Hom(E, F) <S> TT^CJ over X2 vanishing rapidly at both boundaries; such a term can be 
written in the form (3.10) with Px both C00 and rapidly decreasing in S and Y. 

Thus we can suppose that the kernel has support in a small neighbourhood of 
D$ Uff(X|). The part in the interior has a conormal singularity at the diagonal and, 
since x^x* ^ 0, can again easily be written in the form (3.10). Thus we can suppose 
that the kernel has support in a small neighbourhood of ff(X|). Suppose initially that 
its support only meets the interior of ff (X|). In this region x, y, z, S = ^ir-, Y = ^^ 
and z* gives coordinates on Xf. Thus (3.10) results by introducing x1 = x(l-\-Sx), y = 
y' — xY. The kernel has compact support and only a conormal singularity at S = 0, 
Y = 0, z = z' so (3.10) results. 

The final term then is a smooth contribution to P supported near S(X^) and van- 
ishing to infinite order at the other boundary faces nearby. Although the coordinates 
x,y,z,S, Y, z — z' are not valid up to these adjacent boundaries a smooth function 
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vanishing in Taylor series in this sense just corresponds to a Schwartz function in 
the variables S,Y, i.e. rapidly decreasing with all derivatives as 1(5, Y)\ —> oo. This 
proves the local representation (3.10). D 

This proposition does not quite give a complete local description of the action of 
P. However, if p, p' e dX lie in the same fibre of (j) then (j)(p) — </>(//) lie in some 
coordinates patch in Y. Thus one can take 'consistent' coordinates near p and p' given 
by x,y,z and x,y,z respectively. The same argument as in the proposition gives a 
representation 

(3.11) xPu =  / Px{x, y, z, 5, y, z')v(x{l + xS),y - xY, z')dS dY dz' 

where x € ^(X) has support in the coordinate patch near p and v has support 
in the coordinate patch near p'. The localized kernel Px is smooth in all variables, 
compactly supported in x,y,z and z7, and is rapidly decreasing with all derivatives 
as |(S,y)| —►oo, 

Other pieces of the kernel correspond either to points p^p' in different fibres 
over the boundary or where either, or both, of the pair lie in the interior. In these 
regions the localization of the kernel is a smooth section of X2, except for a conormal 
singularity at the diagonal, and with rapid vanishing at any boundary. 

The front fact of X% is a bundle over dX with fibre (j)-l{y)2 x *NyT over y. The 
singular variables Y — (y — y')/x and 5 = (x — x^/x2 introduced above give linear 
coordinates in ®NyY, depending on the choice of admissible coordinates. Under a 
change of such coordinates Y and 5 transform linearly at x = 0, as a bundle transform 
on ®NY, and as Taylor series at x = 0 vary polynomially: 

(^5) _> A(y') • (Y,S) + ^^(z, *',!/', y.S) 

where the Pj smooth and are polynomials (without constant terms) in the variables 
Y,S. 

4. Normal operator. Using the representations (3.10) and (3.11), we see that 
the restriction map in (3.7) is locally represented by 

(4.1) 
PdU=  I Pd{y,z,z - z')u(y,z')dz' 

Pd(y,z,z-z') = JJ Px(0,y,z,S,Y,z-z')dSdY. 

This shows 
LEMMA 7.   The map P \—> PQ in (3.7) gives a surjective map 

(4.2) ^(X; E, F) -» 9^(dX: E, F) 

where ty™(dX;E,F) is the space of pseudodifferential operators acting on the fibres 
of (j): dX —> Y and depending smoothly on the base point. 

It is important to note that the null space of (4.2) consists of those elements for 
which the integral in (4.1) vanishes for all y G Y (and z, z' G F). This is closely related 
to the question of determining which <I>-pseudodifferential operators are compact as 
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operators on L2(X]E,F). For example, as will be seen below, the most obvious 
class of residual operators, the elements of ^rJ00(X;£', F), are not all compact. The 
operators P for which PQ = 0 are also not, in general, compact. In fact, such an 
operator is compact only when the whole of the restriction of its kernel to S(X^) 
vanishes, not just its fibre average as in (4.1). 

We examine this issue by means of 'oscillatory testing'. To do this, fix a point 
p e dX, and suppose / G C00(y) is real-valued and has df((f)(p)) ^ 0. Choose / G 
C00^), also real-valued, with / \ dX = <£*/• Finally, take x £ C00^) such that 

X = 1  near  (j)'1 (0(p)) 

df^O  on .^(suppxnaX) 

and consider the 'oscillatory test section' 

LEMMA 8. For an 'oscillatory test section' of this form, and for any operator 
Pe9$(X;E,F), 

(4.3) P(eif~/Xxu) = eif~/xPu 

withPe9%(X;E,F). 

Proof. The kernel of P is e~l^xPei^ lx %', using the obvious notation for variables 
and functions lifted from the left and right, respectively. It will suffice to show that 

,     , the lift of e-ii/xxei~f',x,x! is C00 on the union of (X2)0 

(4.4) . 
and (ff(X|))0 and multiplication by it preserves Cs{X%). 

Recall that the space in the final statement here consists of the smooth functions on 
X| which vanish to infinite order at all boundary faces except ff (X|). The main point 
is to demonstrate the smoothness up to the interior of ff (X|). First set x' = (1 + s)x, 
corresponding to the blow up (2.1), so that 

X X' X X1 1 + 5 

Clearly we may restrict attention to the singular part 

x x' x        (1 + xS)x' 

Using a Taylor expansion and the fact that dyf ^ 0 on supp x, we see that this is C00 

up to x = 0 as a function of (5, Y") G R1+k. This proves the first part of (4.4); it also 
shows that this function has singularities only of finite order at all boundaries of X| 
besides ff(X|). It is therefore a multiplier on C^(X^). In fact, this shows that 

e-if/txe*?/*'^ is a multiplier on «f (X;E,F), 

and this proves the lemma. □ 
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The operator P in (4.3) depends not only on /, but also its extension / and the 
cut off function x- However, the restriction PQ depends only on / and %. This follows 
from (4.1), for if we assume that x 'ls supported in a coordinate patch, then 

(4.5)    Pe(y,z,z- z') = JJexv(if'(y) ■ Y + if(y)S)Px(0,y,z,S,Y,z - z')dSdY. 

As noted in Lemma 7, the y variable enters here only as a parameter. A similar 
formula may be obtained from (3.11), and so we conclude that if x(y) — 1 on the fibre 
<j)~~l(y) then for that value of y, Pd(y,z,z - z') £ ^m(d~'1(y)]E,F) depends only on 
f(y), df(y) and P. 

LEMMA 9. // we fix a point (y,rj) G T*Y and a constant r £ M; then the indicial 
operator 

P{y,T,r,)e^m{rl{y);E,F) 

is well-defined as the restriction to that fibre of PQ, where P is defined by Lemma 8 
with f chosen so that f(y) = r and dyf(y) = r]. If P(y,T, rj) = 0 for every y,T,ri, 
thenP Gx^(X;E,F). 

Proof. Only the last statement needs to be checked. From (4.5) it follows that 
if P(y,T,r)) = 0 then the Fourier transform of the kernel on each fibre of ff(X?) 
over Y vanishes, hence P \ ff(-X$) = 0 and this is equivalent to the existence of 
Q G ^(X;^, F) such that P = xQ (or equivalently, the existence of some Qf with 
P = Qlx').n 

As is clear from (4.5), (3.10) and (3.11) the information carried in the operators 
P as we let y G Y, f(y) — r and r) — df(y) vary determines the restriction of the 
kernel of P to fF(X|). We shall reorganize these individual operators into the family of 
normal operators. Before we may do this, however, we must first describe the algebra 
in which the normal family takes values. 

For any compact manifold without boundary, M, and real vector space, V, M x V 
is a C00 manifold so the spaces \I>m(M x V) of pseudodifferential operators on M x V 
are well defined. These do not compose since the growth of the kernels is unrestricted 
at infinity in V. We consider the subspace 

Kus(v)(M)C*m(MxV) 

consisting of the translation-invariant elements with F-convolution kernels vanishing 
rapidly, with all derivatives at infinity. Thus If A E #m(M x V) then A 6 ^Zs(V)(M) 
if 

AT;U = T;AU V U e C™(M X V), V e v 
(4.6) 
V and A : C^M x V) —> C"00^/ x V) + S(M x V). 

Here Tv(m,w) = (m,w — v) is translation by v and S(M x V) is the Schwartz space. 
The translation-invariance means that the kernel is of the form 

A{m,m',v-vl) G C"00^/2 XV-.QR). 

Then, with some abuse of notation in which A also stands for the F-convolution 
kernel, the second condition in (4.6) means that 

(4.7) A G CC-00(M2 x V] nR(M x V)) + <S(M2 x V] nR{M x V)) 
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where fi^M x V) = TT^H, TTR :  M2 x V —> M x V being projection onto the right 
factor of M. 

For the case V = E this is the 'suspended algebra' considered in [18]. From (4.7) 
and the general properties of pseudodifferential operators it follows that ^lus(y){^) 
is an order-filtered algebra of operators 

A: S(M xV) —>S{M xV). 

The notation here, ^rsus(vr)(^)' '1S ^0 indicate that the algebra can be thought 
of as the '^-suspended algebra of pseudodifferential operators on M.' In this sense 
the primary object is M. To have the corresponding algebra of operators acting on a 
vector bundle, the vector bundle should be defined over M and pulled back to M x V. 
Thus if E is a bundle over M then 

y*sus{v)(M;E) = *;„,(V)(M) ®C~(M2) C~(M2;Hom(E)) 

defines the algebra of operators 

A : S(M xV]E)-^ S(M xV]E). 

Directly from the definition, ^™s,yx(M;.E) is invariant under arbitrary diffeo- 
morphism of M and linear transformations of V, as well as bundle transformations of 
E over M. This allows us to define the more general object we need. 

DEFINITION 2. Let <j) : X' —± Y be a fibration of compact manifolds, E —> X' 
a vector bundle and V —> Y a real vector bundle. Then the algebra of V-suspended 
fibre pseudodifferential operators on X1', ^wy)-.^^';^) is the space of operators 

A:  S{X' XYV',E)-^S(X, XYV\E) 

which are local in Y and for any open set O C Y over which (/> and V are trivial 
reduce to a smoothly O-parametrized element of ^™s(y A(j)~l{y)]E). 

Thus an element A E ^wy)  {X'] E) has Schwartz kernel of the form 

A{y,z,z\v) eC-^iX' xYX' xYV^om{E)®^R) 

+S(X' x y X' x y V; Hom(E) 0 ft*) 

where A is conormal with respect to the submanifold 

D* x {0} = {fo,;z,s,0)} C X' Xy X Xy V 

which is the fibre diagonal. The action of A is given explicitly by 

since H^ is the lift from the right factor of the fibre density bundle of X1 x y V as a 
fibration over Y. 

Since the kernel is essentially a density on the fibres of V when all the variables 
are held fixed its Fourier transform is well defined and is a smooth function of the 
dual variables 

A{y, z, z', ti;*) = j e-iw'-wA{y, z, z', w)dV. 
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For each w* 6 V* it is a pseudodifferential operator on the fibre (f)~l{y). This corre- 
sponds to the indicial operator in Lemma 9. In fact 

PROPOSITION 5. For a $-structure on a compact manifold with boundary X, the 
indicial operators of Lemma 9 combine to give the Fourier transform of an element 
of i^1^ls(y)-(k{dX\ E, F) where V = ®NY is the null bundle, on Y, of the restriction 

®TQXX —> TdX and the resulting map, defining the normal operator, gives a short 
exact sequence 

(4.8) 0 —> xn{X\E,F) —> *Z{X;E,F) ^ <C(v)-*(3X;£,F) —»■ 0. 

Proof Prom (4.5) we know that P is the Fourier transform of the restriction of 
the kernel of P to the front fact, fi.(X%). Thus, at the level of kernels, the map N<$> is 
just restriction to ff (X%). This shows that the null space of N<$> acting on ^(X; E, F) 
is precisely xi^1^{X]E.F) and directly from Definition 2, N<$> is surjective as is (4.8). 
D 

When we consider composition below it will be apparent that (4.8) is multiplica- 
tive. 

5. Composition. It is relatively straightforward, if tedious, to check that the 
space ^Q(X\E) is an algebra by using the local representations (3.10) and (3.11). 
Instead we use a more conceptual approach that has the virtue of applying in rather 
general circumstances [10] and in the present circumstances to more general operators 
(i.e. 'larger calculi' with non-trivial boundary behaviour). 

Thus our approach is to define a 'triple $ product' X| with maps back to the 
double product X| defined in (2.6). The definition of X| from X3 proceeds by a 
chain of five blow ups. These are carried out independently at each of the boundary 
faces of X, so for simplicity we generally assume that dX = H is connected. We 
shall use a notation for the boundary faces of X3 similar to that used above for X2. 
Namely if H G M(X) then set 

L{H) = HxX2, M(H) =XxHxX, R{H) = X2 x H. 

Thus in general 

Mi(X*) =      IJ     {L(H), M(H), R(H)}. 
Jf€Mi(X) 

For the codimension two boundary faces we are only interested in those meeting the 
diagonal; we use the notation 

S(H) = HxHxX, C(H) = H x X x H, F(H) = X x H x H. 

Here '5 = second', 'C = composite' and lF = first' arise from the relationship to the 
composition of operators. The only codimension three boundary faces meeting the 
diagonal are 

T(H)=H3 CM3(X
3), 

the 'triple' faces. In general we drop the reference to H. 
The two stage blow up leading to X3 resolves the intersection of T, 5, C and F: 

(5.1) XZ = [X3;T;S;C;F}. 
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Although there are in principle four blow ups here, after the blow up of T the lifts of 
5, C and F are disjoint p-submanifolds so can be blown up in any order. 

The remaining stages in the definition of X| involve the blow up of various $- 
diagonal submanifolds. To see how these arise, consider the product 

X xX6
2 = {Xd]F], 

The submanifold $ C Xj; defined in (2.3) therefore defines a submanifold we denote 

(5.2) $F = Xx<S>cXxXl 

Now T C F so, by the commutativity of blow-up in this setting (see [10], [3]), the 
order of blow ups can be exchanged to obtain a natural isomorphism 

[X3;F;T]-[X3;T;F]. 

The product structure in (5.2) and the fact that T lifts to [X3; F] to be 

T' = Hx Bh(H) c[X3]F]=Xx X6
2, 

shows that <$>F has a common product decomposition with X". The inverse image of 
$F in [X3] F\ T] is therefore the union of two p-submanifolds which we denote 

fIF = /3M*F) = cia/^r'^iAT')) and 
\*Fr = (/3r0"1(*Fnr'). 

Neither of these p-submanifolds meets the lifts of S or C to [X3; F, T] so they equally 
well define submanifolds 

iF5$FTCX3 = [X3;F;r;5;C]. 

Of course from the basic symmetry of the set up we have similar submanifolds 

$S,$ST,$C,$CT C X3. 

Notice that $0 C Ob C X3, 0 = F, 5, C when Ob denotes the front face produced by 
the blow up of 0 in defining X$. On the other hand $OT C T6 for O — F, 5, C. 

LEMMA 10.  The intersection of any pair of<&sT, $FT and <$>CT is the submanifold 

$T =. $5T n $FT n $CT 

which is contained in the interior ofTb. 
Proof Let us examine these definitions more closely. Since we only need to 

consider the operations near each boundary, X can be replaced by [0,1)^ x iJ, so X% 
is given by (2.8) and in this representation 

$ = {0} x {0} x D* 

where D<p C H x H is the fibre diagonal. Now, X3 ^ [0,1)3 x H3. So near the new 
faces 

[X3;T]-[0,1) xGxH3 

X6
3-[0,l)xG6 x#3. 
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Here, G C M2 is an equilateral triangle with centre the origin and Gb is obtained by 
blowing up each corner of it. Thus G& can be embedded in M2 as a regular hexagon 
with centre the origin. The sides of this hexagon are alternately the front faces and 
original boundaries, i.e. Cb,Rb,Fb, Mb, Sb,Lb. 

The lifts of the $ diagonals are easily identified, thus 

(5.3) $F - [0,1) x {pF} x H x D* 

where pp € Gb is the midpoint of the side corresponding to F& and D$ C H2 is the 
0-fibre diagonal. Similarly 

$FT = {0} x eF x H x D$ 

where £F C Gb is the line through pF, the origin and the midpoint of the side repre- 
senting Lb. 

This proves the lemma with 

(5.4) $r = {0} x {0} x r$, TQCH
3
 the triple ^-diagonal. 

Now we complete the definition of the triple $-space by three more (levels of) 
blow up 

(5.5) Xi = [X&
3; $T; $FT; $ST; $CT; $F) $si *c]. 

From (5.3) and (5.4) it follows that <&FT,$ST',$CT lift to be disjoint after the blow 
up of $T so the orders of these three blow ups, and the last three, are immaterial. 
However, the order betwe6n the last three blow ups and the preceding three is impor- 
tant and cannot be arbitrarily rearranged, since for instance $FT and 4>F intersect 
but not transversally, nor is one contained in the other. This space is mainly useful 
for the maps defined on it. □ 

PROPOSITION 6. For O = F, 5, C there is a b-fibration 7r| 0 : X| —► X| fixed by 
the demand that it give a commutative diagramme with the corresponding projection 

(5.6) X3 ^X»Jl X3 

^3 
^,0 

,,3 

x$ 
</>' 
-xi 

01 
■x2. 

Proof. To define these maps we start with the corresponding maps for the b- 
calculus; the middle maps in (5.6). These can be constructed using the commutability 
of blow ups for O D T, we shall take O — F for the sake of definiteness. Then 

(5.7) Xl = [X3;T;F;S,C} = [X'-^^S.C] = [[X3;F};T;S,C]. 

Now [X3;F] = X x Xjj so there is a commutative diagram with vertical projections. 

xt^^x*. 

Xx.Xt 
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Then 7if>F = -fF o ft, p : [[X3;F];T; 5; C] —^ [X3;F] being the blow down map. 
Thus 7rlF is defined and is automatically a b-map. We need to show that it is a 
b-submersion and finally a b-fibration. Certainly it is surjective. 

A b-fibration, /, remains a b-submersion when composed with the blow down 
map for blow up of some p-submanifold, M, if, for each point p of the submanifold 
:he induced map 

(5.8) / : M —> Mfto) 

is a b-submersion. Here Fa,(q) is the smallest boundary face of the range space con- 
Gaining f(p). For any boundary face, M, this condition is automatically satisfied. This 
blown up' b-fibration is again a b-fibration, rather than just a b-submersion, if /(M) 

is a boundary hypersurface of the range space, which is to say it is not contained in 
a boundary face of codimension 2. Since this is immediately clear for the blow ups is 
the definition of ft, and hence 7if F, the latter map is a b-fibration. 

Now that we have fixed the central vertical maps in (5.6) we proceed to the defi- 
nition of the 7r| 0, again taking O = F for definiteness sake. In (5.5) the submanifolds 

$ST, $CT and §F are disjoint, so the order can be changed to 

Similarly $T C $FT and $T is disjoint from Qp so 

(5.9) Xl = [XI; $FT- 5F; *"], $" = 5T; *'. 

Consider again the definition, (5.1), of X|, reorganized as in (5.7). The submanifold 
S and C are disjoint from $FT and <&F SO (5.9) can be written 

(5.10) X| = [XxX6
2;T;iFT;IF;^], iJ = 5;C,;$". 

[n X x X% the submanifold X x $ lifts to $F under the blow up of T and $FT is 
the lift, in fact preimage, of (j)(X x $) D T under blow up of T. Thus (5.10) can be 
commuted to 

X3 = [X x X6
2;(rn (X x *));T;$F;ii]. 

The second and third blow up are disjoint so in fact 

(5.11) Xl= [XxX6
2;(Xx$); T n (X x *);r; R] 

The final rearrangement here is of two cleanly intersecting submanifolds with are 
blown up with there intersection, this can be accomplished by blowing up either of 
them first, then the intersection, then the other, with the same final result. 

The first blow up in (5.11) is the definition of X| so 

(5.12) X| = [X x Xg;Tn (X x $);T;ii] 

allows the blown up projection in (5.6) to be defined by 

^I.F = 7F • '0, 7F : X x X| —> X| 

being the projection, with ^ the collective blow up of R in (5.12). 
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To show that TT! F , and hence by symmetry each of the 7r| 0, is a b-fibration it 
is only necessary to check the two conditions involving (5.8) for each of the blow ups 
in '0. In fact, using the product structure in (5.3),.etc., this is straightforward so the 
details are omitted. Suffice it to say that the fibration can be eliminated directly and 
the case <f> = Id is then simpler to analyze. □ 

We further augment Proposition 6 by considering the relationship between these 
maps and the lifted diagonals. 

LEMMA 11. The lifted diagonals, defined as the closures in X| of the diagonal 
D C X0 x X0 in each of the three possible positions, are p-submanifolds D^^p-, ^$,5; 
D$5c as is the lifted triple diagonal -D$,T- Each of the maps 7r| 0 is transversal to 
D<s>,0', for O' / O and maps 

D^T = D*tOi n D*, O2, Oi # O2 

diffeomorphically onto D$ G X|. 
Proof These results are immediate away from any boundaries. The transversality 

of 7r|5F, say, to D$7s follows by lifting V^(X) from the left factor. This is in the null 
space of the differential of 7r| F and lifts to be transversal to -D^s, essentially by 
Lemma 5. Thus 7r| F maps -D$,5 diffeomorphically onto X| and hence embeds the 
submanifold Z}$,T C D<$>,S as Dff, C X|. D 

With these maps and transversality results available the composition formula is 
now straightforward. 

THEOREM 2. For any vector bundles E, F, G over a compact manifold with 
boundary X, and fibred boundary structure $, 

9Z(X-,F,G)oili%\x-,E,F)c9$+m\X;E,G) 

and both the symbol map (3.9) and normal operators 

n(X;E.F) —► *-s(K)_^(aX;£;,F), 

V = ®NY, of Proposition 5, are multiplicative. 
Proof The composition is well defined by Proposition 3. D 

6. Mapping properties. To deduce the L2 boundedness of the operators of 
order zero we shall use an argument due to Hormander [5] which depends on the 
existence, within the calculus, of an approximate square root of a positive elliptic 
element. 

PROPOSITION 7. If B G i^%{X) is formally self-adjoint, for some smooth positive 
density on X, then for C > 0 sufficiently large 

C + B = A*A + R, 

for some A <E 9%(X) and R e x00^00^). 
Proof Since B is formally self-adjoint with respect to the density, z^, the indicial 

family B(r, 77) consists of operators which are self-adjoint with respect to the boundary 
density, defined by u = dx ® I/Q for an admissible defining function x. Thus, for C > 0 
sufficiently large 
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and from the uniqueness of this positive square root it is the indicial family of some 
A) £ ^%(X). Again for C large enough AQ can be chosen to have 

ao(Ao) = (C + ao(B))i 

as well. Thus, replacing AQ by |(-4o + AQ) we find 

C + B-Alex^iX). 

Proceeding by induction, as in the standard case, one can suppose that A(k_i) € 
^%{X) has been constructed such that AJk_1^ = A^i) and 

C + B - A2^ = Rk £ xk*-k(X). 

Adding an unknown Aj- € xk^'^k(X) to A^k^ gives 

C + B - (A^-i) + Ak)
2 = Rk- A^^Ak - AkAfr-v - A2 

= Rk - Afc-^Ak - AkA(k-.i) 

modulo xk+1tyQk~~l(X). Thus if Ak = xkGk is chosen to satisfy 

(6.1) N(A0)N(Gk) + N(Gk)N(Ao) = N(Fk), Fk = x-kRk 

then A(jfe) = A^-i) + Ak satisfies the inductive hypothesis at the next level. Notice 
that, at the level of the indicial families, (6.1) is indeed solvable, as the linearization 
of the definition of the square root 

(MT,ri) +Gk(T,rJ))
2 = Mr^^+Fkir.rj), 

Ao(T,rj) being a positive operator for all r, rj. Finally then A can be taken as an 
asymptotic sum of the series defined by the Ak. D 

THEOREM 3. Each element P G ^%(X]E) defines a bounded linear operator on 
L2(X]E), defined with respect to a positive smooth density on X. 

Proof. Since X is compact, boundedness on L2 is a local property of operators, 
so it suffices to consider the case E = C by local trivialization. Then applying 
Proposition  7 with B = -P*P shows that, for all u E C00^), 

\\Pu\\2 = C\\u\\2 - \\Au\\2 + (Ru,u) < C\\u\\2 + \(Ru,u)\ < C'M2, 

where the fact that elements of a;00^00^), being smoothing operators, are L2 

bounded has been used. D 
Just as the construction of an approximate square root proceeds as in the bound- 

aryless case, with some extra care needed to handle the normal operator, so the 
existence of parametrices for 'fully elliptic' operators is straightforward. 

PROPOSITION 8. If P £ ^(X-.E^F) is fully elliptic in the sense that its symbol 
is everywhere invertible and its normal operator is invertible on each fibre of </>, then 
there exits Q £ ^Jm(X;F,E) satisfying 

PoQ-Ide x00**00^; F) and Q o P - Id 6 x00^00^; E). 
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Proof. Using the symbol calculus, Qo € ^^(X-.F, E) can be chosen to have 

<r-m(Qo) = {°m(P))-\ N(Q) = N{P)-1. 

This ensures that P o Q0 = Id— Ri, with i?i € x^^ (X]F). Proceeding inductively 
it can be supposed that Qj G a;-7^rJm~J(X; F, E) have been constructed so that 

jfe-i 

Po(Y,Qj)=ld-RkXk, Rke**k(X;F). 
j=o 

Adding Qk = Tkx
k e xk^m-k{X;F,E) where c7_m_fc(rfc) = (<7m(P))-V_*(i^) 

and N(Tk) = N(P)~1N(Tk) gives the next inductive step. Then Q can be taken to 
be an asymptotic sum of the Qk- □ 

As in the boundaryless case these basic results easily lead to continuity, compact- 
ness and Fredholm properties on Sobolev spaces. For positive real number m, and 
any / € M set 

xlH${X',E) = {ue ^L^X'.Ey.Pu e L2{X-E) V P e V%(X',E)} 

xlHim{X;E) -m/ 

N 

= lue c-00(X',Ey,u = J2piuii ui e xlL2(X\E), Pi e *£(*;£) [ 

LEMMA 12. For these ^-Sobolev spaces 

xlH%{X\ E) C xl'H%' (X; E) <=> I >l' and m> m! 

with the inclusion then continuous.  The inclusion is compact if and only if I > V and 
m > m' and each P G ^^(X'^E, F) defines a continuous linear map 

(6.2) P : xlHg'(X;E) —» xlH^'-m(X] F) 

for all I and m'. 
PROPOSITION 9. Each fully elliptic element, P e 9^(X',E,F), is Fredholm as a 

map (6.2) and conversely this condition characterizes the fully elliptic elements. The 
null space of such an operator is contained in C00(X;E) and there is a complement 
to the range in C00(Xm, F). 

PROPOSITION 10. If P G ^(X\E,F) is fully elliptic then P*P + 1 has a two- 
sided inverse in \I>J2m(X;i2). 

7. Wavefront set. There is a natural notion of wavefront set associated to the 
calculus of operators ^(X; E). In fact in a certain sense there are two such notions, 
one associated to regularity and the other associated to growth at the boundary. In 
each case we first consider the corresponding notion of microlocal support, or operator 
wavefront set, for the operators before examining the wavefront set of distributions. 

For an embedded submanifold Y of a manifold X the conormal distributions 
introduced by Hormander, I(X,Y), have wavefront set a closed conic subset of the 
conormal bundle to Y in X. Let SN*Y be the boundary of the compactification of 
this bundle, i.e. the quotient of N*Y \ 0 by the E+-action. Then 

WF(u) C S7V*r, u e I*(X,Y) 
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can also be identified with the cone support of the symbol obtained by transverse 
Fourier transformation of u. This second definition extends directly to the case of an 
interior p-submanifold of a manifold with corners. In particular it applies to the lifted 
diagonal in X|. This allows us to define the 'symbolic' part of the ^-wavefront set by 

WF^a(A) = WF(A) C 5iV*(Diag0) - *S*X, 

WF'^A) = <!)^Ae ^(X;E). 

The elliptic subset, E\\™(A) C WF'^A) is the open subset of *S*X on which the 
symbol of order m has an inverse of order — m. Here we have used the identification 
of the conormal bundle to the lifted diagonal with ^T^X 

Now, the discussion above of the composition of ^-pseudodifferential operators 
shows that the diagonal singularity of the composite arises from the same opera- 
tion as in the interior case. In particular the standard proof of the microlocality of 
composition shows that 

(7.1) WF^(AoB)c WF'^(A) n WF^(B), A,B e9l(X;E). 

The construction of parametrices for elliptic operators can also be microlocalized, so if 
K C Ell^(A) is closed, for a given A <E *£(X; JE), then there exists B G ^m{X]E) 
such that 

(7.2) A o B = Id -RL, BoA = Id -RR, RL, RR £ *£(*; E) and 

Kn{WF^a(RL)UWF^a(RR))=t 

Combining these standard results extended to the ^-calculus leads to an alterna- 
tive characterization of the operator wavefront set 

LEMMA 13. For any A € ^^{X;E) 

(7.3) (WF^(A))C = U{ElC(^);5G^(X;E) and B o A G tf^XjlS)}. 

Proof. If p G ®S*X is in the set on the right in (7.3) then there is some B G 
^(X; E) which is elliptic at p and such that Bo A G ^^^(X; E). Using a microlocal 
parametrix as in (7.2) it follows that p £ WF^j0.(A). The converse inclusion follows 
from the microlocality, (7.1). D 

We next define the corresponding notion of support, WF$>0-(ii), for any distribu- 
tion u G C~00(X). Since operators of order —oo are ignored here we work modulo the 
space 

x-^Hf^X) = U xkH^(X), 
kez 

Indeed, 

A G ^(X) =» A : C-^iX) —► x^H^iX). 

Then we simply define 

WF*t<r(u) = f| {Char$(A); A G *%(X), Au G x'^HfiX)} C <i>5*X, 

Char$(A) = (Ell^(yl))c. 
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Thus by definition, p £ WF$i<7(ix) if there exists A € ^%(X) which is elliptic at 
p and is such that Au 6 x~00H^(X). As with the standard wavefront set there is an 
alternate characterization in terms of the essential support 

(7.4) (WF*,^))0 = \J{U\UC *S*X is open s.t. 

A e *£(X), WF^A) c U => Au e x-^H^ix)}. 

This follows by use of the calculus as in the boundaryless case. From (7.4), or directly, 
the calculus is microlocal for this wavefront set: 

WF^Au) C WF^^A) H WF^iz), A G ^(X), u e C"00^). 

Note also that 

u e C'^iX) and WF*ta(u) = 0 =» u e x'^H^iX). 

Together with this extension of the usual notion of wavefront set we next consider 
related notions at the boundary. First consider the operator wavefront set. This will 
be defined as a subset of the radial compactification $ N*Y of the bundle ®N*Y. This 
'^-conormal bundle' to the fibres of the boundary is the space of parameters in the 
normal operators; note that it is a bundle over Y, the base of the fibration, and that 
it is the dual of the bundle corresponding to the Lie subalgebra in (1.2). Its lift to 
OX, ^N*dX = 0*($iV*F), occurs as the quotient of the part, *T£XX, of the dual of 
the structure bundle over the boundary by the subbundle 

(7.5) ^T*<9X =   U  T^-^p) C %*XX, ^TT : *T?;XX —» *N*dX, 
pedx 

of the fibre cotangent bundles. The inclusion here is just given by pairing with vector 
fields, which shows ^T*dX to be the annihilator bundle in ^T^XX of the lift of * NY. 

Now, let y £ Y be a point in the base of the fibration of the boundary and consider 
a finite point p G ^N^Y. For any admissible coordinates x, y near y, p = d( +^~^) 
for some A, fj. 

Then we define 

(7.6) p £ (WF^a(A) n *N*Y) ^ *S;X n WF^(A) = 0 and 3 i/t E C^iX) s.t. 

exp (-iA + ^^-g))^exp (ih+ldt^ : c~(X) -. C~{X) 

V (A,rj) in some neighbourhood of (A,//), 

where ip G C™(X), is of the form -0 = 0*7// on the boundary with ip'iy) = 1 and I/J' is 
supported in the coordinate patch. 

Thus in order that p £ WF^, d(A) we first demand that WF^ a(A) not meet 
^5?_I/-NX. Note that the preimage of p in ®NQXX under projection to ®N*dX and 

then ®N*Y meets the sphere bundle at infinity ® S*dXX exactly in ^S* w-^X. Thus 

this is the condition that the part of WF^(7(^4) 'lying above' p should be trivial. 
The second part of (7.5) implies in particular that the normal operator of A should 
be trivial near p. In fact, in terms of the lo^al representation (3.10) and (3.11), it 
means that the Fourier transform in 5 and Y of the local kernel should vanish in 
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a fixed neighbourhood of the point (A, rj) and y' = y as a function z^z' and in the 
sense of Taylor series in x. The uniformity of the neighbourhood in x is important. 
It follows from the remarks after (3.11), in particular the polynomial dependence of 
the coordinate transformation, that this condition, of vanishing, is independent of 
coordinates. 

Thus this notion is independent of the choice of coordinates in (7.6). It is clearly 
multiplicative in the usual sense that 

WF'ztd(AB) C WF^a(A) n WF^(JB) HA, Be *%(X). 

There is an importance difference between operators of finite order and those of order 
-oo as regards WF^ . Of course, for the latter the condition on 1WF'^a(A) in (7.6) 
is vacuous and then given a point p G ®N*Y with a neighbourhood U we can always 
decompose 

(7.7) ^00(X)3B = B,-{-B", B\B" G ^(X), 

p $ WF^B"), WF^^B1) C 17, p G *N*Y. 

Such a decomposition is not in general possible for operators of finite order, since 
for instance the ellipticity of the symbol of B would imply that the indicial operator 
never vanishes. 

To an infinite point p G ®SN^Y there corresponds a 'preimage' T(p) C $5|X, 
consisting of the intersection 

(7.8) T{p) - cl (07r-V)) H *S*X in ^TX. 

Here p' C ®N*Y is the open half line corresponding to the point p on the sphere at 
infinity and ^TT is the composite of ^TT in (7.5) and the projection from dX to Y. Thus 
T{p) is a closed half-sphere bundle of fibre dimension dimF + 1 over </>-1(7r(p)). We 
define the condition 

(7.9) p i We'^A) for p G ^SN+Y ^ T(p) n WF^ff(A) = 0 and 

(7 n *iV*Y) H WF^a(A) = 0 for some open 7 C *N*Y with p G 7. 

Note that (7.6) shows that the analogue of T{p) in case p G ®N*yY is finite is 
*S;_1(S)X. If p*SN*yY then T{p) D ^;_1(S)X 

The restriction of the conjugated operator 

eXp (V + l-fl-flWexp fiA + ^«-g) 

in (7.6) to the boundary fibre above 7r(p) is the indicial operator, 7V(i4,p), at p. We 
define ellipticity for operators of order m in this boundary sense by 

(7.10)    Ell^(A) = {p 6 *JV*y; AT^p)-1 exists in *-m(^-1(7r(p))} 

u{pe*5JV*y;r(p)cEunA)}c*Jvi'y. 

Then certainly Ellg* (A) C WF^9 (A). _ 
LEMMA 14. For any A e *J(X) tte 5ei Ell™(A) is open m *]Viy: 
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Proof. Certainly if p e Ellgl(A) H *N*Y then Ellgl(A) contains a neighbourhood 
of p, since the invertibility of the normal operator is an open condition. So consider 
p G ®SN*Y 'at infinity' and supposep G Ell™(A). Since T(p') is compact and depends 
continuously onp' G ®SN*Y it follows that T{p') C Ellcr(A) for p1 in a neighbourhood 
of p. Thus it remains to show that NiA.q)-1 G #-m((/r-1(7r(?))) for q G V fl $Ar*y 
for some neighbourhood 7' of p in ®N*Y. Using the calculus, we may construct an 
operator G G ^m(X) such that Go A = Id -£ where r(p)nWFijCr(E) = 0. Shrinking 
Y as necessary, it follows that N(E, q) is in ^-oo(0-1(7r(^))) for g G 7' fl *iV*y and 
is rapidly vanishing as q -» $5Ar*y in 71. Thus ^(A,^)-1 G ^-m(0-1(ZL(^))) exists 

for all q in the intersection of ®N*dX and some neighbourhood of p in ®N*dX. Thus 
Ell^(A) is open. D 

The construction in the proof of this lemma can be slightly extended to yield: 
LEMMA 15. Ifp G ®N*Y and A G V%(X) then p G Ell^(A) if and only if there 

exists G G ^m(X) such that p $ WF^a(Id -A o G), p £ WF^a(Id -Go A). 
Notice that in demanding that A be elliptic at a finite point p G ^iV*y we are 

requiring that A be symbolically elliptic on the whole set ^S^^dX C ^S*^dX^ 
which is the sphere of the subspace in (7.5) above the point 7r(p), since N(A,p) is to 
be invertible as a pseudodifferential operator of order m on the boundary fibre. Cor- 
respondingly if p G ®NgY then the parametrix G may be chosen to have WF/

$jCr(G) 
concentrated near ^S^-if^dX C ®N*X whereas WF^ a(G) can only be concentrated 

near the fibre *N*yY. If p G ^SNjjY then WF^(7(G) may be concentrated near T(p) 

and again WF$ja(G) may be concentrated near ®NyY. 
We now define 

(7.11)    WF^d(uf = {pe *N*Y',3A G V%(X), p G Ellg(A), Au = w + ^JB^-, 

Taking 

Charg1^) = *N*Y \ m%(A) 

this can also be written 

(7.12) 

WF<M(u) = fl { Chara04) U (J WF^a(^); A G *J(X), ^ G ^J00^) with 

Au = w + YLB3V^ for some^ GC00^), ^GC"
00
^)!. 

i ^ 

The extra finite sum of terms BjVj is included in (7.11), and (7.12), because of the 
non-localizability of WF^a for operators of finite order. Notice that if B G ^^{X) 
has WFjj^JE?) concentrated sufficiently close to p £ WF<p^(u), so WF,^d(Bj) Pi 

WF^(JB) = 0 for each j, then B ^ ^'^ e C00^) too. 
Since we are demanding that Au lie in the 'residual space' at p 

(7.13)    Kp{X) = {ueC-co{X)iu = u1+U2, uiGC^X), 

u2G{BG ^"(X); p $ WF^(JB)} • C"00^)} C x-^Hf(X\ 
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where the • means finite span; this is a considerably finer notion than WF$>0-(u) over 
the boundary. 

LEMMA 16. Ifp e ®N Y, the condition p £ WF^f/u) given by (7.11) is equiva- 
lent to the existence of m e C00^), C G *0(X) with p £ WF^a(C), u'j G C"00^) 
and Bj E ^^(X) forj = l,...,J with p £ WF'^Bj) such that 

(7.14) u = ux + Y^ B3u'j + Cu' 

Proof. The form (7.14) for u follows by applying the parametrix G of Lemma 15 
to the defining relation in (7.11). 

Conversely, if (7.14) holds for p € *N*Y and A £ ^%{X) is elliptic at p and has 
WF^{A) in a small neighbourhood of ^S^dX, so that WF^(7(A) H WF^(7(C) = 0 
then 

Au = Aux + ^ ABjMj. + ACu e Tlp(X), 

since WF^^^C) = 0. This gives (7.11). A similar argument applies ifp G ^SiV^Y. D 
As already noted, the subtlety with the definition of WF$(ii) above arises from 

the non-localizability of the normal operators. In the particular case of the scattering 
calculus, considered in [15] and [19], there is no such difficulty. It is useful to relate 
the general case to this scattering case. 

LEMMA 17.   If I/J G ^(X) has support sufficiently close to (i)~l(y) C dX for 
some point y G Y then there is an open product neighbourhood o/supp(/0) of the form 

[0,6)xxY' xF, Y'CY, 

consistent with the fibration of the boundary and then for any A G ^^(X), ipAip 
is a smooth right density on F x F with values in the scattering calculus on X' = 
[0,1] x Y, that is ^^(X'). Furthermore, this product decomposition allows ®N*Y 
to be identified with 5CTyX/ and if B^^X') is supported sufficiently close to the 
boundary and has WF',c(5)n*cT^X'nWF*>a(C') = 0, where C G 9%(X) is supported 
in the product neighbourhood then B o C G p00iS!'^00{X'). 

Proof. The first part follows directly from the definitions of the algebras in terms 
of their kernels on the blown up spaces since locally, in Y, the blow up defining the 
stretched product for the fibred cusp calculus is just the blow up for the scattering 
calculus (i.e. the case that the fibres in the boundary are points) with the fibres F x F 
as factors. 

The composition statement in the second part follows directly from the local 
normal forms (3.10), (3.11). D 

Despite the complexity of its definition, we may now see that this notion of 
wavefront set has many of the familiar properties.   

PROPOSITION 11. The set WF$(u) = WF$fff(w) U WF*,a(u) c *S*X u *iV*Y 
is closed, is empty only for elements ofC00^), satisfies 

WFs.afai + U2) C WF$(wi) U WF^) 

and is reduced by the application of pseudodifferential operators, A G ^%X, in the 
sense that    * 

WF$(Au) C WF^(A) n WF$(u), WF^(A) = WF^a(A) U WF^a(A). 
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Proof. That WF$ {u) is closed follows directly from the openness of the elliptic 
sets. The microlocality of pseudodifferential operators, (11), follows directly for the 
interior part of the wavefront set and from (7.14) for the boundary part. Thus, if 
B G ^^X and p $. WF^^tz) then first applying A to (7.14) and then applying 
Q 6 ^%X which is elliptic at p but has small support (see the discussion following 
Lemma 15) gives 

QAu = QAux + ^ QABjUj + QACu. 
3 

Here in the last term, QAC G ^^X if WF^>0.(Q) is chosen sufficiently small and 
p £ WF'Q d(QAC). Thus it can be absorbed as an extra term in the sum and deduce 
that p £ WFQ d(Au) by (7.12). The other components of (11) are simpler. 

It remains to show that if WF^(n) = 0 then u G C00^). From WF^a{u) = 0 it 
follows that u G x~00H^)(X)] in particular it is smooth in the interior of X. We may 
localize the support of u to a small set near a boundary point, using the microlocality 
just discussed; thus we may assume that u has small support, in which the fibration 
has a product decomposition. Thus u(x, y, z) is a smooth function of z with values in 
a fixed space x~NH~N(X,)^ X' = [0,1)^ x Y as in Lemma 17. Applying the second 
half Lemma 17, it follows that if A G ^sc^ ^as wavefront set concentrated near 
any point p G SC

TYX' then, applying it to (7.14) Au(x,y,z) is C00 in z with values 
in C00^'), and hence in ^(X' x F). Applying this to a partition of unity in the 
scattering calculus it follows that u G C00(X). D 

REMARK 1. The somewhat global (at least on the fibre) condition in (7.11), 
coming in turn from (7.10), is necessitated by the fact, mentioned above, that one 
cannot freely localize the indicial family. Thus, if A G ^!%{X) has indicial family 
invertible, in the calculus, at any one point p G ®NyY its indicial family cannot be 
zero at any other point in that fibre, that is, 

p G *N*X, p 6 Ell° (A) =► *]VJ C WF^d(A). 

8. Fibred cusp metrics. As an application of the discussion above we shall 
examine the spectrum of the Laplacian for a metric of 'exact $-type'. By this we 
mean any Riemann metric on the interior of X, a manifold with a fibred boundary as 
in (1), which takes the form 

/o .x dx2      h'        , 

for some product decomposition near the boundary X C [0,e)a; x dX with gy a 
smooth symmetric 2-cotensor on [0, e) x Y which is positive definite when restricted 
to {0} x Y (with restriction h) and g' is a smooth symmetric 2-cotensor on X which 
is positive definite when restricted to each fibre over the boundary. The fibration 0 
and the boundary defining function x in (8.1) together determine a $ structure on X. 
Moreover 

PROPOSITION 12. The Laplacian of a metric (8.1) is a <&-differential operator on 
functions or acting on sections of the $ exterior bundle. 
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The metric g is a positive definite metric on the bundle $TX, smooth and non- 
degenerate up to the boundary. This allows <f>T*dX to be identified with the ortho- 
complement of ®N*dX in ®TQXX. Furthermore, the boundary defining function x in 
(8.1) defines a natural section dx/x2 of ®N*dX the orthocomplement of which can 
be identified with the lift of T*Y, by identifying rj • dy with zz^. For each y e dX 
let Ay be the Laplacian on the fibres (t)~l(y) fixed by the metric g1. Let \j{y) be the 
eigenvalues of Ay arranged in increasing order, repeated with multiplicity. 

THEOREM 4. Ifue C-00^; A*) satisfies Au-\ue C00^), with A G C then 

(8.2) A£ [0,oo)^wGCoo(X), 

A e [0,oo) => WF$(u) C {g e $^aX; 3 X^y) < A 5.t. 

q = s^ + ^ tiritA s2 + |77|2 = A - Xjiy)}. 
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