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KAZHDAN-LUSZTIG CONJECTURE FOR SYMMETRIZABLE 
KAC-MOODY LIE ALGEBRAS. Ill - POSITIVE RATIONAL CASE* 

MASAKI KASHIWARAt  AND TOSHIYUKI TANISAKI* 

1. Introduction. The aim of this paper is to prove the Kazhdan-Lusztig type 
character formula for irreducible highest weight modules with positive rational highest 
weights over symmetrizable Kac-Moody Lie algebras. 

Let us formulate our results precisely. Let g be a symmetrizable Kac-Moody Lie 
algebra over the complex number field C with Cartan subalgebra I). We denote by W 
the Weyl group and by {a;}^/ the set of simple roots. For a real root a, we define 
the corresponding coroot by a:v = 2a/(a,a), where ( , ) denotes a standard non- 
degenerate symmetric bilinear form on [)*. For A G f)*, let A"1"(A) denote the set of 
positive real roots a satisfying (av, A) G Z, and let n(A) denote the set of a e A+(A) 
such that sQ:(A+(A) \ {a}) = A+(A) \ {a}. Here sa e W denotes the reflection with 
respect to a. Then the subgroup W(A) of W generated by {sa ; a G A+(A)} is a 
Coxeter group with the canonical generator system {sa ; a G n(A)}. Fix p G I)* 
satisfying (p, a^) = 1 for any i G / and define a shifted action of W on f)* by 

w o A = w(\ + p) - p     for w G W and A G J)*. 

For A G J)* let M(A) (resp. M*(A), L(A)) be the Verma module (dual Verma 
module, irreducible module) with highest weight A. We denote their characters by 
ch(M(A)), ch(M*(A)), ch(L(A)) respectively. We have ch(M(A)) = ch(M*(A)), and 
ch(M(A)) is easily described. 

The main result of this paper is the following. 
THEOREM 1.1. Assume that A G ()* satisfies the following conditions. 

(1.1) 2(a, A + p) ^ (a, a) for any positive imaginary root a. 

(1.2) (av, A + p) £ Z<o for any positive real root a. 

(1.3) // w G W satisfies w o A = A; then w = 1. 

(1.4) (av, A) G Q for any real root a. 

Then for any w G W(A) we have 

(1.5) ch(M(w o A)) =  ][] P^(l) ch(L(y o A)), 
y>\w 

(1.6) ch(L(w o A)) = Y, (-lY^-^QtA1) ch(M(y 0 A))- 
y>xw 

Here, >\, P^y, l\, Qt,y denote the Bruhat ordering, the Kazhdan-Lusztig polyno- 
mial, the length function, and the inverse Kazhdan-Lusztig polynomial for the Coxeter 
group W(A); respectively. 
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When g is a finite-dimensional semisimple Lie algebra, this result for integral 
weights was conjectured by Kazhdan-Lusztig [19], and proved by Beilinson-Bernstein 
[1] and Brylinski-Kashiwara [2] independently. Later its generalization to rational 
weights was obtained by combining the results by Beilinson-Bernstein (unpublished) 
and Lusztig [21]. 

As for the symmetrizable Kac-Moody Lie algebra, Theorem 1.1 for integral 
weights was obtained by Kashiwara(-Tanisaki) in [14] and [16] (see also Casian [3]). 
We note that a generalization of the original Kazhdan-Lusztig conjecture to affine Lie 
algebras in the negative level case was obtained by Kashiwara-Tanisaki [17], Casian [4] 
(integral weights), Kashiwara-Tanisaki [18] (rational weights). We finally point out 
that (1.6) for w — 1 was proved by Kac-Wakimoto [11]. 

Let us give a sketch of the proof of our theorem. 
Let X = G/B~ be the flag manifold introduced in Kashiwara [13], which is 

an infinite-dimensional scheme. We have a stratification X = U^GVF^ ^ finite- 
codimensional Schubert cells Xw — BwB~/B~. For A G I)* let D\ be the TDO-ring 
(ring of twisted differential operators) on X corresponding to the parameter A. For 
w G W define i^A-modules BW(X) (resp. MW(X), JCW(X)) as the meromorphic extension 
(resp. dual meromorphic extension, minimal extension) of the Dxw-module Oxw to 
a DA-module. They are objects of the category M(X) consisting of iV+-equivariant 
holonomic DA-modules. 

For A G I)* satisfying the conditions (1.1), (1.2) and (1.3), we define a modi- 
fied global section functor F from H(A) to the category M(g) of g-modules. Then 
Theorem 1.1 is a consequence of the following results. 

THEOREM 1.2. Assume that X el)* satisfies the conditions (1.1), (1.2) and (1.3). 
(i)    The functor f : H(A) -> M(g) is exact 

(ii) r(Bw(\))=M*(wo\)foranyweW. 
(hi) f (MW(X)) = M(w o A) for any w G W. 
(iv)   T{£w(\)) =L(WOX) for any w G W. 

THEOREM 1.3. Assume that X G f)* satisfies the condition (1.4). Then for any 
w G W which is the smallest element of wW(X) and any x G W(X), we have 

(1.7) [^(A)] = £ (-l)^{y)-^x)Qx
x,y(l)[Mwy(X)] 

y>\x 

in the (modified) Grothendieck group K(M.(X)) o/-H(A). 
The proof of Theorem 1.2 is similar to the one in [14]. In the course of the proof 

we also use the modified localization functor DA^ • from a category of certain g- 
modules to a category of certain .DA-niodules as in [14], and we prove simultaneously 
that D\®t(M) ~ M for any M G Ob(E[(A)). Aside from the technical complexity in 
dealing with non-integral weights, the main new ingredients compared with the inte- 
gral case [14] are the embeddings of Verma modules (Theorem 2.5.3) and the proof of 
the injectivity of the canonical morphism M(wo A) -> r(Mw(X)) (Proposition 4.7.2). 

The proof of Theorem 1.3 is based on the theory of Hodge modules by M. Saito [23] 
as in [16]. As for the combinatorics concerning the Kazhdan-Lusztig polynomials we 
use the dual version of the result in [22]. 

In the affine case, we can deduce the non-regular highest weight case from the 
above result by using the translation functors. 

THEOREM 1.4. Let g be an affine Lie algebra, and assume that A G I)* satisfies 

(1.8) (J, A + p) ^ 0, where S is the imaginary root. 
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(1.9) (av, A -f p) G Q \ Z<o for any positive real root a. 

Then WQ(\) — {w G W]w o X = A} is a finite group. Let w be an element of W(X) 
which is the longest element ofwWo(X).  Then we have 

ch(L(woX)) = £ (-iy^-e^Qx
wJl)di(M(yo\)). 

y>xw 

A motivation of our study comes from a recent work of W. Soergel [24] concerning 
tilting modules over affine Lie algebras. We would like to thank H. H. Andersen for 
leading our attention to this problem. 

2. Highest weight modules. 

2.1. Kac-Moody Lie algebras. In this section, we shall review the definition 
of Kac-Moody Lie algebras, and fix notations employed in this paper. 

Let I) be a finite-dimensional vector space over C, and let 11 = {ai}iei and 
nv = {hi}i€i be subsets of f)* and I) respectively indexed by the same finite set I 
subject to 

(2.1.1) 11 and nv are linearly independent subsets of f)* and \) respectively, 

(2.1.2) ((hi,aj))ij£i is a symmetrizable generalized Cartan matrix. 

Here (,): f) x [)*—)• C denotes the natural paring. The elements of 11 and 11v 

are called simple roots and simple coroots respectively. We fix a non-degenerate 
symmetric bilinear form ( , ) on [)* such that 

(2.1.3) (a:*, a*) G Q>o      for any i G /, 

(2.1.4) (hi,X) = 2(A,ai)/(ai,ai)    for any A G I)* and i G I. 

We denote the corresponding Kac-Moody Lie algebra by Q. Recall that g is the Lie 
algebra over C generated by elements e^, fi (i G /) and the vector space I) satisfying 
the following defining relations (see Kac [9]): 

[M'] = 0     for ft, ft' El), 

(2 1 5)   ^'e^ = ^' a^ei'    ^' ^ = ~^'ai^    f0r h e ** and i e /' 
[ei> fj] = Sijhi     for h 3 ^ !, 
ad(ei)

1-</li'Q!^(eJ) = adtftf-^'^tfj) = 0    for hJ^1 with i ^ 3> 

Define the subalgebras n+, n_, b, b~ of g by 

(9 1 frt n+ = ^ ' i e J^ n" = (/»; z G />, 
^-L^ b = (h^i; ft G i),i G /), b" = (hji',he \),i G /). 

The vector space \) is naturally regarded as an abelian subalgebra of g, and we have 
the decompositions 

(2.1.7) 0 = n"©J)©n+,    b^fjen1",    b" = f)0n~. 

For A G f)* set 9A = {^ G 0 ; [ft, x] = (ft, X)x for ft G (}}, and define the root system 
A of g by 

(2.1.8) A = {AeJf ;flA^0}\{0}. 
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Set 

(2.1.9) Q = ^ %<*»    Q± = ±Y^ Z>o^5 

iei iei 
(2.1.10) A± = AnQ±. 

We have 11 C A+ and A = A+ U A~. The elements of A+ and A~ are called positive 
and negative roots respectively. 

For a subset 0 of A such that (0 + 0) fl (A U {0}) C 0 we define the subalgebra 
n(0) of g by 

(2.1.11) n(e) = Y, Sa- 

For a = ^2ieITniai E Q, its height ht(a:) is defined by 

(2.1.12) ht(a) = 5^771.. 
iei 

For i G / define the simple reflection Si G GL(l)*) by 

(2.1.13) si(\) = \-(hh\)ai. 

The subgroup W of GL(l)*) generated by 5 = {si; i G 1} is called the Weyl group. 
It is a Coxeter group with the canonical generator system 5. The length function 

£ : W -» Z>o of the Coxeter group W satisfies 

(2.1.14) £(w) = 0(A" D ^A+) for any w GW. 

We denote the Bruhat ordering on W by >. Note that we have 

(2.1.15) (wX,wfjL) = (A,/i) for any A,// G I)* and w G W. 

Set 

(2.1.16) Are = WU,    Aim = A \ Are,    A* = Are n A± ,    A^ = Aim n A± . 

The elements of Are and Aim are called real and imaginary roots, respectively. For 
a G Are set 

(2.1.17) av = 2a/(a,a), 

and define the reflection sa G GL(l)*) by 

(2.1.18) s0(A) = A-(A,av)a. 

Then we have sa G W for any a G Are. 
We fix a vector p G f)* such that (hi,p) = 1 for any i G I. Then the shifted action 

of W on ()* is defined by 

(2.1.19) wo\ = w(\ + p) -p. 

Note that p — wp G Q+ for any w G W and it does not depend on the choice of p. 
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2.2. Integral Weyl groups. In this section, we study the properties of integral 
Weyl groups. We start the study in a more general setting 1. 

Let Ai be a subset of Are satisfying the following condition: 

(2.2.1) sap e Ai for any a, 13 G Ai. 

In particular, we have — Ai = Ai. We set 

(2.2.2) Af = A1nA±
1 

(2.2.3) Hi = {a e At; 5a(A+ \ {a}) C A+}, 

(2.2.4) W1 = (sa]aeU1)cW. 

We call the elements of A^ (resp. A^", Hi) positive roots (resp. negative roots, simple 
roots) for Ai, and Wi the Weyl group for Ai. 

Note that if.Ai satisfies the condition (2.2.1), then wAi also satisfies (2.2.1) for 
any w G W. 

LEMMA 2.2.1. // Ai contains a simple root at, then ai is in Hi. 
LEMMA 2.2.2. Assume that on 0 Ai. Set A^ = SjAi. Then A^ satisfies the 

condition (2.2.1). Moreover A^ f| A+ = SiA^, the set of simple roots for A^ is SjIIi, 
and the Weyl group for A^ is SiWiSi. 

The above two lemmas immediately follow from SiA+ = (A+ \ {OLI}) U {—a^}. 
LEMMA 2.2.3. // a e Hi and i G / satisfy (aj,a) > 0, then either a = ai or 

at£Ai. 
Proof Assume a ^ ai and ai G Ai. Then ^ = s^a^ = ai — (av, a^a is a positive 

root. Then ai = (3 -f- (av,ai)a contradicts (av,ai) G Z>o . □ 
LEMMA 2.2.4. For any a G Hi £/iere ezzs^ ^ G W and i G / s^c/i t/mi i^o: = a^ 

and wAt = wA1nA+. 
Proof We shall show this by induction on ht(a). If ht(a) = 1, then there is 

nothing to prove. Assume ht(a) > 1. Write a = Ysjeimjaj w'1^ mj ^ 0. Then we 
have 

0 < (a, a) = y]mj(a,aj), 

and hence there exists some j G / such that (a,aj) > 0. Since ht(a) > 1, we have 
a ^ ctj and hence aj £ Ai by Lemma 2.2.3. Set Ai = s^Ai, (Ai)4" = s^Af ,ni = 
SjIIi. Then (A^)"1" and 11^ are the set of positive and simple roots for A^ respectively 
by Lemma 2.2.2. Set a' = Sja G n^. Since htfa') < ht(a), there exist some w' G W 
and i G / such that w'a' — ai and ^'(A^)4 C A+ by the hypothesis of induction. 
Then setting w = wfSj we have wa = ai and wAf — w'{A1^ C A+. D 

The following lemma follows from the above lemma by reducing to the case a — ai 
for i G /. 

1 After writing up this paper, the authors were informed by S. Naito the existence of two papers, R. 
Moody-A. Pianzola, Lie Algebras with Triangular Decompositions, Canadian Mathematical Society 
series of monographs and advanced texts, A Wiley-Interscience Publication, John Wiley & Sons, 1995, 
and Jong-Min Ku, On the uniqueness of embeddings of Verma modules defined by the Shapovalov 
elements, J. Algebra, Vol. 118, (1988) 85-101. They showed results similar to those in this subsection 
by a different formulation and method. In the last paper, Ku also obtained a result weaker than 
Theorem 2.5.3. 
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LEMMA 2.2.5. For any positive integer n and a. £ Hi, we have 

nag Y^ %>oP. 

LEMMA 2.2.6. For any ft e Af, there exists a e Hi such that (a, (3) > 0. 
Proof. We shall prove this by the induction on ht(/3). If ht(/3) = 1, then Lemma 

2.2.1 implies (3 G Hi, and we can take /3 as a. Assume that ht(/3) > 1. Take i such that 
((Xi,/3) > 0. If cti E Ai, then it is enough to take a* as a. Now assume that c^ ^ Ai. 
Set Ai = SiAi, (Ai)+ = SiAf ,ni = Silli. Then (Ai)+ and Hi are the set of positive 
and simple roots for A^ respectively by Lemma 2.2.2. Set ft' = Si/3 E (Ai)4". We have 
ht(yS/) < ht(/3) by ((3, ai) > 0. Hence by the hypothesis of induction there exists some 
a' E Hi such that (a',/?') > 0. Then a = SiO.' E Hi satisfies (a,/3) = (a7,^) > 0. □ 

LEMMA 2.2.7. 
(i)     AxrzJFiIIi. 

(if) A+cEaffl.Z^oa. 
(iii) VFi contains sa for any a E Ai. 

Proof. Since (iii) follows from (i), it is enough to show that any (3 E Af is 
contained in VFiIIi fl Saen ^>oa- We shall prove this by the induction on ht(/3). 
By Lemma 2.2.6 there exists OLQ E Hi such that (ao,/?) > 0. If (3 — ao, then 
there is nothing to prove. If (3 ^ ao? then 7 = saQ(3 E Af by the definition of 
Hi and ht(7) < ht(/9). Now we can apply the hypothesis of induction to conclude 
7 E T^iIIi P| Xlaen Z>oa, which implies the desired result. □ 

LEMMA 2.2.8. For a E Ajf", the following conditions are equivalent. 
(i)   a GlIi. 

(ii)   spa E Aj~ /or any (3 E A]*" swc/i that (a, (3) > 0. 
(iii)   a cannot be written as a — mifii +1712^2 for f3v E Af anrf m^ E Z>o {y = 1, 

2). 
(iv) a cannot be written as a — Ylu=i $» for k > 1, Pv E Af (1 < z/ < ft). 

Proof. (i)=^(iv) follows from Lemma 2.2.5. (iv)=>(iii) is trivial. (iii)=^(ii) is also 
immediate. Let us prove (ii)=^(i). By Lemma 2.2.6, there exists (3 E Hi such that 
(/?, a) > 0. Hence 7 = — spa E Af. Rewriting this, we have (/3V, a)(3 = a + 7. Then 
Lemma 2.2.5 implies a = (3 or 7 = /?. It is now enough to remark that 7 = /? implies 
a = /3. □ 

The following proposition is proved by a standard argument (see e.g. [18, §3.2]). 
PROPOSITION 2.2.9. 
(i)   Wi is a Coxeter group with a generator system Si = {sa ; a E Hi}. 

(ii)    Its length function £1 : Wi -* Z>o 2$ g^en &?/ ^i(itf) = ji(Aj~ D wAf). 
(iii)    For x,y & W, x >i y with respect to the Bruhat order >i for (Wi,Si) if 

and only if there exist (3i,..., f3r E A J" (r > 0) such that x = ysp1 • • • spr and 
ysp, '-spj^pj E A+ forj = l,...,r. 

LEMMA 2.2.10. For a, (3 E Hi 5?/c/i that a ^ /3 we have (a, /?) < 0. 
Proo/. We have sQ/# E Af by the definition of Iii. Since /3 E Hi, Lemma 2.2.8 

implies the desired result. □ 

By this lemma, ((/3,Q;
V
) ) is a symmetrizable generalized Cartan matrix. 

V /a,/3eni 
Hence Wi is isomorphic to the Weyl group for the Kac-Moody Lie algebra with 

((/W)) f \ / a,/: 
as a generalized Cartan matrix. 

;,/?€ni 
PROPOSITION 2.2.11. Forw E VT the following conditions are equivalent. 
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(i)   l(x) > l(w) for any x G wWi. 
(ii)   wx > wy for any x,y € Wi such that x >i y. 

(iii)   wAf C A+. 
Proof Let us first prove (iii)=^(ii). We may assume without loss of generality 

that x = ysp for some /S G Af. Then y/3 G A^" and hence wyfl G A+. This implies 
wx = wysp > wy. 

(ii) implies (i) by taking y = 1 in (ii). (i) implies (iii) because, for any a G Af, 
l(wsa) > l(w) implies wa G A+. D 

For A G ()* set 

/99.N A(A)    =    {/?GAre;(/3v,A + p)GZ} 
(2-2-5J =    {^GAre;(r3A)GZ}. 

This satisfies the condition (2.2.1). We set A±(A) = A(A) fl A±. Let n(A) and W(X) 
be the set of simple roots and the Weyl group for A (A), respectively. We call W(X) 
the integral Weyl group for A.  We denote by l\ : W(A) -> Z>o and >A the length 
function and the Bruhat order of the Coxeter group W(A), respectively. 

REMARK 2.2.12. 
(i) In [18], we introduced W(A) and W^A). The integral Weyl group introduced 

here is equal to W(A) loc.cit. As a matter of fact, W(A) and W^A) loc.cit. 
coincide. The opposite statement in [18, Remark 3.3.2] should be corrected, 

(ii) The set n(A) is linearly independent when g is finite-dimensional. But it 
is not necessarily linearly independent in the affine case, although we have 
assumed the linear independence of {a^}iej. For example, for g — A>z' and 
A = (Ai 4- A3)/2, we have n(A) = {ao, 0^2, -ao + 5, -a^ + £}. 

(iii) For x,y G Wi, x >i y implies x > y (Lemma 2.2.11). However the converse 
is false in general. For example for g = A3 and A = (Ai + A3)/2, we have 
n(A) = {a2, ai + a2 + 0:3} and sai+a2+c,3 > 5a2. 

2.3. Category of highest weight modules. In this subsection we shall recall 
some properties of the category O of highest weight g-modules. 

In general, for a Lie algebra a we denote its enveloping algebra by ?7(a) and the 
category of (left) £/(a)-modules by M(a). 

For k G Z>o set 

(2.3.1) n^ = n(±A+)  with A+ = {a G A+ ; ht(a) > fc} 

(see (2.1.11) and (2.1.12) for the notation). A [/(g)-module M is called admissible if, 
for any m G M, there exists some k such that n^ra = 0. We denote by Marfm(g) the 
full subcategory of M(g) consisting of admissible L7'(g)-modules. It is obviously an 
abelian category. 

For M G M(J)) and f G f)* we set 

M^ = {u G M;   (ft - (ft, 0)nu = 0 for any h € *) and n » 0}- 

It is called the generalized weight space of M with weight ^. We denote by O the full 
subcategory of M(g) consisting of C/(g)-modules M satisfying 

(2.3.2) M = 0 M€, 
CGI)* 

(2.3.3) dimM^<oo     for any f G f)*, 

(2.3.4) for any £ G f)* there exist only finitely many fi G £ + Q+ such that M^ 7^ 0. 
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It is an abelian subcategory of 'M.adm(Q)- 
For M € 0b(O), or more generally for an [)-module M satisfying (2.3.2) and 

(2.3.3), we define its character as the formal infinite sum 

ch(M)= 5](dimM€)e*. 

For a [/(g)-module M, the dual space Homc(M, C) is endowed with a U(g)-module 
structure by 

(xm*,m) = (m*,a(x)m)    for m* E Homc(M, C), m G M, x G g, 

where a : 9 —>• g is the anti-automorphism of the Lie algebra g given by 

a(h) = h     for /i E f),        a(ei) = /i,    a(/i) = e^     for i E /. 

If MEOb(O), then 

M* := 0(MC)* C Homc(M,C) 

is a C/(g)-submodule of Hom^M, C) belonging to Ob(O). Indeed we have 

(M*)4 = (M€)*. 

Moreover, it defines a contravariant exact functor (•)* : O —> © such that (•)** is 
naturally isomorphic to the identity functor on O. In particular, we have 

(2.3.5) Hom0(M,7V) ~ Homg(7V*,M*)     for M,N E Ob(O). 

We also note 

(2.3.6) ch(M*) = ch(Af) for any M E 0b(O). 

An element m of a [/(g)-module M is called a highest weight vector with weight 
A if m E M\ and e^m = 0 for any i E /. A U(Q)-module M is called a highest weight 
module with highest weight A if it is generated by a highest weight vector with weight 
A. Highest weight modules belong to the category O. 

For A E f)* define a highest weight module M(A) with highest weight A, called a 
Verma module, by 

M(X) = U(a)/(£ U(ti(h - AW) + E Ub)ei). 
hef) iei 

The element of M(A) corresponding to 1 E U(Q) will be denoted by u\. Set M*(A) = 
(M(A))*. There exists a unique (up to a constant multiple) non-zero homomorphism 
M(A) -* M*(A). Its image L(X) is a unique irreducible quotient of M(A) and a unique 
irreducible submodule of M*(A). In particular, we have (L(A))* ~ Z/(A). 

We have the following lemma (see Lemma 9.6 of Kac [9]). 
LEMMA 2.3.1. For any M E 0b(O) and fi E f)*, there exists a finite filtration 

0 = M0 C Mi C • • ■ C Mr = Af 
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of M by U(Q)'modules Mk (k—0,..., r) such that for any k we have either {Mk/Mk-i)^ 
= 0 or Mk/Mk-i ~ L(0 for some £ G J)*. 

For M 6 Ob(O) and fie I)* we set 

[M : LOx)] = »{*;; M./M^! - L^)}, 

for a filtration of M as in Lemma 2.3.1. It does not depend on the choice of a filtration. 
Then we have the equalities 

[M : Lfa)] = [M* : L^)], 

ch(M)= 5;[M:L(/i)]ch(L(/i)). 

We frequently use the following lemma later. 
LEMMA 2.3.2. Let M G 0b(O) and fie I)*. 
(i) dimHomg(M(/x), M) and dimHomg(M, M*(/x)) are less than or equal to [M : 

LOx)]. 
(ii) Assume that if £ G J)* satisfies [M : L(f)] 7^ 0 an^ [M(^) : L(/i)] ^ 0, then 

£ = ft. Assume further [M : L(/i)] / 0. Tften neither Homg(M(/i),M) nor 
Hom0(M,M*(/x)) vanishes. 

Proof, (i) is obvious. Let us prove (ii). Consider the set ^4 of submodules .ft of 
M satisfying [R : L(/i)] = 0. There exists the largest element K of A with respect to 
the inclusion relation. Set iV = M/K. 
We shall prove N^+7 = 0 for any 7 G 0+ \ {0}. Assume that there exist some 
7 G Q+ \ {0} such that iV^+7 7^ 0. Since iV is an object of O, there exists finitely 
many such 7. Take 7 G Q+ \ {0} such that A^Ai+7 ^ 0 and N^+^+s — 0 for any 
(J G Q+ \ {0}. Then we have [iV : L(/x + 7)] > 0. Let N' be the g-submodule of 
iV generated by N^7. By the maximality of K we have [N' : L(/i)] 7^ 0. Hence, 
[M(/i + 7) : L(fj)] ^ 0 by the construction of AT'. This contradicts 

[M:L(M + 7)]>[Ar:L(/i + 7)]>0. 

Hence Ar/[A+7 = 0 for any 7 G Q+ \ {0}, which implies 

Hom(M(^),iV*) = {u G iV*;/iifc = /i(/i)it    for any /i G I)}. 

Since dimAT^ > [N : L(/i)] = [M : L{p)] > 0, Hom(M(^), A^*) does not vanish. 
Hence Hom(M(^),M*) which contains Hom(M(/i), AT*), does not vanish either. By 
applying the same argument to M* we have Hom(M(//), M) 7^ 0. D 

2.4. Enright functor for non-integral weights. In order to obtain some re- 
sults on Verma modules (Proposition 2.4.8), we construct a version of Enright functor 
with non-integral weights (see Enright [8], Deodhar [5]). 

Since the action of ad(/j) on U(Q) is locally nilpotent, the ring t/(0)[/~1] , a 
localization of [/(g) by /$, is well-defined. It contains U(Q) as a subring. Similarly we 
can consider a [/(g)-bimodule U(Q)f^+ for any scalar a G C. As a left C/(0)-module 
it is given by 

(2-4.1) C/(0)/f+Z = lim[/(g)/rn
! 

n 

where U(g)f^~n is a rank one free [/(g)-module generated by the symbol /f-n and 
the homomorphism C/(g)/f"n -> I7(fl)/f"n"1 is given by /f-n ^ fif^"1. The left 
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module U(g)f^~n is naturally identified with a submodule of U(g)fi      and we have 

^(0)/r+Z = U„ez U(g)frn- Its right module structure is given by 

(2.4.2) /f+roP = £ (a ^m) (adtf^P)/?-*"-* for any m £ Z and any P 6 tf(fl). 

As a right C/(g)-module, we also have 

u(g)f°+z=iim/r"^(0) = U/rnw 
n n 

By (2.4.2) we have 

(2.4.3) P/?+- = ^(-IJ^^^/^'^adC/O^P). 

In particular, we have 

(2.4.4) e?f? = J2 A""*er*(*J)2 (j) (°) (** 
4- n — a 

The [/(g)-bimodule t/(g)/2
a+   depends only on a modulo Z. 

LEMMA 2.4.1. For a, b <E C, ^e map /^+6+n ^ /t?+n ® f? = f? & f^+n (n G Z) 
defines an isomorphism of U(g)-bimodules 

u(9)f?+b+z -> ^(fl)/rz 0^^ ^(0)/rz. 

Since the proof is straightforward, we omit it.   Hence    0   £/(g)/f+    has a 
aeC/Z 

structure of a ring containing U(g). 

For any g-module M, U(g)f^+   ®u(g) M is isomorphic to the inductive limit 

as a vector space. Hence we obtain the following result. 
PROPOSITION 2.4.2. The functor M ->• C/'(fl)/i

a+z ®u(g) M is an exact functor 
from M(0) m^o itself. 

Let a be a Lie algebra, and let I be its subalgebra such that a is locally B-finite 
with respect to the adjoint action. Then for any a-module M, the subspace {m G 
M; &\mU{t)m < oo} is an a-submodule of M. In particular, for a ^-module M its 
subspace {m G M; dimC[ei]m < oo} is a g-submodule of M. For a G C, we define 
a functor 

(2.4.5) TiWiMfa) -+ 

by 

^(^(M) = {u G C/(0)/f+Z ®u(2) M ] dimC[ei]u < oo} 

for M G Ob(M(g)). It is obviously a left exact functor. 
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For a G C, let M-1 (g) be the category of locally Qe;]-finite ?7(g)-modules M such 
that M has a weight decomposition 

M = 0 MA> 

the action of f) on M is semisimple, and MA = 0 unless {hi, A) — a G Z. 
LEMMA 2.4.3. For a G C, M G Ob(Mf (g)) and u e M, we have /f+n 0 ix G 

ri(a)(M) /orn»0. 
Proo/. We may assume that u has weight A such that {hi, A) = a without loss of 

generality. We have e™0u = 0 for some mo > 0. We have 

er (/r+" ®«) = E /r-*«r 4(*o3 (7) (a;n) (hi+m-n-a)<8>u 

= f:/r"-fc(fc!)2(T)(0 
 *)(*'8<r"- 

Assume m>n> mo. Then each term survives only when k < m — n and m — k< mo, 
or equivalently m — rrto < k <m — n, and there is no such fc. Hence e^ifi +n 0 u) = 0 
for m > n > mo- □ 

For a G C, the functor T^a) sends M?(g) to Mra(0). 
The morphism of L7"(0)-bimodules 

(2.4.6) U(g) -J- t/(0)/-a+Z ®t;(B) t/(0)/r+Z       (1 H- /r« ® /?) 

(see Lemma 2.4.1) induces a morphism of functors 

(2.4.7) idM?{0)^ ^(-0)0^(0). 

Indeed, for M £ Ob(M£ (g)), (2.4.6) gives a morphism 

M -^ C/(0)/-a+Z (S^,,) t/(0)/r+Z 0^,,) M. 

For any u G M, the image of it by the above homomorphism is equal to ffa~n® 
fi+n 0 u, and Lemma 2.4.3 implies that /f+n <g> u belongs to Ti(a)(M) for n » 0. 
Hence the image of the above homomorphism is contained in Ti(—a) o Ti(a)(M) C 
^(0)/ra+Z®a(B)Ti(a)(M). 

Define the ideal n_ (i) of n_ by 

(2.4.8) n-(i)=n(A-\{-ai}). 

By the PBW theorem, we have U(n~) = U(n~~(i)) 0 C[/i], which implies 

U(n-(i)) ® Q/i./r1]/" ® t-(b) ^U{g)f?+Z . 

The following lemma follows immediately from this isomorphism. 
LEMMA 2.4.4. For any A G f)*, we /ia^e an isomorphism 

U(n-(i)) ® q/i./r1]/? ® CUA ^I/(fl)/f+Z 0[/(B) M(A). 
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LEMMA 2.4.5. For any A G &*, the element f$hi'x)+1®ux of U(g)f^hi'X)+Ij^u{g) 

M(X) is a highest weight vector with weight sioX. Here o is the shifted action defined 
in (2.1.19). 

Proof Set Xi = (hi, A). We have for j ^ i 

ei(/^
+1 0 ux) = f^ej ®ux = /i

Xi+1 (g) e,^ = 0. 

If j = i, then 

c<(/^+1 ® ux) = (fti+1ei + (Ai + 1)/^ (hi - Xi)) ®ux = 0. 

U 
PROPOSITION 2.4.6. Assume that X el)* satisfies a — (hi:X + p) & Z>o. Then 

we have 

ItfaXMCA)) = U(3)(rthi'x+P) ® ux) = Misi o A). 

Proof We have 

ri(a)(M(A)) = {u e U(g)f^z 0C/(0) M;  efu = 0 for a sufficiently large m}. 

By the preceding lemma, /f 0 ^A is a highest weight vector of T;(a)(M(A)) .  It is 
enough to show that Ti(a)(M(X)) is generated by this vector. 

By Lemma 2.4.4, any v G Ti(a)(M(X)) can be written in a unique way 

for Pn G U(n~(i)). Here Pn vanishes except for finitely many n. 
Take a positive integer m such that ef1^ = 0. Then we have 

0 = e™v 
m 

= E E (™) (ad(e*r-*P„)ef/r** ® «A 

m     /     \ A; 

= E E (T) (adtar-'p,.) E ft^-^-. —v„k—v 

n   k=0   x     / i/=0 

- E t (?) Nte.)"-'^)/--' (* " J -) (*!)J (T) « "v 
n   A;=0 

Rewriting this equality, we have 

o = EE(T)^c'>m"*p»)/""*(' 
n-A: A - 1 - n\       2 /a + n 

- Eg (T) M-)-*^)/? ("V") («)! (a+1+k 
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The vanishing of the coefficient of f-1 implies 

<"■»>  t (:) t1;") ^ c+r *) M«r->r»>) - o 
for any n. 

Now we shall prove that Pn — 0 for n < 0. Assuming the contrary we take the 
largest c > 0 such that P_c ^ 0. By taking n = — c — m in (2.4.9), only k = m 
survives, and we obtain 

Hence we obtain 

-1 + c + m\ /a- c\ _ 

m        y V m / 

Since — 1-f-c + m > m, (~1+c+m>) does not vanish, and fa~c) must vanish. This means 
that a — c is an integer and satisfies 0 < a — c < m. This leads to the contradiction 
a > c > 0. Hence we have Pn—0 for n < 0, and we conclude v G U(n~)f^ 0 u\ = 
I/(n-)(/?®UA). D 

Proposition 2.4.6 implies the following proposition. 
PROPOSITION 2.4.7. Assume a = (ft*, A) ^ 0 modZ. T/ien tte morphism (2.4.7) 

induces an isomorphism 

M(A)^ri(-a)oTi(a)(M(A)). 

Now we are ready to prove the following proposition used later. 
PROPOSITION 2.4.8. Assume that X, fi G ()* satisfy (hi, A) 0 Z. Then we Zia^e 

Hom(M(si o //), Mfai o A)) ~ Hom(M(/x), M(A)). 

Proof. If A — /i is not in the root lattice Q, then the both sides vanish. If 
A — fi G Q, then (hi,//) = (hi, A) ^ 0 modZ. Hence the assertion follows from the 
preceding proposition. D 

2.5. Embeddings of Verma modules. We shall use the following result of 
Kac-Kazhdan. 

THEOREM 2.5.1 ([10]).   Let A,/J, e f)*.   Then the following three conditions are 
equivalent. 

(i)  The irreducible highest weight module L(jji) with highest weight fi appears as a 
subquotient of M(A). 

(ii) There exist a sequence of positive roots {y8jfe}^=1, a sequence of positive integers 
{nk}l

k=1 and a sequence of weights {AAJ^Q such that AQ = A, A/ = /i and 
Xk = Ajb-i -nkPk, 2(Pk,Xk-i +p) =nk(Pk,Pk) for k = 1,...,/. 

(hi) There exists a non-zero homomorphism M(/x) —> M(X). 
Note that any non-zero homomorphism from a Verma module to another Verma 

module must be a monomorphism. The implication (ii)=^(iii) is not explicitly stated 
in Kac-Kazhdan [10]. But it easily follows from Lemma 3.3 (b) in Kac-Kazhdan [10] 
and (i)<^(ii). 
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We use also the following result in Kashiwara [14]. 
PROPOSITION 2.5.2. For A,// e *)* andi e /, we assume (hi^ + p) e Z>o (which 

implies M(si o /j,) C M(fi)) and (hi, A + p) £ Z<o.  T/ien w;e have 

ExtlJM(fj)/M(si o/i),M(A)) = 0. 

Let /C denote the set of A G ()* satisfying the following two conditions. 

(2.5.1) 2(/?, A 4- p) ^ (/?,/?) for any positive imaginary root /?, 

(2.5.2) {^ G A+; (^v, A + p) G Z<o} is a finite set. 

The condition (2.5.2) implies that there exists w G W(X) such that w o A 4- p is 
integrally dominant (i.e. (Pv,w o A + p) ^ Z<o for any /3 G A+). 

If A in Theorem 2.5.1 satisfies the condition (2.5.1), then /?& in (ii) must be a real 
positive root. This easily follows from the fact that n/3 is an imaginary root for any 
positive integer n and any imaginary root (3. 

Note that /C is invariant by the shifted action of W. 
THEOREM 2.5.3. For A G /C we have 

dimHomfl(M(/x),M(A)) < 1 

for any p, G ()*. 
Proof. There exists an embedding M(A) M- M(A/) for some A' G W^A) o A such 

that A' + p is integrally dominant. Hence we may assume that A + p is integrally 
dominant from the beginning. 

We assume that Hom(M(/i),M(A)) is not zero. Then by Theorem 2.5.1, there 
exists w G W(A) such that p, — w o A. 

We shall argue by the induction on the lenght of w. 
If w = 1, then it is evident. Assuming w ^ 1, let us take a G 11(A) such that 

l\(saw) < l\(w), which is equivalent to w~1a G A-(A). Since A + p is integrally 
dominant, (w~lav, A 4- p) < 0. Since we may assume sa o p, ^ ^5 we have 

(2.5.3) (av, fi + p) = (w'1^^ + p) G Z<o. 

Now we shall argue by the induction on ht(a). 

(1) Case ht(a) = 1.    In this case, a = ai for some i G /. Then we have M(si o p) D 
M(p). Since (hi,\ + p) G Z>o, Proposition 2.5.2 implies 

Ext1(M(5i opL)/M(p),M(\)) = 0. 

Therefore the following sequence is exact. 

Eom(M(si o p), M(A)) -> Hom(M(p), M(A)) ^ 0. 

Since dimHom(M(s; o //), M(A)) < 1 by the induction hypothesis on the length of w, 
we obtain dimHom(M(p),M(A)) < 1. 

(2) Case ht(a) > 1.    Take i such that {hi, a) > 0. Then on & A(A) by Lemma 2.2.3. 
Hence we have 

(2.5.4) (hi,\)<?Z. 
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Set A' = sioX. Then 8iA(A) = A^'), and SiIL(\) = Il(X') by Lemma 2.2.2. Moreover 
A' -f p is also integrally dominant. Then w* = SiWSi E W(A/) and h'iw') — l\(w). Set 
a' = Sia. Then a' e n(A/), htia1) < ht(a) and l\i(saiw') < Ixiw'). We have also 
fi' = si o fjb = w' o X*. Hence the induction hypothesis on ht(a) implies 

dimHom(M(/i/),M(A,)) < 1. 

By (2.5.4) we can apply Proposition 2.4.8 to deduce 

HomtMO^MtA')) ~ Hom(M(/z),M(A)). 

Thus we obtain the desired result dimHom(M(/z),M(A)) < 1. □ 

We denote by /Creg the set of A 6 /C subject to the following condition: 

(2.5.5) If w e W satisfies w o X = A, then w = 1. 

In particular, this condition implies 

(A -I- p, Q:
V
) ^ 0 for any a £ ATe. 

Define a subset /C+g of /Creg by 

(2.5.6) /C+g = {A G /Creg; (A + p,av) > 0   for any a G A+(A)}. 

LEMMA 2.5.4.  We have W o }CTeg = ]CTeg and JCTeg =    \_j    W(X) o A. 

The proof is standard by using the results in §2.2 and omitted. 

By Theorem 2.5.1 and Theorem 2.5.3 we have the following proposition. 
PROPOSITION 2.5.5. Let X G /C+g. 
(i)    For x G W(A)  and ji G J)* we have [M(x o A) : !/(//)] ^ 0 if and only if 

fi = y o A for some y G W(X) satisfying y >\x. 
(ii)    For x, y G W(A) we have dim Hom(M(2/ o A), M(x o A)) = 1 or 0 according to 

whether y >\ x or not. 
COROLLARY 2.5.6. Let X e /C+g, x e W and /i G I)*. Then [M(xoA) : L(/i)] ^ 0 

implies fi = y o A /or some 2/ € xW(X) satisfying y > x. 
Proof Assume [M(xoX) : L(/x)] ^ 0. Take^i G Vr(a;oA) such that A' = z^xoX G 

/C^g. Then we have zi G W^A') and x o A = zi o A'. By Proposition 2.5.5 there exists 

some Z2 G W(A') such that fi = Z2 o A' and 22 ^A' ^I- Setting it; = ^f 1a:, 2/ — ^2^ 
we have x = ziw and /i = y o A. Since y = ^^r^ ^ W(A/)a; = xW(X), the assertion 
follows from the following lemma. 

LEMMA 2.5.7. Assume that A, X' G /C^g and u> G T^F satisfy X' — w o A. T/ien /or 
^1,^2 G W(A/) such that z^ ^A' 

Z
\ 'we have zoiu > zjiz;. 

Proo/ For A G /C+ we have A+(A) = {a G Are;(av,A + p) G Z>o}. This 
implies 'L(;~1A+(A/) = A^(A) C A+. Then it is enough to apply Lemma 2.2.11. □ 

For a subset ft of /Creg we denote by 0{ft} the full sub category of O consisting 
of M G Ob(O) such that any irreducible subquotient of M is isomorphic to L(A) for 
some A G ft. For A G /Creg we set 

(2.5.7) 0[A] = 0{T'F(A) o A},        O(A) = ®){W o A}. 
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By the definition, for any A G /Creg, we have 

(2.5.8) 0[A] = 0[w o A]  for any w G W{\), 

(2.5.9) ©(A) = 0(w o A) for any w € W. 

By Proposition 2.5.5 we have 

(2.5.10) M(A) G 0b(O[A])  for any A G ICreg. 

By Lemma 2.3.2 and Corollary 2.5.6 we have the following lemma. 
LEMMA 2.5.8. Let A G /C+g and w G W. Assume that M G Ob(O) satisfies the 

conditions 

[M : L(w o A)] ^ 0, 

[M : L(y o A)] = 0 for any y G wW(X) such that y < w. 

Then neither Homg(M(w; o A), M) nor Homg(M, M*(w o A)) vanishes. 

We shall use later the following result of S. Kumar [20] (a generalization of a 
result in Deodhar-Gabber-Kac [6]). 

THEOREM 2.5.9. Any object M of®{lCTeg} decomposes uniquely into 

M=   0   Mx    (MA G 0b(O[A])). 

At A^reg 

In [20], the theorem is proved for M with a semisimple action of I).   However the 
same arguments can be applied in our situation. 

For A G /Creg we denote by 

(2.5.11) PA:0{/Creg}^0[A] 

the projection functor. 

We define a new abelian category O by 

(2.5.12) 5=   J]   ©[A]. 
A£/Creg 

We denote by the same symbol P\ the projection functor P\ : O -> OfA].   It is an 
exact functor. By the definition we have 

Home)(M,iV)=    JJ   Hom0(PA(M),PA(AO)    for M, iV G O. 
AG/C + 

reg 

The category ®{lCreg} can be regarded as a full subcategory of O. For M G O and 
A G /Creg we set 

[M:L(A)] = [PA(M):L(A)]. 

For a subset Cl of /Creg, we set 

(2.5.13) d{ft}=   Y[   0{nn(l^(A)oA)}. 
A€/Creg 

and for A G /Creg, 

(2.5.14) 6(X)=6{WoX}. 
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3. Twisted D-modules. We shall give a generalization of the theory of D- 
modules on infinite-dimensional schemes developped in [14] and [16] to that of twisted 
left D-modules (modules over a TDO-ring). Since the arguments are analogous to 
the original non-twisted case, we only state the results and omit proofs. 

3.1. Finite-dimensional case. For a scheme X we denote by Ox the structure 
sheaf. For a scheme X smooth (in particular quasi-compact and separated) over C, 
we denote by Hx, ©x and Dx the canonical sheaf, the sheaf of vector fields, and the 
sheaf of rings of differential operators on X, respectively. 

Let X be a scheme smooth over C. A TDO-ring on X is by definition a sheaf A of 
rings on X containing Ox as a subring such that there exists an increasing filtration 
F = {FnA]nei of the abelian sheaf A satisfying the following conditions. 

(3.1.1) FnA = 0 forn < 0. 

(3.1.2) FnA>FmAcFn+mA. 

(3.1.3) [FnA.FmA] C Fn+ro_iA 

(3.1.4) FQA = Ox- 

(3.1.5) The homomorphism g^A -+ ®x {P mod F0A H> (Ox 9 a H> [P, a] G Ox)) 

of Ox-modules induced by (3.1.3), (3.1.4) is an isomorphism. 

(3.1.6) The homomorphism Sox i&iA) —>• grA of commutative O^-algebras is an 

isomorphism. 

Here we set grnA = FnA/Fn-iA, gvA = 0ngrnA, and Sox(gv1A) denotes the 
symmetric algebra of the locally free Ox-module g^ A The filtration F is uniquely 
determined by the above conditions, and it is called the order filtration. A TDO-ring 
is quasi-coherent over Ox with respect to its left and right Ox-module structures. 

Let A be a TDO-ring on a scheme X smooth over C For a coherent (left) 
i4-module M we can define its characteristic variety Ch(M) as a subvariety of the 
cotangent bundle T*X as in the case A = Dx- A coherent ^-module M. is called 
holonomic if dimCh(.M) < dimX. We denote by M/^A) the category of holonomic 
A-modules, and by Db

h(A) the derived category consisting of bounded complexes of 
quasi-coherent A-modules with holonomic cohomologies. Set 

A-l = ftf-1 ®ox Aop ®ox Six, 

where Aop denotes the opposite ring of A. Then A~% is also a TDO-ring. We define 
the duality functor 

D : Db
h(A) -+ Db

h(A-lr 

by 

BM = RHomA(M,A) ®0x flf-^dimX]. 

Let / : X —>• Y be a morphism of smooth schemes over C, and let A be a 
TDO-ring on Y. Set 

AX-+Y = Ox ®/-iOy f^A        Ay^x = /''A Sf-ior f^tlf-1 ®f-ioY Ox- 

Define the subring f^A of Sndf-ij\(Ax-^Y) by 

(3.1.7) /«A = (J FM'A), 
neN 
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(3.1.8) Fn(/^)=Oforn<0, 

(3.1.9) Fn(ftA) = {Pe £ndf-iA(Ax^Y); [P, Ox] C Fn^(pA)} for n > 0. 

Then f$ A is a TDO-ring on X. Moreover, AX-+Y has a structure of an (/^A, j~x A)- 
bimodule, and Ay^x has a structure of an (/~1A.,/^^-bimodule. We have 

(3.1.10) /»(A-») = (/«A)-« 

for any TDO-ring A. We define functors 

(3.1.11) W-Dh
h{A)^Dh

h(pA), 

(3.1.12) / : D»(/»A) -»■ £>»(^), /  : ^(/»A) -> D^A) 

by 

(3 113)  1D)
/
,
(-

M
)
=
^->'®/-M/"

1M
.    //A< = R/*(Ar^®J'u>t)> 

J^Do/joD. 

We shall also use their variants 

(3.1.14) D/', D/! : Dh
h{A) -± Db

h(f*A),        D/,, D/. : ^(/»A) -»■ ^(A) 

given by 

D/* = D o D/* o D, D/! = D/# [2(dimX - dimr)], 

D/* = ^ [dimr - dimX], Bfi = Jfl [dimY - dimX]. 

3.2. Infinite-dimensional case. Now we shall study TDO-rings on infinite- 
dimensional varieties. We say that a scheme X over C satisfies the property (S) if 
X ~ lim5n for some projective system {SVJ^^ satisfying the following conditions. 

n 

(3.2.1) The scheme 5n is smooth (in particular quasi-compact and separated) 

over C for any n. 

(3.2.2) The morphism pnrn : 5m ->> 5n is affine and smooth for any m > n. 

We call such {S'n}n€i^ a smooth projective system for X.  For example, the infinite- 
dimensional affine space 

A00 = lim An = SpecCfc;* G N] 
n 

satisfies the property (S). 
Let S denote the category whose objects are smooth C-schemes and whose mor- 

phisms are affine and smooth morphisms. Then the pro-object "lim"5n in S depends 
n 

only on X and does not depend on the choice of a smooth projective system {5'n}nG^ 
([7]). This follows from the fact 

Hom(X, 5) = lim Hom(5n, S) 
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for any scheme S. 
A C-scheme X is called pro-smooth if it is covered by open subsets satisfying (S). 
Let / : X —Y Y be a morphism of C-schemes such that X is pro-smooth and Y 

is smooth over C, and let A be a TDO-ring on Y. Set AX->Y = Ox ®f-^oY f~
lA, 

and define the subring ft A of £ndf-iA(Ax-^Y) by (3.1.7)-(3.1.9). Then AX-*Y is an 
(ftA, /-1A)-bimodule. For an A-module M we define the /^-module fmM by 

(3.2.3) fmM = AX->Y ®f-iA rlM. 

For a pro-smooth scheme X, a TDO-ring on X is by definition a sheaf A of rings on 
X containing Ox as a subring satisfying the following condition. 

(3.2.4) For any x G X, there exist a morphism /:[/—> Y from an open 

neighborhood U of x to a smooth C-scheme Y and a TDO-ring 

5 on Y such that Ale/ = ftB. 

By the definition, a TDO-ring A on a pro-smooth scheme X is locally of the form 
A — ftB where B is a TDO-ring on a smooth C-scheme. We can patch together 
ftB-* and obtain a TDO-ring A'* on X. 

For an invertible Ox-module C on a pro-smooth scheme X, we have a TDO-ring 
Dx(£) given as follows. 

(3.2.5) Dx(C) = \jFnDx(C) C SndcC. 
n 

(3.2.6) FnDx(£) =0 forn < 0. 

(3.2.7) FnDx(£) = {P G £ndcC] [P,a] G Fn-_iL>x(£)  for any a G Ox}  forn > 0. 

We set JDX = Dx(Ox). Then we have .Dx(£) - £ ®0x Dx ®ox C®~1. More 
generally, for an invertible Ox-module C and a scalar a G C we can define a TDO- 
ring Dx(Ca) = £a <g>0x Dx ^Ox vC0-0 by the following patching procedure although 
Ca does not necessarily exist. A section of Dx(£a) is locally of the form sa (g)P(g)s~a, 
where s is a nowhere vanishing section of £ and P is a section of Dx, and we have 
s? ® Pi <S> 5^a = $2 ® ^2 <8) s^a if and only if Pi = (s2/si)a^2(s2/si)~a as sections of 
Dx- 

Let A be a TDO-ring on a pro-smooth scheme X. We call a (left) A-module M 
admissible if it satisfies the following conditions. 

(3.2.8) M is quasi-coherent over Ox- 

(3.2.9) For any affine open subset U of X and any s G T(U] M), there exists a 

finitely generated C-subalgebra B of r(C7; Ox) such that Ps = 0 for any 

P G T(U] A) satisfying P(B) = 0. 

We denote the category of admissible A-modules by Maf/m (A). We call an admissible 
A-module M holonomic if it satisfies the following condition. 

(3.2.10) For any x G X there exist a morphism /:[/-> Y, a TDO-ring B on Y 

as in (3.2.4) and a holonomic P-module M' such that M\u — fmM.'. 

We denote the category of holonomic A-modules by M^ (A). 
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Let A be a TDO-ring on a C-scheme X satisfying the property (S). Then we can 
take a smooth projective system {5'n}nGi^ for X and TDO-rings An on Sn such that 

(3.2.11) ^mAn £ Am for any m > n, plAn * A, 

where pn : X ->• Sn is the projection. We call {(Sn, An)}nGz a smooth projective 
system for (X, A). Since pnrn is smooth, the functor p*m : M/^An) ->• M^^m) is 
exact, and we have the equivalence of categories 

Mh(A)~l\mMh(An). 
n 

Let X be a pro-smooth C-scheme and A a TDO-ring on X. Let D(M<ldm(A)) 
be the derived category of Mac/m(^4)- Let us denote by Db

h(A) the full subcategory of 
Db(Wladrn(A)) consisting of bounded complexes whose cohomology groups are holo- 
nomic. 

If X satisfies (S) and {(Sn,^4n)}nG^ is a smooth projective system for (X, A), 
then we have an equivalence of categories: 

Db
h(A)=lhnDb

h(An). 
n 

The duality functors D : Db
h(An) -> Db

h(A-^)oip induce the duality functor 

(3.2.12) D : Db
h(A) -> ^(^-'t)op. 

For a morphism / : X —> Y of pro-smooth C-schemes and a TDO-ring A on Y, 
we define a TDO-ring ft A on X by the same formulas (3.1.7)-(3.1.9). The functor 

(3.2.13) Br:Db
h(A)->Dh

h(ftA) 

is defined by the same formula as in (3.1.13). It is well-defined as seen in the following. 
The question being local, we may assume that X and Y satisfy (S). Then we can take a 
smooth projective system {Xn} for X and a smooth projective system {(Yni An)}n£jj 

for (Y,A). Let pxn • X -> Xn and pm • Y —> Yn be the projections. We may 
assume further that there exists {/n} : {Xn} -> {Yn} such that / = lim/n.   For 

n 

M e Ob(Db
h(A)) there exist some n and Mn G Ob(Db

h(An)) such that M = PYnMn- 
Then we have 

Bf'M=p'xJ3)f'Mn. 
Let / : X —> Y be a morphism of pro-smooth schemes. We assume that / is of 

finite presentation type. Let A be a TDO-ring on Y. We define a functor 

(3.2.14) I : Db
h(fA) -> Db

h(A) 

by the same formula as in (3.1.13). We can see that it is well-defined as follows. The 
question being local on Y, we can take a smooth projective system {Xn} for X, a 
smooth projective system {(Yn,An)}nez for (Y,A), and {/n} : {Xn} -> {Yn} such 
that / = lim/n and the following diagram is Cartesian for any n ([7]). 

n 

Xn )-    Yn 

AQ      >     Yo ■ 
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Let pxn : X -> Xn and pyn : F -^ Y^ be the projections. Let M G Oh(Db
h(f*A)). 

There exists some n and A^n E Ob(D^(/^An)) such that A1 = Pxn-M-n- Then we 
have 

[ M=p-Yn   [    Mn. 
Jf Jfn 

Under the same assumption, we define the relative dimension df by dimXo — dimlo- 
We shall also use the following functors for a morphism / : X -)> Y of schemes 

satisfying (S): 

(3.2.15) D/*, D/! : JD»(A) -»■ ^(/"A),     / , D/. , Bf, : ^(/^) -»■ D^^) 

defined by 

D/! = Bf [2df],   Bf = D o Bf o D, 

/ = D o / oD,    Df* = /[-d,],    D/i = / [-d/]. 
J/i y/ 7/ Jf\ 

Note that D/* and D/* are defined for any morphism / of schemes satisfying (S), 
while other functors in (3.2.14), (3.2.15) are defined only when / is of finite presenta- 
tion type. 

For a morphism / : X —> Y of pro-smooth schemes, a TDO-ring A on Y, and 
k E Z we can define functors 

(3.2.16) HkBf* : MU (A) -> M^ (Z11 A) 

by patching together the locally defined object i7fc(D/*X) for X E Ob(M/l(A)). 
Similarly, for a morphism / : X —> Y of pro-smooth schemes which is of finite presen- 
tation type, a TDO-ring A on Y, and k E Z we can define functors 

(3.2.17) ff* /,,, ff^D/.  : MhtftA) -> M^(A). 

3.3. Equivariant D-modules. Let G be an affine group scheme over C. We 
assume that OG(G) is generated by countably many generators as a C-algebra. Then 
G ~ lim Gn for a projective systems of affine algebraic group over C, and hence G 

neN 
satisfies the condition (S). Let 0 be the Lie algebra of G.  Then g is the projective 
limit of the Lie algebras gn of Gn. 

Let X be a pro-smooth C-scheme with an action of G. Then we have the diagram 

(3.3.1) GxGxX     -J^  GxX      <-£— X. 
V / P3     >  PrX> 

Here fix '• G x X —> X is the action morphism, prx : G x X -> X the second 
projection, and 

i(a:) = (l,x), 

Vi(gi,g2,x) = (gi,g2x), 

P2(9i,92,x) = (0102,20, 
P3(gi,g2,x) = (g2,x). 



800 M. KASHIWARA AND T. TANISAKI 

A G-equivariant TDO-ring A on X is a TDO-ring endowed with an isomorphism of 
TDO-rings 

with the cocycle condition (see [12, §4.6]), i.e.   the commutativity of the following 
diagram. 

PI^A     * ►    AAA 
(3-3.2) |, d , |l 

pWxA    -^plprtxA^pyxA^^   ^XA 

Then the G-equivariance structure induces a ring homomorphism 

U(9)^r(X;A). 

A G-equivariant module M over a G-equivariant TDO-ring A on X is an A-module 
endowed with an isomorphism of pr^^l-modules 

with a similar cocycle condition (see [12, §4.7] and (3.3.5) below). 

We can generalize the notion of equivariance to that of twisted equivariance. 
Assume for the sake of simplicity that G is a finite-dimensional affine algebraic group 
with Lie algebra g. Let ^ : G x G -» G (i = 1,2) be the first and the second projection 
and JAG '- G x G —>• G the multiplication morphism. Let IQ '• pt —>• G be the identity. 

Let A G 0* be a G-invariant vector. Let T(A) be the free Oa-module generated 
by the symbol eA. We define its i^G-module structure by 

RAex - \{A)ex    for any A G g, 

where i?^ is the left invariant vector field on G corresponding to A. Then we have a 
canonical isomorphism of Z^G-modules 

(3'3'3) mA : ^r(A) ^^r(A) 0 g2-r(A), 

sending eA to 1 and eA (8)eA, respectively. A twisted G-equivariant A-module M with 
twist A is an ^.-module with an isomorphism of pr^ A-modules 

(3.3.4) P : faM ^•T(A) 0 w'xM, 

with the cocycle condition. Here q : G x X —>- G is the first projection. The cocycle 
condition means the commutativity of the following diagram of rij^L-modules on G x 



KAZHDAN-LUSTZIG CONJECTURE 801 

GxX. 

(3.3.5) 

•ZIVGHA) ® r'3M 
II 

plu'xM 
II 

plfi*xM 

Pi(.q'n\)®pi'xM) 

r{T{\)®plii*xM 

->    qh(q;n\)<B>q'2T(\))®r'3M 

rjr(A) 0 ^r(A) ® r'3M 

-> rjr(A) ® ^(g'r(A) ® pr^At). 

Here 912 : G x G x X -4- G x G is the (1,2)-th projection, and r^ is the i-th projection 
from GxGxX. 

Let V : G —>■ Cx  be a character, and let Sip € g* be its differential.   Then 
^A+cSiA o V'e   gives a canonical isomorphism 

T(A + J^) £ r(A) 

compatible with the multiplicative structure (3.3.3). Hence the twisted equivariance 
with twist A is equivalent to that with twist A + Sip. 

4.  D-modules on the flag manifold. 

4.1. Flag manifolds. We recall basic properties of the flag manifold for the 
Kac-Moody Lie algebra g (Kashiwara [13]). 

Fix a Z-lattice P oil)* satisfying 

(4.1.1) ai€P,     {P,hi}cZ     for any i € I. 

We define affine group schemes as follows: 

(4.1.2) 

(4.1.3) 

(4.1.4) 

(4.1.5) 

ff = SpecC[P], 

JV±=limexp(n=fc/n^), 
k 

B = (the semi-direct product of H and iV+), 

B~ = (the semi-direct product of H and iV_) 

(see (2.3.1) for the definition of nj^). Here, for a finite-dimensional nilpotent Lie 
algebra a we denote the corresponding unipotent algebraic group by exp(a). Then 
TV^ is an affine scheme isomorphic to Spec(5(n:?)). 

For a subset 0 of A* such that (0 + 0)n A C 0. we denote by iV(0) the subgroup 
exp(n(0)) oiN*. 

In Kashiwara [13], a separated scheme G is constructed with a free right action of 
B~ and a free left action of B. The flag manifold X is defined as the quotient scheme 
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X = G/B~. The flag manifold is a separated scheme. For w G W, Uw — wBB~ jB~ 
is an open subset of X. A locally closed subscheme Xw — BwB~ /B~ of X is called 
a Schubert cell. 

PROPOSITION 4.1.1. 
(i)   X = [Jwew Uw = Uwew^w- 

(ii)   For any w G W, we have Xw = {Jy>w Xy and Xw C Uw C U^^^ Xx- 
(iii)    We have an isomorphism 

N(wA+ H A") x N(wA+ n A+) ^^C/^     ((x,y) *-> xyivB') 

of schemes. Moreover, the subscheme {1} x N(wA+ fl A+) is isomorphic to 
Xw by this isomorphism. 

In particular, Uw and Xw are isomorphic to 

A1 =SpecC[xk; 0<k<£} 

for some £ G Z>oLl{oo}, and the codimension of Xw in X is the length £(w) of 
w G W. Hence X is pro-smooth. 

We call a subset $ of W admissible if 

w G <£,£/ < w => y G $. 

For an admissible subset $ of VF we define an open subset X<p of X by X$ = IJ^e^ Xw. 
For a finite admissible subset $, X$ is a quasi-compact scheme with the condition 

(S). Indeed for k » 0, the subgroup exp(n^) = limexp(nj/n^) acts freely on X<$> 
l>k 

and {X<$>/ exp(n^)}A; is a smooth projective system for X<$> (see [18]). Note that, since 
X<$> is separated over C, X<$>/ exp(nj) is separated for k » 0 by the following lemma. 

LEMMA 4.1.2. Let {^n}neN be a projective system of quasi-compact and quasi- 
separated schemes. Assume that the morphism Xn+i —> Xn is an affine morphism 
for any n. Let Xoo be its projective limit. If X^ is separated, then Xn is separated 
for n » 0. 

Proof. Let /nm : Xm -> Xn be the canonical projection (0 < n < m < oo). 
Since XQ is quasi-compact, XQ is covered by finitely many affine open subsets U® (j = 

1,...,N). Then the inclusion Uf -> XQ is of finite presentation. Set C/j1 = fo^iUj) 
(0 < n < oo). Since XQQ is separated, Uj0 -> X^ is an affine morphism. Hence [7, 
Theorem (8.10.5)] implies that U™ -> Xn is an affine morphism for n » 0. Hence we 
may assume from the beginning that Uj Pi U^ is affine for any j, k = 1,..., N. 

The ring homomorphism Ox(U^) ® Ox(U^) -> Ox{U^ n C/^5) is surjective 
by the assumption that XQQ is separated. Since Ox(Uj Pi £/£) is a finitely generated 
algebra over Ox(Uf), the image of Gx(U$ fl C/^) -> (^(t/j1 n t/^1) is contained in the 
image of OxiJJf) ® Ox(U£) -> O^^j1 n C/£) for n » 0. On the other hand, we 
have 

Ox{u? n c/^) = Ox(u?) ®ox{u«) Oxiu* n f/,0). 

Hence Ox{Uf) ® Ox{U^) -> OxiU? n ^) is surjective for n » 0. This shows that 
Xn is separated for n » 0. D 

Set X = G/N~. We denote by £ : X -> X the canonical projection. It is an 
if-principal bundle. For w G W we set X^ = C-1^^ = BwN~ /N~, and for an 
admissible subset $ of W we set X^ = ^_1X^ = Uwe<$>Xw. The scheme X is also 
pro-smooth. 
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4.2. Twisted D-modules on the flag manifold.  Let p : G —> X be the 
projection. For [i E P we define the invertible Ox-module Oxin) as follows: 

r([/; OxOu)) = {v e T^-1^; OG) ; <p(xg) = g-»ip(x) for (x,g) G p"1!/ x 5"} 

= {ve iXr1^; Ox); ^(^) = h-^ip(x) for (x,ft) e^U x H} 

for any open subset U oi X. Here £ H* x~M is the character of B~ corresponding to 
the weight -fi. Twisting Dx by Ox(y) we obtain a TDO-ring 

D^ = Ox(li) ®ox Dx ®ox Oxi-v)- 

This definition can be generalized to any fi G f)* and we can define an A^+-equivariant 
TDO-ring DM on X (see Kashiwara [12] and Kashiwara-Tanisaki [18]). Note that the 
pull-back ^Dp of the TDO-ring D^ under £ : X -> X is canonically isomorphic to 
Dj^. Hence the pull-back £#.A// of an admissible i^^-module M is naturally regarded 
as a D^-module. Moreover, by the functor £*, the category of admissible D^-modules 
is equivalent to the category of admissible twisted iiT-equivariant D^-modules with 
twist fi. 

The infinitesimal action of g on X lifts to an algebra homomorphism 

tf(0)->r(x;ig. 

In particular, Hn(U]M) has a g-module structure for any open subset U of X, any 
D^ | [/-module M and n G Z. 

For w G VF, let iw : X^ ^^ X be the inclusion. Then for any fi G ()*, the A^+- 
equivariant TDO-ring i^-D^ is canonically isomorphic to the ./V+-equivariant TDO- 
ring Dxw> We define the iV+-equivariant holonomic D^-modules BW(II),M.W(IJ) by 

(4.2.1) Bviji) = H0 [ Ox*,,    MM = H0 f 
Jiw Jiw 

Oxu 

Note that Hk /. Oxw — Hk ji , Oxw = 0 for any A; / 0 because iw is an affine 
embedding. By the definition we have 

(4.2.2) ^omD^Mw(^M)^llomD^u{Mw{ii)\u,M\u), 

(4.2.3) Hom^(>l,^(/x))^HomDM|l7(X|t/,^(//)|c/) 

for any open subset U of X containing X^ and any holonomic Z^-module M. 
The isomorphism Mw(ii)\u = Bii;(/i)|c/ extends to a canonical non-zero homomor- 
phism M,w(ii) -> Bw(fi). We denote its image by Cw(fjL). It is a unique irre- 
ducible quotient of ^^(/x) and a unique irreducible submodule of Bw(fi). Note that 
dimHom/}M(Mw(/i),Sw(jLi)) = 1. 

For JJL G [)* and a finite admissible subset $ of W, we denote by E[$(//) the 
category of ^"^-equivariant holonomic .D/Jx*-modules. For /i G I}* we denote by H(/i) 
the category of iV+-equivariant holonomic D^-modules. Then we have obviously 

where $ ranges over the set of finite admissible subset of W. 
For any w G W and // G I)* the JD^-modules Bw(fj,), Mw(fi) and Cw(n) are objects 

of H(/x). Note that /^^ (/i) is a simple object of H(^). 
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For any iV+-equivariant admissible D^-module M, we denote the support of M 
by Supp(.M). It is an iV^-stable closed subset of X, and hence it is also ^-stable. 

LEMMA 4.2.1. Forw E W, let U be an open subset of X which contains Xw as a 
closed subset. For any N^-equivariant admissible D^-module M such that Supp(A/()n 
U C Xw, there exist some index set J and isomorphisms 

Mw(»fJ\u ^M\u ^Bw(»)eJ\u. 

Furthermore if M is holonomic, then J is a finite set and the above isomorphisms 
can be extended to morphisms in H(^) 

Mw(ii)®J -> M -+ Bw(ri®J'. 

Proof. Let i : Xw —> U be the closed embedding. By the condition on M. there 
exists an iV+-equivariant holonomic Dxw-module Af such that M\u — fiN. Since 
Xw is a homogeneous space of iV+ with a connected isotropy subgroup, we see that 
Af is isomorphic to 0®J for some J. If M is holonomic then Af is holonomic, and 
hence J is a finite set. Thus we have 

®J ~ f U    (,Mrr\®J M\u - J Of: - (Bw(ri\urJ - (MM\u) 

To see the last statement, it is enough to apply (4.2.2) and (4.2.3). D 
Let M E Ob(H(/i)). By Lemma 4.2.1, for any finite admissible subset $ of 

W, Mix* £ Ob(M&(fj,)) has finite length and it has finite composition series whose 
composition factors are isomorphic to Cw(fi)\x^ for some w E $. For w E W the 
multiplicity of £w(fjL)\x* in the composition series of M\x^ does not depend on the 
choice of a finite admissible subset $ of W such that w E $. We denote it by 
[M : Cw(fi)]. Note that the multiplicity does not depend on the iV+-equivariance 
structure. 

LEMMA 4.2.2. We have [Mw(fi) : Cybi)] = [BW([JL) : Cy(fjb)] for any w,y E W. 
Replacing the modules .M^/i), Cy(fi) and Bw(n) with their images by £*, this follows 
from the following general result. 

PROPOSITION 4.2.3 ([15]). Letj : X -» Y be an embedding of smooth C-schemes. 
Then for any holonomic Dx -module Ai, we have the equality 

](-l)i[Hi([M)} = Y/(-mHi([ M)} 
ieZ 'J'J ieZ 

in the Grothendieck group of the category of holonomic Dy -modules. 
Proof We can decompose this proposition into the closed embedding case and 

the open embedding case. Since the first case is obvious, we may assume that j is 
an open embedding. Since the question is local on Y", we can easily reduce to the 
case where X is the complement of a hypersurface of Y. Then /. M and /., M are 
concentrated at degree 0. We may assume further that Y \ X is defined by / = 0 for 
some / E T(Y;OY)- Let ipf(M) be the near-by cycle of M, which is a holonomic 
Dy-module with support in Y \ X. Let var : ipf(M) -t ipf(M) be the variation. 
Then the kernel (resp. the cokernel) of /., M -)• /. M is isomorphic to the kernel 
(resp. the cokernel) of var : ipf(M) -> ipf(M). Therefore we have 

[ f M] - [ f M] = [Coker(var)] - [Ker(var)] = 0. 
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4.3. Cohomologies of BW(II). We first study the cohomology groups of BW(/J). 

PROPOSITION 4.3.1.  Let JJ, E V, w e W and let $ be a finite admissible subset 
ofW containing w.  Then we have 

(i)   Hn(X^Bw(fi)) = Hn{X'Mii)) = 0 for any n^O. 
(ii)    We have 

r(X*iBw(tJL)) = r(X;^0u)) ~ U(wb) ®^bnb) (r(Xw',Oxw)®CWor) 

as a U(wb)-module.   Here wb = t) ® {@aewA+ Sa) an<^ ^wov  Z5 ^e one~ 
dimensional U(wb fl b)-module with w o JJL as a weight. 

Proof. By the definition of Bw(fi) we have 

Hn{X^Bw(fi)) ~ Hn{X-Bw{ii)) ~ Hn(Uw\BM). 

Hence the assertion easily follows from Proposition 4.1.1 (hi) (cf. [14, 18]). □ 
Later, we shall see that T{X\BW{^)) is isomorphic to the dual Verma module 

under certain conditions. The following corollary is a key of its proof. 
COROLLARY 4.3.2. Let /JL el)* and w e W. 
(i)   ch(r(X;£„(//))) = ch(M(w o^)). 

(ii)   If C E I)* and non-zero m E T(X] Bw(fi))^ satisfy n(^A+ n A+)m = 0, then 
we have ( e w o/j, - E^eA+n^A- Z>o«. 

(hi)   // C E I}* and non-zero m E T(X]BW(IJL))^ satisfy n(wA~ fl A+)m = 0; then 

we have C E w o // - Ea6A+n™A+ Z>oQ:. 
Proof. By Proposition 4.3.1 we have 

TiXiB^n))    ~    /7(n(^A+nA-))0r(X1j;;OxJ^Cu;OM 
1 ^"^ ~    t/(n(^A+ n A")) 0 S(n(wA- n A")) (g) C^o^, 

and hence we have 

ch(r(X; BW(JJ))) = ch(U(n(wA+ n A"))) ch(S(n(iuA- fl A-)))eu;o^ 
— TT n_eQ!\-dimga TT Q _ ea\- dim ga eu;o^ 

aGwA+nA- aewA-nA- 
_    TT   /-j^ _ ea\-dimga givofi 

aeA- 

= ch(M(K; o/x)). 

Thus (i) is proved. 
Let us prove (hi). Assume that a non-zero vector m E r(X]Bw(iJJ))^ with £ E I)* 

satisfies n^A" fl A+)m=:0. Then we have (r(X; ^(/i))/n(^A+ D A")r(X; JM/X))) 

/ 0. Then (4.3.1) implies 

ch(r(X;i3u;(/i))/n(^A+nA-)r(X;Su;(//))) 

= ch(5(n(w;A-nA-)))eu;0^ 
JJ ^1_ea^-dim0Qeu;oM5 

aEwA-nA- 

and we obtain (hi). 
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Let us finally show (ii). Define a filtration {i^}^ of U(n(wA+ D A-)) by 

*i=   0   U(n(wA+nA-))-p. 
ht(P)<£ 

Then the subspace F£<8>r(Xw] Ox^j^C^o^ oiT(X]Bw(fi)) is stable under the action 
of n(wA+ D A+), and the action of n(u>A+ D A+) on the quotient 

(Fi 0 r(Xw; OxJ 0 Quo^/iFi.! 0 r(Xw; OxJ 0 CWOfl) 

= (Fi/Fi-!) 0 T{Xw] OxJ 0 CWOfl 

is given by 

x(u®n) =u®xn   for x G n(^A+ n A+), w G Fi/Fi-i, n G r^^jOx^) ^C^o^- 

Take the smallest £ such that m G i^ 0 r(XU;; Oxu,) ® C^o/x and denote by m the 
corresponding element of (Fi/Ft-i) 0 F^^; Ox^) 0 C^o^. Write m as 

r 

i=i 

where ^ (j = 1,... ,r) are linearly independent elements of Fi/Fi-i and rij (j = 
l,...,r) are elements of T(Xw;Oxw) 0 CWOfl. By the assumption on m we have 
n(wA+ n A+)nj = 0 for any j. Since Xw is a homogeneous space of N(wA+ fl A+), 
we have nj G C 0 Q^ C T(XW; Oxw) 0 C^o/z. Thus 

m G {Fi/Ft-i) 0 C 0 Co/x, 

and we obtain (ii). D 
PROPOSITION 4.3.3. For A G /C+g anc? w eW, we have 

r(X;BwW)-M*(wo\). 

Proof. Since ch(r(X;^tjU(A))) = ch(M*(w o A)), it is sufficient to show that if 
there exists m G T(X; BW(X))^ \ {0} such that n+m = 0, then ( — w o A. 

Since [M(iy o A) : L(C)] / 0, Corollary 2.5.6 implies C = 2/ 0 A for 2/ G iyW(A). 
Hence there exist some 71, • • •, 7r G A+(A) such that 

W      y — S^1 • • • S-yr , Sj1 ' ' ' Sj:j_1
rYj €: LX    . 

Then we have 

A + p - w~1y(X + p) = A + p - s71 • • • 57r (A + p) 
r 

^(57i * ' ' 57i-i (A + P) - 57i ' * ' H (A + P)) 
3 = 1 

Since A G /C+g, we have (A + p, 7V) G Z>o, and hence A + p - w;_1y(A + p) G <3+. 
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On the other hand, Corollary 4.3.2 (ii) implies 

A + p - w-ly(X + p) = w^iw o A - C) E ^"H      ^       Z>oa) C -Q+ . 

Thus we obtain A 4- p — 'w~ly{\ + p) — 0, and hence C = ^ 0 A. □ 
REMARK 4.3.4. This proposition 4.3.3 can be also proved by using the the- 

ory of the Radon transform in §4.6. Indeed, Theorem 4.6.2 implies Y(X;BW{X)) = 
r(X; Be(w o A)). The last module is isomorphic to T(Xe\ Ox) 0 C^oA, and it has a 
unique highest weight vector, because Xe is a homogeneous space of iV+. 

4.4. Modified cohomology groups. The cohomology group Hn{X] M) itself 
may be too wild. We shall replace it with a modified one easier to manipulate. 

LEMMA 4.4.1.  Let $ be a finite admissible subset of W. For any fi E l)*; n G Z 
and M G Ob(H(/z)), w;e have the following. 

(i)   i7n(X$;X) is an object ofO. 
(ii)   // [Hn(X$]M) : I'(C)] T^ 0; ^en t/zere exists 5ome w G $ swc/i t/ia^ X^ C 

Supp(^() and ^a^ [M(w o /x) : L(C)] ^ 0. 
(hi)   For any admissible subset ^ of W such that \I/ C $, Zet iVi (resp.   ^2) 6e 

^fte kernel (resp.    cokernet)  of the natural homomorphism Hn(X$]M.) —> 
Hn(X^;X).    T/ien ^ Mon^ to Ob(O) for i = 1,2.   Moreover, z/ [A^ : 
L(C)] y£0fori = l or 2, then [M(x o /x) : £,(£)] 7^ 0 /or some x G $ \ ^. 

Proof We first show (hi) by the induction of )(($ \ 1^). 
If )J($ \ tf) = 0, it is trivial. In the case tt($ \ *) = 1, set $ \ * = {x}. Let 

z : X^c —>- X® and j : X^ —> X<$> be the inclusion. By the assumption i is a closed 
embedding and j is an open embedding. The distinguished triangle 

induces an exact sequence 

(4.4.1) Hn(X^J]>l^BilM) -> Hn{X<s>;M) -> Hn(Xy;M) -> H^^X^BiM1 M). 

Therefore the kernel iVi is a quotient of Hn(X<$>]Ik*Ik[M), and the cokernel iV2 is 
a submodule of Hn+1(X^]Di#BilM). By Lemma 4.2.1, the object Hk(Bi*WM) 
in B[$(/i) is isomorphic to a direct sum of finitely many copies of Bx(fi)\x^- Hence 
Proposition 4.3.1 (i) implies 

Hk(x^m,mlM) = r(x*',Hk(BiMlM)), 

and its character is a constant multiple of the character of the Verma module M{xop) 
for any k by Corollary 4.3.2. This shows (hi) in the case U($ \ \I>) = 1. 

Assume (!($ \ ^r) > 1. Taking a maximal element x of $ \ ^5 set $' = $ \ {x}. 
Then $' is an admissible subset such that ^ C $' C $. Consider the diagram 

^n(X$; >l)-^^iJn(X^; M)-^-+Hn(X^ M). 

Then we have exact sequences 

0 ->► Ker a ->• Ker(/3 o a) -> Ker /3 

Cokera -)• Coker(^ o a) -> Coker/3 -> 0. 
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By the induction hypothesis, Ker a and Ker /J belong to O. Hence iVi = Ker(/3 o a) 
belongs to O. If [^ : 1,(0] ^ 0, then [Ker a : L(C)] ^ 0 or [Ker/3 : L(C)] ^ 0. The 
induction hypothesis implies [M{x o ^) : L(Q] ^ 0 in the first case and [M(u> o //) : 
i(C)] 7^ 0 for some ^ G $' \ * in the second case. This shows the assertion for iVi. 
The assertion for A^2 is similarly proved. 

We obtain (i) and (ii) from (hi) by taking ^ = 0or^r = {w;G$; Xw fl SuppX = 
0}. □ 

By Lemma 4.4.1, Proposition 2.5.5 and the iy-invariance of /Creg, we have the 
following corollary. 

COROLLARY 4.4.2. For A £ /Creg and M £ Ob(H(A)), we have 

Hn(X^M)e0b{O(X)) 

for any finite admissible subset $ofW and any n G Z. 
LEMMA 4.4.3. Let A,// £ /Creg. Then for any £ £ f)* £/iere exzste a /zmie admis- 

sible subset QofW such that the restriction homomorphism 

(PtmXviM)))? -> (PM(if
n(X$;X)))c, 

25 bijective for any finite admissible subset $' o/ W containing <$>, (' G C + Q+; 
>t G Ob(H(A)) anc? n > 0 (see (2.5.11) for the definition of P^). 

Proof. We may assume fi G /C+ . Then pr(/i)oyun(C + 0+) is a finite set. 
Since {w G W]w o A = A} = {1}, there exist only finitely many w G W satisfying 
w o A G W(/x) o /x and -u; o A — (" G Q+. Thus we conclude that there exists a finite 
admissible subset $ of W satisfying 

w G W, w o A G W(/i) o^, i(;oA-C^Q+ ==>• w G $. 

Then the assertion follows from Lemma 4.4.1 (hi) and the assumption on <£. □ 
For A, /i G /Creg, -M € H(A) and n G Z>o we set 

(4.4.2) ^n(X)= 0hm(PM(^(^;X)))c, 

where $ is running over finite admissible subsets of W. 
LEMMA 4.4.4. For X, n G /Creg; H™ is an additive functor from H(A) to 0[/x] 

/or an?/ integer n. 
Proof Let X G Ob(H(A)). Take any C £ *)*• Let $ be as in Lemma 4.4.3. Then 

we have 

Y,    aimHZ(M)z=    Yl    dim(P^Hn(X^M))^<oo 

by Lemma 4.4.1 (i). Thus Hj;(M) £ Ob(O). D 

Now for A £ /Creg and M £ H(A) we define the object of O (see (2.5.12)) as 
follows: 

(4.4.3) Hn(M)=   H   HJXM). 

Then Hn(M) is the projective limit of Hn(X$; M) in the category O. 
We write f(M) for H0(M). 

PROPOSITION 4.4.5. Let A £ /Creg. 
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(i)   Hn is a functor from U{\) to 6(A). 
(ii)   For any short exact sequence 

0 -» Mi ->■ M2 -> 7VI3 -> 0 

in E[(A), we have a functorial long exact sequence 

0   -»•   ^0(yWi)    ->•   F0(>t2)    ->    ^(Ms) 

-»•   HH^i)    -»•   H1(M2)    -»•   ffH-^s) 

inO. 
(iii)   ^sswme i/iot [ffn(A<) : L(0] ^ 0 for M € Ob(B[(A)), C € Jj*, n 6 Z>o. 

T/ien iAere exists some w G $ SMC/I t/ioi AT^, C Supp(A^) and i/iat [M(u)oA) : 
L(C)]^0. 

(iv) // A G /Cr
+

eg an^ M G H(A), t/icn ffn(M) belongs to 0{S{M) o A}? u/ftere 
5(X) = {w G W; -Y^ C Supp(X)}. 

Proof, (i), (ii) and (iii) easily follow from the definition along with Lemma 4.4.1 
and Corollary 4.4.2. Let us prove (iv). Assume [Hn(M) : L(Q) / 0. By (iii) 
there exists some x G $ such that Xx C Supp(.A/f) and that [M(x o /i) : L(Q] ^ 0. 
Then by Corollary 2.5.6, we have C = w 0 A for some iw G VF with w > x. Hence 
Xw C Xx C Supp(A4). Therefore iy G S(M). D 

LEMMA 4.4.6.   Let A G /Creg.  For M G 0b(O{/Creg}) and M G Ob(H(A)) we 

Homfi(M,f(A<)) -Hom0(M,r(X;M)). 

Proof. Note that f(A/t) is the projective limit of {r(X$; M)}<$> in O, where $ 
ranges over the set of finite admissible subsets of W, while T(X]M) is the projective 
limit of {r(X«j>; A^)}$ in the category of g-modules. Hence we have 

Hom5(M,f {M)) ~ lmHom5(M,r(X$;.M)) 

-limHom0(M,r(X$;Al)) 

-Hom0(M,r(X;^)). 

D 
By Corollary 4.3.2 and Proposition 4.3.3 we have the following proposition. 
PROPOSITION 4.4.7. Let A G JCTeg. 

(i)   Hn(Bw(\))=0forn?0. 
(ii)   t(Bw(X)) = T{X]BW(X)) and ch(T(Bw(\))) = ch(M(w o A)), 

(iii)   f (BW(X)) ~ M*(^ o A) if A G /Cr+g. 
PROPOSITION 4.4.8. For A G /C+   and iy G W we /ia?;e leg 

(4.4.4)    Hom^Miw o \),r(Mw(m ^Hom5(M(W o A),f (^(A))) S C. 
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Proof. Set Mi = BW(\)/CW(\),M2 = Ker(Mw(X) -> ^(A)). Then we have 
Supp(A/i) C Xw \XW for i = 1,2. Hence Proposition 4.4.5 (iv) implies [Hn(Mi) : 
JL(W; O A)] = 0. Taking the cohomologies of the short exact sequences 

0 -» JVi -> .A/MA) -> ^(A) -> 0, 

0-+Cw(\)-> Bw(\)-> M!-+0, 

we obtain exact sequences 

o -+ f (M) ^ r(Mw(X)) -> r(cw(x)) -> H1^), 

o -> f (^(A)) -> f OMA)) ^ f (M). 

Therefor we have 

\r(MM)) - L{w o A)] = [f (^(A)) : Hw o A)] 

= [f(Bw(A)):L(«;oA)] 

= ,[M*(?i;oA) :L(M;OA)] 

= 1. 

Here the third equality follows from (hi) in the preceding proposition. By Proposi- 
tion 4.4.5 (iv), we have 

[f(M1,(A)):L(3/oA)]=0    ioiyKw. 

Hence Lemma 2.5.8 implies that Hom^M^ o \)^V{MW{\))) does not vanish. By 

the exact sequence 

0 -> f {M2) -+ nMw{\)) -+ t{Bw[\)) 

and Hom(g)(M(w; o A),f (jV^)) = 0, the homomorphism 

Hom5(M(ii;oA),f(Mtf(A))) ->Hom6(M(w o A),f ^(A))) ^ C 

is injective, which implies the desired result. D 

4.5. Modified localization functor. For ^ G ()* there exists a unique additive 
functor 

(4.5.1) ^0 • : Madnis) -> Ma^^) (M H-> ^0M), 

called the modified localization functor, such that 

(4.5.2) Hom0(M,r(X;.M)) = Hom^^^M,^) 

for M G Ob(Madm(g)), M G Ob(MacZm(^)). 

In [14] it is constructed in the case where // is integral. Since the construction in the 
general case is completely similar, we do not repeat it here. As in [14] we have the 
following proposition. 

PROPOSITION 4.5.1. Let tit I)*. 
(i)    The functor (4.5.1) is right exact, and commutes with the inductive limit. 

(ii)   For any M G O, D^®M is an N^-equivariant admissible D^-module. 
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In particular, for M G 0b(O), the support Supp(DM<8)M) of D^M is a B-stable 
closed subset of X. 

By Lemma 4.4.6 we have the following lemma. 
LEMMA 4.5.2. For X € ICreg, M e 0b(O{JCTeg}) and M G Ob(H(A)) we have 

Home)(M, f (M)) = EomDx (Dx&M, M). 

PROPOSITION 4.5.3. Let A e lC+g, M e 0b(O). 
(i)   Assume that Xw is open in Xw {JSupp(D\<g)M). Then D\®M\uw is isomor- 

phic to the direct sum o/dimHomg(M, M*(w o A)) copies of Bw(X)\uw • 
(ii)   Suvp(D\<g)M) is the union of Xw such that Hom0(M, M*(w o A)) 7^ 0. 

(iii)   SUPP(DA^M) is the union of Xw such that [M : L(w o A)] ^ 0. 
Proof   Let us first show (i).   Assume that Xw is open in Xw U Supp(DA^M). 

Lemma 4.2.1 implies that D\<&M\uw is isomorphic to Bw(X)®J\uw for some index set 
J. Hence by (4.2.3), (4.5.2), and Proposition 4.3.3 we have 

Hom0(M,M*(w o A)) ~ RomDx{Dx®M:Bw{^)) 

~I{omDxlUxv{Dx®M\Uw,Bw(X)\Uxv) 

^Homc(C@J,C). 

Hence JJ = dimHom0(M, M*(wo\)) < 00. Let us show (ii). By (i) it is obvious that 
S\ipp(D\®M) in contained in the union. Conversely assume Homg(M, M*(w o A)) 7^ 
0. If Xw is not contained in Supp(D\<g>M), then Xw is open in Xw U Supp(D\(g>M), 
and hence (i) implies that S\ipp(D\®M) contains Xw. 

Let us show (iii). By (ii), it is enough to show that [M : L(w o A)] 7^ 0 implies 
Xw C Supp(Dx®M). Let us take x G W such that x < w, [M : L(x o A)] 7^ 0 and 
[M : L(y o A)] = 0 for any y < x. Then Lemma 2.5.8 implies Hom0 (M, M* (x o A)) 7^ 0. 
Hence (ii) implies SUPP(DA®M) D XX D A^. D 

PROPOSITION 4.5.4. For X e )C+g the functor (4.5.1) induces the functor 

(4.5.3) Dx® •:0-»H(A). 

Proof Set Mo = ^(0)/t/(g)n+. We shall first show that DX&MQ is holonomic. 
Let $ be a finite admissible subset of W. Set Yk = X$/exp(n^), and let pk : 
X^ -> Yfc be the projection. Then Yk is a smooth C-scheme for k » 0. For ko > 
> 0, let {(Yk, Ak)}k>ko be a smooth projective system of (X<$>,Dx\x<j>)' Since Yk has 
finitely many orbits by the action of exp(n4"/nj), the A^-module Ak ®mn+/n+) C is a 

holonomic Afc-module. Since i^A^^oIx^ = P*.(^A- ®Lr(n+/n+) Q ^or ^ » 0 (see [14]), 
it is also holonomic. Thus we have proved that D\SMo is holonomic. Then we see that 
DX®(U(Q) ®u(n+) V) is also holonomic for any finite-dimensional b-module V. Indeed 
V has a finite filtration whose graduation is isomorphic to C as an n+-module. More 
generally for any g-module M which is generated by a finite-dimensional b-module V, 
Dx®M is holonomic. 

Now let us show that Dx®M is holonomic for any M G O. Let $ be a finite 
admissible subset of W. Let Mi be the g-submodule of M generated by 0ti;G<j> MWox, 
and set M2 = M/M1. Then we have [M2 : L(w o A)] = 0 for any w G $. Hence 
Proposition 4.5.3 (iii) implies that D\®M2\x* = 0- By the exact sequence 

£>A®MI -> Dx®M -> Dx&Mo -> 0 
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D\®Mi\xz ->> Dx&Mlx* is surjective. Since D\(&Mi is holonomic, D\®M\x* is 
holonomic. D 

COROLLARY 4.5.5. For A € /C+g and fi = wo\ e /C+g withw e W, Supp(D\(g)M) 

C Xw for any M G 0[/J]. 

Proof. For x G W, if [M : L(a; o A)] 7^ 0 then a; o A G W(fi) o /x. Hence x G W(/x)iy 
and Lemma 2.5.7 implies x > w. Then the desired result follows from Proposition 
4.5.3 (hi). D 

COROLLARY 4.5.6. Let A G /C+g and fi G JCTeg. For M G 0b(O[/i]) we /zave 
D\®M - 0 W7z/e55 ^ G W o A. 

Proo/. Assume D\(3M ^ 0. Take IU G P^ such that Xw is open in SUPP(JDA^M). 

Then Proposition 4.5.3 implies [M : L(w o A)] 7^ 0. Hence ^oAGl^o/i. D 

We define Dx®M for A G /Cr+g and M G O by 

DX®M=   0   DX®P^M)=       0       Dx&P^M). 

Here the last equality follows from Corollary 4.5.6. Then Corollary 4.5.5 implies 
that, for any finite admissible subset <£, L)x(^P^(M)\x^  = 0 except finitely many 

fi G W o A fl /C+g. Hence D\<g)9 is a right exact functor from O to E[(A). The 
composition of functors 

©{/Creg}—>O^H(A) 

coincides with the restriction of the original functor JDA<8> • by Theorem 2.5.9. More- 
over we have the following property analogous to (4.5.2). 

PROPOSITION 4.5.7.   For A G /C+g; the functor D\® • : O ->- M(A) is a left 

adjoint functor of T : H(A) —> O.   Namely we have an isomorphism functorial in 

M GH(A) andM eO: 

HomM(A) (^A0M, M) = Hom5(M, f (M)). 

In particular we have a morphism functorial in M G H(A) 

Dx®r(M) -> yw. 

PROPOSITION 4.5.8.  Let A G /C+g, anc? $ a /zm'^e admissible subset of W. For 

M G Ob(O) we have Dx®M\xz = 0 if and only if M G 0b(O{(/Creg \ ($ o A)}). 
Proof We may assume M G Ob(O). Then it is an immediate consequence of 

Proposition 4.5.3. D 
THEOREM 4.5.9. For any A G /C+   andw G W, there is a canonical isomorphism 

Dx®M(wo\)^MwW- 

Proof We have dimHomg(M(^ o \),M*(y o A)) = 1 or 0 according to whether 
w = y 01 w ^ y. Hence by Proposition 4.5.3 we have S\ipp(Dx®M(w o A)) = Xw, 
and 

JDA(8)M(i£;oA)|^ ~BwW\uw ^M^X)^- 



KAZHDAN-LUSTZIG CONJECTURE 813 

By (4.2.2) the isomorphism Mw(X)\uw — D\(&M(w o X)\uw is uniquely extended to a 
homomorphism tp : MW(X) -* D\<g)M(w o A). 

On the other hand, by Proposition 4.4.8 we have a unique non-zero homomor- 
phism M(w o A) -> f (MW(X)). Let ip : D\®M{w o A) -> ^^(A) be the correspond- 
ing homomorphism. By the same proposition, the composition D\(&M(w o A) —> 
MW(X) ->► BW(X) is non-zero. Hence <£|[/u. and ^1^ are inverse to each other up to 
a non-zero constant multiple. In particular ip o ip\Uw is the identity endomorphism of 
MwW\uw. Thus ^o^ = id by (4.2.2). 

It remains to show that ip is an epimorphism. Note that Supp(Coker(ip)) C 
Xw \ Xw. Assume that Coker((p) ^ 0. By Lemma 4.2.1, there exists some y G W 
such that y > w and that Hornc>A(Coker((£>), fi^A)) ^ 0. Since Coker((p) is a quotient 
of D\(&M(w o A), we obtain 

RomQ(M(w oX),M*(yo A)) ~ HomDA (Dx®M(w o A),By(A)) 7^ 0. 

This implies w = y, which contradicts y > w. Thus Coker((/?) = 0 and hence ip is an 
epimorphism. D 

For A G /C^g, a canonical morphism D\(&M*(w o A) —>> ^(A) is defined by 
Proposition 4.3.3. 

LEMMA 4.5.10. For am/ A G /C^g anc? w G W, ^e canonical morphism 
D\®M*(w o X) ->• Bw(A) 25 surjective. 

Proof. By Proposition 4.3.3, we have r(X;B1l,(A)) = M*(^ o A). Since the 
open embedding i : Uw —>• X is an affine morphism and S^A) is a quasi-coherent 
Ox-module, the natural homomorphism Ox ® M*(w o A) = Ox 0 r(C7tl,;iB1l,(A)) -> 
i*2-1Bly(A) = BW(X) is surjective. Hence the assertion follows from the fact that 
Ox®M*(woX) -> B1I,(A) decomposes into Ox®M*('woX) -4 D\<g>M*(woX) -> BU,(A). 
D 

4.6. Radon transforms. For i G /, fi G f)* and n G Z, we shall construct 
functors 

(4.6.1) S»  : H^) -> H(Si o /i), S" : H(//) -> lE(Si o //), 

called the Radon transforms, and investigate their properties. We use results in [18] 
without giving proofs. 

Fix i G /. Let P~ be the algebraic group containing B~ with Lie algebra b_ ©ga.. 
We have a natural free right action of P~ on G (see [13]). Set Y = G/P~, and let 
TT : X —> y be the projection. Then Y is a separated pro-smooth scheme, and TT is a 
P1-bundle. Set 

Z=:X XyX, Zo = Z\A(A'), 

where A : X <-)> Z denotes the diagonal embedding. Let pr : ZQ ->- X (r = 1,2) be 
the first and the second projections. 

For a holonomic .D^-module M we set 

(4.6.2) S?tM = Hn([ p'2M),        S?lM = Hn([  plM). 

Since Cl^ = Ox(—cti), we have p\DSi0fl = p^D^ (see Lemma 1.3.3 of [18]), and hence 
5^ and 5f, are well-defined. 

By Lemma 1.4.3 and Theorem 1.5.1 of [18], we have the following proposition. 
PROPOSITION 4.6.1. Let fi G J)*; and let i e I and w G W such that wsi < w. 
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(i)   S?,BW{LL) = BWSi (si o ^ and S^Bw(fi) =0forn^0. 
(ii)   S^Mwiii) = Mwsiisi o fi) and S^Mw(fi) = 0 for n / 0. 

(iii)   S^Bwsi (ii) = ^(SJ o fi) and S^BWSi (//) = 0 for n ^ 0. 
(iv)   S-^-M^ (//) = ^^(si o fj) and S^MWSi (/i) = 0 for n ^ 0. 

THEOREM 4.6.2. Let A e K,Teg,w E W,i G / swcft i/ia^ i^Sj < w; and (/i^, A + p) ^ 
Z^.  Tften we have 

Hn(BWSi(\))~Hn(Bw(sio\)),        Hn(MwW)-Hn(MWSi(si^)) 

for any n E Z. 
Proo/.  Take a finite admissible subset $ of W such that <$>Si — $. By Proposi- 

tion 4.6.1, Corollary 1.6.2 of [18], and by {hi, A -f p) £ Z>o we have 

Hn{X^BWSi(X)) ^Hn(X^Bw(sioX)),    Hn(X*iMw{\))~Hn(X*iMwai(si<>X)) 

for any n E Z. Hence the desired results follow by taking the projective limit with 
respect to $. □ 

COROLLARY 4.6.3.  Let A E )C+g,z E W.  Assume that z o A E /C+g.   T/ien we 
have 

Hn(Bw(\)) ~ ff"(B^-i (z o A)),        ^"(^^(A)) ~ Hn(Mwz-i (z o A)) 

/or am/ ^ E VT and n E Z. 
Proof  Take a reduced expression z = s^s^ • • • Sip of z E W.  It is sufficient to 

show 

Hn(BWSip...Sij+i (sij+1 •••sipo A)) ~ Hn(BWSip...Sij (si. ---Sipo A)) 

Hn(MWSip...Sij+i (sij+1 '"Sipo A)) ~ Hn(MWSip...Sij (si. '"8ipo A)) 

for any j. By Theorem 4.6.2 we have only to show 

(sij+1 • • • Sip o A + p, aY) ^ Z>o U Z<o. 

Since A E /C+g and 5ip • • • Sii+1 (a^.) E A+, we have 

(sij+1 • • • sip o A -f p, aV) = (A + p, sip • • • sii+1 (a^)) g Z<o. 

On the other hand, since z o A E /C^g and s^ • • • Si^ (a^.) E A+, we have 

(sij+1 "'Sip o\ + p,aY) = -(zoA + p^i, •••5ii_1(aV)) g Z>o. 

The proof is completed. D 

4.7.  Global sections of ^^(A). For A E /C^g and w E W, we denote by 

(4.7.1) (^ : M(w o A) -^ f (^(A)) 

a non-zero morphism in O (see Proposition 4.4.8). Note that (p^ is unique up to a non- 
zero constant multiple. The aim of this section is to prove that it is a monomorphism. 

Let i E /. Let TT : X -4 Y be the F1-bundle as in §4.6. Assume that w E W 
satisfy wsi > w. Set Yw = 7r(Xw). Then Yw is an affine scheme. Xiw = 7r~1(Yw) — 
Xw U XWSi and XWSi -> Yw is an isomorphism. Hence XWSi is a closed hypersurface 
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of XiW. Let j : XiW -> X be the inclusion. Let A be an element of I)* satisfying 
(A-f p, a)7) 6 Z. Then there exists an iV+-equivariant line bundle L on XiW such that 
J^A — Dxiw(L). Let jo : Xw -> XiW be the open embedding and ZQ : XWSi —>> X^ 
the closed embedding. We have the exact sequences of holonomic Dxiw -modules 

t/io ! «/jo • 

0 -»■ Oxim -> [ox„-+ [ OxWSi -»• 0. 

Since j is an affine morphism, iJ0 J., and H® J. are exact functors. Tensoring L to the 

exact sequences above, and applying the exact functors if0 /., and H0 J., we obtain 

exact sequences in H(A) 

fAf7^ 0 —► MWSi(X) ^ MM) -^C-^0, 
(4.7.2) 

()—►/:'—► ^(A) —> B^^A) —> 0. 

where £ = H0 J., L and C — HQj.L. We have £|c/ ~ il'lc/ for any open set containing 
XiW as a closed subset. 

LEMMA 4.7.1. Assume that A E /C^g; i £ / and w G W satisfy wsi > w and cti E 

A (A). Le^ 6* : r(A/(ti;S. (A)) -> ^(^^(A)) be the monomorphism in O induced by the 
monomorphism t : .A/fu,Si(A) -> ^^(A) in (4.7.2). Let j : M(wsi o A) -> M(K; O A) 6e 
^/ie injective homomorphism of ^-modules (see Proposition 2.5.5). Then the following 

diagram in O is commutative up to a non-zero constant multiple. 

MiwsioX)    -^    f(AWA)) 

i 
M{woX)     -J^->    r(Xu;(A)). 

Proof It is sufficient to show the following two statements. 

(4.7.3) dimHom(5(M(^io \),r(Mw(\))) = 1. 

(4.7.4) ^oj^O. 

We first show (4.7.3). The first exact sequence in (4.7.2) 

0 -► MW8i(A) -^ ^^(A) -> £ -^ 0 

induces an exact sequence 

(4.7.5) 0 -+ Eom6(M(wsioX)^(MWSi{X))) -> Hom5(M(^i o A),f (MW{X))) 

->Komfi(M(wsio\),T(C)). 

Since dimHomg(M(it;si o X)1T(MWSi(X))) = 1 by Proposition 4.4.8, it is sufficient to 

show Eom^Miwsi o A),f (£)) = 0. Since ^^^(A) = Vx®M(wSi o A) by Theorem 

4.5.9, we reduce this to Hom(.M™Sl.(A),£) = 0. Set $ = {x e W; x < wsi} and ^ = 
<I>\{u>s;}. They are finite admissible subsets of W, and Xq>nXw = XiW = XwUXWSi. 
Then (4.7.2) induces an exact sequence: 

0 -+ C\x* -> B«,(A)|x, -^ ^^(AJLY* -> 0. 
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Since MWSi(\)\xy = 0, we have by (4.2.2) and (4.2.3) 

Kom(MW8i(\),C) - Hom(A^5.(A)|x#,£|xJ 

C ILom(Mwai(\)\x*,Bw(\)\x*) 

~ llom(MWSi(\)\x*,BM)\x*) = 0. 

Thus the proof of (4.7.3) is completed. 

Let us prove (4.7.4). Consider the chain of morphisms 

iP : M(w o A) -> f (AMA)) ^(Mwstisi o A)) -+ f (B^Si o A)). 

Here the middle isomorphism follows from Theorem 4.6.2, because 

(sio\ + p,aV) = -(\ + p,aV)?Z>0. 

In order to prove (4.7.4), it is sufficient to show that the composition of 

M(w8i o X)^-^M(w o X)-J^f(BWSi (si o A)) 

is non-zero. Assuming that ip is a non-zero homomorphism for a while, we shall finish 
the proof. Since ch(r(BWSi(si o A))) = ch(M(u> o A)), we have [Ker(^) : L(Q] = 
[Coker(^) : L(C)] for ctny £. Assume that tpoj = 0. Then Keity) contains M(wsioX) 
as a submodule. Hence we have 

[Coker(z/0 : L(wsi o A)] = [Ker(^) : L(wsi o A)] > 0. 

Since Coker('0)ti;OA = 0, [Coker(^) : L(Q] ^ 0 only if ( — y o A for some y G W such 
that y > w. If [M(C) : L(wsi o A)] ^ 0 and [Coker(^) : L(C)] 7^ 0, then we have 
C = 2/ o A with ^Si > y > w (by Corollary 2.5.6), and hence £ = tus; o A. Hence 
Lemma 2.3.2 implies 

dimEomQ(M(wSi o A), Coker(^)*) > 0. 

Thus we obtain 

dimHom0(M(u;Si o A),f {BWSi(si o A))*) > dimHom0(M(w;5i o A), Coker(?/;)*) > 0. 

Applying Corollary 4.3.2 (hi), we have 

wsi o A G w o A —        yj        Z>o^3 

and hence 

(A + p, a^)ai = w;-1 (iy o A — wsi o A) G w;-1        ^        Z>oa 
aGA+ntf;siA+ 

= ^ Z>oa C       ^      Z>oa. 
Q:G^-1A+nsiA+ aeA + \{a;;} 

This is a contradiction. Hence ip o j ^ 0. 
It remains to prove that ip does not vanish. In order to see this, it is sufficient to 

show the injectivity of the homomorphism 

Hom^(M(w o A), f (MWSi (* o A))) -> Hom5(M(^ o A), f (BW8i (si o A))). 
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Let J\f be the kernel of the morphism Mws^Si o A) —>> BWSi(si o A). By the exact 
sequence 

0 -+ Rom6(M(w o A),f (M)) -> Hom5(M(^ o X),r(MWSi(si o A))) 

-> Hom6(M(i£; o A)^^^^ o A))), 

we can reduce the assertion to [r(A/') : L(zi; o A)] = 0. Assume the contrary. Then by 
Proposition 4.4.5 (iii), there exists some x 6 W such that 

(4.7.6) [M{xsi o A) : L(w o A)] ^ 0    and 

(4.7.7) X, C SuppAA C X^~ \ X^,,. 

Then (4.7.6) implies xsi < w by Corollary 2.5.6, and (4.7.7) implies wsi < x. Hence we 
obtain xsi < w < wsi < x, which implies l(xsi) < Kw) < l(wsi) ^ Kx) — Kxsi) + 1- 
This is a contradiction. Hence we have proved the non-vanishing of ?/>. D 

Now we are ready to prove the following result. 
PROPOSITION 4.7.2. Let A e /C+g, K; e W. Then the morphism 

<p*:M(wo\)^r(Mw(\)) 

is a monomorphism. 
Proof. Take x € W^woA) such that A' = x~1'wo\ e /C^g. Then wo A = xoA' and 

x e W(\'). By Corollary 4.6.3 we have t(Mw(X)) ~ r(Mx(\')). The composition of 

M(w o A) = M(x o x^JZL-triMxiX')) ~ T(MW(X)) 

coincides with <£* up to a non-zero scalar multiple by Proposition 4.4.8. Hence we 
may assume from the beginning that w G W(X). 

For y,x G W(A) such that 2/ >A ^? we denote by /| : M(2/ o A) -> M(x o A) a 
non-zero homomorphism of g-modules. 

Assume that for any w G W(X) there exists a monomorphism 

Fw:f(Mw(X))-^r{Me{X)) 

in O such that the diagram 

M(woX)    ^->    f(>fu;(A)) 

(4.7.8) /: Fw 

M(A)        ►    r(Xe(A)) 

is commutative. If Kercp^ ^ 0, then there exists some w G W such that Im/^ C 
Ker <p*. Since y?^ ^ 0, this contradicts the injectivity of Fw. Hence (p* is injective. 
Thus ip* is a monomorphism by the commutativity of (4.7.8). 

Therefore it remains to show that for any w G TV (A) there exists a monomorphism 

Fw : t(Mw(X)) -» t(Me(X)) in O such that the diagram (4.7.8) is commutative. 
For w G TV (A), take a reduced expression w = s^ • • • s^ (fik  G n(A)).    Set 

Wk^Sfa-' S0h. Then ^ = Wk-ispk, and wk-i(3k G A+. 
Then it is sufficient to show that for any k there exists a monomorphism 

Fk:t{MWk{\)) ->nMWi;_x{\)) 
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in O such that the diagram 

MKoA)      —^->     t(MWk(X)) 

(4.7.9) /: Fk 

MK-ioA)    ——>    f^^.^A)) 

is commutative (see Theorem 2.5.3). By Lemma 2.2.4 we can take x G W such that 
A' = x o A e /C+g,x(/3fc) = cti € 11. We have a* G A(A/). Set 2/ = ^-ix"1. Then 
2/ai = Wk-ifik ^ A+ and hence ysi > y. We have Wk-10A = yoX'^WkoX = j/s^oA', and 
hence M^.ioA) = M(yoX,)^M(wkoX) - M(ysioX'). Moreover, by Corollary 4.6.3, 
we have f (M^^X)) = f (A^2/(A,)),f (>fWfc(A)) = f (.M^PO)- Hence the desired 
result follows from Lemma 4.7.1. D 

4.8. Correspondence of ^-modules and .D-modules. We shall prove the 

following theorem on a partial correspondence between IHI(A) and O(A). This theorem 

says in particular that the composition E[(A) ^O(A)        > EI(A) is an equivalence 

of categories. Hence H(A) is equivalent to a full subcategory of O(A). Moreover, 
A/fiy(A), ^(A) and CW(X) in the category H(A) correspond to M{w o A), M*(w o A) 

and L(w o A) in O(A), respectively. 
THEOREM 4.8.1. Let X e JC+. 

(i)   Hn(M) = 0 for any M G Ob(H(A)) and n^O. 
(ii)   r(Bw(X)) ~ M*(w o A) and f IMW(X)) ~ M(w o A) for any weW. 

(hi)   r(Cw(A)) ~ L(w o A) /or an?/ w G W. 
(iv)   L>A^f (M) ^^X /or an?/ M G Ob(H(A)). 

Proof Note that the first statement in (ii) is already proved (Proposition 4.4.7). 
We first show (i), (ii) and (iv). It is sufficient to show the following statements (a), 
(b) and (c) for any finite admissible subset $ of W. 

(a) For M G Ob(H(A)), we have Hn(M) G 0b(O{(W \ *) o A}) for any n ^ 0. 
(b) For w G $, the cokernel of the monomorphism ip* : M(w o A) —> r(A^ti;(A)) 

belongs to 0{(W\$)o A}. 

(c) For X G Ob(H(A)) and a morphism ip : M -> t(M) in O, assume that 

Ker((p) and Coker((^) belong to 0{(Fr \ $) o A}. Then the canonical homo- 
morphism Dx<S>M\x^ -> M\x^ is an isomorphism. 

Fixing <I>, we shall show the following statements (a)^, (b)^, (c)^ for a finite admis- 
sible subset ^ of W such that ^ C $ by induction on #($ \ \1>). Note that (a) = (a)0, 
(b)=(b)0 and (c) = (c)0. 

(a)^   Let M G Ob(H(A)) such that Supp(>l) n X^ = 0. Then we have Hn(M) G 

0b(O{(W \ $) o A}) for any n > 0. 
(b)^   For ^ G $\^r, the cokernel of the monomorphism ip* : M(woX) -> f (A^iy(A)) 

belongs to 0{(W\$)o A}, 
(c)^   Let X G Ob(H(A)) such that Supp(M) PlX^ = 0. Assume that a morphism 

(p:M -+ t(M) in O satisfies Ker(^), Coker(^) G 0b(O{(VF\$)oA}). Then 
the canonical homomorphism Dx<SM\x^ —> M\x^ is an isomorphism. 

In the case $ = \I>, (a)$ follows from Proposition  4.4.5 (iv), (b)$ is trivial, and 
(c)$ is a consequence of Proposition 4.4.5 (iv) and Proposition 4.5.8. 

Assume jj($ \ ^) > 0. Take a minimal element y of the set $ \ ^ and set 
^r' = ij/ u {y}. Then ^' is a finite admissible subset of W satisfying # C ^ C $ and 
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jj($ \ ip') — jj($ \ $) — 1. Hence we may assume the statements (a)^/, (b)^/, (c)^/ by 
the hypothesis of induction. 

^Set C = By(\)ICy(\).   Since Supp(/:) fl X^i  = 0, (a)^/ implies Hn(C)  G 

0b(O{(W\$) o A}) for n ^ 0.   By considering the long exact sequence associated 
to the short exact sequence 

0->>Cy(A)->£y(A)^ £->(), 

we obtain Hn(Cy(X)) G Ob(0{(VF \ $) o A}) for any n > 2 and an exact sequence 

(4.8.1) r(By(\)) ^ f (£) -»• ^(^(A)) -»■ 0. 

Consider the following natural commutative diagram. 

DA®f(Bv(A))|x.    -^   Dx®r(C)\x* 

hi hi 

ByW\x* -^ C\x. ■ 

Then h2 is an isomorphism by (c)^/, /ii is surjective by Lemma 4.5.10, and /2 is 
obviously surjective. Thus D\®r(By(\))\x* —> Dx^{^)\x9 is surjective. Hence we 

hsYeDx^H1(Cy(\))\x9 =0 by (4.8.1). Then we obtain H1^A)) G 0b(O{(W\$)o 

A}) by Proposition 4.5.8. We have thus proved that Hn(Cy(A)) G Ob(0{(W\$)oA}) 
for n > 0. 

Set £'  = Kev(My{X)  -> Cy(X)).    Since Supp(£,) fl Xv   = 0,  (a)^i  implies 

Hn(C') G Ob(0{(VF \ $) o A}) for any n > 0. By considering the long exact se- 
quence associated to the short exact sequence 

0 -» £ -* My(X) -> ^(A) -> 0, 

we obtain 

(4.8.2) Hn(My(\)) G Ob(0{(W \ $) o A})     for any n > 0. 

Let us show (a)^. By Lemma 4.2.1 there exists a morphism / : My(\)®r -> Al 
whose restriction A/l2/(A)er|x^, -^-^ A^lx^/ is an isomorphism. Setting J\f = Im(/), 
A/i = Ker(/) and A/2 = Coker(/), we obtain exact sequences 

0 -> A/* ->» M -> A/^ -)► 0. 

Note that Supp(A/i) fl X^/ = 0 for i = 1, 2. Let n >^0. By (a)*/ and (4.8.2), the 

objects #n+1(Afi), ffn(M) and^n(A42/(A)) belong to 0{(Ty\$)oA}. Hence Hn(M) 

also belongs to ©{(VF \ $) o A} by the exact sequences 

Hn(My{\))®r -+ Hn{N) -> ff^^A/i), 

Hn(Ar) -> ^n(>l) -> ffn(7V2). 

The statement (a)^ is proved. 
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We next show (b)^. By (b)^/ we have only to deal with the case w = y. By 
Lemma 4.2.2 we have, for any // G /Creg, 

£(-!)" ch(PMi7"(AyA))) = £(-l)"ch(PMirWA))) = ch(PMf(^(A))) 
n n 

= ch(PM(M(yoA))). 

Since ^""(^^(A)) belongs to 0{(W \ $) o A} for any n > 0 by (a)*, we see that 

The statement (b)^ is proved. 
Let us show (c)#. Take r, /, TV, A/i, A/2 for A1 as in the proof of (a)^. Set N = 

yr^Imtf (A^) ->• f (A^))) and A^2 = M/JV. Then we obtain the following commutative 
diagrams whose rows are exact. 

0 

0 -> N 

4 
0 ->■ r(M) 

->      M 

-4   f(X) 

->■     ^2 

->•   ^(/O 

0 

DX®N 

M 

-+    ^A^M 

M 

->•   Dx®N2    ->   0 

M ->   0. 

By the definition of ^2, y' is a monomorphism. By (a)*, we have H1^)^ 0b(O{(W\ 
$) o A}). Hence by the exact sequence 

0 -»■ Ker ip -»■ Ker 97 -> 0 ->■ Coker^ ->■ Cokery ->• Cokery?' -»• H1^), 

and by the assumption on <p, we obtain 

(4.8.3) Kei#), Coker(^), CokeiV) e 0b(6{(W \ $) o A}). 

Since Supp(A/'2) fl Xy = 0, the morphism Dx&N-zlx* -> A/^lx* is an isomorphism 
by (c)*' and (4.8.3). Hence it is sufficient to show that Z?A®-^|X* ->• A/'lx* is an 
isomorphism. 

Set A^o = ip-1(Im(t(My(X)®r) -> t(Af))) and let Vo  : ^0 -»• f(jV) be the 

restriction of ip. Since Hl{Ni) G 0b(O{(W/ \ $) o A}) by (a)*-, we have 

(4.8.4) JV/iVo, Ker Vo, Coker^o £ Ob(d{(W \ *) o A}) 

by (4.8.3) and the exact sequences 

0 -> AT/A^o -»• F1^),        0 -»• Ker ^0 -»■ Ker V, 

iV/ATo ->• CokerV'o ->• CokerV' -> 0. 

Proposition 4.5.8 implies D\(&{NjNQ)\XS - 0, and hence DA®-^O|X* -»• -DA^^VIX* is 
surjective. Since D^N^x* ->■ .V|x* decomposes into r>A®Afo|x# -> ^A^A^IX* -> 
W|x*, it is sufficient to show that DA®-^O|X* -> ■A/'lx* is an isomorphism. 
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Let R be the fiber product of f {My(\)®r) and iVo over f (J\f), and consider the 
following commutative diagrams whose rows are exact: 

o   -►   f(M)    > R  >    No     >       o 

idl </>'j Uo I 

o  -+  f(M)    >  f{My{\)®r)   —^   f(^)    >  ^(M), 

^A^f(M)     >      Dx&R       >   DX®N0    ->    0 

0    > Mi  >   My{X)er     ►       Af       ->   0 . 

By (c)^/ the morphism -DA^f(j\/i)|x*  -> Mix* is an isomorphism.   Hence it is 
sufficient to show that the morphism D\®R\xt> —> ^y(A)0r|x* is an isomorphism. 

Since Ker?// and Coker^' are isomorphic to subobjects of Ker^o and Coker^o 
respectively, we have 

(4.8.5) Ker(V>')5 Coker^) G Ob(6{(W \ $) o A}) 

by (4.8.4). Thus we have reduced (c)# to the case M = My(X)er. 
The statement (b)^ implies that ip* : M(y o A) ->• f (^^(A)) is a monomorphism 

such that Coker<^ <E Ob(0{(W \ $) o A}).   Let i?' be the Cartesian product of 
Af (j/ o A)er and R over f (>fy(A)er): 

^ ■I 4 
¥>■ 

M{yo\)®r    -^    r(Xy(A)®r)- 

Then Cokerry belongs to 0{(W \ $) o A}, and hence Z^A^ Cokerr^lx^ = 0 by Propo- 
sition 4.5.8. Hence we obtain 

(4.8.6) Dx®R'\x* -» I?A®i?|x* is surjective. 

On the other hand, the cokernel ofi/j" belongs to 0{(VF\$)oA}, which implies that ip" 

is surjective. Since the kernel of ip" also belongs to 0{(I/F\$)oA}, D\®Ker ^"U* = 
0. Hence we have 

Dx&R'lx* ^Dx®M(yo\fr\x^My(\)®r\x,. 

Since the isomorphism DAQR'\x* ::Lj>My(\)er\x* factors through DA®R\X*, (4.8.6) 
implies that Dx<§R\x^ -> My(X)er\x^ is an isomorphism. The statement (c)^ is 
proved. 

The proof of (i), (ii) and (iv) is now completed. 

Let us finally show (hi). By (i) the functor T : H(A) —> ©(A) is exact. Hence the 
exact sequences 

MM) -> ^(A) ^0,        0 -> CWW -> ^(A) 
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induce exact sequences 

t(Mw(X)) -> f (CW(X)) -> 0,        0 -+ t(Cw(X)) -> f (^(A)). 

Since we have already seen f (^^(A)) ~ M(w o A) and f (BW(X)) ~ M*(w o A), we 
have only to show that the morphism f (MW(X)) -> ^(^(A)) induced by the canonical 
rnorphism .M^A) —y BW(X) is non-zero. This follows from (iv). The statement (hi) 
is proved. □ 

5. Twisted intersection cohomology groups. 

5.1.  Combinatorics. We first recall a result of Lusztig [22]. 
Set 

;P, r = 

where P is as in §4.1. Note that the Weyl group W naturally acts on P. For A G T 
let Mx be the free Z[^,g'~1]-module with basis {A*}wew- 

For i £ I we define 6^,On e Eomi[q^-i](Mx,MSiX) by the following. 

M^)=< 
f   n-1 AsiX 

I      Q        ^WSi 
AsiX 

q-iAx+(q-i-l)Ax 

0ii(AxJ = < 

(     ASi\ 
WSi 

Q^x 

Ax 

[ qAwsi + fa -1)^ 

if (A, hi) £ Z, WSi > w, 
if (A, hi) g Z, wsi < ^j 
if (A, hi) G Z, wsi > ^5 
if (A, hi) G Z, wsi < ^5 

if (A, fti) ^ Z, wsj > ty, 
if (A, hi) £ Z, wsi < ^5 
if (A, fti) G Z, wsi > ^5 
if (A, hi) G Z, WSi < w- 

Then ^i : Mx -> MSiA and 0i* : MSiA -> MA are inverse to each other. 
LEMMA 5.1.1 (Lusztig [22]). 
(i)    There exists a unique endomorphism m »->- m of the abelian group Mx satis- 

fying 

AX=AX,    qm = q  1m,    9i*(m) = 0ii(m) 

for any m G Mx. 
(ii)    We have fn — m for any m G Mx, and 

y<w 

for any w G W. 
PROPOSITION 5.1.2 (Lusztig [22]). 
(i)   For w G W and X G T there exists a unique Cx G Mx satisfying 

(5.1.1) C^eAi + Y^ (q
Ww)-e{v)-1)/2Z[q-1/2}nZ[q,q-l})A$, 

y<w 

(5.1.2) CE=q-t^Ct. 
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(ii)    // w is the element of wW(X) with minimal length, then for any x G W(A) 
we have 

yew(\),y<xx 

where c(y,x) = ((£(1) - t(y)) - (tx(x) - ix(y)))/2, and P*x(q) € Z[g] de- 

notes the Kazhdan-Lusztig polynomial for the Coxeter group W(A) (Kazhdan- 
Lusztig [19]). 

We define K e HomZ[g>g-i](MA,M-A) by K{A^) = A-x. 
LEMMA 5.1.3. 
(i)   For any i € / and A G F we have 9^ o K — K O 0^ an^ Quo K, = KO OH on Mx. 

(ii)    W^e /ia^e «(m) = /c(m) for any m G iUA. 
(iii)    We have ft(CA) = C~x for any w G W. 

Proof The statements (i) and (ii) follow from the definition of #i*, ^i and". 
Applying K to (5.1.1) we have 

By (ii) and (5.1.2) we have 

^(CY) = K(CE) = K(q-t{w)Ci) = q-^KiPi). 

Thus we obtain (iii) by Proposition 5.1.2. D 
Lusztig [22] used Proposition 5.1.2 to compute the twisted intersection cohomol- 

ogy groups of the finite-dimensional Schubert varieties. In order to compute that of 
the finite-codimensional Schubert varieties, we need its dual version. 

Set 

Nx = Horn' ■Zfo.g-1] (MA,Z[g,r1]), 

and define Bx G iVA for w G W by (£A, Ax) = 5yiW.   Then any element of Nx is 
uniquely written as a formal infinite sum ^2weW CLWB

X
 with aw G Z[g,g_1]. 

For i G I we define 6^,0^. G RomZ[qjq-i](N
x,NSiX) by 

(9i*n,m) = (n:9i*m),    (9i\n,m) = (n, ^m) 

By the definition we have the following. 

9i*{Bu 

for n G iVA,ra G MA. 

if (A, fti) ^ Z, u;5i > w;, 
q-'Bti if (A, ft;) ^ Z, K;5i < w, 

Bx
WSi 

if (A, ft;) G Z, wsi > w, 
I g-^^ + te"1-!)^ if (Ajfti) G Z, ^5; < w, 

r «^ if (A.fti) ^ Z, wsi > w, 

^ if (A.fti) ^ Z, wsi < ^, 

9^ + (9 - 1)^ if (A,fti) G Z, wsi > w, 
I ^Si if (A.ftf) G Z, wsi < w. 

?il(^) = { 

Let a i-)" a be the endomorphism of the ring Z[q,q   l] given by q = q  1. We define an 
endomorphism n H-> n of the abelian group iVA by 

(n,m) = (n,m) for n G Nx,m G AfA. 
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By Lemma 5.1.1 we have n = n for any n G iVA, and 

y>w 

for any iy G W. Define DA G iVA by (D*,C£) = 5ytW. By Proposition 5.1.2 we have 
the following. 

PROPOSITION 5.1.4. 
(i)   For w G W and A G F we have 

(5.1.3) D*eBl + ^(^-^-^^Zb-^^nZb.r1])^, 

(5.1.4) 5*=^)^. 

(ii)   // u? is the element of wW(X) with minimal length, then for any x G W(A) 
we have 

DX
WX  = E tf^QlyMy, 

y€W(\),y>xx 

where c(x, y) = ((£(y)-£(x))-(lx(y)-h(x)))/Z andQ$y(q) G Z[q] denotes 

the inverse Kazhdan-Lusztig polynomial for the Coxeter group W{\) given by 

(5.1.5) £    (-1)/A(»M*(X)Q£>)09) =<*«,*• 
x<\y<\z 

Define « G HomZ[^g-i](A^A, A^-A) by 

(«(n),m) = (n,K(m)) for n G iVA,ra G M~A. 

By Lemma 5.1.3 we obtain the following. 
LEMMA 5.1.5. 
(i)    We have K(B*) = B~x for any w G W. 

(ii)   For any i G / and A G F we /ia^e 8i* o K, = KO 8^ and On o K, = K o 0^ on Nx. 
(hi)    We have ft(n) = /^(n) /or an?/ n G iVA. 
(iv)    WTe have K(D

X
) = D~x for any w G W. 

Let R be a ring containing Zfgyg-1] as a subring. Assume that we are given an 
involutive automorphism r *-»> r of the ring i2 and a family of Z-submodules {Ri}i^z 
of R such that 

(5.1.6) R = ($RU    RiRj CRi+j,    1 G i?o,    g € i?2,    q = q~\    Rl = R-i> 

Define the endomorphism m H^ m of the abelian group i? 0^[g)g-i] MA by 

"aWm = a®m    for a G R and m G MA. 

Set JV^ = Hom^^ ®Z[qtq-i] MX,R).   We can naturally regard Nx as a Z^,^"1]- 
submodule of N^. Define an endomorphism n H-> n of the abelian group iV^ by 

(n, m) = (n, m) for n G A^, m G R ^Zfa^-1] ^A5 
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and a homomorphism /c : N^ —> N^x of ^modules by 

(/c(n),m) = (n,«(m)) for n G N^m G -R^Zb.g-1] ^A- 

Then we have the following characterization of D*. 
PROPOSITION 5.1.6.    Let w e W and X e T.   Assume that D+ e N^ and 

D~ G NftX satisfy the following properties: 

(5.1.7) £±eB±A + £(       0        Ri)B±\ 
y>W  i<£(y)-£(w)-l 

(5.1.8) ^{D+) = q£^D-. 

Then we have D± = D^x. 
Proof.   Since (5.1.7) and (5.1.8) are satisfied for D± = D^x, it is sufficient to 

show that there exist unique D± G N^ satisfying (5.1.7) and (5.1.8). 
By (5.1.7) we have 

D±=Y1 KBfX with F™ = l and Ft ^ ®i<i{y)-t{w)-l Ri ^ y > w. 
y>w 

We have to show that F^1 are uniquely determined by the condition (5.1.8). Write 

B* = J2 GyiZB
x with GytZ G R, Gy,y = qtM . 

z>y 

Then we have 

y>w 2>2/ z>w z>y>w 

and hence 

for any z > w. Thus 

F--q-^)+t{z)F+=   ^   q-^F+Gy,z 

z>y>w 

for any z > w. By the assumption we have 

F-e       0      lu,      q-tM+'(*)F?e       0      iJi. 
i<i(z)-£(w)-l i>£(z)-£(w)+l 

Therefore F^1 are uniquely determined inductively. D 

5.2.  Character formula. For A G I)* and a finite addmissible subset of W, let 
1(T(E[$(A)) be the Grothendieck group of the category Us (A).   It is a module with 

\ [MW(X)] \        as a basis. Let K(H.(X)) be the projective limit of K(HLj, (A)), where 

$ ranges over the set of finite admissible subsets of W. Then {[-M^A)]}     ^ as well 

as {[/^(A)]}^ w is a formal basis of K(H.(X)). 
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The aim of this section is to prove the following result. 
THEOREM 5.2.1. Let A e I)Q, and let w e W such that £(z) > £(w) for any 

z G wW(X) \ {w}.  Then for any x G W(X) we have 

(5.2.1) [^(A)] = ^ (-iy^-l^Qly(l)[Mwy(X)], 
y>\x 

(5.2.2) [^^(A)] = ^ P^y(l)[jCwy(\)}. 
y>\x 

The proof of this theorem will be given in the next subsection. The corresponding 
result for finite-dimensional Schubert varieties was proved by Lusztig (see [21], [22]). 

Note that (5.2.1) and (5.2.2) are equivalent by (5.1.5). 
By Theorem 4.8.1, Proposition 4.4.5 and Theorem 5.2.1, we obtain the following 

main result of this paper. 
THEOREM 5.2.2. Assume that X G J)* satisfies the following conditions. 

(5.2.3) 2(a, A + p) ^ (a, a) for any positive imaginary root a. 

(5.2.4) (av, A + p) ^ Z<o for any positive real root a. 

(5.2.5) IfweW satisfies w o X = X, then w = 1. 

(5.2.6) (av, A) G Q for any real root a. 

Then for any w G W(A) we have 

(5.2.7) ch(M(w o A)) =  53 P^(l) ch(L(y o A)), 
y>\w 

(5.2.8) ch(L(W o A)) = 53 (-lY^-^Qijl) ch(M(y o A)). 
y>\w 

As a special case, we obtain the following result. 
THEOREM 5.2.3. Assume that g is finite-dimensional or affine and X G J)* satis- 

fies 

(5.2.9) (^v,A + /9)€Q\Z<o    foranypeA+. 

(5.2.10) (5, X + p) 7^ 0    if g is affine. Here S is an imaginary root. 

Then (5.2.7) and (5.2.8) hold for any w G W{X). 
In the affine case, the condition (5.2.5) on the triviality of the isotropy subgroup 

of A follows from the following well-known lemma. 
LEMMA 5.2.4. The isotropy subgroup {w G W\ woX = A} is generated by {sp; /? G 

A+, (P, X + p) = 0} whenever Q is affine and X G \)* satisfies (5.2.10). 
In the affine case, we can derive the following result on the non-regular high- 

est weight case from the regular highest weight case above by using the translation 
functors (we omit the proof). 

THEOREM 5.2.5. Let g be an affine Lie algebra, and assume that X G f)* satisfies 

(5.2.11) (S,X + p)^0, 

(5.2.12) (av, A + p) G Q \ Z<o for any positive real root a. 
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Then Wo(X) — {w G W]w o A = A} zs a /zmte group. Let w be an element of W(X) 
which is the longest element of WWQ (A).  Then we have 

y>\w 

5.3. Hodge modules on flag manifolds. Let R (resp. Ri for i E Z) denote 
the Grothendick group of the category of mixed Hodge structures (resp. pure Hodge 

   TT 

structures with weight i) over Q.  Then we have R = 0iG^^2. Let Q   (fe) be the 
 TT 

Hodge structure of Tate with weight — 2k. Set q = [Q (—1)] E i?2> an(i let r »-> r 
denote the endomorphism of the ring R induced by the duality operation on the mixed 
Hodge structures. Then the condition (5.1.6) is satisfied for the above R. 

For a smooth C-scheme 5, let MH(5) denote the category of mixed Hodge mod- 
ules on S (see Saito[23]). Here we use the convention that the perversity is stabel 
under the smooth inverse image. 

For a scheme S satisfying (S) with a smooth projective system {5'n}n€^, let us 
denote by MH(5) the inductive limit of MH(5n). It is an abelian category and there 
is an exact functor 

ym{S)^Mh(Vs) 

We call an object of MH(5) a mixed Hodge module over S. 
For A E F = J)Q/P we denote by TH{\) the Hodge module on H corresponding 

to T(A) (see §3.3) of weight 0. By the assumption on A, the monodromies of the 
corresponding local system are roots of unity, and hence it has a structure of variation 
of polarizable Hodge structure. Hence TH(X) is defined as a Hodge module on H of 
weight 0. 

For a C-scheme S satisfying (S) with an action of H, we can define the twisted 
i7-equivariance of mixed Hodge module on S as in §3.3 by the aid of TH(X). We 
denote by MH(5, A) the category of twisted if-equivariant mixed Hodge modules on 
5 with twist A. It depends only on the image of A in F = Jj^/P. 

Recall that X = G/N~ and £ : X -> X is the natural projection. Then B x H 
acts on X by (6, ft) o (gN~) = bgh^N'. By the action of H on X, £ : X -» X is 
a principal iJ-bundle. For a finite admissible subset $ of W and A E F we denote 
by MH$(A) the category of twisted (iV x H)-equivariant mixed Hodge modules with 
twist A. 

Set 

MH(A)=limMH$(A). 

Since t}Dx,\ — Djc an<^ since £ is a smooth morphism, we have an equivalence 
f • from the category of holonomic DA-modules to the category of P'-equivariant holo- 
nomic D^-modules with twist A. Hence we have an exact functor 

(5.3.1) MH(A) -+ IHI(A). 

For w E W, set Xw = BvoN' /N' = f1^) and let % : Xw <-> X be the 
embedding. By the isomorphism of schemes 

H x N(A+ n wA+) ^Xw        ((ft,u) ^ uwh^N-), 
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we can define a morphism pw : Xw -> H by pw{uwh lN ) = h for u G N(A+nwA+) 
and heH.We define a Hodge module F*f(\) on X^ by F£(\) = p*wT(\). We denote 
by the same letter F^(X) the object i\F^{\) in the derived category of the category 
of mixed Hodge modules. Let us denote by ^F^{X)[-(,{w)] the minimal extension 
of F*j{\)[-l(w)]. Then F^(\)[-£(w)) and *F**(\)[-l{w)] are objects of MH(A). 
By the functor (5.3.1), Fw{\)[—£(w)] and ^Fw{\)[—£(w)] correspond to the objects 
Mw{\) and ^(A) of H(A). 

For a finite admissible set <£, X$ has the N x if-orbit decomposition X^—[}we^ 

Xw. Hence the irreducible objects of MH$(A) is of the form H ® ^F^(A) [-£(«;)] |X$ 
for some w G $ and some irreducible Hodge structure H. We denote the Grothendieck 
group of MH$(A) by K(MR^{\)). This has a structure of i?-module. We set 

X(MH(A)) = limlir(MH*(A)). 

For F G MH(A) we denote by [F] the element of if (MH(A)) corresponding to F, and 

[F[n]] = (-l)n[F]. Any m G iir(MH(A)) can be written uniquely as 

m =  ^ ^r^fW] =  53 M^f W] (au,^^ G i2). 

Define an isomorphism 

^A : X(MH(A)) ^Ni 

of ^-modules by ^A([^(A)]) = B*. 

For i G / we shall define 

5*,,, Sa GHom^(ii:(MH(A)),if(MH(s,A)))- 

The definition is analogous to §4.6, and we use the notations in §4.6. 
Set iVr =exp(n(A" \ {-oti})) C iV", and Z0 = G/Nr. The group B x H acts 

on ZQ by (6,/i) o (^^~) = gh^N^. Let ^ : ZQ ->• X (i = 1,2) be the morphism 
defined by 

p^gNr) = ^-    and   nigNr) = ^A^". 

We have the commutative diagram 

X    ^i5_    z0    -^    X 

:5.3.2) ^ 
X    <- -^    X. 

Then g  :  ZQ  -± Z is a, principal iJ-bundle.    The morphisms pi and P2 are 5- 
equivariant, and they satisfy the following relation with the action of H. 

(5.3.3) 
Pi(hz) = ApiOz) 
P2(M = Si(h)p2(z) 

for h e H and z G ZQ. 

Rere Si is the group automorphism of ii" corresponding to the simple reflection Si G 
Aut(J,). 
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For F e MH(X, A) we set 

(5.3.4) Sa(F) = RfoiPi'F,        Sit{F) = Ife.pi'F. 

Then Hk(Sti(F)) and ^(SuiF)) are objects of MH(siA) by (5.3.3). 

We define §*, Sa 6 Homfl(2iC(MH(A)),iif(MH(«iA))) by 

Sum = 1>1)W&.F)],     SU([F}) = x;(-i)*[ff*(5i.F)]. 
A; k 

PROPOSITION 5.3.1. We have 

Vsi\ 0 Si* = 0i* o (^ (^S.A o 5i! = 8i\ o (pA. 

Proo/. Fix w E VF such that tus* > ly. It is sufficient to show the following: 

(5.3.5) 5,, [Fw (A)] - I  ^ (A)] if (A, ^> € Z, 

r^fi^    c   rpif mi _ / rM^M)] if(A,/ii>^Z, 
(5.3.6) 6i.l^(A)j - | q-,[FH{x)] + (g-i _ i)[F4(A)]        if {XM) 6 Z, 

(5.3.7) 5,^ (A)J - I g[i?Hi(A)] + {q _ I)[FH{X)] if (A>fcj) € Z. 

(5.3.8) M^(A)j - |  [i7;ff(A)] if {^hi) e z_ 

Set y = Xw U X^g. and let j : y —> X be the embedding. 
As in Lemma 1.4.1 and Corollary 1.5.2 in [18], Sn and Si* commute with j\. 

Hence we can reduce these statements to the case g = 5I2 where we can check them 
directly. Details are omitted. D 

The duality functor for Hodge modules induces a contravariant exact functor 

D : MH(A) -+ MH(-A). 

We also denote by 

D : if (MH(A)) -> JK'(MH(-A)). 

the induced homomorphism of abelian groups. By the definition we have the following 
result. 

LEMMA 5.3.2. 
(i)    We have 

D(rn) = rD(n) 

for any r e R and n G K(MR(\)). 
{\\)    We have 

D o S^ = 5i! oD,        D o 5i! = Si* oD 

onK{MR{\)). 
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PROPOSITION 5.3.3.  We have 

(£_A(Dn) =K(<p\{n)) 

for any n e if (MH(A)). 
Proof. It is sufficient to show 

(<p-x(nn),AZ*) = (K(<px(n)),A^*) 

for any w G W. By Lemma 5.1.5 the right side coincides with ((p\(n),A*) and hence 
we have to show 

(5-3.9) (<p-X(Dn),AZx) = (<px(n),A>ll). 

We first consider the case w = e. In this case we have A£ = A*. We may 
assume that n = [Ff(X)] for x € W. Since DFf (A) S F?(X)(-£(x))[-2£{x)] on a 
neighborhood of Xw, we have 

V_A(D[F*(A)]) € q
e^B-x + ^2RB;\ 

y>x 

Thus the both sides of (5.3.9) are equal to 8x,e. 
For general w £ W, take a reduced expression w = s^ • • • Sir. By the definition 

of On we have A±x = i9ir! • • • ^l!A^
A. Thus we have 

Hence by Lemma 5.3.2 we obtain 

(^_A(Dn),A-A) - (ip^x(Dn),eirr"0ili.A7wA> 
= (flil!..-flir!^_A(Dn),A7wA> 

= (^_u;A(D5il*-..5^+n),^-u;A), 

= (^A(n),0ir*---flt1*^> 

= (<P\(n),A$,) 

[] 
THEOREM 5.3.4.  PFe have (pxi^F^^X)]) = D* for any w e W. 
Note that Theorem 5.2.1 is a consequence of Theorem 5.3.4.  In fact, if w € W 

satisfies £(z) > £(w) for any z G wW(X) \ {w}, then we have 

(5.3.10) r^(A)] -        X)       QclXty)Q^)[PwyW] 
2/GVVr(A),2/>Ax 

iu if (MH(A)) for any a; G W(X) by Proposition 5.1.4 and Theorem 5.3.4. Applying 
the canonical homomorphism if (MH(A)) -> K(M(X)) to (5.3.10) we obtain (5.2.1). 

Proof of Theorem 5.3.4.    Set D± = ^±x{[7TF^(±A)]).  It is sufficient to show that 
D± satisfy the conditions (5.1.7) and (5.1.8) in Proposition 5.1.6. 
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By Proposition 5.3.3 we have 

= <^A(D(rFu"(A)])) 

^_A([D^(A)]) 

= ^(wV-A(rF1S
r(-A)]) 

and hence (5.1.8) holds. 
For x e W, let z^ : Xx M» X be the embedding and let MH^iA) denote the 

abelian category of twisted N x iJ-equivariant mixed Hodge modules on Xx with twist 
±A. Since Xw is an orbit of N x if, any object of MHa;(±A) has a form H 0 F^(±A) 
for some mixed Hodge module H. Hence its Grothendieck group K(MRX(±X)) is 
a free i?-module generated by [F^(±A)]. The inverse image functor z* induces a 
homomorphism 

LX : K(MH(±A)) -»• iJ       (KF] = ^([F])[Pf (±A)]). 

of i?-modules. Then we have 

tp±\(n) = Y^ Lx(n)Bi 
xew 

for any n G MH(diA) because this formula obviously holds for n = [F^I(±X)] with 
y £ W. We have obviously iw([([nFfi(±\)]) = 1. Let y > w. Since irF^(±X) is pure 
of weight 0, Hj(iy(7tF^(±X))) is a mixed Hodge module of weight < j for any j. On 
the other hand the perversity property of 7rF^(±X) implies Hj(iy('ITF^(±X))) = 0 

for j >£(y)-£{w). Thus we obtain Ly([([irF^(±X)]) G Ei</(y)-/(ti,)-i Rj- Hence the 
condition (5.1.8) also holds. D 

By using a Cx-action, we can prove that, for any j, Hj(iy(7TF^(±X))) is a pure 
Hodge module of weight j as in Kazhdan-Lusztig [19] and Kashiwara-Tanisaki [16]. 
This gives the following stronger version of Theorem 5.2.1. Since this result is not 
used in this paper, the details are omitted. 

THEOREM 5.3.5. Let X G r = 1)Q/P, and let w G W such that £(z) > l(w) for 

any z G wW(X) \ {w}. Let x^y G W(X) such that y > x and write Q^yiq) — J2j CjQ^• 
(i)   HV+\i;(*FXx(X)) = 0 for any jeZ. 

(ii)   ^(^(^(A)) ~ FBy(\)(-j)°<> for any j G Z. 
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