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A THEOREM OF DENSITY FOR KLOOSTERMAN INTEGRALS* 

HERVE JACQUETt 

1. Introduction. Let F be a local non-Archimedean field of characteristic zero. 
We denote by OF the ring of integers of F, by VF or simply V its maximal ideal and 
by w a uniformizer. We let I/J be a non-trivial additive character of F. The Haar 
measure on F is the self-dual Haar measure and vol(») denotes the volume of a set 
for this measure. We denote by (•, •) the quadratic residue symbol on Fx x Fx. 

We regard the group G = GL{n) as an algebraic group over F. We use the 
following notations. We denote by wn or WGL(n) the n x n permutation matrix whose 
entries are one on the second diagonal and whose other entries are 0. We denote by 
iV(n, •) or simply JV the group of upper-triangular matrices with unit diagonal, by 
A(n: •) or simply ^4 the group of diagonal matrices and by W(n) or W the group 
of permutation matrices. We let ip be a non-trivial additive character of F and we 
denote by 6 the character of N(F) defined by 

e(n) =^(5^ni+i>i). 

The group N(F) x N(F) operates on GL(n,F) by: 

(ni,n2)   t 

It follows from the Bruhat decomposition that the elements of the form wa, w G W, 
a 6 A(F), form a system of representatives for the orbits of N(F) x N(F). We let $ be 
a smooth function of compact support on G(F) and consider orbital (Kloosterman) 
integrals of the form: 

(1.1) /(wa; $) :=  / $ [^wani] 6{nin2)dnidn2 . 

The element wa is assumed to be relevant; this means that the character 6'(711712) 
is trivial on the stabilizer of wa in N(F) x N(F). Then the above integral is over 
the quotient of N(F) x iV(.F) by the stabilizer of wa in N(F) x N(F). The measure 
is an invariant measure on the quotient. The exact normalization of the measure is 
described in [7]. 

Relevant elements can be described as follows. Consider the standard Levi- 
subgroup M of G of type (711,712,... ,nm). Thus M is the group of matrices of 
the form: 

f 9i      0      0     ...     0   \ 
0     g2     0     ..-     0 

V   0      0     • • •     0     gm J 

with gi G GL(ni).   Let WM G M be the permutation matrix defined by gi — wni. 
Let AM be the center of M.  Then any element of the form WMCL with a G AM(F) 
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is relevant. All relevant elements are obtained in this way. We denote by Wtf(n) or 
WR the set of relevant elements in W(ri). If w G WR then the unique M such that 
w = WM is denoted by Mw. We also write Aw for AM- For instance, if w = e then 
Ag = A; if M is the standard Levi-subgroup of type (n — 1,1), then: 

(i.2) WM=(K
WGL

^-
I)
 ; 

The integrals I(WMCL] $) are relatively easy to compute and closely related to the 
hyper-Kloosterman sums: 

]r       ^(si +X2 + -' + xn) , 
ajiaj2--,a;n=l 

where ip is a non-trivial additive character of a finite field F and the Xi are in F. 
The motivation for studying this kind of orbital integrals is as follows. Let us 

go to a global situation where F is a number field. Let $ be a smooth function of 
compact support on G(F&). We assume it is a product of local functions $v. We 
define as usual a kernel function: 

K(x,y)=    J2   *(^"1^)- 
ZeG(F) 

We consider the integral 

I($) =  / K(tn21,ni)9(n2ni)dn2dni . 
JN(F)\N(FA)XN(F)\N(F^ 

On the one hand, it can expressed in terms of the orbital integrals I(wa,$v). On 
the other hand, it can expressed in terms of the automorphic spectrum of G. Hope- 
fully, the resulting identity can be used to establish various properties of the cuspidal 
spectrum (See for instance [1], [2], [14].). 

Our first result is a theorem of density, asserting that the knowledge of the inte- 
grals of the form /(a; $) determine the other orbital integrals: 

THEOREM 1.1. Suppose that $ is a smooth function of compact support on 
GL(n,F) such that /(a; $) = 0 for all a G Ae(F). Then all integrals of the form 
I(wa] $) with wa relevant vanish. 

To state the second result, we introduce more notations. Let E be a quadratic 
extension of F. We denote by x H^ X the Galois conjugation in E. We denote by 
5(F) the variety of invertible Hermitian matrices in GL(n,E): 

S(F) = {seGL(n,E)\ts = s}. 

The group GL(n,E) operates on S(F): 

s A  tgsg. 

Recall that the elements of the form wa with w G W, w2 = 1, a G A(E) with waw = a, 
form a set of representatives for the orbits of N(E) on 5(F) ([12]). We assume that 
E is unramified and write E = F(y/r) where r is a unit of F. Thus the quadratic 
character rj of F associated to E is given by 77(a) = (r, a). We assume further that 
the residual characteristic of F is larger than 2n + 1, and that the character ip has 
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for conductor the ring of integers Op- The Haar measure on E is self-dual for the 
character ip o tr. Since the element nn is in N(F) times an element of the derived 
group of N(E) we can define a character n H-> 9(nn) of N(E). If ^ is a smooth 
function of compact support on 5(F) we consider relative orbital (Kloosterman) 
integrals of the form 

(1.3) J(wa;*) =  / *(*muan)0(nn)dri 

with w G W, a G A(E) and wa G S(F). We assume wa is relevant, that is, the 
character 9 (fin) is trivial on the stabilizer of wa in N(E). The element wa is relevant 
if and only if wa is in GL(n, F) and relevant there. The integral is over the quotient 
of N(E) by the stabilizer of wa in N(E). The measure is an invariant measure on 
the quotient, normalized as explained in [7]. 

We introduce a character /in of A(F) with values ±1 as follows: 

(1.4) /in(diag(ai, 02,..., an)) = r](a1)rj(a1a2)r](aia2a3) • • • 77(0102 ''' an) • 

If a has the form: 

' 01     0 

with ai G A(ni,F) then 

(1.6) fjbn(a) = iJ,ni(a1)rj(deta1)
n2pn2(a2). 

THEOREM 1.2. Suppose that $ G C^(G(F)) and ^ G ^(5^)) are functions 
such that 

J(a;*) = fzn(a)J(a;*) 

/or a// o G A(F).  Then for all w G WR and all a G AW(F) we have 

I(wa, $) = fjLn(a)J(wa, ^r). 

If $ and \I> are the characteristic functions of GL(n, OF) and OE H 5(F) respec- 
tively it is conjectured that the first relation holds (fundamental lemma). Our 
theorem asserts that the other relations holds as well. The fundamental lemma has 
been proven for GL(S) ([6]) and GI/(4) ([18]) and, in the case of the positive charac- 
teristic, for GL(n) ([10]). Similar identities are expected to be true for more general 
Hecke functions and have been proven in the context of GL(n) in the case of positive 
characteristic ([11]). 

The motivation for this result is as follows: we consider a quadratic extension 
of number fields E/F. Suppose that $ is a smooth function of compact support on 
5(FA) which is a product of local functions. We construct a kernel function as follows: 

ZeS{F) 

and consider the integral 

J($) := / H(n)e{nn)dn. 
JN(E)\N(EA) 
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As before this can computed in terms of the local relative orbital integrals. There is 
also a spectral expression for the integral J(3>). The cuspidal automorphic represen- 
tations which enter the spectral expression are those which are distinguished by a 
unitary group iJ, that is, contain a vector (j) such that 

/ (t){h)dh^0. 
JH(F)\H(FA) 

Suppose now that $ is a smooth function of compact support on the group 
GL(n, FA) which is also a product. If the local components of $ and \I/ have orbital 
integrals related as in the theorem, we can expect to have the identity /($) = J(^r). 
By equating the corresponding spectral expressions we can hope to prove that the 
distinguished cuspidal representations are exactly the representations which are base 
change of representations of GL(n, FA) (see [7]). 

2. Preliminary result. The behavior at infinity of the orbital integrals I(WM*, 

$) is determined by the behavior of the following integral for | a |—>• 0: 

tP 
Xi + X2 H h Xrt 

0 dxi. (2.1) I{a;n):=vo\{Tf)-1 f 

The integral is over the subset of Fn defined by: 

xi = 1 mod V™ , xix<2 • - • xn = 1 mod aVm . 

Here m is an integer, fixed but large. In particular, m is so chosen that the character if; 
is trivial on Vm. Before stating our result we recall the definition of the Weil constant 
7(»,'0): given a compact open neighborhood H of 0 in F, for | b \ large enough, we 
have: 

(2.2) / ^-o-)dMM-1/27(M). 

PROPOSITION 2.1. If the integer m is sufficiently large, then: 

(2-3) 7(o;n)=|0|^      1     ^[2]     H    7(i+!>!W 
l<i<n-l 

if I a | is small enough. In particular, if the residual characteristic of F is larger than 
n and the conductor of ip is the ring of integers, then 

(2.4) I(a; n) :=| a | ^ </< [£] (n, 0)7(0, V)""1 

for I a I small enough. 
Proof We change variables and set: 

Xn = tfa^ • ' • Xn-i)"1, 

where now the domain of integration is defined by: 

Xi = l mod Vm,l<i<n-l,t = l mod aVm . 

After integrating over t the integral becomes 

•'/ 
v> idsj, 
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where the phase function </> is given by: 

1 
0 = Xi + X2 H Xn-.i H . 

We set Xi = 1 + Ui with iti G P771. The phase function takes the form 

l<2<n—1 

The Taylor expansion of this function at the origin has the form: 

n +     2_]    ul +       yj      ^i^j + higher degree terms. 
l<i<n-l l<z<j<n-l 

We now appeal to the following lemma: 
LEMMA 2.1. Let n > 2 be an integer. Let F be a field of characteristic 0. 

(i) The quadratic form 

l<i<n l<i<j<n 

is equivalent over F, by a unipotent linear transformation, to the quadratic form 

1 ^    ^ + 1     2 

2 ^       i      *  ' 
l<2<n 

^'^ T/ze quadratic form 

X2 

/ v    -^i +       ^      -X"iXj + Xn_iXn + —- 
l<i<n-l l<i<j<n-l 

is equivalent over F, by a unipotent transformation, to the quadratic form: 

1 ^      i±iy2   ,   _ly2 
2 ^        i      * ^ 2n  n' 

l<i<n-l 

PROOF OF THE LEMMA: We prove the first assertion. It is trivial for n — 1. Thus we 
may assume n > 1 and our assertion proven for n — 1. Consider the quadratic linear 
form 

1 j + i 

2 ^      i      ' ' 
l<i<n 

By the induction hypothesis it is equivalent by a unipotent transformation to the 
quadratic form: 

£   vf+   £   W + l!L±ly». 
l<i<n—1 l<i<j<n 

We change variables as follows: 

Ui = Xi + — ,l<i<n-l.Y = Xn. 
n 
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In terms of the these new variables the quadratic form has the required type. 
We now prove the second assertion.   By the first assertion (or its proof) the 

quadratic form is equivalent by a unipotent transformation to the form: 

Now 

n 

2     " % 
l<i<n-l 

Y2 

U^1 + Un-1Y+ — = l/n-l 4- ^Y 2(n-l)   n-1        n~x 2        2(n-l) V   ■■  " n 

Thus we obtain a quadratic form of the required type by setting: 

n-1 

2n 

Yn-l — Un-i + -Y, Yn = Y, Yi = [/i for i ^ n - 1, n .□ 

The lemma being proven we see that after a unimodular change of coordinates 
the Taylor expansion of 0 at the origin reads: 

(/> = n + -     2J     —:—2/1 + higher degree terms. 
l<i<n-l 

Thus the origin is a regular critical point. Moreover, if we choose m sufficiently large, 
the origin is the only critical point of the phase function on the domain of integration. 
By the principle of the stationary phase there is a compact neighborhood ft of 0 in F 
such that, for I a I small enough, the integral is equal to: 

/(a;n) =\ a \ ip I i/, E^i 
2a 

®dyi, 

where each variable is integrated over H. Thus, for | a \ small enough, /(a; n) is the 
product of the following factors: 

a|vg], 
and 

L*WrA -yi \dyi,l<i<n-l. 

Moreover, by definition of the 7 factor (see (2.2)), for | a \ small enough, the factor 
corresponding to the index i is equal to: 

^     |l/2 

i + 1 
7 

i + 1 
ai 

i> 

Collecting factors we arrive at our first assertion. 
Under the assumptions of the second assertion we have (6, c) = 1 and 7(6, ^) = 1 

if b and c are units. In particular 7(1,^) = 1. For an arbitrary pair (6, c) 

(2.5) 

It follows that 

7(6, ip)j(c, ip) = 7(6c, ^)(6, c). 

7 
i + 1     ' 

ai 
= 1 

2 + 1     / 
j(a,^) ( —r—,a) ='Y(a,4>) ( —,a 

Taking the product of these factors we obtain the second assertion. □ 
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3. Computation of the germ. We let M be the standard Levi-subgroup of 
type (n - 1,1). The corresponding element WM is given by (1.2). We recall the 
asymptotic properties of the integral I(wMO>]f) ([7]). We denote by A™^ the set of 
matrices a G AWM(F) such that det(a) = detwM^G- There exists a smooth function 
K™^ on A™^ with the following property: for any $ € CC(G) there is a smooth 
function of compact support CJ$ on ,4M such that 

(3.1) I(wMa; $) = w*(a) + Yl KSZWiwap; $). 
ctl3=a 

The sum is over all pairs in (a,/?) G (A^^AoiF)) such that a/3 = a. The function 
K™^ is the germ (for the orbital integrals) along the subset A™"^. It is not unique. 
However, let Km be the principal congruence subgroup of GL(m, F); denote by $ the 

product of the characteristic function of woKm and the scalar vol(iPm) 2 . Then 
I(WG,$) = 1. Moreover, for z G AG(F) (i.e. 2; a scalar matrix) with zn = 1 but z ^ 1 
we have I(WGZ, $) = 0 (if m is sufficiently large). It follows that 

2r»«(a)=I(«;Afa;*), 

where 

a = diag (a,a,... ,a,a1_ndet(ii;M'^G)) 7 

and I a I is small enough (see [8]). 
Our goal in this section is to compute the germ K™^, or, what amounts to the 

same, the orbital integral I(WM^^ $) where $ is the function defined above. Let P be 
the parabolic subgroup of type (n — 1,1) and U its unipotent radical. Then P = MU. 
We set TVM = N Pi M. The stabilizer of WM® in N(F) x N(F) is the set of pairs 
(721,77,2) with Ui G A^M and tniWMOLn2 — WMOL. Then: 

(3.2) I(WMOL,§)=  I ^ (^U2WMOLUin)0{u\U2n)duidu2dn , 

where the integral is over U{F) x U{F) x NM{F). After a change of variables we find 
that the orbital integral is equal to: 

,-n-^li+l    [MxWfZi+i-n+lZiJ^^ 
a u —+1   [$(x)rl> 

Here x = (xij) denotes a matrix of the following form: 

xij = 0 for i + j < n , a;^ = a for i + j = n ; 

the variables are the entries x^ with i + j > n + 1, (i, j) ^ {n,n)\ the entry Z :— xnn 

is a dependent variable. The entry Z can be computed from the condition that the 
determinant of the matrix x be detwc- For instance in the case n = 4: 

x = 

( 0 0 a £41 \ 
0 a £32 £42 

a £23 "33 £43 

\ £14 £24 £34 z ) 
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an"1det(^M)Z-|-det 

(   0       0       a £41 \ 

0       a Xz2 X42 
a X23 X33 X43 

\   X14 X24 XM 0     / 

= det(wG) • 

We see that the integral is equal to 

*+i vo^771)-111^-11  /"^^ 
2-^i-\-j=n 

® dxij 

integrated over the domain defined by: 

xij = 1 mod V™ for z + j - n 4-1, 

a;^ = 0 mod V™ for z 4- j > n + 1, (^j) ^ (^,n), 

(3.3) Z = 0 mod Vm . 

The last condition may also be written as follows (we illustrate the case n = 4): 

det 

/    0       0 a X41 \ 

0       a X32 X42 
a X23 X33 X43 

\  X14 X24 X34 0     J 

n—ln^m = det(wG) mod a71-1^ 

In the last condition we single out the variable £2,n-  We write the condition in the 
form: 

X24 det 

0 a X41 

0 X32 X42 

a    X33    X43 

-I-det 

f 0 0 a X41 \ 
0 a X32 X42 

a X23 X33 X43 

\   X14 0 X34 0   / 

= det(wG) mod a71-^ n—l'nm 

The coefficient of X2,n has the form ae where e is a unit, which depends only on the 
variables Xij with (i,j) ^ (2,n). After changing X2,n to a;2,ne-1 we may rewrite the 
last condition in the form: 

(3.4) X2,nO< + T = 0modan-11 

where we have set 

(   0       0       a     X41 \ 

T = det 
0       a     X32    X42 

a     X23    X33    X43 

\ XX4       0       X34        0     J 

■ det(wG) - 

Since X2,n = 0 mod V171 we see that the previous condition implies T = 0 mod aVm. 
Thus the conditions on X2,n can be written as: 

(3.5) T = 0 mod aV™ , a;2,n = a^T mod a72"2^771. 

We can integrate over X2,n to obtain the scalar factor | a \n~2 vo^V171). We have thus 
eliminated the variable a^n- At this point the integrand is the same as before but 
the domain of integration is now defined by: 

Xid = 1 mod Vm for i 4- j = n + 1, 

x^ = 0modVm for i+j >n + l,(z,j) 7^ (2,n), (n,n), 

(3.6) T = 0 mod a^m . 
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In the above condition the determinant of the matrix entering T has the form 

xi1nX2,n-i ''' ^i,n det WQ + ay 

with y G V™. Thus the last condition reads 

(3.7) Xl,nX2,n-l ' ' ' xl,n = 1 mod dV™. 

At this point we integrate over the variables Xij with i + j > n + 1 and we get the 
following proposition: 

PROPOSITION 3.1. Set 

a = diag (a, a,..., a, a1_n det(ttfAfWG)) • 

Then, for \ a \ sufficiently small, 

(3.8) ir»«(a) = |a|-1-2l^li/(a;n)) 

,3,)      ^wHar^^H  n ^(iii,*). 
l<i<n-l       x / 

In particular, if the residual characteristic of F is larger than n, we have, for | a | 
small enough: 

(3.10) K^(a) =| a |-^ ^ [^] (n)a)7(a,^)'1-1 . 

4. The theorem of density. We now prove the density Theorem 1.1. Our key 
step is the following result: 

LEMMA 4.1. Suppose $ is a smooth function of compact support such that 
I(wMa>] $) = 0 for all a G AM(F).  Then I{wGa] $) = 0 for all a G AG(F). 

Proof From the germ relation (3.1) we get for a G AWM(F) 

aj3=a 

where UJ$ has compact support. Given a and (3 the pairs (a!,(3') such that a'(3' — a/3 
have all the form a1 — az and /?' = (3z~l where z is an n-th root of unity, as follows 
from the fact that a' and a have the same determinant. Given /3 G AG(F) we choose 
a of the form 

a = diag(a, a...., a, det WM^G^
1-71

) 

with a so small that u;$(a/?) = 0. We get then 

^^°(az-1)J(«;G/3Z,$) = 0. 
Zn=l 

We have to see that this condition implies that I(WG0Z, $) = 0 for all z. If we set 

m(z) := I(WGPZ,$), 
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we see that the above relation reads: 

*>["] n ,(^)^)=o, 
•'n^z1 1 <''»<'n — 1 ^ ' zn=l l<i<n-l 

for | a | small enough. We have to see that m(z) = 0 for all z. Now the 7-factors are 
non-zero. Viewed as functions of a, they depend only on the class of a modulo the 
squares. Hence we may write: 

n 7(^^) = E^KW. 
l<i<n-l       x / x2=l 

the sum over all quadratic (or trivial) characters of Fx. Moreover, for each z, there 
is at least a x Slich that cx(z) / 0. We have then 

Y^x(a)ip   —  cx(z) = 0 
X,z 

for all a with | a \ small enough.  Thus our assertion will follow from the following 
lemma. D 

LEMMA 4.2. Suppose distinct points xi are given in F and, for each index i and 
each quadratic character x of Fx, there is a constant m^x such that 

Y^   mi,x'll;(XiX)x(x) - 0 
;,x2=i 

for all x with \ x \ large enough.  Then m^x = 0 for all i and all x- 
Proof   Suppose that mioao ^ 0.   At the cost of multiplying by ij){—XiQx) and 

Xo(^) we may assume that our relation takes the form: 

1 = ^^{xix)x{x)mi. Xi 

where now the pair with Xi = 0, x — 1 does not appear on the right. We choose an 
a with I a \ large and integrate this identity over the set | a \<\ x \<\ azj~1 \ against 
the multiplicative Haar measure. The left hand side gives a positive value. On the 
other hand we have 

/ x(x)dxx= /        x(x)dxx+ / x(x)dxx. 
•'M^M^Ia^-1! J\x=\a\ Jlxl^am-1] 

If x is ramified, each term is 0. If x 'ls unramified but non-trivial the two terms are 
opposite. Thus the terms with Xi = 0 contribute zero to the integral of the right hand 
side. For fixed x and fixed Xi ^ 0 and | b \ large the integral 

/ ip(xix)x(x)dx x 
J\x\ = \b\ 

vanishes. Thus the terms with Xi ^ 0 contribute zero as well if | a \ is sufficiently 
large and we get a contradiction. □ 

We go back to the proof of Theorem 1.1. Lemma 4.1 already implies our assertion 
for n — 2. Thus we may assume n > 2 and our assertion established for all groups 
GL(m) with 1 < m < n - 1. It is then true for a product GL(ni) x GL(n2) in the 
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following sense. Let h be a smooth function on the product GL(ni,F) x GL{n2,F). 
Suppose that h is supported on a set fi with the following two properties: the image of 
fi under the map (^1,^2) ^ det#i det #2 is a compact set of Fx; the map (#1, #2) ^ 
detgx from fi to Fx is proper (Note that the map (^1,^2) •-> det^2 is then also 
proper.). If widi and W2(i2 are relevant in GL(ni,F) and GL(n2,F) respectively, we 
can define the double   orbital integral I(wiai, 1112(12] h): 

I(wiai,W2a2]h) —  / h (fuiwidivi, tU2W2a2V2) 0(uiVi)duidvi9(u2V2)du2dv2, 

where (ui,Vi) is integrated over the product iV(n;,F) x N(ni,F) divided by the sta- 
bilizer of Widi. We can also define the partial orbital integrals Ii{wiai,g2]h) and 
h{di,W2Ci2]h). For instance: 

Ii(wiai,g2]h) =  / h(tniwiain2,g2)0(nin2)dnidn2] 

the integral is over the product N(ni,F) x N(ni,F) divided by the stabilizer of the 
point widi. Moreover, if we fix widi and denote by $2^2) the above function, then 
/2 is a smooth function of compact support on GL(n2,F) and 

I(widUW2d2]h) = I(w2d2'j2)- 

This being so assume that I(di ,d2\h) =0 for all pairs (ai ,02). Applying the induction 
hypothesis to the function 

gi »-> l2(gi,CL2',h), 

we find that I(widi,d2]h) = 0 for all relevant elements widi in GL(ni,F). Now we 
fix Widi and apply the induction hypothesis to the function g2 t-» Ii{wiai,g2]h)] we 
conclude that I(widi,W2d2]h) = 0 for all W2d2. 

Now suppose that /(a; /) = 0 for all a G ^(-F)- Let us prove first that /(wa; /) = 0 
for all u> G W".R, w y^ I^G^ and a G A^F). Indeed, we can find two integers (711,712) 
such that n~ni-\-n2 and wa has the form 

widi       0 
0 'W2d2 

with u^a; relevant in GL(ni, F). Let [/1 be the group of matrices of the form 

(4.1) u = 

Define a function 

(4.2) h(g1,g2)~  f f 
Ju1(F)xU1(F) 

More explicitely: 

Ini       X 
0        In, 

^(0    g;    lUl 0(u2Ui)duidu2 

K9u92) '•= f 9i 9i Xi 
X291    92 + X2giXi 

6(u2Ui)duidu2 • 

The determinant of the matrix in the integrand is det gi det g2. Hence the image of 
the support H of h under the map (^1,^2) ^ det pi det go is a compact set of Fx. 
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Let us impose in addition the condition that detgi be in a compact set of Fx; then 
det #2 is in a compact set of Fx. If the integrand is non-zero then gi is in a compact 
of M(n x n,F) hence in fact in a compact set of GL(ni,F). Moreover giXi is in 
a compact set of Fni. Hence Xi is in a compact set. Likewise X2 is in a compact 
set. Thus X2giXi is in a compact set of M(n2 x 712, F). Since #2 + ^2^1-^1 is in a 
compact set of M(n2 x n2,F) the same is true of #2- Finally g2 is in a compact set 
of GL(n2,F). Thus the map (gi, #2) *-> det # - 1 from fi to Fx is proper and we may 
apply the above considerations to the function h. We have then 

I(wa]f) — I(wiai,W2a2]h). 

On the other hand, if b £ A(n,F) is a diagonal matrix we can write it as a bloc of 
diagonal matrices (61,62), h £ ^4(n;,F), and then 

J(&i,&2;>0 = /(&,/) = 0. 

As explained above, the induction hypothesis implies then that 

I(w1ai,W2a2;h) = 0, 

that is, I(wa;f) — 0. We have now established that I(w,f) — 0 for all w £ WR, 

w ^ WG- In particular I(wMm,f) = 0. By Lemma 4.1, I(wG*,f) = 0 and we are 
done. 

5. The relative situation: preliminary results. We now consider a quadratic 
extension E of F. We assume (for simplicity) that E is unramified and write E = 
F(y/r) where r is a unit of F. Thus the quadratic character 77 of F associated to E 
is given by 77(a) = (r, a). We assume further that the residual characteristic of F is 
larger than 2n + 1 (in particular n odd), and that the character ip has for conductor 
the ring of integers OF- The Haar measure on E is self-dual for the character 1/; otr. 

We define a function J(a; n) as follows. 
If n — 2r then 

/r i\        T/ \ i/^ro\-l     f   ,   fxi+Xi+X2+X2-i \-Xr+Xr\ 
(5.1) J(a; n) := vol(7>j?)   1  / V ( — L J ® dxi, 

where each Xi is in E and the measure dxi is self-dual for the character ip o tr. The 
domain of integration is defined by 

Xi = 1 mod ^ , 

X1X1X2X2 • • • + a;r^r = 1 mod aV™ . 

If n = 2r + 1 then 

(5.2) J(a; n) := vol(^)      / ^ (  ) ® c/^ , 

where each x^, 1 < i < r, is in S and xr+i is in F. The Haar measures are again self 
dual. The domain of integration is defined by 

Xi = l mod V^,l<i<r, xr+1 = 1 mod V^ , 
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X1X1X2X2 - - - xrxrxr+i = 1 mod aV™ . 

As before the behavior at infinity of the relative orbital integrals J(wMCi] ^r) is deter- 
mined by the behavior of these integrals for | a |-> 0. 

PROPOSITION 5.1.   Suppose that the residual characteristic of E is larger than 
2n + 1.  Then, if the integer m is sufficiently large: 

(5.3) J(a;n) =| a ^ ^ [-1 ^n/^(a)(n,a)7(a^)n"1 , 

for | a | small enough. In particular: 

(5.4) J(a;n)=7y(a)[n/2]/(a;n), 

for | a | small enough. 
Proof We first consider the case n — 2r + 1. We change variables setting: 

Xr+i = (X1X1X2X2 • • • xrxr)~   t 

with t = 1 mod aPj? and integrate over t. The integral becomes 

J(a; 2r + 1) =| a I   / ^ ( - J ® dxi 

where the phase function 0 is given by: 

1 

0 = Xi + Xi + X2 + X2 -i h ^r "f Xr + 
a;ia;iX2a:2 • • -avav 

We set rri = 1 + Pi + ^r, with Pi,qi G P^1 . Then the Taylor expansion of 0 at the 
origin reads: 

cj) — n + 3  ^P Pi + 4    ^    p^j +  ^  g?r + higher degree terms . 
l<i<r l<i<i7<r l^*^r 

We use the following lemma: 
LEMMA 5.1.  Let n > 2 be an integer. Let F be a field of characteristic 0.   The 

quadratic form 

3 ^ xf+i Y, 
x^ 

l<i<n l<i<j<n 

is equivalent over F, by a unipotent transformation, to the quadratic form 

f-i   2*-!*  ' 

PROOF OF THE LEMMA: Our assertion is trivial for n = 1. Hence we may assume 
n > 1 and our assertion proven for n — 1. Thus the quadratic form 

E   22 + 1    2 

//   2i^l   r" l<i<n 

is equivalent to the following form by a unipotent change of variables: 

3   £   uf + A    £    W + g±ly». 
l<i<n-l l<i<j<n-l 
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Ui = Xi + 
2Y 

2n-l 
Xn = Y 

to obtain a form of the required type. 
Thus, after a unimodular change of variables, the Taylor expansion of the phase 

function at the origin may be written in the form: 

cf) — n +   /J   ——-x? +   >J y^r + higher degree terms. 
l<i<r l<i<r 

If m is large enough, the origin is then the only critical point in the domain of 
integration. By the principle of stationary phase, there is a neighborhood ft of 0 in 
F such that for | a \ small enough J(a; n) is the product of the following factors: 

/ 
JQ 

«I*[H] 
^ 

2z + l     2 

(2i - l)a 
Xi   dxi, 1 < i < r 

/ iP 
a 

dyi, 1 < i < r. 

Taking | a \ small enough still we see that 

11/2    /2r ,(„;„)  H „,*[£] | £. 7 I — ^ n 
l<i<r 

(2i - l)a 

2(2i + 1) 

1/2   ,2(21 + 1) 
(zz — IJa 

Since r, 2 and 2i H- 1, 2i — 1 are units we find that 

^»)-i.i**[g(7(^))'n.T(»^.*). 
l<i<r 

Now (see (2.5)): 

7(2^) = (2)o)(T,o)7(2T,V)7(a,^)- 

Since 2, r and 2i + l,2i — 1 are units, this simplifies to: 

7(2^v)=(2,a)(r,a)7(o,V). 

Multiplying the factors together we obtain our result for n = 2r + 1 (and [n/2] = r). 
We next consider the case n = 2r. We change variables as follows: we set 

Xr = Vu(xiX2 ■ • -Xr-i)    1 



A THEOREM OF DENSITY 

with u £ 1 + aVp, v € V^ with vv — 1. More precisely, 
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with i G V™ and (ia;r = dwdt. We can integrate over u to get 

J(a; 2r) =| a |     ip [ — ) ® dxidv , 

where the phase function 0 is given by: 

0 = rci + rci -f ^ + X2 H a:r_i + xr_i + + 
X1X2 • ' • Xr-i        X1X2 ' ' ' Xr-i 

It is convenient to change xr-i into vav-i. The phase function has now the form: 

(/) = Xi + Xi + X2 + ^2 H h ^r-2 + ^r-2 + VXr-i + rar_i 

1 1 
+ ■ 

X1X2 'm'Xr-i        X1X2 '''Xr-i 

We set 

Xi = l+Pi + qiy/T,v = y/l + t2r + £\/r, 

where all the variables are in V™. In terms of these new variables, the Taylor expan- 
sion of the phase function at the origin can be written in the form: 

n + 2 [     Y,    P2i +       Yl      Pipi+     J2    q2iT +       Yl      qiqJT 

,l<i<r-l     l<i<i<r-l      l<i<r-l      l<i<j<r-l 

+t2T + 2qr-itT + higher degree terms. 

After a unimodular change of variables (see Lemma 2.1), the quadratic form can be 
written: 

E 
l<i<r-l 

*+l 

l<i<r-l 

2 + 1 
^r+-yrr. 

As before there is a neighborhood H of 0 in F such that, for | a \ small enough, the 
integral can be written as the product of the following factors: 

.„[=] 
/ ^   ——x*\ 

/ </> 

xj   dxi , 1 < i < r — 1 

i + l 
ai 

—yh 

1> ra 
-ryr 

dyi , 1 < i < r — 1 

d2/r 
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Since r, 2 and i, i + 1 are units, for | a \ small enough this is equal to: 

J(a;2r) =| a \  2   ij) 

Now (see (2.5): 

n x     | |     7 
l<2<r-l 

2{i + 1) 
ia 

i, n 
l<i<r-l 

2(2 + 1) 

ia 
T,lp 

2r     / — ^ ra 

2(i + 1) 
ia 

2(t + 1) 

^ 
2(i + 1) 

,a]  gamma(a,il)), 

T,ll> 
2(i + 1) 

a    (r,a)7(a,^), 

2r 
-^ = (2r,a)(r,a)7(a,^). 

Taking the product of all the factors we arrive at our result. □ 

6. Computation of the relative germ. As before, we let M be the standard 
Levi-subgroup of type (n — 1,1). We recall the asymptotic properties of the integral 
J(wMa>',^)- There exists a smooth function K™^ on A™^ such that for any # G 
CC(S(F)) there is a smooth function of compact support u;$ on AM such that 

(6.1) I(WMa; 9) = w*(o) + £ lir»£(a)J(«;G/?; *) 

The sum is over all pairs in (a,/3) G (A^,^4G(^)) such that a/? = a. The function 
^WM 'ls ^e germ (for the relative orbital integrals) along the subset A™*^. Let Km 

be the principal congruence subgroup in GL(n,E). We let ^ be the product of the 
characteristic function of wcKm D 5 and the scalar 

As before: 

where 

vol(^)-["/2]vol(^)-Ili¥ii+[n/2]. 

L%°M{a) = I{wMaf*), 

a — diag(a, a,..., a, a1  ndet WM^G) 

and | a | is small enough.   After a unimodular change of variables we see that the 
orbital integral of ^ has the form: 

a l-n-^+i y^aW (^^=n+l^A 
'   (JbJb ^ -J 

Here x = (xij) denotes a matrix of the following form: 

xij = 0 for i+ j < n, 

xij = a for i + j = n, 

UM ^,2. 

The variables are the entries x^ E ^ with i + j > n+ 1, i < j, the entries aj^i E F 
with 2i > n-j-1, except the entry Z = xnn which is a dependent variable. The entry Z 
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can be computed from the condition that the determinant of the matrix x be det WQ- 

For instance in the case n = 4: 

f   0       0       a     X14 \ 

0       a     X22    X24 

d        #23      £33      X34 

\   X14      X24      X34        0     J 

X = 

an~1det(iLVv)Z-fdet 

/   0 0       a 2; 14 \ 

0 a 0:32 X24 

^ ^23 ^33 ^34 

\   Xu ^24 ^34 0     J 

det(wG) ■ 

We see that the integral is equal to 

,    l-,„-"("-1) 
a ^i+i voiivzr^voiivzr^1^^ x / v fEi+j="+i:E'j 

/■ 
1 LLJL j <i 

integrated over the set: 

(6.2) 

Xij = 1 mod T^^1 for i + j = n 4-1, 

Xij = 0 mod P^ for i + j > n 4-1, (i,j) ^ (n, n), 

Z = 0modPm. 

The last condition may also be written as follows (we illustrate the case n = 4): 

= det(wG) mod a71"1:?™ . det 

/    0 0 a X14 \ 

0 a X23 ^24 

a ^23 ^33 ^34 

\ xu X24 X34      0   / 

In the last condition we single out the variable 2:2,n- We write the condition in the 
form: 

0     a     xu \ (    0        0        a 

£24 det (   0    ^23      0        +^2,4 det        a      £2,3    #3,3    ) +£2,4^2,4a2 

a   ^33    ^34 / V XM      0      X34 

+ det 

/    0 0 a Xi54 \ 

0 a X2,3      0 
a #2,3 £33 ^3,4 I 

\ a;i4 0 0:34       0 / 

= det(«;G) mod an"1Pm . 

The contribution of £2,n ^o ^^e formula has the form 

X2^U + £2,n^ + a;2,n^2,na ^ 

where w is a unit and v an integer. Both w and v depend only on the variables x^j 
with (z, j) ^ (2,n). We introduce a new variable: 

2/ = X2,nU + -aa;2,n^2,n^ • 
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Then y G Vg and the last condition reads 

(6.3) a^ + ay + r^Omoda71"1^, 

where we have set 

T := det 

(   0        0 a xi54 \ 

0        a ^2,3 0 

d ^2,3 #33 ^3,4 

\ rru      0 3:34 0    J 

det(u'G) • 

As before the above relation implies 

T = 0 mod aPj? , 

and then the condition on y reads: 

y + yELa^TmodLa™-^, 

y-yzza^Tmody/rVF. 

Thus we can integrate the variable y away. The rest of the computation is similar to 
the previous case. We obtain in this way: 

PROPOSITION 6.1. For 

a = diag(a, a,..., a, a1_n det WM^G) 

and I a I is small enough, 

,    1     "("T1) (6.4) 

In particular, 

(6.5) 

£{£(<*) =|« J(a;n). 

^°W=^(a)LS(a). 

The second relation follows from the first, Proposition 5.1 and the relation (see (1.4)) 

7. Comparison of the orbital integrals. We now prove Theorem 1.2. The 
proof of the theorem is by induction on n. There is nothing to prove for n = 1. So 
we assume n > 1 and our assertion established for m < n. Consider a w G VF/^n), 
7^ e, WG. Then we may write 

w = 
W!       0 
0       W2 

withu>i G Wj^ni). As before we associate to $ a function /i on GL(ni,F) xGL(n2,F) 
(see (4.2) and (4.1)) and we associate similarly to $ a function k on 5ni (F) x 5n2(i

?) 
by 

M     *(-'*>!=im
,['"(o:) 9{uu)du. 

The image of the support Vt oi k under the map (51,52) ^ detsi det 52 is compact; 
the map (51,52) »-> detsi from fi to E,x is proper.  We can then define the double 
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orbital integrals J(wiai, W20>2', k) and the partial orbital integrals J2(g, W2CL2'i k) of the 
function k. For diagonal matrices a; G GL(ni,F) and a the corresponding diagonal 
matrix in GL(n, F) we have 

/(a; $) = /ini (a!)/in2 (as^det «i)n2•/(a; *), 

that is, 

I(ai,a2',h) = J(ai,a2;fc)^(detai)n2 . 

Let us fix a2 diagonal in GL(n2). Then the functions 

9i ■-> l2(gi,CL2\h) 

and 

si ^ J2(5i,a2;^)7/(det(5i))n2 

satisfy the conditions of the theorem for GL(ni). Thus we have for every relevant 
element widi in GL(ni,F): 

I(wiai,a2]h) = fini(a1)r](detai)n2fjJn2(a2)J(w1aua2;k). 

The functions 

S2 •-> ^i('^iai,S2;A:)/ini(ai)?7(detai)n2 

satisfy the conditions of the theorem for GLfoz). Thus we get: 

I(wiai,W2a2')h) = ^ni(ai)r7(det ai)n2^n2(a2) J(^iai,^2^2; fe) 

or 

J(w;a; $) = iin{a)J(wa; 1Jr). 

In particular, this relation is true for WM> Thus we get from the germ relations (3.1) 
and (6.1) 

W(a) + Y, K™G
M W&GPI *) - (^(a) + X) L-M («)^ W; *)) Mn(a). 

Here CJ and u/ are suitable functions of compact support on ^4^M (F). We fix /? G AwG 

and choose a with a small enough. Then the above relation reads 

£ KZ°M(za)I{waz-ll3,S) = £ L^(m)JU)G(^^,*)^(a/3). 
zn = l zn = l 

By Proposition 6.1, this can be written as 

£ K^iza) {l{wGz-'(},$) -^n(z-1p)JWG(z-1P)) =0. 
Zn=l 

Our conclusion follows as before. 
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CONCLUDING REMARKS: Theorem 1.2 suggests that the factors //n(a) are transfer 
factors; that is, given $ there is ^ (and conversely) such that the identities of the 
theorem are true. However, the combination of the result and the fundamental lemma 
does not imply that the factors are transfer factors. Indeed, to arrive at this conclusion 
we would need the following relations between the general germs defined in [7]: 

(7.2) lC(a)=/in(a)L;M«)- 

This relation is known for n = 2,3 and, inductively for n = 4 and w ^ WQ- However 
the fundamental lemma for GL(4) implies only the relation 

J2KG(zci)=»n(a)Y,L^(za), 
24=i 

but not the stronger relation (7.2). 

REFERENCES 

[1 

[2; 

[3; 

[4 

[e: 

[7 

[»: 

[9 

[10; 

in 

[12: 

[13: 
[14 

[15; 

lie: 

[17 
[is; 
[19 

S. FRIEDBERG, Poincare series for GL(n): Fourier expansions, Kloosterman sums, and 
algebreo geometric estimates, Math. Zeitschrift, 196 (1987), pp. 165—188. 

D. GOLDFELD, Kloosterman zeta functions for GL(n,Z), Proc. Intern. Cong. Math. Berke- 
ley, 1 (1986), pp. 417-424. 

G. HARDER, R. P. LANGLANDS AND M. RAPOPORT, Algebraische Zyklen auf Hilbert- 
Blumenthal-Flachen, J. reine angew. Math., 366 (1986), pp. 53-120. 

H. IWANIEC, On Waldspurger's Theorem, Acta Arith., 49 (1987), pp. 205-212. 
H. JACQUET, The continuous spectrum of the relative trace formula for GL(3) over a 

quadratic extension, Israel J. Math. 89 (1995), pp. 1-59. 
H. JACQUET AND Y YE, Relative Kloosterman Integrals for GL(S), Bull. Soc. math. France 

120 (1992), pp. 263-295. 
H. JACQUET AND Y YE, Distinguished Representations and Quadratic Base Change for 

(31/(3), Transactions A.M.S. 348 (1996), pp. 913-939. 
H. JACQUET AND Y YE, Germs of Kloosterman integrals for GL(3), Transactions A.M.S., 

351 (1999), pp.1227-1255. 
B. C. NGO, Lemme fondamental de Jacquet et Ye en caracteristiques egales, C.R.Acad.Sci. 

Paris, serie I, Math.,   325 (1997), pp. 307-312. 
B.C. NGO, Lemme fondamental de Jacquet et Ye en caracteristique positive, to appear in 

Duke Math. J. 
B. C. NGO, Faisceaux pervers, homomorphisme de changement de base et lemme fonda- 

mental de Jacquet et Ye, preprint. 
T. SPRINGER, Some results on Algebraic groups with Involution, in Algebraic Groups and 

Related Topics, Advanced Studies in Pure Mathematics, pp. 523-543. 
R. STEINBERG, Lectures on Chevalley groups, Yale University, Dept. of Math. (1968). 
G. STEVENS, Poincare series on GL(r) and Kloosterman sums, Math. Ann. 277 (1987), pp. 

21-51. 
Y. YE, Kloosterman integrals and base change, J. reine angew. Math., 400(1989), pp. 57- 

121. 
Y. YE, The fundamental lemma of a relative trace formula for GL(3), Comp. Math., 89 

(1993), pp. 121-162. 
Y. YE, An integral transform an its applications, Math. Ann., 300 (1994), pp. 405-417. 
Y. YE, The fundamental lemma of a relative trace formula for G!L(4), preprint. 
D. ZAGIER, Modular forms associated to real quadratic fields , Invent. Math, t., 30 (1975), 

pp. 1-46. MR 52:3062 (1976). 




