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AUTOMORPHIC INDUCTION AND LEOPOLDT TYPE 
CONJECTURES FOR GL(N)* 

HARUZO HIDAt 

1. Introduction. Let F be a number field and Go be a non-split inner form of 
GL(n)/p split at a rational prime p and 00. We define G = Resp/'O.Go. We start 
with cohomological study of automorphic forms on the reductive algebraic group G /'0. 
which is isomorphic to a product of copies of G L( n) over a number field. In particular, 
under not so restrictive conditions on G, we shall show that the nearly p-ordinary 
(cuspidal) cohomology group 

H = H~.ord(Xl(NpOO),!Qp/71p) = li!!frH~.ord(Xl(Npr),!Qp/71p) 

is of co-finite type over A = 7l p [[T(t:p )]] for a maximal (split) torus T/z of GL(n)/z 
(Theorem 6.2), where the injective limit is taken with respect to the restriction maps, 
t:p = t: ®z tl p for the integer ring t: of F and A is the completed group algebra: 
A = ~n71p[T(71/pn71)]. Thus for a suitable q = r (that is the degree, called the 
bottom degree; see (BD) in 6.3 for the exact formula of r), we will also show the 
finiteness over A of the universal p-adic Hecke algebra h n .ord defined as a subalgebra 
of Endi\(H) generated by the standard Hecke operators (Corollary 6.3). Actually 
we prove, under some assumptions, that the Hecke algebra of weight X E X (T) is 
obtained, up to finite error, as the specialization of the universal Hecke algebra along 
the algebra homomorphism X : A -+ 0 induced by X (Control theorem: Theorem 6.5). 

Here we do not disregard the torsion part of finite level cohomology groups (al­
though in my earlier works for GL(2), we restricted our study to their torsion-free 
part), because the Hecke algebra might be too small for non totally real or non CM 
fields if we kill torsion of each cohomology group. 

Although the algebra h n.ord satisfies various good properties as listed above, ba­
sic invariants in ring theory, for example, its Krull dimension, are still difficult to 
determine in general. The structure of h n .ord is known to our satisfaction only for 
GL(l) and GL(2) over !Q, for which hn.ord and the Pontryagin dual H* of Hare 
projective A-modules of finite rank. More generally, we know the expected value of 
the Krull dimension for GL(l) over an arbitrary number field and for all inner forms 
of GL(2) over totally real fields F, assuming the Leopoldt conjecture for (F,p) (see 
the description after Conjecture 7.1 for known information). However, we can make 
a reasonable guess for the dimension of hn.ord for general G. Here we shall make the 
following conjecture predicting the Krull dimension of h n .ord: 

CONJECTURE 1.1. Suppose that Go is an inner form ofGL(n)/p. Then we have 

dim(hn.ord ® !Q) < {m[F : ill] + 1 
zp p - m[F: IG] + r2 + 1 

ifn = 2m, 

ifn = 2m + 1, 

where r2 is the number of complex places of F. 
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It might look odd to have inequality, but depending on the prime-to-p level iV, 
the Hecke algebra may be just trivial. Also the algebra hn'ord might be very small 
if F is neither a totally real field nor a CM field. In other words, we conjecture 
the equality in the above formula if iV is sufficiently small (so its norm sufficiently 
large) and if F is either a totally real field or a CM field. This conjecture is a 
GL(n)-version of the Leopoldt conjecture. In fact, when m = 0 (o n = 1), the 
conjecture is just the Leopoldt conjecture for p and F. We will check in 7.2 the 
compatibility of the conjecture with various Langlands functoriality; in particular, it 
behaves well under automorphic induction. If we admit the automorphic induction 
functoriality (see [Cl] 1.1) relative to finite extensions L/F' for real abelian extensions 
F'/Q and Conjecture 1.1 for GrL(n)/j?/, the above conjecture implies the original 
Leopoldt conjecture for an arbitrary totally real field F (see Corollary 7.4). Note here 
that the Leopoldt conjecture is known to be true for abelian extensions F'/Q. 

The above conjecture was first made in 1994 when I started writing this paper 
(after having finished an earlier work [H95]) and was also stated in a series of lectures 
I gave at the Galilee Institute of Universite de Paris-Nord in June 1994. Earlier 
than this work, the lower bound of the Krull dimension of the full and p-ordinary 
deformation ring of a Galois representation had been computed by Mazur [M], and 
the formula of Mazur for p-ordinary case is the same as the one presented above 
for modular two dimensional Galois representations over F = Q. As conjectured by 
Mazur, for modular two dimensional representations, the Hecke algebra is isomorphic 
to the deformation ring (at least in the ^-ordinary cases); so, the identity of the 
formulas for n = 2 is a natural consequence of Mazur's conjecture, which is now a 
theorem of Taylor-Wiles [W] and [TW] (see also [HM] Section 4.3). In the meantime, 
generalizing Mazur's perspective, J. Tilouine [Ti] has made a conjecture predicting 
the Krull dimension of the (nearly p-ordinary) universal deformation ring deforming 
a fixed p-adic Galois representation having values in a smooth reductive group (over 
Zp). Of course, if the deformation ring for GL(n) is isomorphic to the Hecke algebra, 
Conjecture 1.1 is a special case of Tilouine's conjecture. One of the purposes of this 
paper is to describe evidences for the conjecture from the automorphic side. Related 
to this, we will prove the following fact, as a special case of Theorem 8.1: 

Ifp splits completely in F andn is nearly p-ordinary, then the Newton polygon of the 
Hecke polynomial of n at p coincides with the Hodge polygon of the motive (conjec- 
turally) associated to TT. 

Thus if such a motive exists, the near p-ordinarity of automorphic representations 
implies the near p-ordinarity of the Galois representation (in the sense of [Ti]) of 
the motive. In particular, from this, we can deduce that the Newton polygon of any 
cohomological automorphic representation is located on or above the Hodge polygon. 
The corresponding fact for motives is a well known result of Mazur and Fontaine. We 
have said that the above fact is a special case of Theorem 8.1, because we actually 
prove a precise result without assuming the splitting of p in F/Q (see also Remark 8.1). 

Since automorphic forms are invariant under the left translation by rational ele- 
ments in G(Q), hnord is actually an algebra over A = Zp[[T(tp)/tx]] for the integer 
ring r of F. If we admit the Leopoldt conjecture for F and p, we see that 

dim(A <g>Zp qp) = (n - l)[F : Q] + r2 + 1. 

Thus dim(A ®zp Qp) is possibly equal to dim(hnord ®zp Qp) if and only if one of the 
following conditions holds: 
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F is totally real and n = 2; 
n = l. 

(i) Fis t 

(ii) 

Admitting the conjecture, we see 

(*) 

dim(A<g)zpQp)- - dim(hn-ord ; ®zp Qp 
_ /  (m - 1)[F : Q] + rs    if n = 2m, 

m[F:Q] ifn = 2m + l. 

We write A for the right-hand side of the above formula. The left-hand side of (*) 
measures the non-abelian (or non-Leopoldt) part of the above conjecture. It seems 
plausible that if A < 1, one can prove (*) without assuming the Leopoldt conjecture. 
This has been basically done in [H88] and [H89] when A = 0, that is, the two cases 
(i) and (ii). It is remarkable that the non-abelian part of the conjecture is proven 
in Case (i) without assuming any particular condition on the structure of the Galois 
group of F over Q, because only known cases of the Leopoldt conjecture assume that 
F is abelian either over Q or an imaginary quadratic field. This is one of the reason 
why we believe that the above conjecture (or at least its non-abelian part) might be 
more accessible than the original Leopoldt conjecture. Thus the next target of our 
investigation would be the case where A = 1. We see that A = 1 if and only if one of 
the following conditions is satisfied: 

(a) F has only one complex place and n — 2; 
(b) 3 < n < 4 and F = Q. 

The formula (*) has been proven in [H94b] Sections 5 and 6 for all inner forms of 
GL{2) in Case (a). We shall prove in this paper the conjecture for some inner forms 
of GL(3)/Q and GL(4)/Q (see Corollary 6.3 and the explanation after Conjecture 7.1). 

The two key ingredients of the proof of the control theorem (Theorem 6.5) are 
strong multiplicity one theorem valid for cuspidal cohomology on GL(n) and the semi- 
simplicity (Corollary 8.3) of the (cuspidal) nearly ordinary Hecke algebra. The proof 
of the semi-simplicity can be generalized to interior cohomology on any reductive 
group split at p (Corollary A.4). We prove the semi-simplicity in Sections 5 and 8 for 
GL(n) and in Appendix A for general reductive groups. Since this paper is based on 
the results obtained in [H95], we have added in Appendix B a list of corrections to 
[H95]. 

1.1. Notation. Here is general notation we will use throughout the paper. First 
of all, we keep the notation introduced in Section 1 throughout the paper. For two al- 
gebraic groups G D H and a polynomial representation p of H (that is, a morphism of 
algebraic groups from H to GL(d) for some d > 0), Ind^ p indicates the induced rep- 
resentation in the category of polynomial representations of algebraic groups. Thus, 
for a representation space V of a polynomial representation p : H —> GL(V), 

Indg(p) = {/ : G -» V: polynomial\f(gh) = pibT1)^)    for h G H) . 

Then the action of G is given by gfig1) = fid-1^)- For compact p-adic groups 
G D H and a continuous representation p of H on a topological module V, ind^p is 
the representation of G on 

ind%V = {/ : G -> V: continuous\f(gh) = p{hL)f(g)    for ft G if} , 

where i is a suitable involution of G (usually P = ft-1) specified in the text. Then the 
action of G is given by gf(g') = f(gLg')' For locally compact p-adic groups G D H 
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and a smooth representation p of H acting from the right on a vector space V over 
a field of characteristic 0 with the discrete topology, Ind^p is the right G-module 
of locally constant functions / : G —> V compactly supported modulo H satisfying 
f(gh)  — f{g)p{h) for h € H.   The action of G on such functions / is given by 
f(9')9 = figg')- 

For an rii x rii matrix Ai for i = 1,... ,r, we write diag(AiJ ...,Ar) for the 
n x n matrix (n = rii + • • • -f- nr) whose i-th diagonal block is Ai (i = 1,... ,r) 
and all the other off-diagonal blocks are zero. To a partition n = ni + • • • + rar, 
we can associate a standard parabolic subgroup P of GL(n) generated by Mp = 
{diag(Ai,... ,i4r)|i4i G GL(ni)} and upper unipotent matrices. The notion of near- 
ordinarity depends on a choice of a conjugacy class of a proper parabolic subgroup. In 
other words, for a fixed standard parabolic subgroup P, we define the nearly ordinary 
part to be the maximal quotient (or equivalently a maximal subspace) on which the 
Hecke operator associated to elements in the center of Mp is invertible (see 6.2 for 
the precise definition). Thus for a given open compact subgroup 5, we can have 
different nearly ordinary cohomology groups depending on the choice of the standard 
parabolic subgroup. If it is necessary to emphasize the dependence on P, we write 
Hp_nord for the nearly p-ordinary part with respect to the parabolic subgroup P. 
When no confusion is likely, we drop "P" from the subscript. There is one exception: 
When P = B, the standard Borel subgroup, we write H^ ord for Hq

B_n ord all the 
time. Then for the standard parabolic subgroup P, the standard Levi component 
is given by Mp as above. Then P = MpNp for the unipotent radical iVp of P. 
We write M0 for the derived group of Mp. Thus M0 = SL(ni) x ••• x SL(nr). 
We define a torus Tp by P n SL(n)/M0Np1 which is isomorphic to GI/(l)r-1 via 
diag(xi,..., xr-i,xr) H* (det(a;i),..., det(a;r)). For each algebraic group H, we write 
Z(H) for its center. In particular, we write TM = Z(M). By the above determinant 
map, we have Tp = T^ = SL(n) fl TM, and often we identify the two tori. 

For the adele ring A of Q and a finite set S of places of Q, we write A^) = 
{x G A\xv = 1, Vi; G £}; in particular A^00) = {x G A\xp = Xoo = l}. 

2. Preliminaries. Let F be a number field, that is, a finite extension of Q. Let 
G/Q be a reductive algebraic group satisfying the condition L : G(Qp) = GLn(Fp) for 
Fp = F 0Q Qp. We fix an isomorphism i such that it induces for the derived group 
G0 of G 

(SL(p)) i:G0(Qp)=SLn(Fp). 

From time to time, we write G0(ZP) for ^~1(5Ln(rp)), where vp = r <£)% Zp. We also 
suppose, throughout the paper, the strong approximation theorem: 

(SA) G0(Q) is dense in G0(A^). 

In Section 6, we will prove the control theorem for the nearly p-ordinary coho- 
mology group and the associated Hecke algebra. The proof is divided into two steps: 
The first step is the control theory of cohomology groups of arithmetic subgroups of 
G0(Q) which has been basically taken care of in [H95]. Thus we will resort to a sort 
of induction process from G0 to G in Section 6 in order to prove the control theorem 
for the nearly p-ordinary sheaf cohomology groups on modular varieties of G. 

Let us explain briefly why we think important this problem of controlling Hecke 
algebras and cohomology groups.  Let $ be a discrete subgroup of G0(Q) fl G0(Zp) 
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dense in G0(ZP). Then for a (Zp, $)-module L, we study various cohomology groups 
for $, for example, group cohomology Hq($, L). In particular, we would like to study 
their p-adic behavior when one shrinks $ p-adically along a parabolic subgroup P of 
GL(n)/%. For example, we take the Borel subgroup B in this preliminary section as 
P. Shrinking $ along B means that we take 

$1(pa) = {7 G *|*(7)    mod pa e NB(v/pav)} 

for the unipotent radical NB of B. We study Hq(§i(pa),L) and its limit 

^(*1(p00),L)=linjaff«($1(pa),L)   and  H^^p^.L) =^maHq^1(pa),L). 

Here the limit is taken with respect to the restriction maps and transfer maps. 

We also look at the Fo-type groups: 

$0(p<*) = {7 G $|6(7)    mod pa G B{t/pat)} . 

Since the maximal split torus T0 in SL(n) normalizes iVjB and $i(pa), we have a 
natural action of T0(rp) (r^ = r <S)zZp) on the above cohomology groups. We want to 
study the T0(rp)-module structure of the cohomology groups. 

Why is it important to study the limit cohomology groups and the T^tp)-module 
structure? We answer this question by an example: If L is a rational representation 
of G0, then we can consider modules L(A) with coefficients in A for various rings, for 
example C. It is well known after works of Eichler and Shimura on elliptic modular 
forms, the cohomology groups with coefficients in L(C) is directly related to some 
specific modular forms (called cohomological modular forms) on G0. Therefore, by 
cohomological functoriality, on can put a rational or integral structure on the space 
of modular forms in question. Moreover, for a p-adic ring O, if one can isolate a part 
of ff^SiCp00),!,^)) or ^($i(poo),L(0) ®zp®p/%p) which is of finite or co-finite 
type over the completed group ring (9[[T0(tp)]], it gives ap-adic deformation (over an 
explicitly given Spec(0[[T0(vp)]])) of cohomological modular forms through cohomo- 
logical functoriality. Here we say a module is of co-finite type if its Pontryagin dual 
is of finite type. In the p-adic situation, the spectrum of p-adic automorphic repre- 
sentations is always continuous. Therefore it is natural to study the limit alongside 
the individual Hq($i(pa),L) of finite level. Through the action of T0(vp), we may be 
able to describe the spectrum explicitly. This is a principal reason to study the limit 
and the action. 

There is a general and simple method to isolate such components of finite type over 
(9[[T0(tp)]]. Since G0 C G, we have Hecke operators acting on cohomology groups 
which preserve integrality. Let T be one of such operators. If L or its Pontryagin 
dual is of finite type over Zp, we have a unique projector ej acting on Hq(<$>i(pa),L) 
such that T is an automorphism on ejHq(^i{pa),L) and is p-adically nilpotent on 
(1 - eT)iJ^($i(pa), L) (see [H93] 1.11). Here if L is discrete of co-finite type (that is, 
its Pontryagin dual is of finite type over Zp), we say that T is p-adically nilpotent if 

(l-eT)fr«(«1(pa)>L)=U(l-eT)ff9($i(pa),L)[T^ 

where the bracket "[T7]" indicates the kernel of the operator T-7. More generally, if L 
is an injective limit of discrete (Zp, $)-modules of co-finite type, we have well defined 
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projector ej. We call a ^-module L admissible if L is an injective limit of discrete 
(Zp, $)-modules of co-finite type. We will see, for T given by Hecke operator at p 
(associated to our choice of parabolic subgroup P), the image of ej has the required 
property. 

Let L* denote the Pontryagin dual of L. Then we have by Poincare duality (see 
[H93] 1.9), if $ is co-compact, 

Hq^l{pa),LY^Hd-q{^1{pa),L")  and ^(^(p00),^)* S £*-*($!(p00),!/), 

where d is the (real) dimension of the symmetric space of G0(E). Therefore, hereafter, 
we may assume that L is a p-divisible admissible module. 

3. Cohomological automorphic representations for GL(n). In this section, 
we describe cohomological tempered (modulo center) representations of GLn(R) and 
GLn(C) following Clozel [Cl] Section 3. This is useful in relating cohomology groups 
to modular forms. 

3.1. Rational representations of GL{ri). Let T be the standard diagonal 
torus of G = GL(n). Let X(T) — Homa/5^p(T, Gm). The standard base of the root 
system with respect to the upper triangular Borel subgroup B is explicitly given by 
{ai} for ai(diag(ti, £2, • • •, ^n)) = U^i+i for z = 1,..., n — 1. Then the coroot a; of ai 
is explicitly given by 

i     _.. 
di(t) = diag(l,...,l,t,t    ,1,...,1). 

The fundamental dominant weights {u^} which form the dual base of {d^} are 
given by 

Wi(diag(ti,t2,...,tn)) = h -^ -'U   (1 < i < n - 1). 

We simply write un(x) = det(x) for x G T. Thus we may identify X(T) with Zn so 
that a = (mi, 7712,. •., rnn) G Zn gives the character 

a(dm(/(t1,t2,...,tn))=tri-*r---Cn- 
Then the cone of dominant weights in X(T) is given by 

Cn = {(mi,m2,...,mn) G Zn|mi > m2 > • • • > mn} . 

Now we look at the standard parabolic subgroup P of GL(n) corresponding to 
the partition n = ni -f- 712 + • • • + nr of n into r positive integers (r > 0). We write 
n* = ni + 77,2 H hrii. We may regard T as a maximal split torus of M = Mp. Then 
the center Z(M) of M is a subtorus of T. The set of dominant weights of M = Mp 
is given by 

C(M) =Cnix-..xCnr   in  Z
n = X(T). 

For each x € C(A/")j we have an irreducible representation /?x = Ind^ x~1 of -^ 
rational over F having x_1 as a highest weight (with respect to the reverse ordering 
making —Cn positive), which we regard as a representation of P through the projec- 
tion pr : P -> M. By definition, C(M) D Cn, and lndppx / 0 if and only if x G Cn. 
It is known that Indp px = Ind^x-1 if X € Cn, which is absolutely irreducible and 
is rational over F. For each Q-algebra A, we write L(x] A) for the space of Ind^ x_1 

over A. 
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3.2. Infinity type of cohomological representations of GLn(R). Here we 
follow description of cohomological admissible representations of GLn(R) given in [Cl] 
Section 3 (see also [H95] Section 8). For a given dominant weight x £ X(T), there is 
at most one irreducible representation TT = 7r(x) of GLn(E) such that (i) its restriction 
to 5Ln(E) is tempered and 

(ii) #*(fl, On(E); ff (TT) (g) L(x; Q) ^ 0, 

where H(ir) is the space of smooth vectors of TT, and g is the complexified Lie algebra 
of GLn(E). We call such TT cohomological (or x_cohomological). 

In [Cl] Section 3, actually the classification of cohomological TT
7
 with non-vanishing 

tfO(0,On(R);#(7r')®Z(x;C))^O 

is given for the contragredient L(x; C) of L(x; C). Since 

fr9(fl, On(R); iffr') 0 L(x; Q) - fr*(g, On(E); ff (TT') 0 L(x; Q) 

(cf. [BW] p.43), the contragredient TT
7
 of TT' associated to L(x; C) is x-cohomological. 

Since TT is classified in [Cl] using representation of the Weil group at oo, what we need 
to keep in mind is that a representation p of the Weil group WQ/R corresponds to TT 

with non-vanishing Hq(Q, On(E);iJ(7r) <g)L(x;C)) if and only if p~1 corresponds to 
7r(x). Thus what we need to do is to replace p(z) in [Cl] by /?(^_1) for z G Cx C WC/R- 

In this sense, our classification looks a bit different from the one given in [Cl]. 

Now regard x as an element of Zn. Then TT is classified by a representation p 
of the Weil group WC/R into GLn(C) (and a character x £ ^(^O)- We have that 
iJg(0, On(E); ^(TT <g> e) <g> L(x; C)) ^ 0 for a character e of Ex with e2 = 1 if and only 
if for z G Cx C WC/R, writing (see [Cl] p.114-119) 

_ jdiag(zaiza2, za2zai,..., z"2™-1^2™, ^arn^m-i) if n = 2m, 

~   [dia^(zaiZa2 , Za2Zai,...., za2m-i^a2Tn ^ ^a2m^aam-i j (^a2TO+i )       if n = 2m + 1, 

we have 

(3.1) 
a2 > 04 > • • • > a2m > ^m-i > • * • > «3 > Q>i if n = 2m, 

(22 > (24 > • • • > <22m > G2m+1 > ^m-l  > " * * > ^3 > «1    if 72 = 2m + 1, 

(3.2) 
w = a2i-i + <22i (i = 1,..., m)- and 2a2m+i (if ^ — 2m + 1) are independent of i, 

(3-3) 

j (^2,04,... ,a27n,a2m-i,... ,ai) + 1 - 6 if n - 2m, 

[(02,04,. . . ,a2m502m+l502m-l5-.-:03,,ai) + 1 - J       if 72 = 2m + 1, 

where J = uj\ + CJ2 + • • • + ^n = (^, 72 — 1,..., 1) and 1 = (1,1,..., 1). 

By [Cl] Lemma 3.14, we have 

(3.4) 
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Since H^g, SOn(R)]H(7r(x)) <8>L(x;C)) really contributes to Hq($,L(x'X)) for a 
discrete subgroup $ of the identity connected component G(M)+ of G(M), we deduce 
from (3.4) combined with [BW] 1.5.1 that 

(3.5) ^(fl,50n(R);£r(7r(x))(8)L(x;Q) 

(A*"^^-1) 0cC[On(M)/5On(M)] if n = 2m 

^g-m(m+i) ^ ^c c[On(R)/SOn(R)]     if n = 2m + 1. 

3.3. Infinity type of cohomological representations of GLn(C). Let G = 
Res£/^GL(n). Then G(R) =GLn(C), and every irreducible rational representation of 
G is isomorphic to r(8)(r/oc) for a pair (r, r') of rational representations oiGL(n)/c for 
complex conjugation c. Thus x G G(M) acts via T(X) QT^X) for complex conjugation 
"—". Thus we can view r <S> (r' oc) as an element x of Cn x Cn. On the other hand, an 
admissible irreducible representation TT is classified by representations p of the Weil 
group Wc/c = Cx . Following [Cl] p. 112-3, we have, for admissible irreducible TT with 
tempered restriction to 5Ln(C), H^g, Un{R);H(7r) <g> L(x; C)) ^ 0 if and only if for 
z G Cx = Wc/c 

(3.6) PTT^
-1

) = dm^Pl^1,^P2^2,...,^n^gn); 

(3.7) pi > pi+i   and  ^ < gi+i   for all z = 0,..., n - 1; 

(3.8) w = ^ + gi is independent of z; 
(3.9) ^(p-j+i^-j + i), 

where the involution "w;" indicates the conjugation by the longest element in the Weyl 
group of T: w(ai,...,an) = (an,an_i,... ,ai). 

Again by [Cl] Lemma 3.14, we have 

„      n(n-l) 

(3.10) if''(0,C7n(M);iJ(7r(x))®i(x;C))S      /\     C""1. 

4. Local Hecke algebras. In this section, we reformulate some results in [H95] 
Section 2 on the structure of local Hecke algebras made of double cosets of Fo-type 
open compact subgroups (with respect to a standard parabolic subgroup) of GL(n). 
We refer to [H95] for the proof of the results stated in this section. 

4.1.  Hecke algebras for parabolic subgroups. Let P be a proper standard 
parabolic subgroup of GL(n) associated with the partition n = ni + 77,2 + • • • + nr. 
Let V be a discrete valuation ring finite flat over Z^ for a rational prime £. Let w be a 
prime element of V and we write m = Vw and k = V/m. We write v for the valuation 
with V(VJ) — 1. 

Let 

(4.1) V = Vp = Vp{V) 

= {diag(allni1...,arlnr) G Mn(V)|V D aiV D asV D • • • D arV ^ 0} . 

In this section, we often write P for P{V). We then consider Aoo = PVP = 
P(V)£>P(V) C GLn(F) for the field F of fractions of V. Then it is easy to see 

(4.2) Aoo = PVP is a semi-group. 
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Let N = N(V) be the unipotent radical of P. For a subgroup X of AQQ with P > 
X D N, let R(X] Aoo) be the space of compactly supported X-bi-invariant functions 
(with values in Z) compactly supported on AQO- The space R(X; Aoo) has a natural 
structure of algebra under the convolution product with respect to the Haar measure 
/i with /x(X) = 1. We write XxX G R(X] AQQ) for the characteristic function of the 

set given by the double coset XxX. For each 5 > 0, we put £s = ( ln
0~5 zul   1 G A^ 

and let Sj = nr_J+i -I- nr_j+2 + — • + nr for j = 1,..., r. Then we write TSj (m) for 

PROPOSITION 4.1.   We have the following equality in R{X\ AQO); 

(4.3) 
X^X^X = X^X = X^X - X^X^X   and X£X - X(X = Xt(X 

for £, C G P; and t/ze rm^ P(P; A^) 25 isomorphic to the polynomial ring Z[Ti,..., Tr] 
via TSj (zu) »-> Tj. 

This is proven in [H95] Section 2. A key to the proof is the following explicit coset 
decomposition of X^X of f G V = Dp: Decompose X = UT^S^

-1
^ 

n x)rJ' Then 

multiplying by ^~1X£) from the left, we get 

(4.4) 

Write ^ = diag(ailni, a2ln2? • • • 5 arlnr)- To describe the group £-1X£ D X, we write 
an n x n matrix A as (Aij) for n^ x rij blocks Aij. Then we see 

C1X^nX = {g = (gij) G X^j G ar^j-M^xn^V)  for all j > i} . 

Thus we may choose the representative set S to be the set of unipotent matrices in 
Np(V) such that 

(4.5) S 3 rj >—> (rjij    mod a^ajV)^ G 0 MniXnj (V/a^ajV) 
j>i 

is an isomorphism. 

Let M be the standard Levi-subgroup of P. Then 

M(A) = {diag(xi)\xi G GLni(A)}. 

We write TT : P —> M for the natural projection, and we put 

P0 — {x G P|7r(x) = diag(xi)  with £; G 5Lnt.(A) for all i} . 

Then P/P0 = TM via det : M -> TM given by det(dza^(a;i)) = diag(det(xi)lni). 
COROLLARY 4.2.   We have an algebra isomorphism: 

P(P0(V); Aoo) - Z[TM(V)}[TU ... ,Tr] 

^tven 6y TSj(w) \-> Tj and P0(V)uP0(V) H> [det(7r(u))] for u G P(V), where [t] is the 
group element t in the group algebra Z[TM(V)]. 

Suppose that P is the standard Borel subgroup B. Then T = B/N, and we 
may regard a characters A =  (Ai,...,An)   :  T(F)  ->  Kx  as a character of B. 
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Thus \(diag(ai,...,an)) = Y[j^j(aj)- Let V be a right K[B(F)]-modu\e with A- 
eigensubspace V[\]. Then we can let TS(VJ) = N£SN — ^Nxi act on eigenvectors 
t; G V[A] by ^|Ts(tu)(x) = J2ivxii an<^ we ^ave 

(4.6) v\Ts(w)= l\w\-ts   H  A^tu) 

where t = n — s and l^l,, = |V/m|_v^^ is the normalized absolute value of V. 

4.2. Hecke algebras of local congruence subgroups. We keep the notation 
introduced in the previous section. We consider the following subgroups: 

(d7) I« = Ip,* = {geGLn(V)\g   modw°eP(V/m*)} 
1     ) I0

a=I0
P^ = {geGLn(V)\g   mod w° e P0(V/wa)} . 

Let C be an open compact subgroup of GLn(V) such that 

(P) C contains 1° and C is contained in Ia. 

Put Ac = IaVpIa. Then we have 
PROPOSITION 4.3. Suppose (P). Then we have 

(4.8) Ac is a semi-group; 

(4.9) C^C • C(C = C^C = CCC • C^C for f, C 6 P; 

(4.10) iZCCjAcJ^Z^/CKTi,^,...,^]   ftj/^.CtuJ^T,-, 

where TSj(zu) = C£SjC. 

5. Jacquet modules and nearly p-ordinary part. We recall the definition 
of Jacquet modules of admissible representations of GL{n) and study its relation 
to nearly p-ordinary vectors. The result obtained here will be used to show semi- 
simplicity of the cohomology groups over their Hecke algebras. 

5.1. Jacquet modules for GL(n). Let F be a finite extension of Q^ with £- 
adic integer ring V. Let TT be an admissible irreducible representation of G = GLn(F) 
over a field K of characteristic 0. We write V for the representation space of TT. Since 
we mainly deal with cohomology group with right GrLn(i71)-action, here against usual 
convention, we suppose that V is a right GLn(F)-module. For a standard parabolic 
subgroup P of GL(n)/v with unipotent radical iV = iVp, the Jacquet module Vp of 
V with respect to P is the iV(F)-co-invariant space of V, that is, Vp = V/V(P) for 
the subspace V(P) of V generated by 

{v7r(n) - v\n G N(F) and  v G V} . 

Since V{P) is stable under P, for the standard Levi subgroup M of P, M(F) naturally 
acts on Vp. It is known that 

1. Vp gives an admissible representation of M{F) if V is admissible (a theorem 
of Jacquet [BZ] 3.14); 

2. The functor V >-> Vp is exact ([BZ] 2.35); 
3. Let f = dia^(lni,tuln2,tu2ln3,...'C<7r-1lnJ G Vp.   Then ?; G ^(P)   ^=> 

there exists m > 0 such that fcMNfV\^-M V7r(n)dn = 0 for all M > m for a 
Haar measure dn of N(F) ([BZ] 2.33); 
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4. V is super-cuspidal if and only if V(gNpg~1) = V for all g G G and all proper 
parabolic subgroups P ([BZ] 3.18). 

Since M0(F)TM(F) is of finite index in M(F) for the derived group M0 of M, 
Vp is an admissible representation of M0(F). Since iV(V) is a compact group, for any 
admissible AT(V)-module X, we have a projector 

X-+XN(V) =H0(N(V),X)   given by  x ^ [       Xn(n)dn 
JN(V) 

for the Haar measure "dn" normalized so that JNrV\ dn = 1. Thus we have a natural 
exact sequence 

(5.i) o -> y(P)jV(v) ->■ v^^) -> ^(v) ->■ o. 

Since each component of the above exact sequence is stable under iV(V), it is an exact 
sequence of ii!(iV; A00)-modules. 

5.2. Jacquet modules and Hecke operators. We write T = Tp for the Hecke 
operator corresponding to P^P, where 

f = diag(lni,wln2,w
2ln3,.. .w

r~llnr) G Vp. 

Then we see from (4.4) and (4.5) that 

(5.2) v\T^ = (  f X7v(n)dn) 7r(£m)    for v 6 VN(V). 

Since Np{F) = Um>i fm^p(V)$-m, Tp is nilpotent on V^P)^). 

For any open compact subgroup S with iV(V) C S C /p,i, by (4.5), 5^5 = 
UXGE S& if iV(V)^iV(V) = U^GH N(V)tx. Thus the action of Tp on Vs induces the 
action of the double coset S£5, and the finite dimensional space Vs is stable under 
Tp. Then we can decompose Vs — V^ © Vj so that Tp is nilpotent on V^z and 
invertible on V^s. Since VN^ = U5 ^5 for •S' running over all open subgroups oilp^ 
containing iV(V), we have the decomposition: 

(5.3)  vNw = vpil © y; 

such that    Vpil = (J T^7 = y^^) H y(P)   and  V^ = \J Vs
s

s, 
s s 

where Tp is invertible on Vp and nilpotent on \'pl1. 
PROPOSITION 5.1. Let the notation be as above. Let V be an admissible represen- 

tation of G(F) over a field K of characteristic 0. Then Vp = Vp as iZ(P(V), AQQ)- 

modules. 
Proof. By the above construction (5.3), the functor V »-> Vp is an exact functor, 

and hence, by taking semi-simplification if necessary, we may assume that Vp and 
Vp are both semi-simple R(N] AQQ)-modules. By the above splitting, the projection 
V -> Vp induces an inclusion Vp M- Vp of P(iV; Aco)-modules. Since an algebraic 
closure K of K is faithfully flat over K, the result for V® # K implies that of V. Thus 
we may assume that K is an algebraically closed field. Since f E TM{F) = Z(M), the 
Hecke operator Tp is invertible on the admissible P(P)-module Vp. Thus we need 
to show that any v G Vp can be lifted to v G Vp. Pick v G V such that 0 7^ v = (u 
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mod V(P)) £ Vp. We may assume that v is an eigenvector of TM(i^-action, because 
we have assumed that Vp is semi-simple M(F)-module and K is algebraically closed. 
By a simple computation, if v is fixed by an open subgroup of iV(V), V7r(^~a) (= cv 
mod V(P) with c ^ 0) is fixed by iV(V) for sufficiently large a. Therefore, we may 
assume that v G VN(vh Then v\Tp for sufficiently large /? gets into Vp. Then v is 
the image of (v\Tp)\Tp in Vp, where we have taken the inverse Tp inside Vp on 
which Tp is invertible. This shows the desired surjectivity. D 

By the above proposition, we get the following isomorphism of R(P] A(X))-modules 

(5.4) vNpM = v? e vp" = Vpp{v) e v{P)Np{v\ 

When P = B, then M = TM = T is commutative, and hence, Vg is finite dimensional. 
We quote the following theorem of Kazhdan [BZ] 5.21 and 7.12: 

PROPOSITION 5.2. Suppose that either V is absolutely irreducible or is a subquo- 
tient of IndgX for a continuous character A : T(F) —> Kx.  Then we have 

dimK VQ < dimx VB < n\    for N = NB- 

PROPOSITION 5.3. Suppose that n C Indpp for an admissible irreducible repre- 
sentation p of Mp(F). Let B be the standard Borel subgroup of GL(n). Then the 
operator Tp defined above for the Borel subgroup B is nilpotent if p is super-cuspidal 
andP ^ B. 

Proof We suppose the contrary to the assertion: Vg = VB is non-trivial. Then 
by [BZ] 3.19, 3.27 and 3.13 (or more precisely, [BW] XI.2), there exists a continuous 
character A : T(F) -► Kx of T(F) such that 

(5.5) vr can be embedded isomorphically into Ind%\. 

Thus TT cannot be a factor of Indpp for a super-cuspidal p of Mp for P ^ B. This 
shows the result. D 

Of course, taking the dual of the above statement (5.5), we can realize TT as a 
quotient of Ind^X' for A' : T{F) -» Kx possibly different from A. 

For a continuous character A : T{F) -¥ Kx (with respect to the discrete topology 
of Kx), writing X(diag(ti,... ,£n)) = n?=i ^jfe)? we define a new character A by 

Kdiagih,.. .,tn)) = n^itAi&OMC1)- Then we write /f (A) = /nd^g>(A). 

For a Haar measure dfiN on the unipotent radical N(F) of B(F), we have the 
modulus character 6B given by 

/   (j)(x)diiN(x) = Ssib) /   (j){b~lxb)dp)N(x). 
JN JN 

The character is explicitly given by 

^(x) = |det(a:)|("-1)/2ni*ir" 
3 = 1 

for x = diag(ti,... ,£n). Thus we see X(x) = 5B(X)   
1/2| det(x)\v     >'  X{x). Since 6B 

is the modulus character of the conjugation action of T on the Haar measure /XAT, 
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/^(A) is the induction in the category of algebraic admissible representations as in 
[Cl] Definition 1.9 performed for right ^-module (not left ones in [Cl]). 

PROPOSITION 5.4. Let W be the Weyl group ofT = T^. Let A : T(F) -+ Kx be 
a continuous character (under the discrete topology on K), and put V = V(I^(\)). 
If \w for w G W are all distinct (where Xw(t) — \iwtw~1)), then the Jacquet module 

VB is a semisimple T(F)-module. Moreover VB — (Bwew^w as T{F)-modules; in 
particular, dim^ VB —n\. 

Proof. The Jacquet module functor V »-> VB is exact; thus (XB)
SS
 — (X

SS
)B, 

where the superscript "ss" indicates the semi-simplification of a representation X. 
Since (If X)ss = | |in-1)/2^ (Indg(^1/2A))5S ^ | |ln-1)/2 0 (Ind^"17^))- = 

(Jf Xw)ss (see [BZ1] 2.9), A™ is a subquotient of VB by Frobenius reciprocity ([BZ] 
3.13). Thus we have a r(F)-linear surjection of (VBY

3
 onto ®weW Xw, because A™ 

are all distinct. Since dim^ VB < n! and \W\ = n!, we know that VB = (VB)
SS
 = 

0^ A^ and dim^ VB = nl D 
By (4.6), we get immediately from the above proposition the following assertion: 
COROLLARY 5.5. Let the notation be as in Proposition 5.4- Suppose that Xw 

(w E W) are all distinct.  Then for each Xw -eigenvector v G VB — V^, 

( n > 

v\Ta{w)=Um\«'-W     H     AiV) 
Y 3 = 71 — 8+1 

3 where X^{vo) — Xw(diag(l,..., 1, tu, 1,..., 1)). In particular, Vg is a semisimple 
R(NB'I AOQ)-module of dimension nl. 

6. p-Adic Hecke algebras. In this section, we first define the nearly p-ordinary 
universal Hecke algebra and prove its finiteness. We shall further prove the control 
theorem for the universal nearly p-ordinary Hecke algebra (of level p00 for G) from 
the strong multiplicity one theorem for GL(n) and its inner twists. 

6.1. Hecke algebra as a double coset algebra. We consider an algebraic 
group G/Q = Resp/qGo for a number field F as in the introduction. We write I (resp. 
v) for prime ideals (resp. places) of F and £ for primes of Z. We write Gi = G(Qi) 
and Gv = Go(Fv). Then G(A) is the restricted product of local groups Gv over all 
places v of F. Since GQ is an inner form of GL(n)jp, we have 

(GL(Q) i{;G[ = GLn(F[) for almost all prime ideals I. 

Thus there is a finite set of primes E for which (GL(Q) fails to hold. We fix an 
isomorphism i[ for every i $. E. We put 

t^ = nc'cr = nt[. 

We fix a rational prime p outside E and a standard (proper) parabolic subgroup P of 
GL(n) associated with the partition n = ni + • • • -f nr. Let U be an open compact 
subgroup of G(A) of the form U = Yli U[ for the projection U[ of U in G[. We suppose 
the following conditions on U: 

(GBJ) If Ui / GLniii) and I ^ S U {p|p}, then /B.Q D U{ D 1% a, 
(Gp,p) Ip,a DUPD I0

P     (a > 0)   for all p\p 
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for the subgroups IB,I in GLn(vi) and Ipa and Ip,a in GLn(rp) defined in (4.7). 

We write Vi ([ g E U {p|p}) for ©^(ri) in (4.1). We put Vp = Vp(tp). Then by 
elementary divisor theory, if Ui = GLn(r[) and I ^ E U {p\p}, then Ar = U{D[U{ = 
Mn(vi) D GLn(Fi). If C/r ^ GLn(rr) (I ^ E), as seen in 4.1, 

At = 17[£>rtf[  if [jp, and  Ap = IP^PIP^  if pb 

are semi-groups. Anyway A = Ac/ = (rires ^0 x (n^s ^0 ^s a sub-semi-group in 

G(A(00)). 

We consider the Hecke algebra R{U\ A) made of compactly supported (locally 
constant) [/-bi-invariant functions supported on A with values in Z. Then by defini- 
tion, we have 

(6.1)    RiU-^^^RiUvAi) 

)Z[/p,a/t/p][T5l(p),...,TSr(p)] I 0 (     0     Z[ri(0J...>Tn(0]), 
Pb / \l^EU{p|p} / 

for Ts([) which is the characteristic function of Ui^Ui for £s = (Q* ^ ) 6 A- Here 
Sj is as in Proposition 4.1, and the above result follows from the proposition combined 
with [Sh] Theorem 3.20 when Ui = Gofa). 

We define 

R = RP=\ (g)z[TM(rp)][rSl(p),...,rSr(p)] U      0   z[ri(0>...,rn(0]). 
Pb / \^EU{p|p} 

Since we have a natural projection P/P0(vp) = TM(?P) -> Ip,a/Up for all U satisfying 
(Gp,p), the ring R(U; Au) is a homomorphic image of R. 

6.2. Nearly p-ordinary cohomology groups. Let (^(E)^ be the identity con- 
nected component of G(M). Let 

X = X(U) = G(Q)\G(A)/UZ(R)+C00+, 

where COO+ is a maximal compact subgroup of G(M)+ and Z(R)+ is the center of 
G(R)+. We now consider the following condition: 

(GL(oo)) G(R) s GLn(F ®Q M). 

Then if U is sufficiently small, X is a Riemannian manifold.   For the moment, we 
suppose that 

(TF) X(U) is smooth. 

Let L be a left A~1-module for Ap = Eipip^p on which the central elements in 

t^ = rx D (U - C?(M)+) act trivially. Then we consider the covering 

X = X(U) = G(Q)\(G(A) x L)/UZ{R)+Ct OO+J 
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where the action is given by ^(x^tju = (JXIL, U'
1
^). We study the sheaf L = Ly 

of locally constant sections of X{JJ) over X(U). We have the cohomology groups 
Hq{X(U),Lu) with coefficients in L. Since U satisfies (GBJ) and (Gp}p), we may 
regard L as a right A-module through the projection of Ac/ into Ap, that is, for 
S e A and I G L, £5 = J"1^. 

For each double coset t/xt/ as an element of R(U] A), we can define the action of 
[UxU] on Hq(X(U),L) as follows: We look at the following morphism [x] : X(V) -> 
^(F35) for 7 = xC/x-1 fl t/ and Vx = x^Vx given by [x](y,i) = {yx^x^t) = 
(yx,£xp). Then [x] induces a morphism 

[a;]:^(X(y),L)^^(X(^),L), 

and we define 

(6.2) [UxU] = Trx{v*)/x{u) 0 W 0 resx(v)/x(U) • 

Thus under (Gp^) and (GJB,[), the (double coset) Hecke algebra Rp acts on the 
cohomology group Hq(X(U),L). 

Since G(Q) is isomorphic to the multiplicative group of a central simple algebra 
D over F, choosing a maximal order 9^ of D, we can extend G to a group scheme over 
Z. Hereafter we suppose the following two conditions: 

(Dl) G(A) = (9\ ®z A)x for a maximal order 9\ of a division algebra over F; 
(D2) The algebra D\ ®r Fr is isomorphic either to Mn(Fr) or a division algebra for 

all primes I. 
By (Dl), it is known that X(U) is compact. The set S is made of primes I at which 
Gi is the multiplicative group of a division algebra central over F[. 

We are going to specify the open compact subgroup U and the A""1-module L. As 
for U, we fix an open subgroup U of G(Z) (containing the center Z(Z) = rx) satisfying 
(GB,I) with Up — G(Zp). Recall that P is a standard parabolic subgroup of GL(n) 
associated to a partition n — ni + • • • + nr. Let M be the standard Levi-subgroup of 
P. Thus 

M(A) = {d2ap(xi,...,xr)|xi G GLni(A)}. 

Let M' be a factor of M given by 

M'(A) = {dia^(a;i,...,a;r_i)|xi GGLn.(A)}, 

and put 

(6.3) M0 = {x - diag(xi,...,xr) G MJ^ G SL(si)   for i = 1,... ,r} . 

Let TT : P —> M be the projection, and write p for the product of all prime ideals 
p\p in F. Then we define 

^o,p(pa) = {u G U\up    modpaGP(r/pa)} 

^i,p(pa) = {^ G t/o,p(pa)KK    mod pa) G M0(t/p«)} . 

Let S be an open subgroup of U such that I7O,P(P
Q
) ^> S D Ui,p(pa) (a > 0). 

We now specify the A^1-modules we are going to study. Recall that N = Np denotes 
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the unipotent radical of P. We put 5£ = Sp fl SLn(xv), where Sv is the p-component 
of S. By abusing the notation, we write /p)Q, for the product of Ip^ with respect 
to V — tp over all p-adic places p of F. Then Ys = S°/N(vp) is an open subspace 
of the space YQ, = (Ip^ H SLn(vp))/N(tp) we studied in [H95]. There are two group 
actions on the space Ys. Firstly, since P(vp)r\SLn(vp) normalizes N(tp), the quotient 
M(tp) n SLn(tp) ^ (P(tp) fl SLn(vp))/N(vp) naturally acts on Ys from the right. 
Secondly, for each choice w = (wp) G r^ with prime element Wp E tp, we have a 
natural left action of the semi-group 

&s,p = Sp lY[Vp(tp)    Sp 
\P\P J 

on Ys as described in [H95] Section 3. 

We recall briefly the action of A5 on Ys. Since As,p = S°T(vp)V(vp)S° and 5° 
acts on Ys, we only need to define the action of T(Vp)V(tp) for V(xp) = Ilpip^^p)- 
First note here that Ys C (GL(n)/N)(Fp) (Fp = F®QQP). Thus there is a natural left 
action of SLn(Fv) and right action of M{Fp) = (P/N)(Fp) on Y = (GL(n)/N)(Fp). 
Then for each x € T(vp)V(tp), decompose SpxpSp - \_\uexN{xp)x-^/N{xp) SPuxp (see 
(4.4) and (4.5)). For each class yN in the homogeneous space Ys C SLn(Fp)/N(Fp) 
(with y e 3°), xpy = yuuxp for a unique u G xN(xp)x~l/N(x:p). Then the action of a;: 
y ^ yu = XpyXp1 mod N(FP) preserves I5 in GLn(Fp)/N(Fp). This action induces 
a left action of (As)-1 on continuous functions 0 on Ys by x(j)(y) = (^(x^1 o 2/). 

Now we explicitly write down the A~1-module L. Let p be an absolutely irre- 
ducible rational representation of M = ResXp/jjpMjXp C Gy£p into GL{m) defined 
over O for a valuation ring O C Q^ containing (j(r) for all embeddings a : F ^> Qp. 
Let K be the field of fractions of O. Let V{0) = Om be the representation space 
of the contragredient p of /?, which is again a polynomial representation. For each 
O-module X, we define an M-module V(X) by V(0) ®o X. Regard p as a rep- 
resentation of P = Resx:pfzpP/vp C G/zp pulling it back to P by the isomorphism 
P/Np = M. Then we suppose that the polynomial representation L(p;K) = Indp-p 
is non-trivial, which is then absolutely irreducible G(Qp)-module. Physically we have 

L(p;K) = IndpnGo p\pnG°'- 

(6.4)    L(p-K) 

= {0 : (G0/Np)(Qp) -+ V(K)\<I> : polynomial, <j>(yx) = Kx'1)^)} 

for all x G (M fl SL(n))(Fp).   We often identify two induced modules Ind^p and 
/"-TO 

IndpnGo p\pnG0- 

We are going to modify the action of A"1 C G(QP) so that it preserves an O- 
lattice L(p]0) C L(p\K). Note that I5 C (G0/Np)((Qp). We then define L(p]0) 
by the subspace of L(p]K) made of all functions having values in V(0) on Ys. If 
0 G JL(/O; O), then for 5 G Sp, we may write 5 = s0t with s0 G Sp and £ G M(tp). 
Then ^(s) = 0(5°^) = ^(r1)^0) G F(O), and hence L(p;0) is an A^^module by 
the pull-back action of the action of As on Ys: b(j>{y) = (j)(b~l o 2/) for 0 G £(p; O) 
and b G A^1. This action coincides with the action induced from L{p\K) = Indp-p 
on Sp but differs by a scalar factor for general elements in Aj1. 
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We also consider a far bigger A^1-module C^ made of continuous functions (j) on 
Ys with values in V(K/0) satisfying ^(yx) = ^(x-1)^^) for all x 6 M0(rp), where 
M0 = Mf> = SL(ni) x ..- x SL(nr) C M. Thus 

tf = indS
p
;
o{tp)V{K/0)   asS^-module. 

The module C^ has a natural action of A^1 given by b(j)(y) = (^(^p1 oy). In particular, 
we write Cp for C^ when 5 = U. Similarly for each topological (9-module X, we may 
consider the following A^1-modules: 

C(Ys,p]X) = {</>: Fs -> V(X) : continuous\(f){yx) = pix'1)^) Vx G M0(rp)} , 

where we let b € A^1 act on 0 by 60(2/) = (j)(b~ly). 

In [H95], the symbols L(p\A) and C^ are used to denote induced module from 
p in place of p here. However results obtained there are valid by replacing p by p; 
so, hereafter we quote results proven in [H95] without giving any warning about the 
change of p to its contragredient p. 

We equip C(Ys,p;X) with a Tp(tp)-module structure in the following way: First 
note that Tp ** M0

P\(Mp fl SL(n)). Then take 7 G (Mp n SL(n))(tp). For the class 
[7] € Tp(xp) and (/> eC{Ys,p]X), we define 

(6.5) [7]'0(2/)=P(7)0(2/7)- 

By our definition of C(ls, p; X), for 70 e M0(rp), 

[77°] * 0(y) = P(770)0(2/77°) = ?(7)p(70)?(70)"V(y7) = M ' 0(2/)- 

Thus the action is well defined. 

Since Y5 is Zariski dense in the algebraic variety SL(n)/N, the induced poly- 
nomial representation L(p]K), realized on the space of polynomial functions on 
SL(n)/N with values in V(K), by restriction to Ys, is sent isomorphically into 
C(Ys,p]K). That is, we have an embedding L(p'1K) C C(Ys,p]K) compatible with 
the Tp(tp)-action. The action of A^1 on Ys induces a new modified A^1-action on 

L(p; K), which coincides with the original one on 5°. For ip = Indp ^ p, noting the 

fact: (p\sL(n) = IndPn(5L(n) p\pnSL(n) and f o y = ^y^1 mod N(FP) for ^ G £>p(tp), 
we have the new action of £ on 0 G L(p; if) given by 

rV(y) = ^-(^r1) = ?(O0(^) = "(o^r1)^), 

where a; is the central character of p, which is equal to X~
1
\TM if P = Ind^ X-1- 

Let x be a rational character of i2esr /z TA/. By the determinant map: P/P0 = 

TM as in 1.1, we regard x a character of P, and we define p 0 x by p 0 x(a;)'i; — 
x(^)p(x)i'. We suppose that x is dominant with respect to p (that is, L(p(g>x; -K") 7^ 0)- 
Then as already remarked, we can realize L(p ® x;i"0 in C(y5,p;iir) uniquely. In 
particular, the action of Tp on C(Y5,p;if) preserves L(p 0 x;^) and hence induces 
an action of Tp(tp) on L(p ® x)> which is actually given by x- 
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We are now going to twist the module L(p; A) by a finite order character of TM- 

Let e be a character of TM^/V
01
) -> Ox and 5 = Uo,p{i>a). We extend e to 

by just putting 

i=l   \p|p 

e((l,...,l,tup,l,...,l)) = l 

for all p|p. For each a; G A5, we write xu for the z-th ni x n^ diagonal block. Then 
regarding det(a:) = (det(a;ii))o<i<r € G^l(Fp) as an element of TuiFp), we consider 
5 to be a character £ : A5 -)► Ox. Thus we may think of L{p ® x£\ K) which is equal 
to L(p®x\ K) as a i^-vector space but the A^1-action is twisted as bv = e(b~1)bovJ 

where "6 o v" indicates the action of b G A^1 on L(p <g)X\K)' 

Define a function ey : Ys ->• Ox by eyiy) - e(det(2/)) for det : P fl 5L(n) -> TM 

which is well defined because det{y) for y G 5° C A5 depends only on the coset 
yN(vp). Then first realizing L(p®Xi K) m C(Ys, p; K) and then multiplying functions 
in L(p® %; if) by ey, we get the space L(p®xe\K) realized inside C(ls, p; K). We 
then define 

L(p(8)^;0) = i(p®^;if)nC(y5,/9;C?), 

where we take a as small as possible so that e factors through TM(t/pa). Then we 
write simply 

L{p <g) xe) = L(p (g) x^; O) ®o K/O. 

By definition, L(p <g> xe) is a p-divisible subspace of C^ on which TM(^P) acts by x^- 

We call a continuous homomorphism x of TM{*P) into Qp arithmetic if x coincides 
with a rational character in X^CS^/QTM) on a small p-adic neighborhood of.the 
identity in IM^). Thus we have shown that L(p ® x) can be realized in a unique 
way in C^ for a suitable a (5 = C/o,p(pa))- Then we have well defined cohomology 
groups: 

Hg(X(S),Cf)  and ^(X(5),L(p ® x)) 

on which the double coset algebra R(S; A5) naturally acts. 

We define the p-adic Hecke algebra hp^Xyq(S] O), for arithmetic x dominant with 
respect to p, to be the (9-subalgebra of Endo(Hq(X(S),L(p <g) x))) generated by 
the operators in R(S,As). Let T^p) be the operator induced by TSj(zup) under 
the action on L(p 0 x) of A^1 described above. Note here that we have modified 
the original action of Gp on L(p 0 x; if) so that it is minimal among the actions 
preserving integrality. We write Tj(p) for the operator induced by TSj(wp) using the 
original action of Gp. The two operators Tj(p) and Tj(p) differ by a constant as 
specified in (6.6) below. 

We can now define the nearly p-ordinary part h^^d
q(S;0) to be the largest 

direct summand of h.p®Xiq(S] O) on which the image of OKJO FIpip^'Cp) ^s a un^- 
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We write ep for the projector of hp0x,g(5; O) onto h^^(5; O). Then 

^=^0 n nw) 
\l<j<r p\p 

is an element in h.p<g)Xiq(S]0) (see Section 2 and [H93] 1.11). We then define the 
nearly ordinary cohomology group Hp__n^ord(X(S),L(p®x'iA)) (with respect to P) 
to be epHq(X(S), L(p ® X'I A)) as long as we have a well defined ep acting on it. The 
notion of near ordinarity depends on the choice of the (conjugacy class of) parabolic 
subgroup P. Thus for a given 5, we may have 

itqp-n.ord(x(S),HP® x; A)) * H«Q_n.OTd{X{S),L(p® x; A)) 

for two non-conjugate parabolic subgroups P and Q. See Appendix A for a little more 
intrinsic description of the dependence on P for general reductive groups. Therefore, 
if confusion is likely, we use the symbol H<p_n ord to indicate P-nearly ordinary co- 
homology groups. 

Since the action of A^1 on L(p']X) for p' = p 0 x' 'ls modified, if one uses the 
original action of GL(n) on GL(n)/N to define the Hecke operator Tj(p) = T(£Sj) on 
the cohomology group, we have the following relation 

(6.6) Tjip) = w^Tjip)  on Hi(X(S),L(p®x)), 

where £s = f ln
0~s wls J in T(Fp) and UJ is the algebraic character in X(TM) which 

gives the central character of p' on an open neighborhood of the identity of TM{^P)- If 
p = px — IndB x-1, then u — (xx')-1- The operator Tj(p) is induced by the action of 
^j} under p7 = Ind^xx')-1 an(l ^(p) is induced by the action on Ys of ^J".1 G A^1. 
The modified action is given by ^{ijl)~lp1 [ij1) = w^s^p'^J1), and hence we get 
(6.6). 

Since we have a natural map: W{X(S),L(p\K)) -> Hq(X(S),L(p)) with fi- 
nite cokernel (L{p) = L(p',0) ®o K/O), an eigenspace Hq

p_nord(X(S),L{p;K))[X\ 
of Hecke operators Tj({) (for all I) with eigenvalue A(T7(l)) gives rise to an eigenspace 
#p_n ord(X(S),L(p))[\] in the discrete module Hq(X(S),L(p)) with the same eigen- 
values. On the other hand, fixing embeddings ioo : Q M> C and ip : Q <-> Qpi we pull 
back K to C: i^o = iooi^iK)). Then we have 

H<>(X(S),L(p;C)) = HUXiS^LfoKo)) ®K0 C, 

and hence the system of eigenvalues A is given by an automorphic representation 
TT of G(A). We call such TT nearly p-ordinary with respect to P. By definition, 
epHq(X(S), L(p))[X] ^ 0 if and only if 2p(A(Ti(p))) is a p-adic unit in K. Thus TT is 
nearly p-ordinary if and only if for a common eigenvector v G H0(S, V(7r)) of Tj(p) 
(for all p|p), we have 

(6.7) |A(T,(p))|p = K
1^)^    for all j = l,...,r and all p|p. 

In my earlier work [H95] (especially in Theorem 5.1 of the paper), we studied the 
action of T^-(tp) = (TM PI SL(n))(vp) on C^ induced by the above action of Tp(vp) 
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via the isogeny: T^ <-» M -» Tp. Actually the use of the action of Tp in place of TM 

makes the result more transparent, and we obtain, in exactly the same manner as in 
the proof of [H95] Theorem 5.1 an isomorphism of i?p-modules: 

(6.8) LX : Hlord{V{S1,P^)),L(p®x)) = ^.O^^^I.PCP)),^) 

satisfying LX(X(
Z
)ZC) — ZLx(c) ^0T c ^ ^n ord(^0(^i^(P00))'^/(/}(^)x)) under the action 

of Tp given in (6.5), where ro(5) = (5-G0(E))nG0(Q). If we assume the vanishing of 
cohomology degree less than r: H^ord(T0(Si^p(pa)),L(p ® x; K)) = 0 for 0 < q < r, 
we have an isogeny (cf. [H95] Theorem 5.2) 

(6.9) cx : H^r'iSupipO^LipQx)) -»• ^.^(^(^^(p)),^)^], 

where "[x]" indicates the x-eigenspace in the cohomology group under the action of 
Tp(vP). 

6.3.  Universal nearly p-ordinary Hecke algebras. Now we fix the following 
decomposition given by the approximation theorem: 

(App) 

G(A) - l]G(Q)tUo,p(pa)Gm+   andG(A) = [J    |J   G(Q)tsSG(R)+, 
ttE teSses(S) 

where G(M)+ is the identity connected component of the real Lie group G(R) and H 
(resp. S(5)) is a finite subset of ^(A^00)) (resp. l7o,p(pQ;)p). Let TM = Z(M) and 
T^ = TM H SL(n). Since the reduced norm map is : G -± Resp/QGm induces the 
isomorphism: 

i/: G(Q)\G(A)/5G(R)+ - F*\F*/v(S)F*+, 

we may choose the finite sets S and 2(5) so that the following four conditions are 
satisfied: 

(i) S is independent of a; 
(ii) tp = too = 1 for t e S; 

(in) S(S) C C/o,p(pa)p if 5 D I7ifp(pa); 
(iv) S(5) C S(5,) if 5' C 5. 

det 
Let T^ = TM nSL(n). Since C/o,p(pa)/^i,p(pa) = TP(v/p«) 9£ T^(x/pa) and by 
strong approximation theorem (SA) in Section 2, we may approximate each element 
in T^(xp) C Uo,p(pa) sufficiently closely by an element in G(Q) ntUo,p(pa)t-\ v 
induces an isomorphism: iE(C/ijp(pa)) onto a quotient C of TM(^/pa)/T^I(v/pa) = 
(t/pa)x. The quotient C is the image of r^ in Cl(u(S)) = Fx\i^/z/(5)FR

x
+. We 

write T^(a) for the subgroup of TM{*lpa) containing ^(r/p") such that 
T^(a)\r^f(t/p

a) ^ C. This group depends on the choice of U. We then define 

lAf(oo) = jparSf(a). 

Thus TM^OO) contains T^f^Xp) as a subgroup, and T^4(oo)/T^I(vp) is isomorphic to 
the closure of i/(t£) in tx, where t£ = rx fl (J7 • G(M)). 

For each congruence subgroup L C G(Q)+ for G(Q)+ = G(Q) nG(E)+, we define 
T for its image in G(Q)J_Z(Q) for the center Z of G and T0 =_r n G0(Q). Then 
the natural map F -^ F induces a homomorphism £ : F0 —> F with finite kernel 
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and cokernel killed by n. We put X(T) = r\G(E)+/Coo+^(M). The space X{T) 
is compact if D is a division algebra and is a smooth Riemannian manifold if T is 
torsion-free. 

We define rt(5) - G(Q) n tS • G^+r1 in G(A) for t G 5, 

Tt(S) = rt(S)/F* n rt(S) c PGLn(F) 

and r°(5) = G0(Q) fl tS • G(M)+^~1, which is a congruence subgroup of the derived 
group G0(Q) ofG(Q). Since 

rt(i7ofp(pa))/rt(£7i1p(pa))srj2f(a), 

the cohomology group Hq(Tt(Uiip(pa)),L) is naturally a T^(a)-module. By defini- 
tion X(S) ^ \JteE LUs(S) ^tls)) via ^tstx ^ Uoo'foi u G 5 • G(K)+, and 

(6.10) ^(X(5)5L)-0   0   fr«(r,(S),L); 
teS s6H(5) 

(6.11) ^(^^(p01),!) = 0m4^;/
)
p,")ff«(rt(^1,p(pa)),L)) 

where we have written L — L(p ® x) for arithmetic x dominant with respect to p 
and Xi?p(pa) = XCUi^ip**)). Here the involution "t" in the definition in 1.1 of the 

induction Hndlftffi^" is the identity map. Thus by (6.11), ^(X([/i,p(pa)),L) is 
a TM(t/pQ;)-module. Even if X(S) is not smooth, we can think of the right hand side 
of (6.10), which also has a natural action of the double coset algebra Rp. Abusing 
notation, we hereafter write Hq(X(S):L) for ®seEis) H

q(Tt{S),L) if (TF) is not 
satisfied by 5. 

We consider 

(6.12) H*(Xltp(p"),IJ=]^aH*(Xltp(pa),Id- 

Since the restriction map res : Hq(Xijp(pa),L) -> Hq(Xiip(pp),L) for (3 > a is a 
morphism of .Rp-modules, it is compatible with ep. Thus ep acts on Hq(Xiip{pa), L) 
for a — 1,2,.. .,oo, and we have, writing iJ^ ord(Xi^p(pa),L) for epHq(Xi,p(pa),L), 

(6.13) Hl^iX^piP00),® = ^oK^XupiP^L) 

= ® ^l^KorMUiAp*0)),^ 

where T^f(oo) = ]^maT^[(a) and 

^(rt(t7lfp(p~)),L)=lii§a^(ri(C/1|p(p0)),L). 

We define the p-adic Hecke algebra ^^(^^(p00); O) of level p00 by the sub- 
algebra of EndA(^.ord(X1,p(p00),L(/9 0 x))) generated over A = 0[[TM(*P)]] by 
operators in Rp. By definition, h^0^(C/i,p(pa); O) is an 0[[TM(tp)]]-algebra. 

Although in [H95] Section 5, results are formulated using /p?a and Ya, the result 
proven there is valid without modification replacing Ip^a and Ya by Sp and Y5. All 
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arguments, as easily checked, go through without modification. In particular ep is 
well defined on iif?(rt(5),Cp), and by (6.8), we get a canonical isomorphism 

(6.14) 
he ■ K-ardVUUxAv^LUKsx)) = ffLni(r?(tfo,p(p)),Cp) 

such that tx(x(z)zc) = zix{c) for c € Hq{YliU^p^00)),L{p ® x)) and z € T^(tp). 

Let r^ = rx n ^(A^00)) • G(K)+. The quotient 

H = rxrt(c/1,p(pa))/<r°(t/1,p(pa)) 

is independent of a > 0 and £ and is a subgroup of a finite group r^/(r^)n. The 

finite group H is canonically isomorphic to rt(C7i)p(pa))/rt (J7i,p(pa)). Similarly, 
the kernel if = Ker(ri

0(t/i,p(pa)) -> ^(^^(p"))) is finite, of exponent n and 
independent of a ^> 0 and £. 

Recall that L{p\0) is a representation of 5p (not just that of 5°). We assume 
that 

1. the central elements in r^ = (r£ fi U • G(M)+) act trivially on L(p; (9); 
2- _ X(^) - 1. 

Thus we may regard L(p; (9) as a F^LQ-module. We assume that p\ n. Then by the 
Hochschild-Serre spectral sequence applied to the exact sequence: 

1 _> H> _> ^(^^(p")) -»• T^AP
0
)) ^ 1, 

we have 

(6.15) 

^X ■■ Kord^tiUlAP^^iP^X)) = Hlord^tiUlAP^^iP^X)), 

because Hq(H', X) = 0 if g > 0 and X is a Zp-module. Thus 

tfL^r^Hp00)),^®*)) 
is independent of % by (6.14). 

Again by Hochschild-Serre spectral sequence applied to the exact sequence: 

i -> r,0([/l5p(p")) -> ^(^^(p-)) -^ if -^ i, 

we have 

(6.16) 

he ■■ K.orArtiUiAP*0)),L{p® x)) = H0(H,Hl^TtiUuip00)),L(p® X))). 

Thus ^^(^(^^(p00)),^^® %)) is again independent of*. 

The space Cp is naturally a Tp(tp)-module as described above. This induces the 
action of Tp on the right hand side of (6.14). We have a natural isomorphism induced 
by determinant 1.1: Tp = T^. Thus we can view Cp as a T^(tp)-module. The unit 
group j/(r£) acts trivially on tf«.^(^(^^(p00)),^^® *)). Since 

r^(oo) = r^(rp)(z/(^)) 
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in TMOT,), 
we can extend the action of Tj^-(tp) to T^(oo) making i/(v^) act on it 

trivially. Then we have a canonical isomorphism 

(6.17) 

satisfying ix(x{z)zc) = ZLX(C) for 2 G TM(tp). This shows 
THEOREM 6.1. Suppose (Dl-2); (SL(p)) and thatp\ n. Then we have an algebra 

isomorphism 

LX : ^^(^.PCP
00

); O) - ^^(^^(p-); O) 

taking T^i) to T^l) (1 < j < n) for alll&Xn {p\p} and T^p) to T^p) (1 < j < r). 
In particular, if P — B, the Hecke algebra hXqrd(Ui^p(poo)]0) is independent of x- 

Proof. By our construction, the isomorphism in (6.17) is equivariant under Hecke 
operators listed in the theorem (or more precisely, it is an isomorphism of Rp~ 
modules). Since the Hecke algebra hp^* ([/^(p00); O) acts faithfully on the co- 
homology group H^ ord(-X'i,p(p00)j £(p® x)) an(i generated by these Hecke operators, 
we get the identity of the algebras by (6.17). D 

Let ri (resp. r2) for the number of real (resp. complex) places of F. We 
write hJ-^E/i.ptp00);©) for ^^(C/^PCP

00
);©) if P = B. Hereafter we assume 

(GL(oo)) and that q is equal to the following number r given by 

J rim2 + r2m(n — 1)       if n = 2m, 

1 rim(m + 1) + r2mn     ifn = 2m + l. 

The above number r gives the bottom degree of the cuspidal cohomology group of 
GL(n) under (GL(oo)). Here the word "bottom degree" means that 

Hiusp{X{S),L{p-C)) =0  if j < r, and 

Hiusp(X(S),L(p]Q)=0  for allj   if H^sp(X(S),L(p-C)) = 0. 

Then the above explicit value of the bottom degree follows from (3.5) and (3.10). 

Under this choice of q, we write h™'ord for h™-°rd. When P = B, we simply write 
hn.ord for hn.ord which is independent of x G X(^e5F/QT). We write W = >Vp,p for 

0m4^^^or,(r,(C/o,p(p)),Cp). 
teE 

Let W = Wp be the Pontryagin dual module of VV>,p. We put W(K) = W ®o K. 
Then using (6.16), we can deduce from (6.9) the following result: 

THEOREM 6.2. Suppose (Dl-2), (GL(oo)), (SL(p)) and thatp\n. Let x be an 
arithmetic character OJTM dominant with respect to p such that xXo"1 factors through 
TM^/P") for xo G X(TM).  Then for the ideal V = Ker{x) in 0[[TM(xp)}], we have 

W(K)/VW(K) = H^ord(X(UoAPa)),L(p 0 x; K)). 
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Proof. We have (from [H95] Theorems 5.1 and 5.2) a Hecke equivariant isogeny 

Hlord{T°t{UoAva)),L{p®x)) -> Hl^iTHU^Av^Lmx]. 
We have [x] in place of [CJX] in the theorems in [H95], because present normalization 
of the action of TM uses the Tp-action given in (6.5), which is different from the one 
used in [H95]. Since we have an exact sequence: 

1 -> H' -> r?(pa) -> rt(p
a) -> H -+ 1 

with finite group iJ and H' independent of exponent a > 0 and of £, we get an isogeny 
of TM(tp)-modules: 

Hiord{Tt{uQAva)),L{p®x)) -* K.ordFt(UiAi>'10)),m)\x]- 
By Shapiro's lemma applied to the right-hand-side of (6.17), we have 

WP.PM = 0^.ord(rt(c/i)p(poo)),i(p))M. 

This gives rise to the Hecke equivariant isogeny: 

Hlord(XQ,P{va),L{p®x)) = ($K.ord(rt(UoAi>a)),L(p®x)) -> WPM]- 
tes 

The desired isomorphism is induced from the Pontryagin dual map of the above 
isogeny, after tensoring K. D 

By the above proposition, it is easy to see the Pontryagin dual module Wp,p of 
Wp,p is of finite type over C?[[rTM]] for the maximal torsion-free subgroup TTM of 
2M(%)A

X
, which is canonically isomorphic to the maximal torsion-free subgroup of 

TM(tp)/is(t*). We simply write h for h^ord(Ullp(pco)] O). Then the Hecke algebras 
h and h(K) = h 0o K act faithfully on W and W(K), respectively. In particular, h 
is finite over 0[[rTM]]. Moreover if n > 2 or F has at least one complex place (that is, 
r2 > 0), we can find by (3.3) and (3.9) a dominant character x € X(ResF/QT) such 
that there is no cuspidal cohomological automorphic representation whose infinity type 
is x (see the following Section 7 for more details). Then for P = B, W(K)/VW(K) = 
0 (V = Ker(x)), and hence W(K) is a torsion 0[[rT]]-module for the maximal torsion- 
free subgroup FT of T(vp). Note that A = (^[[FT]] is isomorphic to the power series 
ring 0[[TU..., Td]] for d = r[F : Q] 4- 1 + S - n - r2, where 8 = 5P is the defect of 
the Leopoldt conjecture given by dimQ(r>< ®z Q) - dimQp(t

x (S)zp Qp) for the p-adic 
closure rx in tp. Then the Hecke algebra has dimension less than d + 1 if n > 2 or 
r2 > 0. We thus have 

COROLLARY 6.3. The Hecke algebra hjJ-^J/i^p00);^) (of bottom degree) is 
finite over 0[[rTM]]- In particular, 

dim(h-^([/1,p(p-); O)) < dim((9[[rTM]]) 

= rank(i?esF/QTM) + 2 + Sp - n - r2 = (r - 1)[F : Q] + 2 + Sp + r2, 

where ri  (resp.   ^ is the number of real (resp.    complex) places of F and P is 
associated to the partition of n into r parts.  If n > 2 or F has at least one complex 
place, then the above inequality is strict for P = B. 

We now assume 



AUTOMORPHIC INDUCTION AND THE LEOPOLDT CONJECTURE 691 

(JL) The global Jacquet-Langlands correspondence compatible with the local cor- 
respondence holds for G and ResF/QGL(n). 

The local Jacquet-Langlands correspondence is known by [DKV] and [R]. The exis- 
tence of global correspondence is known under a certain ramification condition (see 
[AC]) Theorem B and [Cll] Theorem 3.3). In particular, (JL) holds under the 
conditions (Dl-2) (as long as E ^ 0). Under this assumption, the Hecke module 
iJ2(r,L(p;C)) can be embedded into Hl

sq(T ,L(p;C)) for a suitable congruence sub- 
group F7 of GLn(F) ([Cl] Section 3.5), where the latter cohomology group is the 
square integrable cohomology groups. Then from the strong multiplicity one theorem 
(e.g. [Cl] Theorem 1.1 and [Cll] Theorem 3.3) valid for ResF/QGL(n), we know the 
strong multiplicity one theorem for G. 

As an application of the strong multiplicity one, we have 
PROPOSITION 6.4. Suppose that U = ^Hx for a maximal order 9^ of D satisfying 

(Dl-2), (SL(p)) and (GL(oo)), where D\ = 9\®z%>- Suppose that the strong multiplicity 
one theorem holds for cuspidal automorphic representations of G(A).   Then we have 

1. The commutative K-algebra h^-ord([/(),£ (pa); K) is semi-simple; 
2. The cohomology group 

Hr
n,ord(X(UoMPa)),L(x;K)) 

is free of finite rank over the Hecke algebra h^ord(UojB(pa)'',K). 
Proof Since K is a finite extension of Qp, we can embed K into C (algebraically). 

We fix such an embedding. We have a natural action of C — Coo/Coo-^- — {=t:l}ri 

on Hr(X(S),L(p (g) x; C)) which commutes with Hecke operators. We fix a character 
e : C -» {±1} and consider the e-eigenspace: Hr(X(S),L(p 0 x; C))[£]. Then this 
space is isomorphic to a space S of cusp forms on G(A) invariant under the group S 
with a fixed infinity type (see (3.5) and (3.10) and [H95] Section 8 for the description 
of S). We will see later in Corollary 8.3 from p-near ordinarity that if TT is an au- 
tomorphic representation of G(A) intervening in H^ ord(X(Uo,B{p)), L(p 0 %; if ))[eL 
the local component TTp of TT at p\p can be embedded into IBfF \X for a charac- 
ter A : T(Fp) -> Kx with distinct A™ for all elements w in the Weyl group W of 
T. By Corollary 5.5, we now know that T^TTp)0 is a semi-simple R(NB{tp), AQO)- 

module, and each character of it^iV^tp), AQQ) appears on V(7Tp)0 at most multiplic- 
ity 1. Actually we will see that esV^p)0 is one dimensional (Corollary 8.3). For 
{ G S, since Uo,B(pa)i is the maximal compact subgroup of Df for a division algebra 
D[/F{, the t-component TTI of TT is a one dimensional representation. If [ ^ £ U {p|p}, 
Uo^siv^i is a maximal compact subgroup of GLn{F[) and hence TTI is spherical, and 
^0(^ro,J5(pQ;)[,^(7rr)) is one dimensional. Thus by the strong multiplicity one theo- 
rem, S is a semi-simple module over RB and each character of RB has multiplicity 
at most one. In other words, if£ ord(X([/o,£(pQ));£(p ® XiQ)[e] is free of rank 1 
over h^^([/o,p(pa); K) ®K C (fixing an embedding K c-> C), which is semi-simple. 
This shows the desired result by a descent from C to If, since C is a faithfully flat 
if-module. D 

Actually under (GL(co)) and (Dl-2) with E ^ 0, the strong multiplicity one theo- 
rem is known (see [AC] Theorem B and [Cll] Theorem 3.3); so, the above proposition 
holds. 

For simplicity, we write h for h^^t/i^p00); O). Let V be the kernel of the 
algebra homomorphism x '• ^[PX1^)]] -* O) induced by x- We study the localization 



692 H. HIDA 

hv. By definition, h acts faithfully on ©^^.^(^^(p00),^/©)^]. Thus for an 
ideal a£ of h, h./a£ acts faithfully on H^ ord(XiiB{p00),K/0)[e] for a given e : C -> 
{±1}. Write H£ for the Pontryagin dual module of H^w(Xi,£(pTO), if/£>)[£]. Note 
that Vh-p D CLe^-p for all e by Proposition 6.4. Since 

^lV^ - vwttyp "* (He/VHc)®*^ Hlord{X0,B{^),L{x-K))[e} 

by Theorem 6.2 and Proposition 6.4, choosing x G ^^^(^^^(p"),^^;^)) which 
is the image of 1 G h/a5, we can define an h-linear map h -t He by T \-± Tx 
for x in ife such that x mod V = x. Then by Theorem 6.2, the induced map 
hp> -» if£5-p is surjective (by Nakayama's lemma). Since the action is faithful, we 
have (h/ae)7? = W^)^]^, and we get 

THEOREM 6.5. Suppose that U — 9lx for a maximal order 91 of D satisfying 
(Dl-2) (GL(oo)) and (SL(p)). For each dominant arithmetic character x 0fT(x:p), 
writing V for Ker(x • 0[[T(rp)]] —> O), we have a natural algebra isomorphism: 

(hn-ord(t/1,B(p00);0)/Ph"ord(C/1,B(p00);0)) ®o K s \%°rd{U0>B{va);K), 

which takes Tj(i) to Tj(l) for all i outside E. 

7. A conjecture on Krull dimension of hn•ord. In this section, we restate 
the conjecture in the introduction and give supporting arguments in terms of infinity 
types and functoriality. 

7.1. Statement of the conjecture. We have seen in Corollary 6.3 that 
dimhn.ord is finite for hn.ord = h^^Ui^ip00)] CO- The following conjecture giving 
the upper bound of the dimension is a slightly stronger version of the conjecture in 
the introduction: 

CONJECTURE 7.1. Let hn'ord = ^^([/^(p00);O) for p = id. Then we have 

where 

r(n,F) 

dim(hn-ord) <r(n,F) + l 

|m[F:Q]-fl, ifn = 2m, 

lm[F:Q] +r2 + l,      if n = 2m + 1'. 

The conjecture is equivalent to the Leopoldt conjecture if n = 1. As for n = 2, 
the conjecture is known ([H94a] and [H95]), if we assume the following two conditions: 

1. The Leopoldt conjecture holds for F and p; 
2. F has at most one complex place: r2 < 1. 

As we will explain more, later in this subsection, the conjecture holds under (Dl- 
2), (SL(p)) and (GL(oo)) when 3 < n < 4 and F — Q, because we know from 
Corollary 6.3 that dim(hn-ord) < n = r(n; Q) + 1 if 3 < n < 4. 

We shall give a heuristic argument for the conjecture in terms of the infinity type 
of cohomological automorphic representation. We will see some other supporting evi- 
dences for this conjecture in the following subsection and also study some implication 
of the validity of the conjecture. 
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Let TT be a cuspidal cohomological automorphic representation of G(A). For each 
embedding a : F M- C, we write TIV for the local component at the infinite place [cr] 
induced by the embedding. Thus TIV = 7rccr for complex conjugation c. In Section 3, 
we have associated to TTV, its infinity type Xo- € X(T) for real embedding a and a pair 
(XaiXco) ^ X(T)2 for complex a. Actually Xa- is an element of positive weights Cn. 

We fix an open compact subgroup U of G(A(00)) SO that U D G{ZP). Let X(U) 
be the set of dominant arithmetic characters x : T(tp) —> Kx of cohomological au- 
tomorphic representations occurring in i?r(X(t/i)JB(pa)),I/(x;^)) for some a > 0, 
where r is the bottom degree defined in (BD). We write /^(J/) for the set of infinity 
types Xoo for x £ ^(U*)- Choosing a complete representative subset oo C / for infinite 
places of F, we may identify the set #00(17) with a subset of X(T)[I] = X{ResF/^T) 
by the result of Section 3, where I is the set of embedding of F into C and X(T)[I] is 
the set of formal linear combinations of elements in / with coefficients in the abelian 
group X(T). In other words, decomposing 00 = 00(E) |J 00(C) for real embeddings 
00(E) and complex embeddings 00(C), we have associated to each TT the sum 

XooW =    53   Xa(jJt    X^   (XTT + XCTCT). 
o-Goo(R) rGoo(C) 

Let W be the Weyl group of T in GL(n) and w be the longest element of W. Then 
t f-)- wt~1w is an automorphism of T preserving the positivity with respect to B. For 
each character x : T(vp) —» (9X, we write x™(£) = x('wtw~1)-   For the determinant 

composed with the norm character, we write z/ : T(i^)  ± Fx  ^ Qx .  Then by 
the description in Section 3, we get 

(7.1) 

X^U) CX = Cn{I\ fl {x 6 X{T)[I]\xw +XC = M" with [x] € Z} , 

where complex conjugation c acts on the values of x so that x(t)c — c(x(^))5 identifying 
X{T) = Zn, z/ corresponds to ^a^0' w^ ^ = (IJIJ-'-JI)? 

and Xc — ZIO-G/^0"C<J* 
Although in Section 3, the property characterizing x is stated using x — X + ^ — ^ for 

5 = ]C<T(n5n""l> • • • > l)cr5 the description of A' does not change since dw+dc = (n+l)i/. 

The set Xoo(U) may not coincide with X. For example, if n = 1 and F contains 
no CM fields, A^t/) = Zz/. However X has rank r2 + 1 when n — 1. It is interesting 
to study when A' 7^ (J^ ^00(i7) happens for general n > 1. 

Let TT be the maximal p-profinite subgroup of T(tp)/t
x. Then A = ^[[rx]] is 

isomorphic to the power series ring of d variables for d = [F : Q]n + 1 4- Sp — ri — r2> 
Thus Spec(A)(Qp) is the product of d copies of the open unit disk in Qp. Suppose that 
F is either totally real or a CM field. By Langlands functoriality, for sufficiently large 
a, we expect (as we will see later) to be able to create a non-trivial nearly p-ordinary 
TT of level pa with x — x(7r) for any given x £ ^ K this is the case, by Theorem 6.5, 
the support on Spec{0[[T(xp)\) <g>z Q) of hn-ord 0Z Q contains the closure X of X 
in Spec(A ®z Q)- Since the dimension of the closure X is equal to the Zp-rank of 
the p-adic closure of X\ which is the rank of the Z-module generated by X. Thus if 
either n > 2 or r2 > 0, the linear span of X is smaller than X(T)[I], and hence we 
can find x € Cn[I] which is never an infinity type of a cohomological automorphic 
representation. This fact is used to show that the Hecke algebra is a torsion A-module 
in Corollary 6.3 under the condition that n > 2 or r2 > 0. In particular, if 3 < n < 4 
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and F = Q, it is enough to conclude dimhnord < 3; so, the conjecture holds in this 
case. Anyway it is easy to see that the rank of X is equal to the upper bound of the 
dimension in the conjecture, and this gives a reason for the conjecture. 

REMARK 7.1. It is a part of a much general conjecture of Langlands that for 
each cuspidal cohomological automorphic representation TT ofG(A), there exists a pure 
motive M defined over F with coefficients in a number field E such that L(s, TT) = 
L(S,M/F). Since the infinity type of TT determines the gamma factor of L(s,7r), we 
can describe the Hodge type of M in terms of Xoo (TT) • The outcome is as follows: 
Write xWa + 5 — 1 = (ra^i,... jra^). Then the Hodge type of M at the infinite 
place a is given by 

(7.2) (m^i, mco->n), (ra^, rac<rin_i),..., (maj, mC(T5n_i+i),  

Since M is supposed to be pure, the Hodge numbers (pi,qi) of M has to satisfy Pi+qi — 
w for the weight w of M. Thus the description of the infinity type of cohomological 
representations given above is a consequence of the purity of M, admitting Langlands' 
conjecture. 

Fix a complex embedding ioo : Q «->• C. Now suppose that F is either a CM 
field or a totally real field. Thus we have well defined complex conjugation p acting 
on F such that c o i^ o a = i^ o a o p for all a G /. If F is totally real, p is just 
the identity map of F. Then for T0 = SL(n) fl T, we consider the automorphism 
L : T0(tp) -> T0(tp) given by i,(t) — wp(t)~xvj~1 for the longest element w of the 
Weyl group of T. Let T0 be the torsion-free part of T0(rp) and we write Y] = (ro)pJ. 
The involution i : T0(tp) -» T0(tp) induces an involution i of Aj = 0[[r?]] into itself. 
Then Conjecture 7.1 follows from the Leopoldt conjecture for F and p combined with 
the following vanishing property of the nearly p-ordinary cohomology groups: 

CONJECTURE 7.2. Suppose that F is either totally real or a CM field. Then for 
any given open compact subgroup U C G^00)) with U D G(Zp), there exists j > 0 
such that iJ^ ord(r(Lri)JB(p00)),i;C/0) is annihilated by the ideal AJ(L — l)Aj, where r 
is the bottom degree for G. 

For any dominant arithmetic character x : T0(x:p) —>- Ox we can find j > 0 
such that x\r° is induced by a dominant rational character xo in X(T0)[I]. By the 
definition of £, the character xo is in X if and only if the O-algebra homomorphism 
X : Aj; -* O induced by % factors through AJ/AJ(L—1)AJ. Thus if Conjecture 7.2 holds, 
then the Pontryagin dual module W0 of H^ ^(^^^(p00)),^/©) is supported by 
Spec(Aj/Aj(L — l)Aj), which has relative dimension r(n,F) — (r2 4- 1) over O. It is 
then clear from the induction process (6.17) that the Pontryagin dual module W of 
Hn ordiXiiBip00)), K/O) is supported by the spectrum of 

(Aj/AjiL-VAMChb00)]], 

whose relative dimension over O is r(n, F)+Sp for the defect of the Leopoldt conjecture 
6p of F. 

When F is neither a CM field nor totally real, the situation is rather murky, 
and even conjecturally, there is no clear-cut description of the annihilator of the 
cohomology group ^.^(r^i^Cp00)),^/©) or the Hecke algebra ^-^(p00;©) 
except for CM components. The annihilator is computed for CM components of the 
Hecke algebra in [H94b] Section 5 when r2 = 1 and D is a quaternion algebra positive 
definite over all real places of F. In this case, the annihilator is directly related to the 
units of the quadratic extension of F (containing a CM field). We hope to come back 
this question in a forthcoming paper. 
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7.2. Compatibility with automorphic functoriality. In the previous sub- 
section, we described how the conjectural dimension of the universal nearly p-ordinary 
Hecke algebra is deduced by the linear rank of the module of infinity types of cusp- 
idal cohomological automorphic representations. Here we show that the conjectural 
dimension formula is compatible with some of the Langlands functorialities: tensor 
products, base-change and automorphic induction. 

Since we have a (conjectural) motivic interpretation of cohomological automorphic 
representations, it would be easier to deal with the set of Hodge weight (m^i,... jra^n) 
of motives rather than Af. We therefore define for the standard diagonal torus T = 
Tn C GL(ri), under the notation of Remark 7.1, 

nn = nn/F = {x G x(Tn)[i}\xc + xw = [xM • 

Then we associate to each rank n pure motive M a Hodge weight 

X(M) = ^(m^i,...,ma,n)cr G Tin 
a 

if the Hodge type of M is given by (7.2). Then A* gives rise to a spanning cone of Tin 

via x *-> X + & - v- We call x = X^771^,!' • • • 5 ^n)^ G %n regular if maii ^ ma^ for 
all i ^ j and a. We call the motive regular if x(M) is regular. Let 'H+ be the set of 
regular elements in Tin- Thus our reason for the conjecture is that regular elements in 
Tin span the full module T-in over Z, and its rank should give the dimension of hn-ord 

over K. 

Let F/F' be a finite field extension. We write IF = {& : F ^-> Q} to distinguish 
IF and Ip' • Starting from rank n regular pure motive M/_p, we consider the restriction 
of scalar RCSF/F'M, then 

x{ResFIF,{M))=Y,   [      0      Xr(M)](7. 
cr^:IFi    \T:Res(T)=<J ) 

This induces a linear map RCSF/F
1
 

: ^n/F ""^ ^n[F:F']/F' ^ an(l the map is obviously 
injective. Then comparing the rank of the source and the target, we get the following 
result 

PROPOSITION 7.3. For a finite extension F/F', we have r(n\F) < r{n[F : 
.F'], F1), and the equality holds if and only if one of the following conditions is satisfied: 

1. n is even; 
2. F is totally imaginary; 
3. n[F : F'] is odd, and there is at most one real place of F over each real place 

ofF'. 
Proof Let H = {% G ^nlM = 0}. Then r(n, F) = rank?^ 4-1. When n is even, 

the assertion is obvious; so, we may assume that n is odd. We write ri{a) (resp. 
r2(cr)) for the number of real (resp. complex) places of F over a place a of F'. Then 
the contribution of each a to rank T-L is given by 

mri(tr) + (2m + l)r2(a) = m[F : F'] 4- r2(cr). 

Thus r(n, F) = m[F : Q] + r2(F) + 1. Similarly we can compute 

+ 1 if [F : F'] = 2£, 
r(n[F : F'],^)       , ^   ^   _  ^rrn/   ^ + ^^ + i     ^ ^ ^ ^ = ^ + L 
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From this, we conclude r(n;i?) < r(n[F : F'],!*1') and the equality holds if and only 
if F satisfies (2) or (3). D 

There is some hope that assuming the Leopoldt conjecture for the base field, we 
might be able to prove Conjecture 7.1 over the given field. Anyway this is the case 
where n < 2 and r2 < 1. As we will see in 8.1, as long as x(ResF/F'(M)) remains 
regular, automorphic induction for F/F' preserves near p-ordinarity if all the prime 
factors of p in F' split in F. The Hodge type x(ResF/F'{M)) of the restriction of 
scalar remains regular for x(M/F) in a full dimensional cone inside 1-Cn/F if F is either 
a CM field or a totally real field. If F is neither a CM field nor a totally real field, 
preserving regularity requirement imposes a strong restriction. Anyway, by the above 
proposition, if automorphic induction exists for GL(ri), we can reduce the general 
(totally real) case of the conjecture to the special case where the Leopoldt conjecture 
is valid for F': 

COROLLARY 7.4. Let L be a number field, and we choose a real abelian extension 
F'/Q so that every prime factor of p of F' splits in F = LF1. Then the Leopoldt 
conjecture for the number field L follows from Conjecture 7.1 for F' and p under the 
following conditions: 

1. L is totally real; 
2. Automorphic induction exists for cuspidal cohomological automorphic repre- 

sentations from GL(2)/F to GL{2[F : F'])/^. 
Proof It is easy to see that the Leopoldt conjecture for F and p implies that of L 

and p; so, we may assume that L = F. Let G be the algebraic group Respi/Q(Z)
/
)
X 

for a division algebra D'^ satisfying (Dl-2) with dimp1 D' — 4[L : F1}2. We write 
H — RCSL/QD* for a quarternion algebra D/L satisfying the following conditions: 

(a) D is unramified at every finite place; 
(b) D is either totally definite or D ®Q R ^ M2 (E) x HI x • • • x EL 

Then we look at the universal nearly p-ordinary Hecke algebra h = hnorrf(A^p00; O) 
for H defined in [H89]. Let F be the maximum torsion-free subgroup of T/f (Zp)/rx 

for the p-adic closure rx in r^. Then rankzp F = [L : Q] + 1 + 5 for the defect of the 
Leopoldt conjecture 5 for (L,p). 

Let IP be a minimal prime ideal of h and put I = h/P. We call an (9-algebra 
homomorphism P : I -> O arithmetic if P induces a dominant arithmetic character 
XP 

: TH(SP) -^ Ox. The projection h -t 1 induces, for each arithmetic 0-algebra 
homomorphism P : I —> O, an (9-algebra homomorphism h/Ker(xp)h -> (9, which 
in turn gives rise to the Hecke eigenvalue system of an automorphic representation 
7r(P) of H(A). For a place i of F prime to p, it is known that if 7r(P)[ is special (resp. 
super-cuspidal) for one point P, then 7r(P)[ is special (resp. super-cuspidal) for all 
P, because the corresponding Galois representation restricted to the inertia group I[ 
is rigid if [ \ p. For p|p, 7r(P)p is always principal except possibly when XP = 0? for 
which it could be special. For a given cohomological automorphic representation TT of 
H(A) of cohomological weight 0, if irp for all p\p is special, then TT is automatically 
p-ordinary. Computing limit multiplicity by the trace formula, we can find TT such 
that TT is of cohomological weight 0 and TTI is special for a given finite set E U {p\p} of 
primes. Then we can find I as above so that 7r(P) = TT for a prime ideal P of I. 

Now we choose E so that 
1. every [ G E is totally split in L/F'; 
2. If iis a prime ideal of F' with non-split D[, E contains all places of F over I. 

Then the automorphic representation 7r(P) has automorphic induction 11 (P) in cus- 
pidal (cohomological) automorphic representations of G, because n(P)[ for [ G E is a 
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Steinberg representation and hence square integrable ([B] Section 5). 

Let Aj = (!?[[rpJ ]]. We choose a regular weight x G ^ (which is a square in X{TH)) 

for a p-split torus TJJ of H so that %' — Res^/F'X is still regular. Then h <8>Ai>x K is 
the Hecke algebra of finite level. We find an open compact subgroup U C G(A^00^) and 
have an algebra homomorphism IIj : h7^}ord(UiiB{poc^),K) —> I(8)Aj,x K ^or suitable 
level a(j) depending on j such that PoIIj corresponds to 11 (P) for P factoring through 
1 ®Ai,x K- The group U is independent of j if we choose it sufficiently small. Let 
h' = hnord([/i,JB(p00); (9). Since we have a natural O-algebra homomorphism h7 ->• 
h™;ord(Ui,B{pa^), K) induced by the isomorphism in Theorem 6.2, we may pull back 
IIj to a unique algebra homomorphism IIj : h' —> 1 ®AJIX K (still denoted by Hj). We 
have a Galois representation p : Gal(Q/L) -> GL2(I) such that Tr(p(Frobi)) = ri([) 
for almost all primes I of L. Thus Uj actually has values in I^A^.^O, because the image 
is generated by the coefficients of the characteristic polynomial of indp p(Frobi). 
Taking the projective limit of IIj with respect to j, we get 11 : h' —> I. Since I is 
generated by Hecke operators Ti([) for almost all primes [, and image of the map 11 
is generated by Tr^ndf p(Frobi)). From this, it is clear that I is an h'-module of 
finite type. It is known by [H89] that dim I = [L : <Q>] + 2 + S. This combined with 
Conjecture 7.1 shows 

[L : Q] + 2 + 5 = dim I < dimh = [F' : Q][L : F'] + 2. 

Thus 6 = 0 and the Leopoldt conjecture for L follows. D 
REMARK 7.2. If Conjecture 7.1 is valid for the split GL(n)jpi (instead of G 

associated to division algebra D'), we can apply the same argument as in the proof of 
the corollary to GL(1)/// for a CM extension L/Ff and GL([L : P'^/F

7
 in place ofHfL 

and G/F' • The result is the same, that is, the Leopoldt conjecture for (L,p) follows 
from Conjecture 7.1 for GL([L : F'])/F'- The difficulty of applying the conjecture 
for G associated to a division algebra is that the automorphic induction image of 
an arithmetic Hecke character of L has to be super-cuspidal at ramified places of 
D', which is impossible if the place split in L/F' (which is not always but often the 
case). Anyway the Leopoldt conjecture for a CM field L is equivalent to that for its 
maximal totally real field; so, this case is basically covered by Corollary 7.4- Anyway, 
this remark shows that the function (n,P) i-» r(n,P) is the minimal assignment of 
dimensions so that Proposition 7.3 holds for the given r(l, P) predicted by the Leopoldt 
conjecture. 

We look into the base-change functoriality from Resp'/qGLin) to ResF/QGL(n) 
for a finite extension P/P7. Thus the functoriality is induced by 7r(M/F>) ^ 7T(M/F) 

for pure regular motive M/p' of rank n. The corresponding linear map of the infin- 
ity types of TT (or Hodge types of M) is the the inflation map Infp/pi : %n/F' -t 
T-in/F given by /™/F/F'(X)<T — X(j\F,- This is a representation theoretic dual of 
RespjF'' Since T-Ln/p is naturally a Galois module, we see easily that Im^Infp/F') = 
iJ0(Gal(Q/P,),7^n/jp/), and InfF,/F is obviously injective. We see that r(2,P) - 
r(l, P) = n + r2. Thus we have 

PROPOSITION 7.5. We have r{n,F) > r(n,F') for a finite extension P/P'. // 
P is a CM field with maximal real subfield F', r(2,P) - r(l,P) = r(2,P/) -r(l,P/). 
Thus under the Leopoldt conjecture for F' and p, Conjecture 7.1 for (P, n = 2,p) 
implies that of (F'^n = 2,p). 

We consider the linear map EB : 7in/F © ^/F ~^ T^nC/F given by (mi) 0 (n^) \-> 
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(rrii — nj)o<i<n,o<j<£ fixing an order of the indices (i,j). This is associated to 

X(M) 0 x(iV) ^ x(M (8) N) 

for the dual motive N of N. It is easy to see that Ker(ffl) = (E* ^i1^ U)cr) n (Hn 0 

H^), where ln = (1,1,..., 1).  Take x = ^^^^(In, l^)cr G Ker(ffl).  Then we have 
xc + xw = X^o-^ + ^c<r)(lnj l^V = M^- This shows 2a;<T = [re] for real place a and 
^0- + Xca = [x] for complex places a. Therefore we have rank^ Ker(ffl) = r2 + 1, and 

PROPOSITION 7.6. Suppose that n>£>l.  We have 

rankz Im(ffl) = r(n; F) + r(£ : F) - r2 - 1 < r(£n; F), 

and £fie equality holds only when either n = £ = 2 and r2 = 0 or £ — 1. 
Iterating the above process, we can think of xi EB • • • E Xfc £ T^n1...nk/F for 

(Xij • • -Xife) € WNX/F 0 • • • © T^rik/F' This map corresponds to the tensor product 
of fc-motives: (Mi,..., M*.) H- Mi 0 M2 0 • • • 0 M^, and by induction on A;, we get: 

rankz(Im((xi,...Xfc) i-> xi EB-'-fflx^)) < r(ni x 712 x • • • xn^F). 

Thus our conjecture is compatible with tensor functoriality. 

8. Ordinarity condition via Newton polygon. In this section, we study 
what admissible representations of GLn(Fp) give rise to the p-component of a P- 
nearly ordinary automorphic representation. We fix an algebraic closure Qp of Qp. 
Then we fix two embeddings i^ : Q ^ C and ip : Q ^ Qp. For each field embedding 
a : F <->• Q, we write ooa for the infinite place associated to ioo o a : F -» C and p^- 
for the p-adic place associated to ip o a. 

8.1. Newton polygon and Hodge polygon. We fix one embedding a : F *-} 
Q and an irreducible cohomological automorphic representation TT of G(A) of infinity 
tyPe X-   We recall the (modified) induced module /^(A) = IndB

p,p   ,X defined in 

Section 5 for a continuous character A : T(Fp(T) —>► Q (with respect to the discrete 

topology on Q): Writing X(diag(ti,... ,tn)) = 11?= 1 ^jfe)> ^e modified character A 
is given by 

n 

\{diag{tu ... ,tn)) = JJ A^OMp"1' 

where we normalize the p^-adic absolute value so that Itu^ = l^p^/^rp^l-1 for a 
prime element zu G tp^. We assume that 

1. pa $. E and TTp^ ^ /^(A) for a continuous character A : T(Fp<T) —> Q   ; 
2. TToo is cohomological and associated to a dominant character x € A* as in 3.2 

and 3.3. 
When TT is nearly ^-ordinary with respect to B, we know that the condition (1) is 
satisfied by (5.5).   We write [p^-] for the set of embedding r : F <-» Q such that 

We define the (reciprocal) Hecke polynomial of TT by 

(8.1) HPAT) = n(i - Xi^T) = ^(-irM-^-^Vr. -s(s-l)/2 

i=l s=0 
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By [BZ1] 2.9, if 7^ <->► 1%(A') for another character X1, then A' = A™ for an element 
w G W; so, Hp^ (T) is well defined independent of the choice of A. When TTp^ is 
unramified (and hence TTp^ = /^(A)), this polynomial is the Hecke polynomial of 
the Hecke operators Tj(p) (without modification, see (6.6)) as in [Sh] Theorem 3.21. 
However, when irpa is ramified, the above polynomial differs from the one constructed 
in [Sh] by these Hecke operators. 

Let V = V(7rPo.), and write Vg for the semi-simple part for Tg = IljLi Tjfa) as 
in Section 5. Then as seen in Section 5, Vg is canonically isomorphic to the Jacquet 
module Vg, which is a semi-simple T-module. Write VJ[A] C Vg for the space 
corresponding to the A-eigensubspace VB[A] C VB- Then V^[X] is an eigenspace of 

Ts(w), and its eigenvalue is given by l^lp/"       1*1^=1 ^n-s+jfa) (see Corollary 5.5). 

Let P be a standard parabolic subgroup associated with a partition n — rii +712 + 
 h nr of n into r-parts. Define a tuple 5 = (0 = SQ < Si < S2 < ■ • • < sr) of r -\-1 
integers by nr-i — si+i—Si for all i = 0, • • • ,r. We take an embedding a : F <-» Q and 
write e = e^ for the ramification index of Fp^/Qp. Then for the cohomological weight 
X = !Er(mr,i5

mr,2, • • • ,rnT,n)T £ X C X(T)[I} of TT (thusmr5i > mT^ > ■■• > mr,n), 
we define the Hodge P-polygon Ap = Ap50- by the convex hull of the following 
vertices: 

(8.2) Us^e'1   Y,       E     (mT|i+n-j))|2 = 0,l,...,rl. 
[ T^<r]0=n-Si-\-l J 

In particular, the slope //^^ = /if of the i-th edge of the polygon Ap>0. is given by 

/Q Qx _  Ej=n-^+l Er6[pa](mr,j + n - j) 

On the other hand, we define the Newton P-polygon Ap 0. of TT by the convex hull 
of the vertices over 5 (in the horizontal z-axis) of the Newton polygon of Hpa{T), 
which is above or on the Newton polygon of iJp^T) and coincides with the Newton 
polygon only when P = B. 

8.2. Newton polygon is above Hodge polygon. We keep the notation intro- 
duced in the previous subsection. Let Sa — (so = s^o? • • • > sr — 5o-,r) be the maximal 
tuple of integers in increasing order such that 

l^pV^sJIp — n XT(6 

for the p-adic absolute value |  \p of Q^, where £s  =  diag{l,..., 1, tu,... ,117)   G 
GLn(Fp<T). In particular, we have SQ = 0 and sr = n because ao = 1. 

From the data 5^, we would like to determine the parabolic subgroup P which 
is minimal among parabolic subgroups Q so that TT is Q-ordinary. Let n = n^ -j- 
n^ + ■ • • + n'r' be the partition associated to Q. Define a tuple SQ = (s^)i=0j#<tjr/ by 
nj./_i = s'i+1 — s'i for alH = 0,..., r' — 1 with S'Q = 0. Since as is the sum of eigenvalues 
of Ts(w) on Vg = VB (by Corollary 5.5), we conclude from (6.6) and (6.7) that 

(8.4) TT is Q-ordinary ^=>   SQ C Sa. 
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Here we remark that UJ in (6.6) and (6.7) is given by x_1 by our definition of the 
algebraic induction (6.4). Then we have 

THEOREM 8.1. Let the assumption and the notation be as above. Then we have 
1. If the cohomological automorphic representation TT of infinity type x G Af Z5 

nearly Q-ordinary at p^p for a standard parabolic subgroup Q, then the New- 
ton Q-polygon of Hp^iT) coincides with the Hodge Q-polygon AQJ(T defined 
above; 

2. If ftp„ = IBW> the parabolic subgroup P determined by Sa is the smallest 
standard parabolic subgroup for which TT is nearly P-ordinary at p^; 

3. For every irreducible cohomological automorphic representation TT with TTp^ 
embedded into /^(A) and having infinity type x> the Newton polygon of the 
Hecke polynomial IIpa(T) is on or above the Hodge B-polygon A^)0-. 

Proof. We have already proven the assertion (1) and (2). By the definition of the 
idempotent e^, we know that 

V(as)|p < H    Xr(&) 

This shows that A^ is under or on the Newton polygon of iJp^T). D 
REMARK 8.1. A general conjecture (due to Langlands) is that for each cohomo- 

logical cuspidal automorphic representation n, there should exist a pure motive M/p of 
rank n such that L(s, TT) = L(s,M). Since we can write down the T-factor of 1/(5, TT) 

explicitly by the infinity type ofn, we can predict the Hodge type of Mxp^^C, which 
would be given by 

(8.5) ((ra<r,i,ra<x,n), (m^ra^n-i),..., (ra^ra^n-j+i), ...)•' 

Thus if p totally splits in F7 A^ is exactly the Hodge polygon of M at the infinite 
place ooa. If TT is unramified at pa, we expect that M is crystalline at p^-. Then the 
crystalline realization of M atpa has the crystalline Frobenius map $. Although $ is 
not a linear map, its power (j) = $[r/P":Fp] has a well defined characteristic polynomial 
Hcris,(r(T) of degree n. A standard conjecture is that the crystalline characteristic 
polynomial HcriS^{T) should coincide with the characteristic polynomial H^^iT) of 
the Frobenius at p^- of an i-adic etale realization of M (i\ p). Thus by a well known 
result of Fontaine and Mazur, if p completely splits in F, the Newton polygon of 
Hp^iT) = Hcris^(T) is on or above the Hodge polygon A^. This gives a philosophical 
explanation of the above theorem 8.1. The above theorem is hence a bit stronger than 
this geometric fact, because (i) AB is really above the Hodge polygon if p does not 
completely split in F, and (ii) the theorem also gives an information even when TT 

ramifies at pa (which should corresponds to a non-crystalline motive). 

Since near p-ordinarity of a cuspidal cohomological automorphic representation 
(with respect to the Borel subgroup) implies that TTp^ for all p^- is a subrepresentation 
of an induced representation, as a direct consequence of the above theorem, we see 

COROLLARY 8.2. For cuspidal cohomological automorphic representations, we 
write tensor product functoriality as TT{M) El TI^M') = 7r(M 0 M') from GL(m) x 
GL(t) to GL(n£), automorphic induction functoriality as7r(M) i-» 7r(ResF/F'M) from 
ResF/QGL(n) to Resp'/QGL([F : F'Jn) and base-change functoriality as 7r(M/F>) *-> 
7T(M/F) for a finite extension F/F'. Then, as long as the functorial image remains 
cohomological (that is, the infinity type of the image is regular), automorphic induction 
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preserves near p-ordinarity (with respect to B) provided that all prime factors of p in 
F' split in F7 and tensor product and base-change preserve near p-ordinarity (with 
respect to B) unconditionally. 

The following corollary guarantees semi-simplicity of the nearly p-ordinary Hecke 
algebra: 

COROLLARY 8.3. Let N be the unipotent radical of B. Suppose that IT is nearly 
ordinary at p^ with respect to B.   Then eBH0(N{xp(T),V(7rpcT)) is a one dimensional 

space on which B(Fp(r) acts by a character X such that \X\P =   Ylr^\p(r]Xr1/r1^r   , 

Where 5 — Yla(n^n ~ 1> • • • '^)Cr  an^ V ~ Scr ^nV> 
Proof By near j9-ordinarity, we have from the argument in Section 5 that TTp^ 

is a subquotient of Ig (A) for a character A : T(Fp(T) —> Q . By near 5-ordinarity, 

we know from the theorem that we can choose A so that |A|p = IlrGtp.r] Xr ^ov 

X' = X^-1^-  Writing X'T — (mr,i5 • • • 5mr,n)5 we have rar,i > mr^ > —• > rnT,n for 

niA,o(6)ip< n iix;^) 
r€[p<T]s=l 

In particular, A^ for w G W are all distinct. Then by Proposition 5.4, we know that 
CBVB C ®weW A™ as jB(Fp(T)-modules for V — ^(TTp^), and as we have already seen 

in Corollary 5.5 and (4.6), for Aw-eigenvector v G VB, we have 

t;|T,(tu)= I    H   XT(&)]      M^(6)t;=(|A(6)|;1Aw(6))v. 

Thus from |A~1Au;(^s)|p < 1 for at least one 5 if w ^ 1, we conclude that es kills 

the A^-eigenspace if^i/; / 1. Therefore CBVB is at most 1-dimensional and actu- 
ally is equal to the A-eigenspace under the above isomorphism. Since Vg = VB as 
R(B, A00)-modules (Proposition 5.1), this shows the desired assertion. D 

Appendix A. Semi-simplicity of Hecke algebras for reductive groups. 
We can generalize from cuspidal cohomology of GL(ri) to interior cohomology of 
general split reductive groups the argument which proves semi-simplicity of the nearly 
ordinary Hecke algebra of p-power level, which we describe here. 

Let GQ/F be a connected reductive group over a number field F, and we put 
G = ResF/QGo. If Go is split over Fp = F ®Q Qp, we shall prove semi-simplicity 
of the commutative Hecke algebra acting on the nearly ordinary cohomology group 
H^ord(X(U),L) C H?(X(U),L) for a modular variety X(U) associated to an arbi- 
trary p-power level open compact subgroup U of G(A^00^). Here the locally constant 
sheaf L on X(U) is associated to a rational representation of G, and H? indicates 
the image of the compactly supported cohomology group in the cohomology group 
without the support condition. 

There could be two ways of proving the semi-simplicity. The first one is a bit far- 
fetched: We interpolate p-adically the cohomology group H^ ord{X(U),L) varying 
rational representations L, getting a space V) which is a module of finite type over 
the Iwasawa algebra A = 0[[T(Zp)]] of the torus T = RCSF/QTO for an Fp-split torus 
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TQ C Go- Then one proceed to prove that Vx = V ®A,X O for each dominant weight 
X is isomorphic to H^ ord(X{U),L) for the rational representation of highest weight 
X_1 and the maximal compact subgroup U C G(A00). If we find densely populated 
X (in 5pec(A)(0)) with the above specialization property, the Hecke algebra h of V 
(over A) specializes along x to the semi-simple one of level 1, and hence h must be 
reduced. Then by specializing h to p-power level Hecke algebra, we get the desired 
semi-simplicity for almost all such specializations. This method has been exploited 
for GSp(2g) in [TU] and probably works well for reductive groups G yielding Shimura 
varieties. However this method is ineffective to prove semi-simplicity for all x and all 
p-power level. Also this method is probably not feasible for general G whose modular 
variety does not have complex structure, because in such cases, h is a torsion A- 
module. 

We should emphasize here semi-simplicity (or unramifiedness) at arithmetic 
primes of the universal nearly ordinary Hecke algebra h is important in constructing 
p-adic L-functions on the spectrum Spec(h) and relating its values with complex 
L-values of automorphic L-functions. 

In earlier works of the author, the semi-simplicity of such Hecke algebras for 
GL{2)iF is proven using the theory of old and new forms. A key point of this method 
is to prove one-dimensionality of nearly ordinary vectors in each irreducible (coho- 
mological) automorphic representation, carefully analyzing old vectors. The purpose 
of this paper is to prove directly the semi-simplicity for all arithmetic characters 
X ' T(ZP) —> (Q)p and all reductive G split at p. We prove via the theory of Jacquet 
modules of local automorphic representations ([BZ] and [BZ1]) that the nearly ordi- 
nary vector is unique up to constant multiple if the representation is irreducible. This 
is a generalization of the argument in Section 5 to general reductive groups. Since 
the automorphic representation occurring in the cohomology group is unramified out- 
side p, the one-dimensionality gives rise to the semi-simplicity. Our final result is 
Corollary A.4. 

A.l. Jacquet modules for reductive groups. Let G be a split connected 
reductive group over a finite extension F of Qp. Let TT be an admissible representation 
of G(F) on a vector space V over a field K of characteristic different from p. We 
suppose that G acts on V from the right. Fix a Borel subgroup B with split torus 
T = B/N for the unipotent radical iV. A parabolic subgroup P D B is called 
standard. We fix a standard parabolic subgroup P with unipotent radical A^p. 

Since the characteristic of K is different from p, we have a Haar measure of 
Np(F). We then define 

V(P) = V(P,w) = {v-v7T(n) eV(7r)\veV(7r), n e Np(F)} , 

and put Vp = Vp(7r) = V/V(P), which is called the Jacquet module. We take a 
sufficiently large, open compact subgroup Uw C N(F) for each w = v — V7r(n) e V(P) 
so that n G Uw. Then we see that /^ V7r(u)du = 0 for every open subgroup U of N(F) 
containing Uw. Write UQ = N(V) for the p-adic integer ring V C F, and choose the 
Haar measure du so that J^ du — 1. We also choose an increasing sequence of open 
compact subgroups Ui indexed by 0 < i E Z such that [ji Ui — N(F). Then the map 

v »-). lim {Ui : L^o)-1 /   V7r(u)du 
i-^oo Ju. 
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gives rise to a section of V -» Vp. Thus V = Vp © V(P) canonically, and the 
association V i-* Vp is an exact functor from the category of admissible representations 
of G(F) into the category of admissible T(F)-modules. 

PROPOSITION A.l. Suppose K has characteristic 0 and thatir is absolutely irre- 
ducible. Let W be the Weyl group ofT in G. Then we have dim^ VB < \W\ for each 
Borel subgroup B. 

Proof. By extending scalar, we may assume that K is algebraically closed. If 
VB = 0, there is nothing to prove. Thus we suppose that VB T^ 0. Then we can 
find a character A : T{F) -> K* which gives the representation of T = B/NB on a 
simple factor of VB- Then TT is a factor of Ind^J A by Frobenius reciprocity [BZ1] 
2.3. By [BZ1] 2.8, the length of the composition series of VB as T(F)-modules is then 
bounded by \W\. Since T is abelian, this shows that dim^ VB < \W\. D 

For each character A : T(F) -> Kx and w e W, we write A™ for another character 
of T given by Xw(t) = Xiwtw'1). 

~ ~ 1 /2 
COROLLARY A.2. Suppose that VB[A] ^ 0, where A = 5^ A for the right module 

character 6B  on B.    Then TT C Ind^. J A.   // \w(t) for w G W are all distinct, 

VB C ©^W A^ as T{F) -modules. 
The proof is exactly the same as that of Proposition 5.4; so, we leave it to the 

reader. 

A.2.  Double coset algebras. Let 

D = {x e TiF^xNsWx-1 D NB(V)} 

be the expanding sub-semigroup of T(F). When G = GL(n), this semi-group is 
exactly equal to the one VB defined in (4.1). Let S be the set of simple positive roots 
of T with respect to B. Then for each subset 0 C X, we have a parabolic subgroup 
Pe = BWQB for the subgroup We of the Weyl group W generated by reflections 
associated to S - 0. Traditionally the above standard parabolic subgroup is denoted 
by Ps-e (e.g. [J] II.1.8), but we use the symbol Pe for that. Write Le for the Levi 
subgroup of Pe and write Z® for the identity connected component of the center of 
Le- We consider the orthogonal complement 

X*(0) = {£ € X,(r)|0(O - 0 V0 E E - 0} 

in X*(T) - E.omalg-gp(Gm,T). Then X*(Q) = X*(Ze) and rankzX>(0) = |0| + 
rankZ for the center Z C G. For each a G S, we therefore find a unique generator 
£a £ X*({a}) modulo X*(Z) so that $a(^7) G D for a prime element zu G V. Then D 
is generated by €a(m) for a G S and T(V)Z(F). We write DQ for the sub-semigroup 
of D generated by {£a(^)|a G D} and Z(F). We write simply Pa = P{ay and 
La — -^{a}- 

We consider A = A^ = B(V)DB(V), which is a sub-semigroup of G(F). For 
simplicity, we write B for B(V) and iV for NB{V).  Since D commutes with T, for 

B=       \_\      (^BfnBJu and iV =       [J      (r^CniV)^. 
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This shows 

(A.l)    N€N=       [J       NZu=       LI       Nu€ and 
ueN/t-iNt uGSNt-i/N 

BZB=       [J       B€u=       [J       jB^- 
ueN/z-1N$, uetNt-i/N 

In particular, N£N/N ^ B^B/B. 

We now consider the double coset algebra i? = i?(iV, A) spanned over Z by A^a^A^ 
for x G D. We let ij act on v e VN = H0(N(V), V) by 

(A.2) v\[N€N] =       Yl      "*(&) =  /        virffldu. 

Let {^Q;(^)}aES be the generators of D modulo center. Then for £ = Yla £a, we have 

iV(F) = U^o^iVr^ 

Thus writing T(£) = A^^A7" as an operator on V, we see easily from (A.l) that T(^) = 
T{Zy and T(£) is nilpotent on V(B)N by (A.2). 

Let tN be the opposite unipotent subgroup of N. We put Ui(r) = tN(r)T(r)N, 
where X(r) is the kernel of the reduction map: X(V) -t X(V/wrV) for an algebraic 
group X/y. Then Ui(r) is a decreasing sequence of open compact subgroups of G(F) 
with HrU^r) = N and U^r^U^r) = Uue^N^/N Ui(r)u^ for £ G D. Thus F^ = 
|Jr H

0(Ui(r), V), and the finite dimensional space H0(Ui(r),V) is stable under T(f). 
Thus we can decompose T(£) = 5 + n for commuting sum of a unique nilpotent 
operator n and a unique semi-simple operator s first on each H®(Ui(r), V) and then 
over the union VN = \Jr i7

0(t/i(r), V). Thus we find F^ = V(B)N 0 s^) and the 
projection V\-» V© is injective on ^(V^). 

Since VTr^""-7') is TV-invariant for a sufficiently large j, the projection VN —> VB 

is surjective. Thus s(VN) = VB, we get a i?-linear isomorphism 

V
N

S*V(B)
N

®VB. 

Let A : T(F) -> i;fx be a character intervening in the r(F)-module Vg. Since T 
is abelian, we can always find a subspace Vj3[A] on which T(F) acts via the character 
A. We write Adjsr for the adjoint representation of ResF/Qp(T) on the Lie algebra 
of ResF/Q(N). Then det(Adjs[(x)) = p2(x) for the half sum of positive roots p with 
respect to Resp/q (B). Since N acts trivially on VB, we have 

(A.3)    ?;|[A^Ar] = [N : x^Nx^^v = \ det(AdN{x))\pX(x)v = \p2(x)\pX(x)v, 

where "| |p" is the standard p-adic absolute value such that IPI"
1
 = p and Ad is the 

adjoint representation of ResF/Qp(T) on the Lie algebra of ResF/Qp(N). 

A.3. Rational representations of G. We now suppose that F is a number 
field and Go is a reductive group defined over F split at Fp for all primes p\p. We 
then consider G = ResF/qGQ. We suppose that Go is actually defined over Ov = 
0F <g)z ^p as a smooth (relatively connected) split group scheme over Op, where 0F 
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is the integer ring of F. Then G is a generic fibre of Resop/zpGo/op- We sometimes 
write (jr(Zp) and Go (Op) for Zp-points (resp. Op-points) of these schemes defined 
over p-adic integers. We fix a split Borel subgroup .Bo C GQ/OP with unipotent 
radical iVo, and write Bp = Bo(Fp) whose unipotent radical Np is given by No(Fp). 
We define B = Resop/zpBo, N = Resop/zpNo and T = B/N = Res0p/ZTQ for 

TQ = BQ/NQ. Let G(Z) C G(A00) denote a maximal compact subgroup (by abusing 
notation) as maximal as possible (this means that we assume a local component of 
G(Z) to be hyperspecial if one need to assume it in order to assure that the spherical 
representation has only one fixed vector under the maximal compact; see [T] 3.8 and 
[Ca] III). We assume that the p-component of G(Z) is given by G(Zp). 

We write Dp (resp. i^o,p) for D (resp. Do) with respect to £?p and the split torus 
Tp = Bp/Np. Let p be the Jacobson radical of Op = OF ®Z Zp for the integer ring 
0F of F. Thus p = Up\pP0P' Define 

(A.4) Uo(r) = {ueG(Zp)\u   mod pr e B0(O/prO)} 

U^r) = {ue G(Zp)\u   mod pr E iVo(0/prO)} . 

We fix a subgroup S such that l7o(r) D S D Z(Zp)f/1(r) for r > 0. Then 

(A.5)    A = Ap = Uo(r)([[DoiP)Uo(r) = Uo(r)([[Dp)Uo(r) is a semi-group. 

p\p P\P 

We consider for a topological module A, the space of continuous functions: C(A) = 
Cs{A) = {0 : S/Z(ZP)N{ZP) -> A}. We would like to make C{A) a left A"^module 
for the opposite semi-group A"1. For that, we first define a left action of Ap on 
Ys = S/Z(ZP)N(ZP). Since S acts on Ys = S/Z(ZP)N(ZP) from left and Uo(r) = 
ST(IiP), we only need to define a left action of Do = Hpip A),p- Pick y G 5 and 
consider yN(Zp). Then for d e DQ, dyN^dr1 = dyd-ldN(Zp)d-1 C dyd-1N(Qp) 
and dyd~1N(Qp) is well defined in G((Q)p)/Z(Zp)iV((Q)p). Writing tN for the opposite 
unipotent subgroup of G, we have the Iwahori decomposition Uo(r) = f7/T(Zp)Ar(Zp) 
and 5 = U'T'N(ZP) for open subgroups U1 C tN(I.p) and V C r(Zp). Then we see 
dU'd-1 C U' and dN(Zp)d~l D N(ZP) by the definition of D. This shows that the 
coset dyd~1N(F) Pi 5 is well defined single coset of N(ZP), which we designate to be 
the image of the action of d £ Do • This action extends to that of the semi-group A 
by an obvious way. We now let A"1 act on Cs(A) by d(j)(y) = (j)(d~1y). In this way, 
Cs(A) becomes a A~1-module. 

We now fix a finite extension K over Qp which contains all conjugates of F in 
Qp. Let O be the p-adic integer ring of K. We now assume that A is either an 
0-module of finite or co-finite type or a vector space over K. We put the p-adic 
topology on module of finite type and vector spaces over K and the discrete topology 
on module of co-finite type. We consider the quotient scheme G/N defined over K, 
and its structure sheaf OQ/N- We consider the algebraic induction module: 

(A.6)    Hx\ K) = {(cj>: G/N -»■ K) € H0(G/ZN. 0G/N)\4>(yt) = X(i)^(y) Vt € T} , 

where x € X(T) = Romalg-gp(T, Gm). We let G act on L(x; K) by g4>(y) = 4>{g-ly). 
Then I/(x; K) — IndB X-1; which is the induction in the category of scheme theoretic 
representations (that is, polynomial representations). We write this representation as 
px:G^GL{L{x;K)). 
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Suppose that x is trivial on the center for the moment. We restrict functions 
in L{x\K) to Ys = SIZ(ZP)N{ZP) and get an embedding L(x\K) ^ Cs(K). The 
image is stable under the action of A"1 and for £ G D-1 and u G N(ZP), 

(umv) = MC^y) = xiOpiHmv) for 0 e L(x;K). 
When we call L(x',K) a A~1-module, we take the action induced by Cs(A). When 
we call L(x]K) a G-module, we take the action given by px. The two actions differ 
by scalar. We then define Ls(x; O) = Cs(0) D L(x; K), which is a A~1-module (but 
not a (^(Qpj-module). By definition, the action of A"1 factors through A~1/Z(A~1) 
for the center ^(A-1) of A;1. We then define Ls(x; K/O) = Ls{x\ O) ®o K/O. For 
each character e : T(0/pr) —> Ox, we may regard e as a character of Uo(r) because 
Uo(r)/Ui(r) = To(0/pr). Then we define a A^-module by 

(A.7)    L(xe;O)=eL(x;O)cCU0ir)(O)   and 

L(xe; K/O) = L(xe', O) ®o K/O C CUo(r)(K/0). 

Let x '• T(Zp) -> Ox be a general character which may not be trivial on Z 
but induces an algebraic character xo on an open neighborhood of the identity. We 
can always find an algebraic character ip e X(G) = Homa^_^p(G, Gm) such that 
rflz — Xo for some positive integer h. We take a character tpo : G(Qp) -> Ox such that 
I/JQ = ip and ^o = X on an open neighborhood of the identity in Z(Zp). Then we have a 
unique subspace in Cs(K)®ipo isomorphic to L(x] K) as 5p-modules, which we again 
denote by L(x; K). We fix such a ipo and define Cs(ip, A) by C(A) Qipo- The choice of 
ipo does not matter for our purpose. We then define L(x; O) = L(x; i;C)nC5('0; O) and 
L(x\K/0) = L(x;0) 0 K/O. These are well defined A^-modules. The action of 
A"1 may depend on the choice ofipo, but the difference is only a unit-scalar multiple 
(in O). 

A.4. Nearly p-ordinary representations. Let U be an open subgroup of 
G(Z). We consider the associated modular variety: 

X(U) = G(Q)\G(A)/UC00+Z(A), 

where COO+ is the identity connected component of the maximal compact subgroup of 
the Lie group G(R) and Z C G is the center of G. We fix a character x • T(ZP) -» Ox, 
which is algebraic on a neighborhood of the identity. We assume that e = XXQ

1
 factors 

through To(0/pr) for xo G X(T). We call x dominant if LfaK) / 0. Then we fix 
a p-adic Hecke character ij; : Z(&)/Z(Q)Z(M)+ -> Ox such that ip coincides with 
X on T(Zp) fl Z(Qp). This condition tells us that ip is a p-adic avatar of a complex 
Hecke character ip : Z(A)/Z(Q) -> Cx. This means that i^(rp(x)) = i"1^^)) for 
all x G ^(A) with x^ = XQO = 1 and the oo-type of ip is given by Xolz- We then 
define a right action, if Up C Uo(r) ofuz G UCoo+Z^A) (u G UCoo^ and z G ^(A)) on 
L(x\A) by 0|u^ = 'ip(z)£(up)px(up

l)(p. The action is well defined since x = ^Xo = ^ 

on Z(QP) fl U. We write this right Z(A)U-module by L(x,^; A). 

We define the covering space X(U) of X(U) by 

(A.8) ^([/) = G(Q)\(G(A) x L(x,^; A))/C/C00+Z(A), 

where ^{x,(p)u = (7x1/, 01 u) for 7 G G(Q) and tx G UCo0+Z(A). We use the same 
symbol L(x, ip] A) for the sheaf of locally constant sections of X(U) over X(U). 
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We consider the limit, shrinking J7, 

(A.9) £{A) = &{x,$]A)=]^uH?(X(U),L(x,&A)). 

On the space C(K) the group G(A00) acts from the right via a smooth representation, 
which is completely reducible. The complete reducibility follows from the fact that 
the interior cohomology H? is embedded in the square-integrable cohomology and 

hence the representation over C is unitary ([Cl] 3.17-18). Here we regard L(x,^JJK") 

as a G^Qp)-module via the representation px. Thus in particular, we have an action 

on H0(U,Cq(x,&K)) = ^{X:0:K)u of the double coset algebra Ru = R(U^ x 
B(Zp),G(Apo0) x Ap) of double cosets UxU with x G G(Apo0) x Ap, where U = 
Up x U^ and we have assumed that Up C Uo(l). 

As already described, we have a unique co-character £a : Gm -> T for each a G S 
such that ^a(tu) (a G S and parameters w of Fp) gives a minimum set of generators of 
Dp modulo Z(Fp). We consider the double coset T(a) — U£sa{p)U. The double coset 

acts on £(x, '0; A) for A = O and if/O via the A~1-module structure on L(x, ^j A). 
The corresponding operator will be written as T(a). The operator T(a) is determined 
(up to unit multiples in O) independently of the choice of £a, because ^(A"1) acts on 

L(x,'0; A) by a character T/JQ with values in Ox, and ^(VJ) is unique modulo center. 
We then make a product T = HaGS r^(Q:)- 

Similarly, the double coset T(a) acts on Cq(x^]K)N^z^ through the action of 
G(A00). The corresponding operator will be written by the same symbol T(a). Then 
we put T = Yla^T^a). Since the action of G(A00) is defined using the G-action 
px on LfaK)' Then the two operators T(a) and T(a) are related on the image of 
£q(x,t,0)N^by 

(A.10) T(a) = x(^(p))~1T(a)  up to p-adic units if x\z ^ 1. 

The limit e = linin^oo Tn! exists on Hq(X(U),L(x^', A)) for A = O, K and 
if/O (see Section 2). Thus the limit e exists on Cq{x^\ A)N{U for A = (9, AT/O 
and if. It is easy to see, if £/p D iV(Zp), 

(A.ll) Hii{U,eC'>{x^K)N^) = e (^(^(I/),^,^^))) • 

We write £9
nt0rd(x^'^) for e£qix^\ A)1^^1^. An irreducible representation TT of 

G(A00), which is a subquotient of /^(x,^;^), is called nearly ordinary of p-type x 
if e (V(7r)iV(Zp)) 7^ 0 for the representation space V{n) of TT. For a subset 0 C S, we 
can think of T(0) = naee^) and ee = limn^^Tg1. If eeV^Tr) 7^ 0, we call TT 

nearly 0-ordinary or nearly PQ -ordinary. 

A.5. Semi-simplicity of interior cohomology groups. Recall that 2p is the 
sum of positive root of T with respect to B. If TT is a local component of a nearly 
p-ordinary representation of p-type x, then for its p-component TT^ (acting on V), its 
Jacquet module VB i1 0, and hence, by Corollary A.2 and (A.3), we find a character 
A : T(QP) -► Kx such that Vk[A] ^ 0 and |p-2A(x)|p = |xo(^)|p (because \\p[x) ip p 
IPW  

1
IP)5 where "| |p" is the p-adic absolute value on K normalized so that |p| = -. v 



708 H. HIDA 

By definition, the right modulus function &B is given by 

f        (j){u)du = 8B{b) [        (j)(b-lxb)du. 
/N(QP) JN(QP) 

This shows that 

(A.12) SB = \p%\ 

where p2 = detoAdw is the sum of positive roots, and p is a sum of fundamental 
weights with respect to B. This shows 

(A.13) |A|P = \xop\P. 

Note that xo is non-negative with respect to B because xo is dominant. Since xo > 0? 
XoP > 0, that is, xoP is in the interior of the Weyl chamber of B. This shows that if 

(A.14) \><w(d)\P < |A(d)|p    for all d G D, 

because W acts simply transitively on Weyl chambers and each element in the interior 
of the chamber of A has the maximum p-adic absolute value on D in its conjugates 
under W. In particular, we get 

THEOREM A.3. Let n be an irreducible nearly ordinary representation of p-type 
X- Then there exists a character A : T(Qp) -> Kx such that A *-> VBCTTP) ^ @wew^w 

and \X\p = \px\pf where p is the sum of fundamental weight with respect to B and | \p 

is the absolute value on K. Moreover eH0(N(Zp),V(,Kp)) is one dimensional, on 
which T(0 = UZU for^eD acts by scalar |/>(f)|pA(f). 

Now suppose that U = Up x G(ZP) with C/i(r) C Up C Uo(r) for r > 0. For 
prime ideals i \ p of Op, we consider T[(a) = U^a{w[)U for the prime element W[ 
in 0[. Then we define the Hecke algebra /i^ord(x,,0;^) by the iT-subalgebra of 

Endjft:(ei7!
9(X(C/),I/(x,'0;i;f))) generated by the operators T(a) for all a G E and 

Hecke operators associated to double cosets UZJJ with £p = 1. Since 

eH?(X(U),L(x,faK)) = H0(U,eC^x,^K)N^), 

we get the following semi-simplicity of the Hecke algebra from the fact that the spher- 
ical irreducible representation of Go(Fi) has a unique vector fixed by the maximal 
compact subgroup: 

COROLLARY A.4. Let the notation and the assumption be as above. Then we 
have ^ 

1. The Hecke module eH^(X(U)1L(x^'-) K)) has a base made of common eigen- 
vectors of hq0rd(x^'-)K) if K is algebraically closed; 

2. The Hecke algebra hq'ord(x^'iK) is semi-simple. 

Appendix B. Correction to [H95]. Since we quoted often results proven in 
[H95], we here list some of serious misprints and corrections to the result in the paper. 
One serious mistake is the sign of the character x in Section 7 (basically, we need to 
change x by x_1 'm Lemma 7.2 and its proof). Also in Lemma 7.2, tvi (i = 1,... ,n) 
have to be dominant characters with respect to (d, tB) for the lower triangular Borel 
subgroup tB instead of the upper trianguler one. In the list below, P.5 L.5b indicates 
the fifth line from the bottom of the page 5. 
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Page, line Statement in [H95] Correction 

P. 453, L. 5 
P. 454, L. 6b    Hj,_n^d H P—n.ord for r = r(x) 

P. 454, L. 6b    tfj;_n.OPd(*o,J>(p),Cp,,K])    ^.^^(^O.PW.CP.P)^ 

P. 463, L. 11 
P. 466, L. 9b    xMOrVxtf-1) 

P. 466 L. 3b     |x(7r(d))|p > \n{*{d))\v 

P. 467 L. lb 

P. 468 L. 2 

u)i(diag{ti,...,tn)) 
= ni<j<i *i 

—     lll<i<n-l ^'j 

P. 468 (**) (www) 

P. 468 (**) xWO) 

P. 468 L. 11 xOr(d)) 

P. 468 L. 16 |A(6)|p < lxWO)lP 

x^^))^^-1) 

Ix(7r(d))lp < Wmp 

U- ii(diag(ti,...,tn)) 
-i 

— ni<j<z*j 

X(diag(t1,...;tn)) 

—      lll<i<n-l^' 

xWd))"1- 

|A(6)IP<IXW0)-
1
IP 
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