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AUTOMORPHIC INDUCTION AND LEOPOLDT TYPE
CONJECTURES FOR GL(N)*

HARUZO HIDAT

1. Introduction. Let F' be a number field and Gy be a non-split inner form of
GL(n),p split at a rational prime p and co. We define G = Resp/gGo. We start
with cohomological study of automorphic forms on the reductive algebraic group G g
which is isomorphic to a product of copies of GL(n) over a number field. In particular,
under not so restrictive conditions on G, we shall show that the nearly p-ordinary
(cuspidal) cohomology group

H = H;'Iz.ord(Xl (Npoo)7 QP/ZP) = li—rng;‘]L.ord(Xl (Npr)’ QP /ZP)

is of co-finite type over A = Z,[[T(xp)]] for a maximal (split) torus T/z of GL(n)
(Theorem 6.2), where the injective limit is taken with respect to the restriction maps,
t, = t ®z Z, for the integer ring v of F' and A is the completed group algebra:
A = lim ,Zy[T(Z/p"Z)). Thus for a suitable ¢ = r (that is the degree, called the
bottom degree; see (BD) in 6.3 for the exact formula of 7), we will also show the
finiteness over A of the universal p-adic Hecke algebra h™°"? defined as a subalgebra
of Enda (H) generated by the standard Hecke operators (Corollary 6.3). Actually
we prove, under some assumptions, that the Hecke algebra of weight x € X(T) is
obtained, up to finite error, as the specialization of the universal Hecke algebra along
the algebra homomorphism x : A = O induced by x (Control theorem: Theorem 6.5).

Here we do not disregard the torsion part of finite level cohomology groups (al-
though in my earlier works for GL(2), we restricted our study to their torsion-free
part), because the Hecke algebra might be too small for non totally real or non CM
fields if we kill torsion of each cohomology group.

Although the algebra h™°"? satisfies various good properties as listed above, ba-
sic invariants in ring theory, for example, its Krull dimension, are still difficult to
determine in general. The structure of h™°"¢ is known to our satisfaction only for
GL(1) and GL(2) over Q, for which h™°"® and the Pontryagin dual H* of H are
projective A—modules of finite rank. More generally, we know the expected value of
the Krull dimension for GL(1) over an arbitrary number field and for all inner forms
of GL(2) over totally real fields F', assuming the Leopoldt conjecture for (F,p) (see
the description after Conjecture 7.1 for known information). However, we can make
a reasonable guess for the dimension of h™°® for general G. Here we shall make the
following conjecture predicting the Krull dimension of h™°7¢:

CONJECTURE 1.1. Suppose that Gy is an inner form of GL(n),r. Then we have

m[F:Q]+1 if n = 2m,

di hn.ard® <
im( Z"Q")—{m[F:Q]+7'2+1 ifn=2m+1,

where 7o is the number of complex places of F'.
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It might look odd to have inequality, but depending on the prime-to—p level N,
the Hecke algebra may be just trivial. Also the algebra h™°"¢ might be very small
if F' is neither a totally real field nor a CM field. In other words, we conjecture
the equality in the above formula if N is sufficiently small (so its norm sufficiently
large) and if F is either a totally real field or a CM field. This conjecture is a
GL(n)-version of the Leopoldt conjecture. In fact, when m = 0 (& n = 1), the
conjecture is just the Leopoldt conjecture for p and F. We will check in 7.2 the
compatibility of the conjecture with various Langlands functoriality; in particular, it
behaves well under automorphic induction. If we admit the automorphic induction
functoriality (see [Cl] 1.1) relative to finite extensions L/F" for real abelian extensions
F'/Q and Conjecture 1.1 for GL(n) p:, the above conjecture implies the original
Leopoldt conjecture for an arbitrary totally real field F' (see Corollary 7.4). Note here
that the Leopoldt conjecture is known to be true for abelian extensions F'/Q.

The above conjecture was first made in 1994 when I started writing this paper
(after having finished an earlier work [H95]) and was also stated in a series of lectures
I gave at the Galilée Institute of Université de Paris-Nord in June 1994. Earlier
than this work, the lower bound of the Krull dimension of the full and p-ordinary
deformation ring of a Galois representation had been computed by Mazur [M], and
the formula of Mazur for p-ordinary case is the same as the one presented above
for modular two dimensional Galois representations over F' = Q. As conjectured by
Mazur, for modular two dimensional representations, the Hecke algebra is isomorphic
to the deformation ring (at least in the p-ordinary cases); so, the identity of the
formulas for » = 2 is a natural consequence of Mazur’s conjecture, which is now a
theorem of Taylor-Wiles [W] and [TW] (see also [HM] Section 4.3). In the meantime,
generalizing Mazur’s perspective, J. Tilouine [Ti] has made a conjecture predicting
the Krull dimension of the (nearly p—ordinary) universal deformation ring deforming
a fixed p-adic Galois representation having values in a smooth reductive group (over
Zy). Of course, if the deformation ring for GL(n) is isomorphic to the Hecke algebra,
Conjecture 1.1 is a special case of Tilouine’s conjecture. One of the purposes of this
paper is to describe evidences for the conjecture from the automorphic side. Related
to this, we will prove the following fact, as a special case of Theorem 8.1:

If p splits completely in F' and 7 is nearly p—ordinary, then the Newton polygon of the
Hecke polynomial of m at p coincides with the Hodge polygon of the motive (conjec-
turally) associated to .

Thus if such a motive exists, the near p-ordinarity of automorphic representations
implies the near p-ordinarity of the Galois representation (in the sense of [Ti]) of
the motive. In particular, from this, we can deduce that the Newton polygon of any
cohomological automorphic representation is located on or above the Hodge polygon.
The corresponding fact for motives is a well known result of Mazur and Fontaine. We
have said that the above fact is a special case of Theorem 8.1, because we actually
prove a precise result without assuming the splitting of p in F/Q (see also Remark 8.1).

Since automorphic forms are invariant under the left translation by rational ele-
ments in G(Q), h™°"¢ is actually an algebra over A = Z,[[T'(t,)/t*]] for the integer
ring v of F. If we admit the Leopoldt conjecture for F' and p, we see that

dim(A @z, Q) =(n—1)[F: Q] +r, + 1.

Thus dim(A ®z, Q) is possibly equal to dim(h™°"¢ ®z, Q) if and only if one of the
following conditions holds:
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(1) F is totally real and n = 2;
(i) n=1.

Admitting the conjecture, we see
()
. . - m—1[F:Q]+ry; if n=2m,
dlm(A ®ZP QP) - dlm(hn.o ! ®ZP Qp) - { 7(774[F : é% Q] i if n=2m+1.

We write A for the right-hand side of the above formula. The left-hand side of (*)
measures the non-abelian (or non-Leopoldt) part of the above conjecture. It seems
plausible that if A < 1, one can prove (*) without assuming the Leopoldt conjecture.
This has been basically done in [H88] and [H89] when A = 0, that is, the two cases
(i) and (ii). It is remarkable that the non-abelian part of the conjecture is proven
in Case (i) without assuming any particular condition on the structure of the Galois
group of F over Q, because only known cases of the Leopoldt conjecture assume that
F is abelian either over Q or an imaginary quadratic field. This is one of the reason
why we believe that the above conjecture (or at least its non-abelian part) might be
more accessible than the original Leopoldt conjecture. Thus the next target of our
investigation would be the case where A = 1. We see that A = 1 if and only if one of
the following conditions is satisfied:

(a) F has only one complex place and n = 2;

(b) 3<n<4and F=Q
The formula (x) has been proven in [H94b] Sections 5 and 6 for all inner forms of
GL(2) in Case (a). We shall prove in this paper the conjecture for some inner forms
of GL(3) /g and GL(4)q (see Corollary 6.3 and the explanation after Conjecture 7.1).

The two key ingredients of the proof of the control theorem (Theorem 6.5) are
strong multiplicity one theorem valid for cuspidal cohomology on GL(n) and the semi-
simplicity (Corollary 8.3) of the (cuspidal) nearly ordinary Hecke algebra. The proof
of the semi-simplicity can be generalized to interior cohomology on any reductive
group split at p (Corollary A.4). We prove the semi-simplicity in Sections 5 and 8 for
GL(n) and in Appendix A for general reductive groups. Since this paper is based on
the results obtained in [H95], we have added in Appendix B a list of corrections to
[H95].

1.1. Notation. Here is general notation we will use throughout the paper. First
of all, we keep the notation introduced in Section 1 throughout the paper. For two al-
gebraic groups G O H and a polynomial representation p of H (that is, a morphism of
algebraic groups from H to GL(d) for some d > 0), Ind% p indicates the induced rep-
resentation in the category of polynomial representations of algebraic groups. Thus,
for a representation space V of a polynomial representation p: H — GL(V),

Ind¢% (p) = {f:G-oV: polynomial]f(gh) =p(h"V)f(g) for h€ H}.

Then the action of G is given by gf(g') = f(g~'g'). For compact p-adic groups
G D H and a continuous representation p of H on a topological module V, ind$p is
the representation of G on

indfV = {f: G = V: continuous|f(gh) = p(h*)f(g) for h € H},

where ¢ is a suitable involution of G (usually P* = h™!) specified in the text. Then the
action of G is given by ¢gf(¢') = f(g'g’). For locally compact p-adic groups G O H
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and a smooth representation p of H acting from the right on a vector space V over
a field of characteristic 0 with the discrete topology, Ind$p is the right G-module
of locally constant functions f : G — V compactly supported modulo H satisfying
f(gh) = f(g)p(h) for h € H. The action of G on such functions f is given by
f(g")g = £(g9").

For an n; x n; matrix A; for ¢ = 1,...,r, we write diag(44,...,4,) for the
n X n matrix (n = n; + --- + n,) whose i-th diagonal block is 4; (: = 1,...,7)
and all the other off-diagonal blocks are zero. To a partition n = ny + -+ + n,,
we can associate a standard parabolic subgroup P of GL(n) generated by Mp =
{diag(As,...,Ar)|A; € GL(n;)} and upper unipotent matrices. The notion of near-
ordinarity depends on a choice of a conjugacy class of a proper parabolic subgroup. In
other words, for a fixed standard parabolic subgroup P, we define the nearly ordinary
part to be the maximal quotient (or equivalently a maximal subspace) on which the
Hecke operator associated to elements in the center of Mp is invertible (see 6.2 for
the precise definition). Thus for a given open compact subgroup S, we can have
different nearly ordinary cohomology groups depending on the choice of the standard
parabolic subgroup. If it is necessary to emphasize the dependence on P, we write
HY_,, orq for the nearly p-ordinary part with respect to the parabolic subgroup P.
When no confusion is likely, we drop “P” from the subscript. There is one exception:
When P = B, the standard Borel subgroup, we write H} _, for Hy . all the
time. Then for the standard parabolic subgroup P, the standard Levi component
is given by Mp as above. Then P = MpNp for the unipotent radical Np of P.
We write M° for the derived group of Mp. Thus M° = SL(ny) X -+ x SL(n,).
We define a torus Tp by P N SL(n)/M°Np, which is isomorphic to GL(1)"! via
diag(z1,...,Zr—1,%,) — (det(z1),...,det(z,)). For each algebraic group H, we write
Z(H) for its center. In particular, we write T)y = Z(M). By the above determinant
map, we have Tp = T = SL(n) N Ty, and often we identify the two tori.

For the adele ring A of Q and a finite set ¥ of places of Q, we write A®) =
{z € A|lz, =1, Vv € £}; in particular AP®) = {z ¢ Alz, = 200 = 1}.

2. Preliminaries. Let F' be a number field, that is, a finite extension of Q. Let
G /q be a reductive algebraic group satisfying the condition ¢ : G(Qp) = GLn(F,) for
F, = F ®p Q,. We fix an isomorphism ¢ such that it induces for the derived group
G° of G

(SL(p)) 1:G%(Qp) = SLn(Fp).

From time to time, we write G°(Z,) for :™*(SLy(t,)), where t, = t ®z Z,. We also
suppose, throughout the paper, the strong approximation theorem:

(SA) G°(Q) is dense in G°(A).

In Section 6, we will prove the control theorem for the nearly p-ordinary coho-
mology group and the associated Hecke algebra. The proof is divided into two steps:
The first step is the control theory of cohomology groups of arithmetic subgroups of
G°(Q) which has been basically taken care of in [H95]. Thus we will resort to a sort
of induction process from G° to G in Section 6 in order to prove the control theorem
for the nearly p—ordinary sheaf cohomology groups on modular varieties of G.

Let us explain briefly why we think important this problem of controlling Hecke
algebras and cohomology groups. Let ® be a discrete subgroup of G°(Q) N G°(Zy)
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dense in G°(Z,). Then for a (Z,, ®)-module L, we study various cohomology groups
for @, for example, group cohomology H?(®, L). In particular, we would like to study
their p—adic behavior when one shrinks ® p-adically along a parabolic subgroup P of
GL(n)z. For example, we take the Borel subgroup B in this preliminary section as
P. Shrinking ® along B means that we take

8, (p%) = {7y € B|u7) mod p* € Np(/p*t)}
for the unipotent radical Ng of B. We study H?(®;(p*), L) and its limit
HY(®,(p™), L) = lim o HY(®1(p%), L) and H (& (p®), L) = lim o H*(&,(p"), L).

Here the limit is taken with respect to the restriction maps and transfer maps.

We also look at the I'p—type groups:

®o(p*) = {7 € ®|e(7) mod p* € B(x/p®r)}.

Since the maximal split torus 7° in SL(n) normalizes Np and ®;(p*), we have a
natural action of T°(t,) (t, = r ®zZ,) on the above cohomology groups. We want to
study the T°(t,)-module structure of the cohomology groups.

Why is it important to study the limit cohomology groups and the T°(t,)-module
structure? We answer this question by an example: If L is a rational representation
of G°, then we can consider modules L(A) with coefficients in A for various rings, for
example C. It is well known after works of Eichler and Shimura on elliptic modular
forms, the cohomology groups with coefficients in L(C) is directly related to some
specific modular forms (called cohomological modular forms) on G°. Therefore, by
cohomological functoriality, on can put a rational or integral structure on the space
of modular forms in question. Moreover, for a p-adic ring O, if one can isolate a part
of H1(®,(p*), L(O)) or H1(®1(p™), L(O) ®z, Qp/Zy) which is of finite or co-finite
type over the completed group ring O[[T°(x,)]], it gives a p—adic deformation (over an
explicitly given Spec(O[[T°(x,)]])) of cohomological modular forms through cohomo-
logical functoriality. Here we say a module is of co-finite type if its Pontryagin dual
is of finite type. In the p-adic situation, the spectrum of p—adic automorphic repre-
sentations is always continuous. Therefore it is natural to study the limit alongside
the individual H?(®4(p*), L) of finite level. Through the action of T°(x,), we may be
able to describe the spectrum explicitly. This is a principal reason to study the limit
and the action.

There is a general and simple method to isolate such components of finite type over
O[[T°(xp)]]. Since G° C G, we have Hecke operators acting on cohomology groups
which preserve integrality. Let T be one of such operators. If L or its Pontryagin
dual is of finite type over Z,, we have a unique projector et acting on H?(®,(p%), L)
such that T is an automorphism on erH?(®;(p®), L) and is p-adically nilpotent on
(1—er)HY(®1(p*), L) (see [HI3] 1.11). Here if L is discrete of co-finite type (that is,
its Pontryagin dual is of finite type over Zj,), we say that T is p—adically nilpotent if

(1 —en)HY(®:1(p%),L) = | J (1 — ex) H (21 (p*), L)[TY],
i1

where the bracket “[T7]” indicates the kernel of the operator T. More generally, if L
is an injective limit of discrete (Zp, ®)-modules of co-finite type, we have well defined
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projector er. We call a ®—module L admissible if L is an injective limit of discrete
(Zp, ®)-modules of co-finite type. We will see, for T given by Hecke operator at p
(associated to our choice of parabolic subgroup P), the image of er has the required
property.

Let L* denote the Pontryagin dual of L. Then we have by Poincaré duality (see
[H93] 1.9), if ® is co-compact,

HY(®1(p"),L)" = HU(&:(p%), L") and H(&1(p™),L)" = H(3:(p™), L"),

where d is the (real) dimension of the symmetric space of G°(R). Therefore, hereafter,
we may assume that L is a p-divisible admissible module.

3. Cohomological automorphic representations for GL(n). In this section,
we describe cohomological tempered (modulo center) representations of GL,(R) and
GL,(C) following Clozel [C]] Section 3. This is useful in relating cohomology groups
to modular forms.

3.1. Rational representations of GL(n). Let T be the standard diagonal
torus of G = GL(n). Let X(T) = Homgig.gp(T, Gn). The standard base of the root
system with respect to the upper triangular Borel subgroup B is explicitly given by
{a;} for a;(diag(t1,ta,...,tn)) = tit;rll fori=1,...,n—1. Then the coroot &; of o;
is explicitly given by

&(t) = diag(1,...,1,4,¢74,1,...,1).

The fundamental dominant weights {w;} which form the dual base of {&;} are
given by

wi(diag(ti,ta,...,tn)) =t1-ta---t; (1<i<n—1).

We simply write w,(z) = det(z) for z € T. Thus we may identify X (T') with Z™ so
that a = (m1,ma, ..., my) € Z™ gives the character

al(diag(ty, ta, ... tn)) =70 - 32 - tim.
Then the cone of dominant weights in X (7') is given by

Cn = {(m1,ma,...,mp) € LMy >my > -+ > myp}.

Now we look at the standard parabolic subgroup P of GL(n) corresponding to
the partition n = n; + ny + --- + n, of n into r positive integers (r > 0). We write
ny =ng +nz+---+n;. We may regard T' as a maximal split torus of M = Mp. Then
the center Z(M) of M is a subtorus of T'. The set of dominant weights of M = Mp
is given by

C(M)=Cphy X+ %xCp, in Z"=X(T).

For each x € C(M), we have an irreducible representation p, = Indf x~! of M
rational over F' having x~! as a highest weight (with respect to the reverse ordering
making —C,, positive), which we regard as a representation of P through the projec-
tion pr : P — M. By definition, C(M) D Chp, and Ind% p, # 0 if and only if x € Cy.
It is known that Indg Px = Indg x~! if x € Cy, which is absolutely irreducible and
is rational over F. For each Q-algebra A, we write L(x; A) for the space of Indg Xt
over A.
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3.2. Infinity type of cohomological representations of GL,(R). Here we
follow description of cohomological admissible representations of GL,(R) given in [Cl]
Section 3 (see also [H95] Section 8). For a given dominant weight x € X (T'), there is
at most one irreducible representation @ = w(x) of GL,(R) such that (i) its restriction
to SLp(R) is tempered and

(i) H(g, On(R); H(m) ® L(x; C)) #0,

where H () is the space of smooth vectors of 7, and g is the complexified Lie algebra
of GL,(R). We call such 7 cohomological (or xy—cohomological).

In [C]] Section 3, actually the classification of cohomological 7’ with non-vanishing
H(g, On(R); H(n") ® L(x: C)) # 0
is given for the contragredient Z(X; C) of L(x;C). Since
H(g,0n(R); H(r") ® L(; C)) = H(g, On(R); H(7) ® L(x; C))

(cf. [BW] p.43), the contragredient 7' of 7' associated to L(x; C) is x—cohomological.
Since 7 is classified in [Cl] using representation of the Weil group at co, what we need
to keep in mind is that a representation p of the Weil group W¢/g corresponds to m
with non-vanishing H%(g, O,(R); H(7) ® L(x;©)) if and only if p~! corresponds to
m(x). Thus what we need to do is to replace p(z) in [Cl] by p(z7!) for z € C* C W¢/r.
In this sense, our classification looks a bit different from the one given in [Cl].

Now regard x as an element of Z™ Then w is classified by a representation p
of the Weil group We/g into GL,(C) (and a character x € X(T)). We have that
H(g,0,(R); H(m ®¢) ® L(x;C)) # 0 for a character £ of R* with ¢2 = 1 if and only
if for z € C* C Wgyr, writing (see [Cl] p.114-119)

p(z™h)

_ | diag(2*1792, 2%22%, . .., z02m-1Z02m  p02mZA2m-1) if n =2m,

B diag(z01z%2, 2022 | ... z02m-1702m plamz02m—1 (,7)a2m+1)  if g = 2m + 1,
we have
(3.1)

A2 > Q4 > 0 > Qom > Aom—1 > -+ > a3 > a if n = 2m,
Ay > Q4 > -+ > Aam > Qom41 > Gampm—1 >+ > Q3 > Q1 ifn=2m+1,

3.2
( w)= a2i—1 +ag; (1=1,...,m) and 2a3m41 (if n = 2m + 1) are independent of 1,
(3.3)

_J(az,a4,...,02m,02m—1,...,01) + 1 =6 if n = 2m,

N {(ag,a4,...,agm,agm.,.l,agm_l,...,ag,,al)+1—6 ifn=2m+1,

whered =w; +ws +--+wp=(n,n—-1,...,1) and 1 =(1,1,...,1).
By [C]] Lemma 3.14, we have

(3.4)
AT if n=2m

H(g, On(R); H(m(x)) ® L(x; C)) = {/\q_m(m+1) O ifn=2m 4l
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Since HY(g, SO, (R); H(m(x)) ® L(x;C)) really contributes to H(®, L(x;C)) for a
discrete subgroup @ of the identity connected component G(R); of G(R), we deduce
from (3.4) combined with [BW] 1.5.1 that

(3.5) H(g,SOn(R); H(7(x)) ® L(x;C))
AT cm—l) ®c C[On(R)/SOL(R)]  ifn=2m
AL cm) ®c C[On(R)/SO,(R)] ifn=2m+1.

~

3.3. Infinity type of cohomological representations of GL,(C). Let G =
Resg/rGL(n). Then G(R) = GL,(C), and every irreducible rational representation of
G is isomorphic to 7®(7' oc) for a pair (7,7') of rational representations of GL(n) ¢ for
complex conjugation c. Thus z € G(R) acts via 7(z) @ 7'(T) for complex conjugation
“—7_ Thus we can view 7® (7' oc) as an element x of C;, X C,,. On the other hand, an
admissible irreducible representation 7 is classified by representations p of the Weil
group W¢c = C*. Following [Cl] p.112-3, we have, for admissible irreducible = with
tempered restriction to SL,(C), H(g,U,(R); H(m) ® L(x;C)) # 0 if and only if for
zeC* = WC/(C

(3.6) px(271) = diag (2P 2", 2P22% ... 2PrETM),
(3.7 p; > pit1 and ¢; < giyq foralli=0,...,n—1;
(3.8) w = p; + q; is independent of 7;

(3.9 x=pP-0+1,%—-6+1),

where the involution “w” indicates the conjugation by the longest element in the Weyl
group of T: “(as,...,an) = (an,Gn-1,.-.,01)-

Again by [Cl] Lemma 3.14, we have

q— n(nz—l)

(3.10) Hg,U,(R); H(n(x)) @ L(x; Q) =\ ¢C*L.

4. Local Hecke algebras. In this section, we reformulate some results in [H95]
Section 2 on the structure of local Hecke algebras made of double cosets of I'g-type
open compact subgroups (with respect to a standard parabolic subgroup) of GL(n).
We refer to [H95] for the proof of the results stated in this section.

4.1. Hecke algebras for parabolic subgroups. Let P be a proper standard
parabolic subgroup of GL(n) associated with the partition n = ny +ng + - -+ + n,.
Let V be a discrete valuation ring finite flat over Z, for a rational prime £. Let w be a
prime element of V and we write m = Vw and k = V/m. We write v for the valuation
with v(w) = 1.

Let
(41) D=Dp=Dp(V)
= {diag(ailn,,...,ar1n,) € Mn(V)[V Da;VDaV D DaV#0}.

In this section, we often write P for P(V). We then consider A, = PDP =
P(V)DP(V) C GL,(F) for the field F' of fractions of V. Then it is easy to see

(4.2) Ay = PDP is a semi-group.
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Let N = N(V) be the unipotent radical of P. For a subgroup X of A, with P >
X D N, let R(X;A) be the space of compactly supported X—bi-invariant functions
(with values in Z) compactly supported on Ay. The space R(X;Ay) has a natural
structure of algebra under the convolution product with respect to the Haar measure
p with p(X) = 1. We write XzX € R(X;Ay) for the characteristic function of the

set given by the double coset Xz X. For each s > 0, we put & = (1"0“ w01,) € Ay

and let s; = n,—jy1 +nr—jy2+ -+ mn, for j =1,...,7. Then we write T}, (w) for
X&; X. :
PROPOSITION 4.1. We have the following equality in R(X; As):

(4.3)
XEXCX = XECX = XCEX = XCXEX and XEX - X¢X = XE€CX

for &, € D, and the ring R(P; Ao) is isomorphic to the polynomial ring Z[Ty, ..., T;]
via Ty, (@) = Tj.

This is proven in [H95] Section 2. A key to the proof is the following explicit coset
decomposition of X{X of £ € D = Dp: Decompose X = Unea(f‘lXﬁ N X)n. Then
multiplying by £~ X ¢ from the left, we get
(4.4)

XX = | |7 X = XeX = | | Xen= L] Xnt.

neEE neE n€EENp(V)E~1/Np (V)

Write € = diag(ailn,,az2lng,-..,arly,, ). To describe the group €71 X¢N X, we write
an n X n matrix A as (A4;;) for n; x n; blocks A;;. Then we see

EXENX = {g=(g9;5) € X|gij € 0] 'aj My, xn; (V) forall j>i}.

Thus we may choose the representative set = to be the set of unipotent matrices in
Np(V) such that

(4.5) E3 0+ (i; mod a;'a;V)jsi € @ Ma;sn; (V/a; a;V)
i>i
is an isomorphism.
Let M be the standard Levi-subgroup of P. Then
M(4) = {diag(z:)|z: € GLy,(4)}.
We write 7 : P — M for the natural projection, and we put
P° = {z € P|n(z) = diag(z;) with z; € SLy,(A) for all i}.

Then P/P° = T via det : M — Ty given by det(diag(z;)) = diag(det(z;)1,,).
COROLLARY 4.2. We have an algebra isomorphism:

R(P°(V); Aco) = [Ty T, - ., T,]

given by Ts, (@) = T; and P°(V)uP°(V) = [det(n(u))] for u € P(V), where [t] is the
group element t in the group algebra Z[Tp(V)].

Suppose that P is the standard Borel subgroup B. Then T' = B/N, and we
may regard a characters A = (Ag,...,\,) : T(F) — K* as a character of B.
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Thus A(diag(a1,...,a,)) = [1; Ai(a;). Let V be a right K[B(F)]-module with A-
eigensubspace V[/\] Then we can let Ty(w) = NN = ||, Nx; act on eigenvectors
v € V[A] by v|Ts(w)(z) = 3, vz;, and we have

(4.6) v|Ts(w) (le‘“ IT A )

j=t+1

where t = n — s and |z|, = |V/m|~*(®) is the normalized absolute value of V.

2. Hecke algebras of local congruence subgroups. We keep the notation
introduced in the previous section. We consider the following subgroups:

@) Io =Ipa={9€GLy(V)|g mod w* € P(V/w*)}
: Ig=1p,={9€GL,(V)|g mod w* € P°(V/w®)}.

Let C be an open compact subgroup of GL, (V) such that

(P) C contains I, and C is contained in I,.

Put Ac = 1,Dpl,. Then we have
PROPOSITION 4.3. Suppose (P). Then we have

(4.8) Ac is a semi-group;
(4.9) CEC - C(C = CE(C =CCC -CEC for €, € D;
(4~10) R(C§ AC’) = Z[Ia/c][TlvT27 R TT] by Tsj (w) - TJ'!

where Ty, (w) = C&;,C

5. Jacquet modules and nearly p—ordinary part. We recall the definition
of Jacquet modules of admissible representations of GL(n) and study its relation
to nearly p-ordinary vectors. The result obtained here will be used to show semi-
simplicity of the cohomology groups over their Hecke algebras.

5.1. Jacquet modules for GL(n). Let F be a finite extension of Q, with /-
adic integer ring V. Let 7 be an admissible irreducible representation of G = GL,(F)
over a field K of characteristic 0. We write V for the representation space of 7. Since
we mainly deal with cohomology group with right G L, (F)-action, here against usual
convention, we suppose that V is a right GL,(F)—-module. For a standard parabolic
subgroup P of GL(n),y with unipotent radical N = Np, the Jacquet module Vp of
V with respect to P is the N(F')—co-invariant space of V, that is, Vp = V/V (P) for
the subspace V(P) of V generated by

{vm(n) - v]n €EN(F)and veV}.

Since V(P) is stable under P, for the standard Levi subgroup M of P, M (F') naturally
acts on Vp. It is known that
1. Vp gives an admissible representation of M (F) if V is admissible (a theorem
of Jacquet [BZ] 3.14);
2. The functor V — Vp is exact ([BZ] 2.35);
3. Let £ = diag(1lp,,@lny, @ 1ln,,...w" " '1y,.) € Dp. Then v € V(P) <=
there exists m > 0 such that feMN(V)E—M vm(n)dn = 0 for all M > m for a
Haar measure dn of N(F) ([BZ] 2.33);
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4. V is super-cuspidal if and only if V(gNpg~!) =V for all g € G and all proper
parabolic subgroups P ([BZ] 3.18).
Since M°(F)Tp (F) is of finite index in M (F') for the derived group M° of M,
Vp is an admissible representation of M°(F). Since N (V) is a compact group, for any
admissible N(V)-module X, we have a projector

X o XNV = HO(N(V), X) given by z — zw(n)dn

for the Haar measure “dn” normalized so that f NOY) dn = 1. Thus we have a natural
exact sequence

(51) 00— V(P)N(V) Y VN(V) - Vliv(v) 0.

Since each component of the above exact sequence is stable under N (V), it is an exact
sequence of R(N; A )-modules.

5.2. Jacquet modules and Hecke operators. We write T = Tp for the Hecke
operator corresponding to P¢P, where

& =diag(1,,,wl, ,w0lp,,...w" " ,.) € Dp.
1 2 3 i

Then we see from (4.4) and (4.5) that
(5.2) v|TE = < / m(n)dn> (™) for v e VO,
EmN(V)E™

Since Np(F) = ,,>, E™Np(V)é~™, Tp is nilpotent on V(P)NV).

For any open compact subgroup S with N(V) € S C Ip;, by (4.5), S£S =
ez Sz if NOV)EN(V) = ||, ez N(V)Ex. Thus the action of Tp on V'S induces the
action of the double coset S¢S, and the finite dimensional space V° is stable under
Tp. Then we can decompose VS = V5, @ V.5 so that Tp is nilpotent on V3, and
invertible on V3. Since VN(V) = |J¢ V¥ for S running over all open subgroups of Ip
containing N(V), we have the decomposition:

(5.3) VNV =—ypilgyg

such that V2t =| JvS, = vV nV(P) and VS =| |VS,
P nil P o5
, = .

where Tp is invertible on V2 and nilpotent on 13%.

PROPOSITION 5.1. Let the notation be as above. Let V be an admissible represen-
tation of G(F') over a field K of characteristic 0. Then Vg = Vp as R(P(V),A)-
modules.

Proof. By the above construction (5.3), the functor V' — Vg is an exact functor,
and hence, by taking semi-simplification if necessary, we may assume that V5 and
Vp are both semi-simple R(N; A, )-modules. By the above splitting, the projection
V — Vp induces an inclusion V3 < Vp of R(IV; A )-modules. Since an algebraic
closure K of K is faithfully flat over K, the result for V ® ¢ K implies that of V. Thus
we may assume that K is an algebraically closed field. Since ¢ € Ty (F) = Z(M), the
Hecke operator Tp is invertible on the admissible P(F)-module Vp. Thus we need
to show that any ¥ € Vp can be lifted to v € V3. Pick v € V such that 0 #7 = (v
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mod V(P)) € Vp. We may assume that 7 is an eigenvector of T (F)-action, because
we have assumed that Vp is semi-simple M (F')-module and K is algebraically closed.
By a simple computation, if v is fixed by an open subgroup of N(V), vw(§~%) (= cv
mod V(P) with ¢ # 0) is fixed by N(V) for sufficiently large a. Therefore, we may
assume that v € VN, Then o|T% for sufficiently large 8 gets into V3. Then ¥ is
the image of (v|T%)|T5” in Vg3, where we have taken. the inverse Tp” inside V3 on
which Tp is invertible. This shows the desired surjectivity. O

By the above proposition, we get the following isomorphism of R(P; A, )-modules

(5.4) VNP = v g vt = V)PM) g v (P)NP O,

When P = B, then M = Ty = T is commutative, and hence, Vg is finite dimensional.
We quote the following theorem of Kazhdan [BZ] 5.21 and 7.12:

PROPOSITION 5.2. Suppose that either V is absolutely irreducible or is a subquo-
tient of Indy\ for a continuous character X : T(F) — K*. Then we have

dimg Vg < dimg Vg <n! for N = Np.

PROPOSITION 5.3. Suppose that m C Ind%p for an admissible irreducible repre-
sentation p of Mp(F). Let B be the standard Borel subgroup of GL(n). Then the
operator Tp defined above for the Borel subgroup B is nilpotent if p is super-cuspidal
and P # B.

Proof. We suppose the contrary to the assertion: V3 = Vp is non-trivial. Then

by [BZ] 3.19, 3.27 and 3.13 (or more precisely, [BW] XI.2), there exists a continuous -
character A : T(F) = K of T(F) such that

(5.5) 7 can be embedded isomorphically into IndG\.

Thus 7 cannot be a factor of Indgp for a super-cuspidal p of Mp for P # B. This
shows the result. O

Of course, taking the dual of the above statement (5.5), we can realize 7 as a
quotient of Indg )\ for ' : T(F) — K* possibly different from .

For a continuous character A : T'(F) — K (with respect to the discrete topology
of K*), writing A(diag(t1,--.,tn)) = [Ij=; Aj(t;), we define a new character A by

X(diag(ts, .., ta)) = [Tj=, (\ (¢)It5137"). Then we write I§ () = In dggf,g(x)

For a Haar measure duy on the unipotent radical N(F) of B(F'), we have the
modulus character dp given by

/¢(z dun(z /¢b by ().

The character is explicitly given by
Vs(z) = | det(a)|{" 1)/2H|t '~

for @ = diag(ty,. .., t,). Thus we see A(z) = dp(x)~1/2| det(z)| "™ )2 \(z). Since 65
is the modulus character of the conjugation action of 7" on the Haar measure upy,
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IS (X) is the induction in the category of algebraic admissible representations as in
[C]] Definition 1.9 performed for right B-module (not left ones in [Cl]).

PROPOSITION 5.4. Let W be the Weyl group of T =Tg. Let A : T(F) = K* be
a continuous character (under the discrete topology on K ), and put V = V(I§(\)).
If XY for w € W are all distinct (where A (t) = )\(wtw'l)),ﬂzen the Jacquet module
Vg is a semisimple T(F)-module. Moreover Vg = @ oy AV as T(F)-modules; in
particular, dimg Vg = nl.

Proof. The Jacquet module functor V' — 15 is exact; thus (Xp)** = (X*%)p,
where the superscript “ss” indicates the semi-simplification of a representation X.
Since (I§3)* = | "7 @ (Ind§(55" /X)) = | |17V @ (Ind§(s5'/*Av))> =
(I§A¥)*s (see [BZ1] 2.9), A¥ is a subquotient of V5 by Frobenius reciprocity ([BZ]
3.13). Thus we have a T'(F))-linear surjection of (Vg)** onto @,y AW, because A%
are all distinct. Since dimg Vg < n! and |W| = n!l, we know that Vg = (Vg)* =
D. ¥ and dimg Vg =n!. O

By (4.6), we get immediately from the above proposition the following assertion:

COROLLARY 5.5. Let the notation be as in Proposition 5.4. Suppose that A\
(w € W) are all distinct. Then for each S\T”—eigenvector vEVp=2VE,

zﬂ@bowww ﬁ‘wm%,

j=n—s+1

where Y (w) = )\w(diag(l,...,1,1%,1,...,1)). In particular, V§ is a semisimple
R(Np;As)-module of dimension n!.

6. p—Adic Hecke algebras. In this section, we first define the nearly p—ordinary
universal Hecke algebra and prove its finiteness. We shall further prove the control
theorem for the universal nearly p—ordinary Hecke algebra (of level p* for G) from
the strong multiplicity one theorem for GL(n) and its inner twists.

6.1. Hecke algebra as a double coset algebra. We consider an algebraic
group G /g = Resp/gGo for a number field F' as in the introduction. We write [ (resp.
v) for prime ideals (resp. places) of F and £ for primes of Z. We write G, = G(Q)
and G, = Go(F,). Then G(A) is the restricted product of local groups G, over all
places v of F. Since Gy is an inner form of GL(n),p, we have

(GL(1)) ir: Gy =2 GL,(F) for almost all prime ideals 1.

Thus there is a finite set of primes ¥ for which (GL(I)) fails to hold. We fix an
isomorphism ¢ for every [ € ¥. We put

=) =Ht[C'€=Ht[.

gs |

We fix a rational prime p outside ¥ and a standard (proper) parabolic subgroup P of
GL(n) associated with the partition n = ny + --- + n,.. Let U be an open compact
subgroup of G(A) of the form U = [], Ui for the projection U; of U in G. We suppose
the following conditions on U:

(Gp,) U U # GLn(v) and | € T U {p|p}, then Ip.o D Ut D I} ,,
(Gpp) Ipa DUy D Ip, (a>0) forallplp
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for the subgroups Ip,1 in GL, (%) and I}, and Ip, in GL,(vp) defined in (4.7).

We write Dy (I € XU {p|p}) for Dp(t) in (4.1). We put Dy = Dp(ty). Then by
elementary divisor theory, if Uy = GLn(v) and | ¢ X U {p|p}, then A; = UDU; =
M,(c)NGL,(F). f U # GL,(v) (I € ¥), as seen in 4.1,

A[ = U[D[U( if [fp, and Ap = IP’QDPIP,Q if p|p

are semi-groups. Anyway A = Ay = (HIEE Ur) x (Hrez A[) is a sub-semi-group in
G(A()),

We consider the Hecke algebra R(U;A) made of compactly supported (locally
constant) U-bi-invariant functions supported on A with values in Z. Then by defini-
tion, we have

(6.1) R(U;Ay) = Q) R(U; A
¢s

z(@zup,a/rfp]ml(p) T, p)) ( R zm,.. ,Tnan),

plp 1gxU{p|p}

for T5(f) which is the characteristic function of Ui, U; for & = (10‘ w?l, ) € D;. Here
s; is as in Proposition 4.1, and the above result follows from the proposition combined
with [Sh] Theorem 3.20 when U; = Go(vy).

We define

R=Rp= (@ Z[TM(rp)1[T51<p),...,Ts,(p)l) ® ( 0% Z[Tla),...,Tna)l) .

rlp 1ZxU{p|p}

Since we have a natural projection P/P°(tp) = T (vy) = Ip,o /U, for all U satisfying
(Gpp), the ring R(U; Ay) is a homomorphic image of R.

6.2. Nearly p—ordinary cohomology groups. Let G(R); be the identity con-
nected component of G(R). Let

X =X(U) =GQ\G(A)/UZ(R)+ Coor,

where Coot is a maximal compact subgroup of G(R)+ and Z(R)y is the center of
G(R)+. We now consider the following condition:

(GL(c0)) G(R) = GL,(F ®g R).

Then if U is sufficiently small, X is a Riemannian manifold. For the moment, we
suppose that

(TF) X(U) is smooth.

Let L be a left A '-module for A, = [],,,Ap on which the central elements in
e =N (U-G(R)4) act trivially. Then we consider the covering

X =X(U)=GQ\G(A) x L)/ UZ(R)4 Coor,
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where the action is given by y(z,€)u = (yzu,u,'f). We study the sheaf L = Ly
of locally constant sections of X(U) over X(U). We have the cohomology groups
HY(X(U), Ly) with coefficients in L. Since U satisfies (Gp,) and (Gp,), we may
regard L as a right A-module through the projection of Ay into A,, that is, for
deAandleL,td=0,""0

For each double coset UzU as an element of R(U;A), we can define the action of
[UzU] on HY(X(U), L) as follows: We look at the following morphism [z] : X(V) =
X(V*®) for V. = gUz™' NU and V*® = z7'Vz given by [z](y,£) = (yz,z,'¢) =
(yz,€zp). Then [z] induces a morphism

[z] : HY(X(V),L) - HY(X(V®),L),

' =

and we define

(6.2) [UzU] = Trxv=)/xu) ° [z] o resxv)/x v)-
Thus under (Gpp) and (Gp,), the (double coset) Hecke algebra Rp acts on the
cohomology group HY(X (U), L).

Since G(Q) is isomorphic to the multiplicative group of a central simple algebra
D over F', choosing a maximal order R of D, we can extend G to a group scheme over
Z. Hereafter we suppose the following two conditions:

(D1) G(A) = (R ®z A)* for a maximal order R of a division algebra over F}
(D2) The algebra R ®. F| is isomorphic either to M, (F}) or a division algebra for
all primes [.
By (D1), it is known that X (U) is compact. The set ¥ is made of primes [ at which
G| is the multiplicative group of a division algebra central over Fi.

We are going to specify the open compact subgroup U and the A~l-module L. As
for U, we fix an open subgroup U of G(Z) (containing the center Z(Z) = t*) satisfying
(GB,1) with U, = G(Z;). Recall that P is a standard parabolic subgroup of GL(n)
associated to a partition n =mnj + - -+ n,. Let M be the standard Levi-subgroup of
P. Thus

M(A) = {diag(z1,. .. ,mr)la:i € GLn (A)}.

Let M’ be a factor of M given by

M'(A) = {diag(z1,...,3r—1)|z: € GLn,(4)},
and put
(6.3) M° ={z = diag(z1,...,2,) € M|z; € SL(s;) fori=1,...,7}.

Let m : P — M be the projection, and write p for the product of all prime ideals

plp in F. Then we define

Uo,p(p*) = {u € Uy, mod p* € P(x/p*)}

U1,p(p*) = {u € Up,p(p®)|r(up, mod p*) € M°(x/p*)}.

Let S be an open subgroup of U such that Up p(p*) D S D U1,p(p%) (a > 0).
We now specify the Agl—modules we are going to study. Recall that N = Np denotes
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the unipotent radical of P. We put Sy = S, N SLy(xp), where S, is the p-component
of S. By abusing the notation, we write Ip, for the product of Ip, with respect
to V = t, over all p-adic places p of F.. Then Y5 = S;/N(rp) is an open subspace
of the space Y, = (Ip,q N SLy(tp))/N(tp) we studied in [H95]. There are two group
actions on the space Ys. Firstly, since P(tr,)N.SLy(tp) normalizes N(t,), the quotient
M(tp) N SLy(tp) = (P(tp) N SLy(tp))/N(tp) naturally acts on Ys from the right.
Secondly, for each choice @w = (wp) € tp, with prime element w, € t,, we have a
natural left action of the semi-group

Asp=5p (H DP(tp)) Sp

plp

on Ys as described in [H95] Section 3.

We recall briefly the action of Ag on Ys. Since Asp = SpT'(vp)D(xp)S, and Sy
acts on Ys, we only need to define the action of T'(t)D(rp) for D(xp) = [, D(xp).
First note here that Ys C (GL(n)/N)(Fp) (Fp = F®qQy). Thus there is a natural left
action of SL,(F},) and right action of M (F,) = (P/N)(Fp) onY = (GL(n)/N)(Fp).
Then for each z € T'(xrp)D(rp), decompose SpzpSp = |uean(s,)o-1/n(s,) SpUTp (s€€
(4.4) and (4.5)). For each class yN in the homogeneous space Ys C SL,(F,)/N(Fp)
(with y € S3), £py = yuu, for a unique u € £N(tp)z ™" /N(xp). Then the action of z:
Y~ yu = zpyz,' mod N(F,) preserves Ys in GL,(F,)/N(F,). This action induces
a left action of (Ag)™! on continuous functions ¢ on Ys by z¢(y) = Pz, oy).

Now we explicitly write down the A~™*-module L. Let p be an absolutely irre-
ducible rational representation of M = Res.,jz,M/., C Gz, into GL(m) defined
over O for a valuation ring O C @p containing o(t) for all embeddings o : F' — @p.
Let K be the field of fractions of O. Let V(O) = O™ be the representation space
of the contragredient p of p, which is again a polynomial representation. For each
O-module X, we define an M-module V(X) by V(O) ®» X. Regard p as a rep- -
resentation of P = Res.,;z,P/, C Gz, pulling it back to P by the isomorphism
P/Np = M. Then we suppose that the polynomial representation L(p; K) = Ind% P
is non-trivial, which is then absolutely irreducible G(Q,)-module. Physically we have

L(p; K) = Ind§ge plpnce:

(6.4) L(p; K)
={¢: (G°/Np)(Q,) = V(K)|¢ : polynomial, ¢(yz) = p(z~")¢(y)}

for all z € (M N SL(n))(Fp). We often identify two induced modules Ind%,b' and
Ind$, G- plprge-

We are going to modify the action of A, C G(Q,) so that it preserves an O-
lattice L(p; O) C L(p; K). Note that Ys C (G°/Np)(Q,). We then define L(p;O)
by the subspace of L(p; K) made of all functions having values in V(O) on Ys. If
¢ € L(p; O0), then for s € Sp, we may write s = s°t with s° € S and t € M(xp).
Then ¢(s) = ¢(s°t) = p(t~1)¢(s°) € V(0), and hence L(p; O) is an Ag'-module by
the pull-back action of the action of Ags on Ys: bg(y) = ¢(b~t oy) for ¢ € L(p; O)
and b € Ag'. This action coincides with the action induced from L(p; K) = Ind%ﬁ
on S, but differs by a scalar factor for general elements in AL
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We also consider a far bigger A5'-module Cf made of continuous functions ¢ on
Ys with values in V(K/O) satisfying ¢(yz) = p(z~!)¢(y) for all z € M°(x,), where
M° = Mp = SL(ny) x --- x SL(n;) C M. Thus

¢S = indph,,, V(K/O) as S3-module.

The module C f has a natural action of A" given by bé(y) = ¢(b, * oy). In particular,
we write C, for C ;,5 when S = U. Similarly for each topological O-module X, we may
consider the following Ag'-modules:

C¥s,p;X)={¢:Ys > V(X): continuousld)(ya:) =p(z N ¢(y) Vo € M°(x,)},
where we let b € Ag" act on ¢ by bg(y) = ¢(b,1y).

In [H95], the symbols L(p; A) and Cf are used to denote induced module from
p in place of p here. However results obtained there are valid by replacing p by p;
so, hereafter we quote results proven in [H95] without giving any warning about the
change of p to its contragredient p.

We equip C(Ys, p; X) with a Tp(rp)-module structure in the following way: First
note that Tp = Mp\(Mp N SL(n)). Then take v € (Mp N SL(n))(rp). For the class
(7] € Tp(tp) and ¢ € C(Ys, p; X), we define

(6.5) 1]~ ¢(y) = p(V)d(y7)-
By our definition of C(Ys, p; X), for v° € M°(xp),

vr°] - 6(y) = B(vr°)yr7°) = P(MP(Y°)P(Y°) Tt d(yy) = V] - o (y)-
Thus the action is well defined.

Since Ys is Zariski dense in the algebraic variety SL(n)/N, the induced poly-
nomial representation L(p; K), realized on the space of polynomial functions on
SL(n)/N with values in V(K), by restriction to Ys, is sent isomorphically into
C(Ys,p; K). That is, we have an embedding L(p; K) C C(Ys, p; K) compatible with
the Tp(r,)-action. The action of Az" on Ys induces a new modified Agl—action on
L(p; K), which coincides with the original one on Sy. For ¢ = IndgL(") p, noting the

SL -
fact: |spm) = IndPn(;g(n) Plpasr(n) and oy = Eyé~! mod N(F,) for £ € Dp(rp),
we have the new action of { on ¢ € L(p; K) given by

€ (y) = ¢(Eye™") = B&)(Ey) = w(©)p(EH)d(y),

where w is the central character of 5, which is equal to x|z, if p = Ind§ x~1.

Let x be a rational character of Res.,/z,Tar. By the determinant map: P/P° =
Tu as in 1.1, we regard x a character of P, and we define p ® x by p ® x(z)v =
x(z)p(x)v. We suppose that x is dominant with respect to p (that is, L(p®x; K) # 0).
Then as already remarked, we can realize L(p ® x; K) in C(Ys, p; K) uniquely. In
particular, the action of Tp on C(Ys, p; K) preserves L(p ® x; K) and hence induces
an action of Tp(r,) on L(p ® x), which is actually given by x.
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We are now going to twist the module L(p; A) by a finite order character of Ty.
Let € be a character of T (t/p®) = O* and S = Uy p(p®). We extend ¢ to

Trm(Fp) = T (xp) x f[ (ng)

=1 \plp

by just putting
e(,...,1,@,1,...,1) =1

for all p|p. For each z € Ag, we write x;; for the i—th n; x n; diagonal block. Then
regarding det(z) = (det(w:;))o<i<r € G,(Fp) as an element of T (F}), we consider
€ to be a character € : As — O*. Thus we may think of L(p ® xe; K) which is equal
to L(p® x; K) as a K—vector space but the Ag'-action is twisted as bv = e(b~')bow,
where “bov” indicates the action of b € Ag" on L(p ® x; K).

Define a function ey : Ys = O* by ey (y) = e(det(y)) for det : PNSL(n) = T
which is well defined because det(y) for y € S; C Ags depends only on the coset
yN (rp). Then first realizing L(p®x; K) in C(Ys, p; K) and then multiplying functions
in L(p ® x; K) by ey, we get the space L(p ® xe; K) realized inside C(Yg, p; K). We
then define

L(p® x5;0) = L(p® x&; K) N C(Ys,p; 0),

where we take a as small as possible so that € factors through Th/(t/p®). Then we
write simply

Lp®xe)=L(p®xe; 0) ®o K/O.
By definition, L(p ® xe) is a p—divisible subspace of Cf on which T (tp) acts by xe.

We call a continuous homomorphism x of Tys(t,) into @: arithmetic if x coincides
with a rational character in X (Resg/@T) on a small p-adic neighborhood of the
identity in Tar(tp). Thus we have shown that L(p ® x) can be realized in a unique
way in Cps for a suitable a (S = Up,p(p%)). Then we have well defined cohomology
groups:

HY(X(S),C5) and HY(X(S),L(p® X))

on which the double coset algebra R(S; Ag) naturally acts.

We define the p-adic Hecke algebra h,gy,4(S; O), for arithmetic x dominant with
respect to p, to be the O-subalgebra of Endp(HI(X(S),L(p ® x))) generated by
the operators in R(S,As). Let T;(p) be the operator induced by Ty, (w,) under
the action on L(p ® x) of Ag" described above. Note here that we have modified
the original action of G, on L(p ® x; K) so that it is minimal among the actions
preserving integrality. We write T}(p) for the operator induced by Ty, (w,) using the
original action of Gy. The two operators T;(p) and Tj(p) differ by a constant as
specified in (6.6) below.

We can now define the nearly p-ordinary part h;}@f’;dq(S ; O) to be the largest

direct summand of h,gy,q(S; O) on which the image of [], <;<, [1,, Tj(p) is a unit.



AUTOMORPHIC INDUCTION AND THE LEOPOLDT CONJECTURE 685

We write ep for the projector of hygy (S; O) onto hjerd (S; 0). Then

oo ( I TI%0)

1<j<r plp

is an element in h,g,,q(S;O) (see Section 2 and [H93] 1.11). We then define the
nearly ordinary cohomology group Hp_, ,..(X(S),L(p ® x; A)) (with respect to P)
to be epHY(X(S), L(p® x; A)) as long as we have a well defined ep acting on it. The
notion of near ordinarity depends on the choice of the (conjugacy class of) parabolic
subgroup P. Thus for a given S, we may have

Hp_ ord(X(S), Lp @ X3 A)) # H_py 07a(X(S), L(p ® x; A))

for two non-conjugate parabolic subgroups P and Q. See Appendix A for a little more
intrinsic description of the dependence on P for general reductive groups. Therefore,
if confusion is likely, we use the symbol Hf_, . to indicate P-nearly ordinary co-
homology groups.

n.or

Since the action of Ag! on L(p'; X) for p' = p® X' is modified, if one uses the
original action of GL(n) on GL(n)/N to define the Hecke operator Tj(p) = T'(&;;) on
the cohomology group, we have the following relation

(6.6) T;(p) = w(&s;)T;(p) on HU(X(S), L(p ® X)),

where & = (1"0‘” 0 ) in T(F,) and w is the algebraic character in X (T's) which

wls
gives the central character of p’ on an open neighborhood of the identity of T (t,). If
7 =py = Indg x71, then w = (xx')~'. The operator T}(p) is induced by the action of
¢} under §' = Ind$ (xx')~* and T;(p) is induced by the action on Yy of &l e AGh
The modified action is given by w(é;;')71p'(¢5;1) = w(&s;)p'(€5;1), and hence we get
(6.6).

Since we have a natural map: H(X(S),L(p; K)) — HY(X(S),L(p)) with fi-
nite cokernel (L(p) = L(p; O) ®p K/O), an eigenspace Hf_, (X (S),L(p; K))[A]
of Hecke operators Tj(I) (for all I) with eigenvalue A(Tj (1)) gives rise to an eigenspace
H}_ . -a(X(S),L(p))[A] in the discrete module H?(X (S), L(p)) with the same eigen-
values. On the other hand, fixing embeddings ico : Q<= C and ip : Q— @p, we pull
back K to C: Koy = ico(i; ' (K)). Then we have

HY(X(5), L(p; C)) = HU(X(S5), L(p; Ko)) ®k, C,

and hence the system of eigenvalues A is given by an automorphic representation
7w of G(A). We call such 7 nearly p-ordinary with respect to P. By definition,
epHI(X(S), L(p))[A] # 0 if and only if ¢,(A(T;(p))) is a p-adic unit in K. Thus 7 is
nearly p-ordinary if and only if for a common eigenvector v € H°(S,V (7)) of T;(p)
(for all p|p), we have

(6.7) IMTi ()], = |w™ (&), forallj=1,...,r and all p[p.

In my earlier work [H95] (especially in Theorem 5.1 of the paper), we studied the
action of T/ (tp) = (T N SL(n))(xp) on Cf induced by the above action of Tp(t,)
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via the isogeny: Ty <+ M —» T'p. Actually the use of the action of Tp in place of Tis
makes the result more transparent, and we obtain, in exactly the same manner as in
the proof of [H95] Theorem 5.1 an isomorphism of Rp—modules:

(6.8) it HY b g(T°(S1,p(P™)), L(p ® X)) = HY ,, 4(T°(S1,p(P)), C5)

satisfying vy (x(2)zc) = ziy(c) forc € H} | (T°(S1,p(p™)), L(p®x)) under the action
of Tp given in (6.5), where I'*(S) = (S-G°(R))NG°(Q). If we assume the vanishing of
cohomology degree less than r: H! & (T°(S1,p(p*)),L(p®x;K)) =0for0<g<r,
we have an isogeny (cf. [H95] Theorem 5.2)

(69) by : H;.ord(ro(sl,P(pa))vL(p ® X)) - H:L.ord(ro(sl,P(p))’Cps)[X]a

where “[x]” indicates the x—eigenspace in the cohomology group under the action of
Tp (tp).

6.3. Universal nearly p—ordinary Hecke algebras. Now we fix the following
decomposition given by the approximation theorem:

(App)
G(A) = | | G@tUsp(p*)G(R); and G(A) = || || GQtsSGR)4,

te= tEE s€Z(S)

where G(R) 4 is the identity connected component of the real Lie group G(R) and E
(resp. Z(S)) is a finite subset of G(AP>)) (resp. Up p(P*),). Let Tar = Z(M) and
T3 = Tse N SL(n). Since the reduced norm map v : G — Resp;gGn, induces the
isomorphism:

v:GQ\G(A)/SG(R)y = F*\F[v(S)Fgy,

we may choose the finite sets = and Z(S) so that the following four conditions are
satisfied:

(1) = is independent of a;

(it) tp =teo =1fort €5
(iii) 2(S) C Up p(p®), if S D U1, p(p%);
(iv) E(S)cES)ifS' cs.

det

Let TS, = Thr N SL(n). Since Uy p(p®)/Ur,p(p%) = Tr(t/p®) = T5,(¢/p") and by
strong approximation theorem (SA) in Section 2, we may approximate each element
in T, (xp) C Up p(p®) sufficiently closely by an element in G(Q) N tU p(p*)t™", v
induces an isomorphism: Z(U; p(p®)) onto a quotient C' of T (r/p®) /Ty (x/p®) =
(t/p®)*. The quotient C is the image of ¢ in Cl(v(S)) = F*\Fy /v(S)Fg,. We
write Ty;(«) for the subgroup of T (r/p®) containing Ty (t/p®) such that
Tyi(@)\Ty(x/p*) = C. This group depends on the choice of U. We then define

T3y(00) = m aT§;(a).

Thus Tj;(00) contains Ty, (tp) as a subgroup, and Ty (c0) /T (tp) is isomorphic to
the closure of v(xj;) in ), where tj; = ¢* N (U - G(R)).

For each congruence subgroup I' C G(Q)+ for G(Q)+ = G(Q NG(R)4, we define
T for its image in G(Q)/Z(Q) for the center Z of G and [* = I'N G°(Q). Then

the natural map I' —» I induces a homomorphism ¢ : ' — I' with finite kernel
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and cokernel killed by n. We put X(T') = T\G(R)y/Coos Z(R). The space X(I)
is compact if D is a division algebra and is a smooth Riemannian manifold if T is
torsion-free.

We define T4 (S) = G(Q) NtS-G(R);t7! in G(A) for t € E,
T;(S) =T4(S)/F* NT4(S) C PGLn(F)

and 9 (S) = G°(Q) NtS - G(R)+t1, which is a congruence subgroup of the derived
group G°(Q) of G(Q). Since

Lt (Uo,p(p®))/Te(Ur,p(p?)) = Ti(a),

the cohomology group H 4Ty (Uy,p(p%)), L) is naturally a T (a)-module. By defini-
tion X(S) = | J,c= [_IseE(S) X (T¢(S)) via gtsu — ue for u € S+ G(R) 4, and

(6.10) X(S),L) =P EB HIT(S), L
teEE s€E(S)
(6.11) H(X1,p(p%),L) = @ indp (/P HI (T, (Ur,p(p%)), L),
tezs

where we have written L = L(p ® x) for arithmetic x dominant with respect to p

and X1 p(p®) = X(U1,p(p®)). Here the involution “/” in the definition in 1.1 of the
induction mdg’f E;/)p ) is the identity map. Thus by (6.11), HY(X (U p(p%)), L) is
aTy(t/p )—module Even if X (S) is not smooth, we can think of the right hand side
of (6.10), which also has a natural action of the double coset algebra Rp. Abusing
notation, we hereafter write HY(X(S5),L) for @ cz(s) HY(T4(S),L) if (TF) is not
satisfied by S.

We consider
(6.12) HY(X1,p(p%), L) =lim o H(X1,p(P%), L).

Since the restriction map res : H4(X; p(p®),L) = H¥(X1 p(p?),L) for B > a is a
morphism of Rp—modules, it is compatible with ep. Thus ep acts on H(X1 p(p®), L)
fora=1,2,...,00, and we have, writing H! | (X1 p(p*), L) for epH?(X; p(p®), L),

(613) H 0, y(X0,p(0), L) = limg o] 1ry(X2.p(9%), L)
= D indz () oy Cu(U1,p (), L),

te=

where Ty (c0) = lim o T}/ (@) and
HI(T:(Uy,p(p™)), L) =lim o H*(T+(Uy,p(p%)), L).

We define the p-adic Hecke algebra h:}ge?;fiq(Ul, p(P™); O) of level p™ by the sub-
algebra of Enda(H, ,.4(X1,p(P™), L(p ® X))) generated over A = O[[Tp(tp)]] by

operators in Rp. By definition, h%2r? (Uy, p(p*); O) is an O[[T(xp)]]-algebra.

Although in [H95] Section 5, results are formulated using Ip, and Y, the result
proven there is valid without modification replacing Ip, and Y, by S, and Ys. All
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arguments, as easily checked, go through without modification. In particular ep is
well defined on H?(T'4(S),C,), and by (6.8), we get a canonical isomorphism

(6.14)
bx * Hg..ord(rto (UlyP(poo))’ L(p ® X)) = Hz.ord(F:(UO,P(p))’ Cp)
such that ¢, (x(2)zc) = zty(c) for ¢ € H1(T3(U1,p(p*™)), L(p ® X)) and z € Ty, (tp).
Let v = t* N Z(A®)) - G(R)4+. The quotient

H = T4(U1,p(p*)) /T (U1,p(P%))

is independent of o >> 0 and ¢ and is a subgroup of a finite group ¢} /(x3)". The
finite group H is canonically isomorphic to Ty(Us p(p®))/T; (Ur,p(p®)). Similarly,
the kernel H' = Ker(T's (U p(p%)) — Ty(U1,p(p®))) is finite, of exponent n and
independent of a > 0 and t.

Recall that L(p; O) is a representation of S, (not just that of Sp;). We assume
that
1. the central elements in tj; = (t7 NU - G(R)4) act trivially on L(p; O);
2. _ x(t) =1.
Thus we may regard L(p; O) as a I't(U)-module. We assume that p{n. Then by the
Hochschild-Serre spectral sequence applied to the exact sequence:

1— H' - T3(Ur,p(p*)) = T, (U1,p(p*)) — 1,
we have

(6.15)
bt HE (T (U1,p(p%), L(p® X)) = HE (T3 (Uy,p(P™)), L(p ® X)),

because H?(H',X) =01if ¢ > 0 and X is a Z,-module. Thus

H? (T (ULp(™)), L(p® X))

is independent of x by (6.14).

Again by Hochschild-Serre spectral sequence applied to the exact sequence:
1= T} (U1,p(p")) = Tu(U1,p(p%) = H = 1,

we have

(6.16)
iy HY o o(Te(U1,p(p™)), L(p ® x)) = H(H, H! . 4(T; (U1,p(p™)), L(p ® X)))-

Thus H?

n.ord

(Te(U1,p(P™)), L(p ® x)) is again independent of x.

The space C,, is naturally a Tp(tp)-module as described above. This induces the
action of Tp on the right hand side of (6.14). We have a natural isomorphism induced
by determinant 1.1: Tp = T§,. Thus we can view C, as a Ty;(tp)-module. The unit
group v(t7;) acts trivially on H! __(T¢(U1,p(p*)), L(p ® X)). Since

Tiy(00) = Ty (vp) (v(x77))
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in Ta(tp), we can extend the action of Th;(tp) to Ty (c0) making v(rj;) act on it
trivially. Then we have a canonical isomorphism

(6.17)

bt HY 4 g(X1,p(p%), L(p @ X)) = @ indpyt (o HE . ((Te(U1p(0%)), L(p)),
teE

satisfying ¢, (x(2)zc) = zty(c) for z € Tis(tp). This shows
THEOREM 6.1. Suppose (D1-2), (SL(p)) and thatptn. Then we have an algebra
isomorphism

x et (U p(p™); 0) = " (Ur,p(p™); O)

taking T;(1) to Tj(1) (1 < j <n) for all T XN {p|p} and T;(p) to T;(p) (1 <j<r).

In particular, if P = B, the Hecke algebra h;;grd(Ul,p(p‘x’); 0) is independent of x.
Proof. By our construction, the isomorphism in (6.17) is equivariant under Hecke

operators listed in the theorem (or more precisely, it is an isomorphism of Rp—

modules). Since the Hecke algebra h72r¢ (Uy p(p™); O) acts faithfully on the co-

homology group H! | .(X1,p(p™), L(p® X)) and generated by these Hecke operators,
we get the identity of the algebras by (6.17). O

Let 1 (resp. r3) for the number of real (resp. complex) places of F. We
write hg"”d(Ul,p(p‘”);O) for h’;;g’d(Ul,p(p‘”);O) if P = B. Hereafter we assume
(GL(00)) and that ¢ is equal to the following number r given by

(BD) _ {r1m2 +ram(n—1)  if n=2m,

rim(m+1)+romn  ifn=2m+ 1.

The above number r gives the bottom degree of the cuspidal cohomology group of
GL(n) under (GL(c0)). Here the word “bottom degree” means that

H7,,,(X(S), L(p;C) =0 if j <r, and
Hiyp(X(S), L(p; Q) = 0 for all j if HJ,q,(X(S), L(p; Q) = 0.

Then the above explicit value of the bottom degree follows from (3.5) and (3.10).

Under this choice of g, we write h7-°" for h?-¢"?. When P = B, we simply write
h™o7¢ for "¢ which is independent of x € X (Resp/qT). We write W = Wp,, for

B indrs ) Hy o Te(Uo,p (), C,)-
te=

Let W = Wp be the Pontryagin dual module of Wp,. We put W(K) = W ®o K.
Then using (6.16), we can deduce from (6.9) the following result:

THEOREM 6.2. Suppose (D1-2), (GL(c0)), (SL(p)) and that ptn. Let x be an
arithmetic character of Tay dominant with respect to p such that xxg ' factors through
Tm(t/p*) for xo € X(Tar). Then for the ideal P = Ker(x) in O[T (rp)]], we have

( )/PW(K) nord( (UO,P(pO))’L(p®X7K))
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Proof. We have (from [H95] Theorems 5.1 and 5.2) a Hecke equivariant isogeny

n. ord(r (UO P( ))a L(p ® X)) - H:L.ord(FtO(Ul,P(poo))’ L(p))[X]

We have [x] in place of [wy] in the theorems in [H95], because present normalization
of the action of Ty uses the Tp—action given in (6.5), which is different from the one
used in [H95]. Since we have an exact sequence:

1= H =T(p*) > Ty(p*) = H -1

with finite group H and H' independent of exponent a 3> 0 and of ¢, we get an isogeny
of Ty (tp)—modules:

Hy, 4ra(Te(Uo,p(p%)), L(p ® X)) = H, 0pa(Te(Un,p(9%)), L(p)) [X]-

By Shapiro’s lemma applied to the right-hand-side of (6.17), we have

We o[ 2 @D Hy ra(Te(U,p(0™)), L(0) .

te=

This gives rise to the Hecke equivariant isogeny:

H, o q(Xo,p(P%), L(p ® X)) = €D Hy, 0ra(Te(Uo, p(p*)), L(p @ X)) = We,o[X]-
tes

The desired isomorphism is induced from the Pontryagin dual map of the above
isogeny, after tensoring K. O

By the above proposition, it is easy to see the Pontryagin dual module Wp, of
Wep,, is of finite type over O[[I'r,,]] for the maximal torsion-free subgroup I'r,, of
T (xp)/t¥, which is canonically isomorphic to the maximal torsion-free subgroup of
T (xp)/v(xy). We simply write h for h2-°"*(U; p(p™); O). Then the Hecke algebras
h and h(K) = h®p K act faithfully on W and W (K), respectively. In particular, h
is finite over O[[I'r,,]]. Moreover if n > 2 or F' has at least one complex place (that is,
r2 > 0), we can find by (3.3) and (3.9) a dominant character x € X(Resp/qT) such
that there is no cuspidal cohomological automorphic representation whose infinity type
is ¥ (see the following Section 7 for more details). Then for P = B, W(K)/PW (K) =
0 (P = Ker(x)), and hence W(K) is a torsion O[[['r]]-module for the maximal torsion-
free subgroup I'r of T'(tp). Note that A = O[[I'r]] is isomorphic to the power series
ring O[[T1,...,T4)] for d = r[F : Q] + 1+ 6 — ry — 12, where § = §,, is the defect of
the Leopoldt conjecture given by dimg(t* ®z Q) — dimg, (t* ®z » @) for the p-adic
closure t¥ in t,. Then the Hecke algebra has dimension less than d + 1 if n > 2 or
ro > 0. We thus have

COROLLARY 6.3. The Hecke algebra h:}"”d(Ul,p(p‘”);O) (of bottom degree) is
finite over O[[C'r,,]]. In particular,

dim(hy "4 (U1,p(p™); 0)) < dim(O[[T1,,]])
=rank(Resp/oTa) +2+0p =11 —ro = (r = 1)[F: Q + 2+ 3, + 72,

where r1 (resp. T3) is the number of real (resp. complex) places of F' and P is
associated to the partition of n into r parts. If n > 2 or I has at least one comples
place, then the above inequality is strict for P = B.

We now assume
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(JL) The global Jacquet-Langlands correspondence compatible with the local cor-
respondence holds for G and Resp;oGL(n).

The local Jacquet-Langlands correspondence is known by [DKV] and [R]. The exis-
tence of global correspondence is known under a certain ramification condition (see
[AC]) Theorem B and [Cll] Theorem 3.3). In particular, (JL) holds under the
conditions (D1-2) (as long as ¥ # (). Under this assumption, the Hecke module
HY(T, L(p;C)) can be embedded into H: (f',L(p; C)) for a suitable congruence sub-
group IV of GL,(F) ([C]] Section 3.5), where the latter cohomology group is the
square integrable cohomolovy groups. Then from the strong multiplicity one theorem
(e.g. [Cl] Theorem 1.1 and [Cl1] Theorem 3.3) valid for Resp/gGL(n), we know the
strong multiplicity one theorem for G.

As an application of the strong multiplicity one, we have
PROPOSITION 6.4. Suppose that U = R for a mazimal order R of D satisfying
(D1-2), (SL(p)) and (GL(c0)), where R = Rz Z. Suppose that the strong multiplicity
one theorem holds for cuspidal automorphic representations of G(A). Then we have
1. The commutative K -algebra h7-°m4(Up p(p*); K) is semi-simple;
2. The cohomology group

n. ord(X(UO B( a))’ L(X; K))

18 free of finite rank over the Hecke algebra h;"’“’(UOYB(pO‘); K).

Proof. Since K is a finite extension of Q,, we can embed K into C (algebraically).
We fix such an embedding. We have a natural action of C = Coo/Coot = {1}
on H"(X(S), L(p ® x; C)) which commutes with Hecke operators. We fix a character
€ : C — {1} and consider the e—eigenspace: H"(X(S),L(p ® x;C))[e]. Then this
space is isomorphic to a space S of cusp forms on G(A) invariant under the group S
with a fixed infinity type (see (3.5) and (3.10) and [H95] Section 8 for the description
of §). We will see later in Corollary 8.3 from p—near ordinarity that if 7 is an au-
tomorphic representation of G(A) intervening in H: (X (U, B( )), L(p @ x; K))lel,
the local component 7, of 7 at p|p can be embedded into I B(F, ))\ for a charac-

ter A : T'(F,) — K* with distinct A" for all elements w in the Weyl group W of
T. By Corollary 5.5, we now know that V(m,)° is a semi-simple R(Np(ty), Aco)—
module, and each character of R(Np(ty), As) appears on V(m,)° at most multiplic-
ity 1. Actually we will see that egV (m,)° is one dimensional (Corollary 8.3). For
[ € %, since Up, g(p*)( is the maximal compact subgroup of D for a division algebra
Dy/F,, the I~component 7 of 7 is a one dimensional representation. If [ ¢ ¥ U {p|p},
Up,5(P*) is a maximal compact subgroup of GL, (F;) and hence m is spherical, and
H°(Uy g(p®)1,V(m)) is one dimensional. Thus by the strong multiplicity one theo-
rem, S is a semi-simple module over Rp and each character of Rg has multiplicity
at most one. In other words, H” (X (Uo,g(p®)).L(p ® x;C))[e] is free of rank 1

n ord
over h7:274(Uy p(p*); K) ®k C (fixing an embedding K < C), which is semi-simple.
This shows the desired result by a descent from C to K, since C is a faithfully flat
K-module. O
Actually under (GL(c0)) and (D1-2) with ¥ # (, the strong multiplicity one theo-
rem is known (see [AC] Theorem B and [Cl1] Theorem 3.3); so, the above proposition

holds.

For simplicity, we write h for hi'}j',"rrd(Ul, B(P™); 0). Let P be the kernel of the
algebra homomorphism x : O[[T'(rp)]] = O) induced by x. We study the localization
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hp. By definition, h acts faithfully on @, H., ,,,(X1,8(p*), K/O)[e]. Thus for an
ideal a. of h, h/a. acts faithfully on H} . ..(X:1 g(p*°),K/O)[e] for a givene : C —
{£1}. Write H, for the Pontryagin dual module of H! . (X1,8(p™), K/O)[e]. Note
that Php D a. p for all € by Proposition 6.4. Since

hp/Php = 73(1(-‘}%:%;’—}3 - (H./PH.)® K = H], , (Xo,5(P%),L(x; K))[e]

by Theorem 6.2 and Proposition 6.4, choosing T € H _.(Xo,B(P®), L(x; K)) which
is the image of 1 € h/a., we can define an h-linear map h — H. by T — Tz
for z in H. such that £ mod P = z. Then by Theorem 6.2, the induced map
hp — H. p is surjective (by Nakayama’s lemma). Since the action is faithful, we
have (h/a.)p = W(K)[¢]p, and we get

THEOREM 6.5. Suppose that U = Rx for a mazximal order R of D satisfying
(D1-2) (GL(00)) and (SL(p)). For each dominant arithmetic character x of T'(xp),
writing P for Ker(x : O[[T (tp)]] = O), we have a natural algebra isomorphism.:

(0™r4(Uy, 5 (p™); 0) /PR (U1,5(p™); 0)) ®0 K = hy " (Up 5(p*); K),

which takes T;(1) to T;(1) for all I outside X.

7. A conjecture on Krull dimension of h™°™®, In this section, we restate
the conjecture in the introduction and give supporting arguments in terms of infinity
types and functoriality.

7.1. Statement of the conjecture. We have seen in Corollary 6.3 that
dim h™°? is finite for h™°"¢ = h™°r¢(U; g(p>); O). The following conjecture giving
the upper bound of the dimension is a slightly stronger version of the conjecture in
the introduction:

CONJECTURE 7.1. Let h™¢ = h"ord(U; g(p*); O) for p =id. Then we have

dim(h™°™) < r(n,F) + 1

where

r(n, F

)= m[F:Q +1, ifn=2m,
T \mF:Q+re+1l, ifn=2m4+1

The conjecture is equivalent to the Leopoldt conjecture if n = 1. As for n = 2,
the conjecture is known ([H94a] and [H95]), if we assume the following two conditions:
1. The Leopoldt conjecture holds for F' and p;
2. F has at most one complex place: 72 < 1.
As we will explain more, later in this subsection, the conjecture holds under (D1-
2), (SL(p)) and (GL(o0)) when 3 < n < 4 and F = Q, because we know from
Corollary 6.3 that dim(h™°™%) <n =r(n;Q) +1if 3 <n < 4.

We shall give a heuristic argument for the conjecture in terms of the infinity type
of cohomological automorphic representation. We will see some other supporting evi-
dences for this conjecture in the following subsection and also study some implication
of the validity of the conjecture.
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Let 7 be a cuspidal cohomological automorphic representation of G(A). For each
embedding o : F — C, we write 7, for the local component at the infinite place [o]
induced by the embedding. Thus 7, = 7., for complex conjugation c¢. In Section 3,
we have associated to 7, its infinity type x, € X (T') for real embedding o and a pair
(Xo» Xeo) € X(T)? for complex 0. Actually X, is an element of positive weights Cj,.

We fix an open compact subgroup U of G(A(®)) so that U D G(Z,). Let X(U)
be the set of dominant arithmetic characters x : T'(t,) — K* of cohomological au-
tomorphic representations occurring in H" (X (U1,5(p%)), L(x; K)) for some a > 0,
where 7 is the bottom degree defined in (BD). We write X (U) for the set of infinity
types Xoo for x € X' (U). Choosing a complete representative subset oo C I for infinite
places of F', we may identify the set Xoo (U) with a subset of X (T')[I] = X (Resp/qT)
by the result of Section 3, where I is the set of embedding of F' into C and X (T)[I] is
the set of formal linear combinations of elements in I with coefficients in the abelian
group X (T'). In other words, decomposing co = oo(R)|_| 0o(C) for real embeddings
0o(R) and complex embeddings co(C), we have associated to each 7 the sum

Xeo(m) = 3 Xeo+ 3 (XoT + Xerer).

g€co(R) TE(C)

Let W be the Weyl group of T in GL(n) and w be the longest element of W. Then
t = wt~lw is an automorphism of 7" preserving the positivity with respect to B. For

each character x : T'(r,) = O%, we write x¥(t) = x(wtw™!). For the determinant
det, norm

composed with the norm character, we write v : T(F') — F'’* ——— Q*. Then by
the description in Section 3, we get

(7.1
Xoo(U) C X = Cp[I] ﬂ {x € X(T)[I]Ix“’ + x° = [x]v with [x] € Z} ,

where complex conjugation ¢ acts on the values of x so that x(¢)¢ = ¢(x(¢)), identifying
X(T) = Z™, v corresponds to 1o with 1 = (1,1,...,1), and x° = }__<; XsCO.
Although in Section 3, the property characterizing x is stated using X = x + 0 — v for
0=>,(n,n-1,...,1)0, the description of X does not change since §’+48° = (n+1)v.

The set X (U) may not coincide with X'. For example, if n = 1 and F' contains
no CM fields, X (U) = Zv. However X has rank 73 + 1 when n = 1. It is interesting
to study when X # |J;; Xoo(U) happens for general n > 1.

Let T'r be the maximal p-profinite subgroup of T'(t,)/t*. Then A = O[[T'r]] is
isomorphic to the power series ring of d variables for d = [F' : Qn + 1+ 6, — 1 — 1.
Thus Spec(A)(@p) is the product of d copies of the open unit disk in @p. Suppose that
F' is either totally real or a CM field. By Langlands functoriality, for sufficiently large
a, we expect (as we will see later) to be able to create a non-trivial nearly p-ordinary
7 of level p® with x = x(w) for any given x € X. If this is the case, by Theorem 6.5,
the support on Spec(O[[T(tp)]] ®z Q) of h™°"¢ @7 Q contains the closure X of X
in Spec(A ®z Q). Since the dimension of the closure X is equal to the Z,-rank of
the p—adic closure of X', which is the rank of the Z-module generated by X'. Thus if
either n > 2 or ry > 0, the linear span of X is smaller than X (T)[I], and hence we
can find x € Cy[I] which is never an infinity type of a cohomological automorphic
representation. This fact is used to show that the Hecke algebra is a torsion A—module
in Corollary 6.3 under the condition that n > 2 or ro > 0. In particular,if 3<n <4
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and F' = Q, it is enough to conclude dim h™°"¢ < 3; so, the conjecture holds in this
case. Anyway it is easy to see that the rank of X is equal to the upper bound of the
dimension in the conjecture, and this gives a reason for the conjecture.

REMARK 7.1. It is a part of a much general conjecture of Langlands that for
each cuspidal cohomological automorphic representation © of G(A), there exists a pure
motive M defined over F' with coefficients in a number field E such that L(s,w) =
L(s,M/p). Since the infinity type of = determines the gamma factor of L(s, =), we
can describe the Hodge type of M in terms of Xoo(w). The outcome is as follows:
Write x()s + 6 —1 = (mg1,-..,Myn). Then the Hodge type of M at the infinite
place o is given by

(72) (md,l) mca,n)» (md,2) mco-,n—l), ) (ma,ja mca,n—j+1)) s

Since M is supposed to be pure, the Hodge numbers (p;,q;) of M has to satisfy p;+q; =
w for the weight w of M. Thus the description of the infinity type of cohomological
representations given above is a consequence of the purity of M, admitting Langlands’
conjecture.

Fix a complex embedding i, : Q < C. Now suppose that F is either a CM
field or a totally real field. Thus we have well defined complex conjugation p acting
on F such that coin 00 =i 00 0p forall o € I. If F is totally real, p is just
the identity map of F. Then for T° = SL(n) N T, we consider the automorphism
¢ : T°(x,) = T°(r,) given by t(t) = wp(t) *w™! for the longest element w of the
Weyl group of T'. Let I'° be the torsion-free part of 7°(r,) and we write I'? = ()P’
The involution ¢ : T°(x,) — T°(t,) induces an involution ¢ of A; = O[['{]] into itself.
Then Conjecture 7.1 follows from the Leopoldt conjecture for F' and p combined with
the following vanishing property of the nearly p—ordinary cohomology groups:

CONJECTURE 7.2. Suppose that F' is either totally real or a CM field. Then for
any given open compact subgroup U C G(A(®)) with U D G(Z,), there exists j > 0
such that HY, ,(T(Uy,8(p*°)), K/O) is annihilated by the ideal Aj(v —1)A;, where r
is the bottom degree for G.

For any dominant arithmetic character x : T°(t,) — O* we can find j > 0
such that x|re is induced by a dominant rational character xo in X (7°)[I]. By the
definition of LJ, the character xo is in & if and only if the O-algebra homomorphism
X : Aj = O induced by x factors through A;/A;(t—1)A;. Thus if Conjecture 7.2 holds,
then the Pontryagin dual module W° of H! _.(T(U1,5(p™)), K/O) is supported by
Spec(Aj/A;(¢ — 1)A;), which has relative dimension r(n, F) — (r2 + 1) over O. It is
then clear from the induction process (6.17) that the Pontryagin dual module W of
Hr . (X1,8(p%)),K/O) is supported by the spectrum of

n.ord
(A;/Ai(c = DAHICLr @%)]],

whose relative dimension over O is r(n, F')+d, for the defect of the Leopoldt conjecture
0p of F.

When F' is neither a CM field nor totally real, the situation is rather murky,
and even conjecturally, there is no clear-cut description of the annihilator of the
cohomology group HY , (T(Uy,5(p™)), K/O) or the Hecke algebra h™°r¢(p>;0)
except for CM components. The annihilator is computed for CM components of the
Hecke algebra in [H94b] Section 5 when 73 = 1 and D is a quaternion algebra positive
definite over all real places of F. In this case, the annihilator is directly related to the
units of the quadratic extension of F' (containing a CM field). We hope to come back

this question in a forthcoming paper.
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7.2. Compatibility with automorphic functoriality. In the previous sub-
section, we described how the conjectural dimension of the universal nearly p—ordinary
Hecke algebra is deduced by the linear rank of the module of infinity types of cusp-
idal cohomological automorphic representations. Here we show that the conjectural
dimension formula is compatible with some of the Langlands functorialities: tensor
products, base-change and automorphic induction.

Since we have a (conjectural) motivic interpretation of cohomological automorphic
representations, it would be easier to deal with the set of Hodge weight (mg 1,...,ms.n)
of motives rather than X. We therefore define for the standard diagonal torus T' =
T, C GL(n), under the notation of Remark 7.1,

Hy = Hosr = {x € X(T)I|XE +x* = [X]v} -

Then we associate to each rank n pure motive M a Hodge weight

X(M) = Z(mo,l; cee amo',n)a S Hn

o

if the Hodge type of M is given by (7.2). Then X gives rise to a spanning cone of H,,
viax = x+0—v. Wecall x =3 _(ms1,...,Men)0 € Hy regularif m,; # mg j for
all i # j and 0. We call the motive regular if x(M) is regular. Let H; be the set of
regular elements in #H,,. Thus our reason for the conjecture is that regular elements in
H, span the full module H,, over Z, and its rank should give the dimension of h™°"¢
over K.

Let F/F' be a finite field extension. We write Ir = {0 : F < Q} to distinguish
Ir and Ip:. Starting from rank n regular pure motive M, r, we consider the restriction
of scalar Resp/p: M, then

X(Respyp (M) = > P x-10))o

o€lp: \T:Res(t)=0

This induces a linear map Resp/p: : Hp/p — Hy(r:F/F', and the map is obviously
injective. Then comparing the rank of the source and the target, we get the following
result

PROPOSITION 7.3. For a finite estension F/F', we have r(n; F) < r(n[F
F'], F'), and the equality holds if and only if one of the following conditions is satisfied:

1. n is even;

2. F is totally imaginary;

3. n[F : F'] is odd, and there is at most one real place of F' over each real place
of F'.

Proof. Let H = {x € Hn|[x] = 0}. Then r(n, F) = rankH + 1. When n is even,
the assertion is obvious; so, we may assume that n is odd. We write r1(o) (resp.
ro(0)) for the number of real (resp. complex) places of F over a place o of F'. Then
the contribution of each o to rank # is given by

mryi(c) + (2m + 1)ro(0) = m[F : F'] + r3(0).
Thus r(n, F) = m[F : Q] + ro(F) + 1. Similarly we can compute

m[F: Q)+ £F : Q] +1 if [F: F'] = 20,

relF L) {mF Q+UFQ+r(F)+1 [P F]=2+1.
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From this, we conclude 7(n; F) < r(n[F : F'], F') and the equality holds if and only
if F satisfies (2) or (3). O

There is some hope that assuming the Leopoldt conjecture for the base field, we
might be able to prove Conjecture 7.1 over the given field. Anyway this is the case
where n < 2 and r; < 1. As we will see in 8.1, as long as x(Resp/p'(M)) remains
regular, automorphic induction for F//F' preserves near p—ordinarity if all the prime
factors of p in F" split in F. The Hodge type x(Resp/r/(M)) of the restriction of
scalar remains regular for x(M/r) in a full dimensional cone inside H,/r if F is either
a CM field or a totally real field. If F' is neither a CM field nor a totally real field,
preserving regularity requirement imposes a strong restriction. Anyway, by the above
proposition, if automorphic induction exists for GL(n), we can reduce the general
(totally real) case of the conjecture to the special case where the Leopoldt conjecture
is valid for F":

COROLLARY 7.4. Let L be a number field, and we choose a real abelian extension
F'/Q so that every prime factor of p of F' splits in F = LF'. Then the Leopoldt
conjecture for the number field L follows from Conjecture 7.1 for F' and p under the
following conditions:

1. L is totally real;
2. Automorphic induction exists for cuspidal cohomological automorphic repre-
sentations from GL(2),p to GL(2[F : F'])p.

Proof. Tt is easy to see that the Leopoldt conjecture for F' and p implies that of L
and p; so, we may assume that L = F. Let G be the algebraic group Resp:,q(D’ )%
for a division algebra D', satisfying (D1-2) with dimp D' = 4[L : F'2. We write
H = Resp, gD for a quarternion algebra D/, satisfying the following conditions:

(a) D is unramified at every finite place;

(b) D is either totally definite or D ®g R = M2(R) x H x --- x H.

Then we look at the universal nearly p-ordinary Hecke algebra h = h™°"¢(Np>; 0)
for H defined in [H89]. Let T be the maximum torsion-free subgroup of T (Zyp)/t*
for the p-adic closure t* in t;,‘. Then rankz I = [L: Q] + 1+ 9 for the defect of the
Leopoldt conjecture ¢ for (L, p).

Let P be a minimal prime ideal of h and put I = h/P. We call an O-algebra
homomorphism P : I — O arithmetic if P induces a dominant arithmetic character
xp : Tu(tp) = O*. The projection h — I induces, for each arithmetic O-algebra
homomorphism P : I — O, an O-algebra homomorphism h/Ker(xp)h — O, which
in turn gives rise to the Hecke eigenvalue system of an automorphic representation
7(P) of H(A). For a place [ of F prime to p, it is known that if 7(P); is special (resp.
super-cuspidal) for one point P, then w(P); is special (resp. super-cuspidal) for all
P, because the corresponding Galois representation restricted to the inertia group I
is rigid if [ { p. For p|p, 7(P), is always principal except possibly when xp = 0, for
which it could be special. For a given cohomological automorphic representation 7 of
H(A) of cohomological weight 0, if 7, for all p|p is special, then 7 is automatically
p-ordinary. Computing limit multiplicity by the trace formula, we can find 7 such
that 7 is of cohomological weight 0 and m is special for a given finite set £ U {p|p} of
primes. Then we can find I as above so that m(P) = « for a prime ideal P of I.

Now we choose ¥ so that

1. every | € ¥ is totally split in L/F"; A

2. If [ is a prime ideal of F’ with non-split D}, ¥ contains all places of F' over [.
Then the automorphic representation 7(P) has automorphic induction II(P) in cus-
pidal (cohomological) automorphic representations of G, because II(P); for [€ T is a
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Steinberg representation and hence square integrable ([B] Section 5).

Let A; = O[[I'”’]]. We choose a regular weight x € X’ (which is a square in X (T#))
for a p-split torus Ty of H so that x' = Respp:x is still regular. Then h ®ax;, K is
the Hecke algebra, of finite level. We find an open compact subgroup U C G(A(*)) and
have an algebra homomorphism II; : h;‘;”d(Ul, B(P*),K) = 1®x ;.x K for suitable
level a(j) depending on j such that Poll; corresponds to II(P) for P factoring through
I ®a;,x K. The group U is independent of j if we choose it sufficiently small. Let
h' = h™°"(U; p(p*); O). Since we have a natural O-algebra homomorphism h’ —
h;;"’d(Ul, B(p*Y), K) induced by the isomorphism in Theorem 6.2, we may pull back
II; to a unique algebra homomorphism IT; : h' = I ®,;, K (still denoted by II;). We
have a Galois representation p : Gal(Q/L) — GLo(I) such that Tr(p(Frob;)) = T, ()
for almost all primes [ of L. Thus II; actually has values in I®4 ;,, O, because the image

_is generated by the coefficients of the characteristic polynomial of indﬁl p(Froby).
Taking the projective limit of II; with respect to j, we get II : h' — I. Since I is
generated by Hecke operators T (I) for almost all primes [, and image of the map II
is generated by Tr(indf p(Frob;)). From this, it is clear that I is an h'~module of
finite type. It is known by [H89] that dimI = [L : Q] + 2 4+ 4. This combined with
Conjecture 7.1 shows

[L:Q +2+6=dimI<dimh=[F':Q|L:F']+2.

Thus é = 0 and the Leopoldt conjecture for L follows. O

REMARK 7.2. If Conjecture 7.1 is valid for the split GL(n),p: (instead of G
associated to division algebra D'), we can apply the same argument as in the proof of
the corollary to GL(1) /1, for a CM eatension L/F' and GL([L : F']),p: in place of Hp,
and G p:. The result is the same, that is, the Leopoldt conjecture for (L,p) follows
from Conjecture 7.1 for GL([L : F']);p:. The difficulty of applying the conjecture
for G associated to a division algebra is that the automorphic induction image of
an arithmetic Hecke character of L has to be super-cuspidal at ramified places of
D', which is impossible if the place split in L/F' (which is not always but often the
case). Anyway the Leopoldt conjecture for a CM field L is equivalent to that for its
mazimal totally real field; so, this case is basically covered by Corollary 7.4. Anyway,
this remark shows that the function (n,F) — r(n,F) is the minimal assignment of
dimensions so that Proposition 7.8 holds for the given (1, F) predicted by the Leopoldt
conjecture.

We look into the base-change functoriality from Resp: ;oG L(n) to Resp;oGL(n)
for a finite extension F'//F'. Thus the functoriality is induced by (M, p:) = (M F)
for pure regular motive M,p: of rank n. The corresponding linear map of the infin-
ity types of m (or Hodge types of M) is the the inflation map Infp/p : Hp/p —
Hn/r given by Infr/pi(X)s = Xo|p - 7This is a representation theoretic dual of
Respypi. Since H,/r is naturally a Galois module, we see easily that Im(Infr ) =
H°(Gal(Q/F"),Hn/F), and Infp p is obviously injective. We see that r(2,F) —
r(1,F) =1y +ry. Thus we have

PROPOSITION 7.5. We have r(n,F) > r(n,F') for a finite extension F/F'. If
F is a CM field with mazimal real subfield F', r(2,F) —r(1,F) =r(2,F') —r(1, F').
Thus under the Leopoldt conjecture for F' and p, Conjecture 7.1 for (F,n = 2,p)
implies that of (F',n = 2,p).

We consider the linear map B : Hy/p © He/r = Hpg/r given by (my) @ (nj) =
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(m; — nj)o<i<n,0<j<e fixing an order of the indices (4,7). This is associated to
X(M) ® x(N) = x(M ® N)
for the dual motive N of N. It is easy to see that Ker(B) = (3, Z(1,,1¢)0) N (Hn ®

f_L
He), where 1, = (1,1,...,1). Take x = ) 2,(1,,1¢)0 € Ker(8). Then we have
z°+ 2% =) (Ts + Tco)(In, 1¢)o = [z]v. This shows 2z, = [z] for real place o and
Ty + Too = [z] for complex places o. Therefore we have rankz Ker(B) = r5 + 1, and
PROPOSITION 7.6. Suppose thatn > £ > 1. We have

rankz Im(B) =r(n; F) +r({: F) —ro — 1 < r(fn; F),

and the equality holds only when eithern =0 =2 andr, =0 or £ = 1.

Iterating the above process, we can think of x; B --- B xx € Hp,..n,/r for
(X15---Xx) € Hnyr @ - ® Hp,yr. This map corresponds to the tensor product
of k—motives: (Mi,..., M)~ M; ® My ® - -- ® My, and by induction on &, we get:

rankz(Im((x1,..-xk) = x1 B -Bxg)) <r(ny X ng x -+ x ng; F).

Thus our conjecture is compatible with tensor functoriality.

8. Ordinarity condition via Newton polygon. In this section, we study
what admissible representations of GL,(F},) give rise to the p-component of a P-
nearly ordinary automorphic representation. We fix an algebraic closure @p of Q.
Then we fix two embeddings i, : Q < C and i) : Q — @p. For each field embedding
o : F < Q, we write oo, for the infinite place associated to iss 0 0 : F = C and p,
for the p-adic place associated to i, 0 0.

__ 8.1. Newton polygon and Hodge polygon. We fix one embedding o : F' —
Q and an irreducible cohomological automorphic representation 7 of G(A) of infinity

type x. We recall the (modified) induced module Ig()\) = Indg‘(’;pa)x defined in

Section 5 for a continuous character A : T'(F,,) — Q" (with respect to the discrete
topology on Q): Writing A(diag(ty,...,tn)) = H?:l Aj(t;), the modified character A
is given by

Adiag(ty, ..., tn)) = H NIt
j=1

where we normalize the p,—adic absolute value so that |w|,, = |tp, /@y, |~! for a
prime element w € t,,. We assume that

1. po € T and 7, <+ I§(X) for a continuous character A : T(Fy, ) — Q%

2. T is cohomological and associated to a dominant character y € X as in 3.2

and 3.3.
When 7 is nearly p-ordinary with respect to B, we know that the condition (1) is
satisfied by (5.5). We write [p,] for the set of embedding 7 : F < Q such that
Pr =Po-
We define the (reciprocal) Hecke polynomial of 7 by

n n

(8.1) Hy, (T) = [Ja - N@)T) = (-1 1w a1,

i=1 s=0



AUTOMORPHIC INDUCTION AND THE LEOPOLDT CONJECTURE 699

By [BZ1] 2.9, if m,, < I§()\) for another character X', then X' = A* for an element
w € W; so, Hy (T) is well defined independent of the choice of \. When m is
unramified (and hence m,, = I§(\)), this polynomial is the Hecke polynomial of
the Hecke operators Tj(p) (without modification, see (6.6)) as in [Sh] Theorem 3.21.
However, when 7, _ is ramified, the above polynomial differs from the one constructed
in [Sh] by these Hecke operators.

Let V = V(mp, ), and write V3 for the semi-simple part for Tg = [[}_, Tj(w) as
in Section 5. Then as seen in Section 5, V3 is canonically isomorphic to the Jacquet
module Vg, which is a semi-simple T-module. Write Vg [X] C Vg for the space
corresponding to the A-eigensubspace Vi [X] C Vg. Then V3 [X] is an eigenspace of

s
j=1

Ts(w), and its eigenvalue is given by |w|;£5_1)/2 [Ti-; Aa—s+j(w) (see Corollary 5.5).

Let P be a standard parabolic subgroup associated with a partition n = n; +ns+
-+-+n, of n into r—parts. Define atuple S = (0 =59 <51 <3< ---<sp)ofr+1
integers by n,_; = s;41—s; foralli = 0,--- ,r. We take an embedding o : F — Q and
write e = e, for the ramification index of F;_ /Qp. Then for the cohomological weight
X = Zr(mr,l;m‘r,27 s ,mr,n)T eXcC X(T)[I] of (thus Mr1 2 My >0 > mT,n)>
we define the Hodge P-polygon Ap = Ap, by the convex hull of the following
vertices:

n
(82) oyt D > (mej+n—§)|i=0,1,...,r

TE[po) j=n—si+1
In particular, the slope u, ; = p; of the i-th edge of the polygon Ap, is given by
Z;L;:L_sl,+1 E‘re[pv](mﬂj +n— .7)

8.3 — .
( ) fa.i €oMyr—it+1

On the other hand, we define the Newton P—polygon Ag, » of ™ by the convex hull
of the vertices over S (in the horizontal z—axis) of the Newton polygon of H,_ (T),
which is above or on the Newton polygon of Hy_ (1) and coincides with the Newton
polygon only when P = B.

8.2. Newton polygon is above Hodge polygon. We keep the notation intro-
duced in the previous subsection. Let S, = (so = S¢.0,---,Sr = So,r) be the maximal
tuple of integers in increasing order such that

lip(as)lp = [ip | T] x-(&)
T€[po] p

for the p-adic absolute value | |, of @p, where & = diag(1,...,1,w,...,w) €

GLy(Fy,). In particular, we have sp = 0 and s, = n because ap = 1.

From the data S,, we would like to determine the parabolic subgroup P which
is minimal among parabolic subgroups @ so that « is @-ordinary. Let n = n} +
ny + -+ +nl, be the partition associated to Q. Define a tuple Sg = (s})i=o,...,~ by
ny_; =8, —s;foralli=0,...,r' =1 with s = 0. Since a; is the sum of eigenvalues

of Ts(w) on V§ = Vg (by Corollary 5.5), we conclude from (6.6) and (6.7) that
(8.4) w is Q-ordinary <= Sp C S,.
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Here we remark that w in (6.6) and (6.7) is given by x~! by our definition of the
algebraic induction (6.4). Then we have
THEOREM 8.1. Let the assumption and the notation be as above. Then we have
1. If the cohomological automorphic representation m of infinity type x € X is
nearly Q-ordinary at p,|p for a standard parabolic subgroup Q, then the New-
ton Q-polygon of H, (T) coincides with the Hodge Q-polygon Ag , defined
above;
2. If mp, = I§(N), the parabolic subgroup P determined by S, is the smallest
standard parabolic subgroup for which m is nearly P-ordinary at py;
3. For every irreducible cohomological automorphic representation m with my,
embedded into I§(\) and having infinity type x, the Newton polygon of the
Hecke polynomial Hy (T) is on or above the Hodge B-polygon Ap .
Proof. We have already proven the assertion (1) and (2). By the definition of the
idempotent ep, we know that

lip(as)lp < |ip H xr (&)

T€[po] p

This shows that Ap is under or on the Newton polygon of Hy_ (T). O

REMARK 8.1. A general conjecture (due to Langlands) is that for each cohomo-
logical cuspidal automorphic representation m, there should exist a pure motive Mg of
rank n such that L(s,m) = L(s, M). Since we can write down the I'-factor of L(s,)
ezplicitly by the infinity type of ™, we can predict the Hodge type of M X ;_ - C, which
would be given by

(&5) ((mo,hmo,n): (mm2’ md,n—l)’ sy (mo,j7 mcr,n——j+1)’ . ) .

Thus if p totally splits in F', Ap is ezactly the Hodge polygon of M at the infinite
place ooy . If w is unramified at p,, we expect that M is crystalline at p,. Then the
crystalline realization of M at p, has the crystalline Frobenius map ®. Although ® is
not a linear map, its power ¢ = ®/P-F2] has a well defined characteristic polynomial
Heris o (T) of degree n. A standard conjecture is that the crystalline characteristic
polynomial Heris o (T') should coincide with the characteristic polynomial Hy (T') of
the Frobenius at p, of an [-adic étale realization of M (11 p). Thus by a well known
result of Fontaine and Mazur, if p completely splits in F', the Newton polygon of
H, (T) = Heris,o(T) is on or above the Hodge polygon Ap. This gives a philosophical
explanation of the above theorem 8.1. The above theorem is hence a bit stronger than
this geometric fact, because (i) Ap is really above the Hodge polygon if p does not
completely split in F', and (ii) the theorem also gives an information even when T
ramifies at p, (which should corresponds to a non-crystalline motive).

Since near p—ordinarity of a cuspidal cohomological automorphic representation
(with respect to the Borel subgroup) implies that m, for all p, is a subrepresentation
of an induced representation, as a direct consequence of the above theorem, we see

COROLLARY 8.2. For cuspidal cohomological automorphic representations, we
write tensor product functoriality as (M) Ra(M') = #(M ® M') from GL(m) X
GL({) to GL(nf), automorphic induction functoriality as m(M) = m(Resg/p M) from
Resp/GL(n) to Respi joGL([F : F'n) and base-change functoriality as m(M;p:) —
n(M;p) for a finite extension F/F'. Then, as long as the functorial image remains
cohomological (that is, the infinity type of the image is regular), automorphic induction



AUTOMORPHIC INDUCTION AND THE LEOPOLDT CONJECTURE 701

preserves near p—ordinarity (with respect to B) provided that all prime factors of p in
F' split in F, and tensor product and base-change preserve near p—ordinarity (with
respect to B) unconditionally.

The following corollary guarantees semi-simplicity of the nearly p-ordinary Hecke
algebra:

COROLLARY 8.3. Let N be the unipotent radical of B. Suppose that w is nearly
ordinary at p, with respect to B. Then eg H*(N(xy, ),V (my,)) is a one dimensional

space on which B(Fy,,) acts by a character A such that |\, = inre[pa] XrVy
where 6 = _(n,n—1,...,1)c andv =} 1,0.

Proof. By near B-ordinarity, we have from the argument in Section 5 that
is a subquotient of I§()\) for a character A : T(F,,) — Q". By near B-ordinarity,

for

we know from the theorem that we can choose A so that |\|, = IHTG[M X
p

X' = xv~'8. Writing x. = (mr1,...,Mrn), we have m,1 > my 5 > -+ > m,, for
all 7 € [p,]. Thus if w # 1,

IR IR IEE&)
s=1

T€[ps] s=1 P

In particular, A¥ ior w € W are all distinct. Then by Proposition 5.4, we know that
esVp C D ew AY as B(F}, )-modules for V = V(m,, ), and as we have already seen
in Corollary 5.5 and (4.6), for A¥—eigenvector v € Vg, we have

-1

oTs(@) = | [ (&) ] [=lo A (&) = (A&)]; A (&) v

T€[po]

Thus from |[A72A¥(&)]p, < 1 for at least one s if w # 1, we conclude that ep kills

the A\¥—eigenspace if w # 1. Therefore egVp is at most 1-dimensional and actu-
ally is equal to the A-eigenspace under the above isomorphism. Since V§ = Vp as
R(B, As)-modules (Proposition 5.1), this shows the desired assertion. O

Appendix A. Semi-simplicity of Hecke algebras for reductive groups.
We can generalize from cuspidal cohomology of GL(n) to interior cohomology of
general split reductive groups the argument which proves semi-simplicity of the nearly
ordinary Hecke algebra of p-power level, which we describe here.

Let Go/r be a connected reductive group over a number field F', and we put
G = Resp/gGo. If Go is split over F, = F ®q @, we shall prove semi-simplicity
of the commutative Hecke algebra acting on the nearly ordinary cohomology group
H! (X(U),L) c H(X(U),L) for a modular variety X(U) associated to an arbi-
trary p-power level open compact subgroup U of G(A(®)). Here the locally constant
sheaf L on X (U) is associated to a rational representation of G, and H/ indicates
the image of the compactly supported cohomology group in the cohomology group

without the support condition.

There could be two ways of proving the semi-simplicity. The first one is a bit far-
fetched: We interpolate p-adically the cohomology group HZ (X (U),L) varying
rational representations L, getting a space V', which is a module of finite type over
the Iwasawa algebra A = O[[T(Zy)]] of the torus T' = Resp;gTp for an Fp—split torus
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To C Go- Then one proceed to prove that V, = V ®j , O for each dominant weight
X is isomorphic to H! (X (U),L) for the rational representation of highest weight
x~! and the maximal compact subgroup U C G(A%®). If we find densely populated
x (in Spec(A)(O)) with the above specialization property, the Hecke algebra h of V
(over A) specializes along x to the semi-simple one of level 1, and hence h must be
reduced. Then by specializing h to p—power level Hecke algebra, we get the desired
semi-simplicity for almost all such specializations. This method has been exploited
for GSp(2g) in [TU] and probably works well for reductive groups G yielding Shimura
varieties. However this method is ineffective to prove semi-simplicity for all x and all
p—-power level. Also this method is probably not feasible for general G whose modular
variety does not have complex structure, because in such cases, h is a torsion A-
module.

We should emphasize here semi-simplicity (or unramifiedness) at arithmetic
primes of the universal nearly ordinary Hecke algebra h is important in constructing
p-adic L-functions on the spectrum Spec(h) and relating its values with complex
L—values of automorphic L—functions.

In earlier works of the author, the semi-simplicity of such Hecke algebras for
GL(2),r is proven using the theory of old and new forms. A key point of this method
is to prove one-dimensionality of nearly ordinary vectors in each irreducible (coho-
mological) automorphic representation, carefully analyzing old vectors. The purpose
of this paper is to prove directly the semi-simplicity for all arithmetic characters
x:T(Zp) — @; and all reductive G split at p. We prove via the theory of Jacquet
modules of local automorphic representations ([BZ] and [BZ1]) that the nearly ordi-
nary vector is unique up to constant multiple if the representation is irreducible. This
is a generalization of the argument in Section 5 to general reductive groups. Since
the automorphic representation occurring in the cohomology group is unramified out-
side p, the one-dimensionality gives rise to the semi-simplicity. Our final result is
Corollary A.4.

A.1. Jacquet modules for reductive groups. Let G be a split connected
reductive group over a finite extension F of . Let 7 be an admissible representation
of G(F) on a vector space V over a field K of characteristic different from p. We
suppose that G acts on V from the right. Fix a Borel subgroup B with split torus
T = B/N for the unipotent radical N. A parabolic subgroup P D B is called
standard. We fix a standard parabolic subgroup P with unipotent radical Np.

Since the characteristic of K is different from p, we have a Haar measure of
Np(F'). We then define

V(P)=V(P,7) = {v—uvr(n) € V(n)|ve V(r), ne Np(F)},

and put Vp = Vp(w) = V/V(P), which is called the Jacquet module. We take a
sufficiently large open compact subgroup U,, C N(F) for each w = v —vw(n) € V(P)
so that n € Uy. Thén we see that [;; vr(u)du = 0 for every open subgroup U of N(F)
containing U,,. Write Uy = N (V) for the p-adic integer ring V C F', and choose the
Haar measure du so that on du = 1. We also choose an increasing sequence of open
compact subgroups U; indexed by 0 < ¢ € Z such that (J, U; = N(F'). Then the map

v+ lim (U; : Uo)_l/ vm(u)du
1—00

i
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gives rise to a section of V. —» Vp. Thus V = Vp & V(P) canonically, and the
association V' — Vp is an exact functor from the category of admissible representations
of G(F) into the category of admissible T'(F)—modules.

PROPOSITION A.1. Suppose K has characteristic 0 and that w is absolutely irre-
ducible. Let W be the Weyl group of T in G. Then we have dimg Vg < |W| for each
Borel subgroup B.

Proof. By extending scalar, we may assume that K is algebraically closed. If
Vs = 0, there is nothing to prove. Thus we suppose that Vg # 0. Then we can
find a character A : T(F) — K* which gives the representation of T = B/Np on a
simple factor of Vg. Then  is a factor of Indgg; A by Frobenius reciprocity [BZ1]
2.3. By [BZ1] 2.8, the length of the composition series of Vg as T'(F)-modules is then
bounded by |W|. Since T is abelian, this shows that dimg Vg < |W|. O

For each character A : T(F) — K* and w € W, we write A* for another character
of T given by A¥(t) = A(wtw™?).

COROLLARY A.2. Suppose that Vg [X] # 0, where A= 6113/ ) for the right module
character g on B. Then ™ C Indgggx. If \¥(t) for w € W are all distinct,

VB C @Dyew A% as T (F)-modules.
The proof is exactly the same as that of Proposition 5.4; so, we leave it to the
reader.

A.2. Double coset algebras. Let
D = {z € T(F)|zNg(V)z~' > Np(V)}

be the expanding sub-semigroup of T(F). When G = GL(n), this semi-group is
exactly equal to the one Dp defined in (4.1). Let ¥ be the set of simple positive roots
of T with respect to B. Then for each subset ©® C ¥, we have a parabolic subgroup
Py = BWgB for the subgroup Wg of the Weyl group W generated by reflections
associated to ¥ — @. Traditionally the above standard parabolic subgroup is denoted
by Ps_e (e.g. [J] I1.1.8), but we use the symbol Pg for that. Write Lg for the Levi
subgroup of Pg and write Zg for the identity connected component of the center of
Le. We consider the orthogonal complement

X.(0) = {€ € X.(T)0(E) =0V € T — O}

in X,(T) = Homgig—gp(Gm,T). Then X,(©) = X.(Ze) and rankz X,(©) = |©| +
rank Z for the center Z C G. For each a € %, we therefore find a unique generator
o € X, ({a}) modulo X,(Z) so that £,(w) € D for a prime element @ € V. Then D
is generated by &, (w) for @ € ¥ and T(V)Z(F'). We write Dy for the sub-semigroup
of D generated by {{o(w)la € T} and Z(F). We write simply P, = P} and
Lo = Liay.

We consider A = Ag = B(V)DB(V), which is a sub-semigroup of G(F). For
simplicity, we write B for B(V) and N for Ng(V). Since D commutes with T, for
§eD,

B= || ('BénBjuand N= || (£'NENNu
ueEN/E-1NE ue€N/E-1INE
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» This shows

(A1) Né6N= || New= || Nué and
ueEN/E-INE u€ENE-L/N

B¢B= || Béu= || But

u€N/E-INE u€g{NE~1/N

In particular, N(N/N = BEB/B.

We now consider the double coset algebra R = R(N,A) spanned over Z by Nz N
forz € D. Welet Ractonv e VN = HY(N(V),V) by

(A.2) v|[NEN] = Z vm(éu) = ~/§N§—1 v (€)du.

ueN/§~1N¢g
Let {£a(w)}aex be the generators of D modulo center. Then for § =[], &, we have
N(F) = U2/ N7,

Thus writing T'(§) = NEN as an operator on V, we see easily from (A.1) that T'(¢) =
T(€)? and T(€) is nilpotent on V(B)N by (A.2).

Let !N be the opposite unipotent subgroup of N. We put Uy (r) = !N (r)T(r)N,
where X (r) is the kernel of the reduction map: X (V) - X (V/w"V) for an algebraic
group X,y. Then Uy (r) is a decreasing sequence of open compact subgroups of G(F)
with NU1(r) = N and Uy (r)€Us(r) = Uyeene-1/n Ur(r)ué for £ € D. Thus VN =
U, H°(Ui(r), V), and the finite dimensional space H°(U;(r), V) is stable under T'(£).
Thus we can decompose T'(§) = s + n for commuting sum of a unique nilpotent
operator n and a unique semi-simple operator s first on each H%(U,(r),V) and then
over the union VN = |J, H°(U;(r), V). Thus we find VN = V(B)"N @ s(V") and the
projection V .—» Vjp is injective on s(V1V).

Since vr(£77) is N-invariant for a sufficiently large j, the projection VNV — Vp
is surjective. Thus s(VV) = Vp, we get a R-linear isomorphism

VN =v(B)N ¢ Vp.

Let A : T(F) — K™ be a character intervening in the T'(F')-module Vg. Since T
is abelian, we can always find a subspace Vg[A] on which T'(F') acts via the character
A. We write Ady for the adjoint representation of Resp/q,(T) on the Lie algebra
of Resp/q(N). Then det(Ady(z)) = p?(z) for the half sum of positive roots p with
respect to Resp/q,(B). Since N acts trivially on Vg, we have

(A.3) v|[NzN] =[N :z ' Nz]\(z)v = | det(Adn (2))|pA(@)v = |0*(z)[pA(2)0,

where “| |,” is the standard p-adic absolute value such that |p|;* = p and Ad is the
adjoint representation of Resp/q,(T) on the Lie algebra of Resp/q, (V).

A.3. Rational representations of G. We now suppose that F' is a number
field and Gq is a reductive group defined over F' split at F}, for all primes p|p. We
then consider G = Resp/gGo. We suppose that Gy is actually defined over O, =
Or ®z L, as a smooth (relatively connected) split group scheme over O, where Of
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is the integer ring of F'. Then G is a generic fibre of Reso,,z,Go/0,- We sometimes
write G(Zp) and Go(Oy) for Z,—points (resp. Op—points) of these schemes defined
over p-adic integers. We fix a split Borel subgroup By C Gos0, with unipotent
radical Ny, and write B, = Bo(F},) whose unipotent radical N, is given by No(Fy).
We define B = Resop,;z,B0, N = Reso,/z,No and T = B/N = Resg,;z,To for
To = Bo/Np. Let G(Z) C G(A*) denote a maximal compact subgroup (by abusing
notation) as maximal as possible (this means that we assume a local component of
G (2) to be hyperspecial if one need to assume it in order to assure that the spherical
representation has only one fixed vector under the maximal compact; see [T] 3.8 and
[Ca] III). We assume that the p—component of G(i) is given by G(Zp).

We write D, (resp. Do p) for D (resp. Do) with respect to By, and the split torus
T, = By /N,. Let p be the Jacobson radical of O, = Of ®z Z,, for the integer ring
Op of F. Thus p =[]}, p0,. Define

(A4) Uo(r) = {u € G(Zp)|u mod p" € Bo(O/p"0)}
Ui(r) = {u € G(Zp)|u mod p” € No(O/p"0)} .

We fix a subgroup S such that Ug(r) D S D Z(Zp)Uy(r) for 7 > 0. Then

(A5) A=A,= Uo(r)(H Do ,p)Uo(r) = Uo(r)(H D,)Uo(r) is a semi-group.
plp plp

We consider for a topological module A, the space of continuous functions: C(4) =
Cs(A) ={¢: S/Z(Zy)N(Zp) - A}. We would like to make C(A) a left A '-module
for the opposite semi-group Ay 1. For that, we first define a left action of A, on
Ys = S/Z(Zp)N(Zp). Since S acts on Yg = S/Z(Zp)N(Zp) from left and Up(r) =
ST(Zyp), we only need to define a left action of Do = ][, Dop- Pick y € S and
consider yN(Z,). Then for d € Dy, dyN(Z,)d™! = dyd~'dN(Z,)d™* C dyd ' N(Q,)
and dyd~*N(Q,) is well defined in G(Q,)/Z(Zp)N(Qp). Writing *N for the opposite
unipotent subgroup of G, we have the Iwahori decomposition Up(r) = U'T(Zp)N (Zp)
and S = U'T'N(Z,) for open subgroups U’ C *N(Zp) and T' C T'(Zp). Then we see
dU'd™' c U’ and dN(Z,)d™! D N(Z,) by the definition of D. This shows that the
coset dyd~'N(F) NS is well defined single coset of N(Z,), which we designate to be
the image of the action of d € Dy. This action extends to that of the semi-group A
by an obvious way. We now let A;! act on Cs(A) by dé(y) = ¢(dy). In this way,
Cs(A) becomes a Aj'~module. ‘

We now fix a finite extension K over (Q, which contains all conjugates of F' in
@p. Let O be the p-adic integer ring of K. We now assume that A is either an
O-module of finite or co-finite type or a vector space over K. We put the p-adic
topology on module of finite type and vector spaces over K and the discrete topology
on module of co-finite type. We consider the quotient scheme G /N defined over K,
and its structure sheaf Og/y. We consider the algebraic induction module:

(A6) LOGK)={(¢:G/N = K) € H(G/ZN.Ogx)|d(yt) = x()¢(y) Vt € T'},

where x € X(T) = Homgg—gp(T, Gm). Welet G act on L(x; K) by go(y) = ¢(g™ y).
Then L(x; K) = Indg x~1, which is the induction in the category of scheme theoretic

representations (that is, polynomial representations). We write this representation as
px + G = GL(L(x; K))-
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Suppose that x is trivial on the center for the moment. We restrict functions
in L(x; K) to Ys = S/Z(Z,)N(Z,) and get an embedding L(x; K) < Cs(K). The
image is stable under the action of A;! and for ¢ € D! and u € N(Zy),

u€)d(y) = p(€ury) = x(€)p((u))p(y) for ¢ € L(x; K).

When we call L(x; K) a A;'-module, we take the action induced by Cs(A). When
we call L(x; K) a G-module, we take the action given by p,. The two actions differ
by scalar. We then define Lg(x; O) = Cs(O) N L(x; K), which is a AZ'-module (but
not a G(Q,)-module). By definition, the action of A factors through A!/Z(A1)
for the center Z(A, ') of A'. We then define Ls(x; K/O) = Ls(x; O) ®0 K/O. For
each character € : T(O/p") — O*, we may regard € as a character of Uyp(r) because
Uo(r)/Ur(r) = To(O/p"). Then we define a A '-module by

(A7) L(xe; 0) =eL(x;0) C Cyyry(0) and
L(xe; K/O) = L(xe; 0) ®0 K/O C Cyyr)(K/O).

Let x : T(Z,) — O* be a general character which may not be trivial on Z
but induces an algebraic character xo on an open neighborhood of the identity. We
can always find an algebraic character ¢ € X(G) = Homgig—gp(G, Gp) such that
Y|z = x& for some positive integer h. We take a character 1 : G(Q,) — O* such that
Y8 =4 and 1o = x on an open neighborhood of the identity in Z(Z,). Then we have a
unique subspace in Cs(K) ® ¢ isomorphic to L(x; K) as Sp—modules, which we again
denote by L(x; K). We fix such a 1o and define Cs(1, A) by C(A) ® 1po. The choice of
1o does not matter for our purpose. We then define L(x; O) = L(x; K)NCs(y; O) and
L(x; K/O) = L(x; 0) ® K/O. These are well defined Ay '-modules. The action of
Ay ! may depend on the choice of 9, but the difference is only a unit-scalar multiple
(in O).

_A.4. Nearly p-ordinary representations. Let U be an open subgroup of
G(Z). We consider the associated modular variety:

X(U) =GQ\G(A)/UCeot Z(A),

where Co+ is the identity connected component of the maximal compact subgroup of
the Lie group G(R) and Z C G is the center of G. We fix a character x : T'(Z,) = O,
which is algebraic on a neighborhood of the identity. We assume that e = xxg ! factors
through To(O/p") for xo € X(T). We call x dominant if L(x; K) # 0. Then we fix
a p-adic Hecke character 9 : Z(A)/Z(Q)Z(R)4+ — O* such that 9 coincides with
x on T'(Zp) N Z(Q,). This condition tells us that ¥ is a p-adic avatar of a complex
Hecke character 1 : Z(A)/Z(Q) — C*. This means that i3} (y(z)) = z;l({ﬁ\(x)) for
all z € Z(A) with z, = 2o = 1 and the co-type of 9 is given by xo|z. We then
define a right action, if U, C Up(r) of uz € UCx+Z(A) (u € UCux+ and z € Z(A)) on
L(x; A) by ¢luz = J(z)s(up)px(u;l)qﬁ. The action is well defined since x = exo = %
on Z(Q,) NU. We write this right Z(A)U-module by L(x, ¥; A).

We define the covering space X (U) of X (U) by
(A-8) X(U) = GQ\(G(A) x L(x, ¥; 4))/UCo0+ Z(A),

where y(z, ¢)u = (yzu, lu) for v € G(Q) and u € UCx+Z(A). We use the same
symbol L(x,; A) for the sheaf of locally constant sections of X'(U) over X(U).
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We consider the limit, shrinking U,
(A.9) L(A) = L(x,9; A) = lim y HI (X (U), L(x, ; 4)).

On the space L(K) the group G(A*>) acts from the right via a smooth representation,
which is completely reducible. The complete reducibility follows from the fact that
the interior cohomology H/ is embedded in the square-integrable cohomology and
hence the representation over C is unitary ([C]] 3.17-18). Here we regard L(x, U K )
as a G(Qp )—module via the representation px- Thus in particular, we have an action
on HO(U, £9(x, ¥; I&)) = L9(x.: K)Y of the double coset algebra Ry = R(U® x
B(Zp),G(AP*®) x A,) of double cosets Uzl with z € G(AP*) x Ap, where U =
Up x U(”) and we have assumed that U, C Up(1).

As already described, we have a unique co-character £, : G,,, = T for each a € ¥
such that &, (w) (a € ¥ and parameters w of F},) gives a minimum set of generators of
D, modulo Z (Fp) We consider the double coset T'(a) = U, (p)U. The double coset
acts on L(x, ¥ A) for A= O and K/O via the A;'-module structure on L(x, ¢ A).
The corresponding operator will be written as ’I[‘(a) The operator T(«) is determined
(up to unit multiples in O) independently of the choice of {4, because Z(A; 1) acts on

L(x, 12)\; A) by a character 19 with values in O, and &,(w) is unique modulo center.
We then make a product T =[],y T(a).

Similarly, the double coset T'(a) acts on £9(x,%; K)N(Z») through the action of
G(A*). The corresponding operator will be written by the same symbol T'(«). Then
we put T' = [[ 5 T(). Since the action of G(A™) is defined using the G-action
px on L(x; K). Then the two operators T(a) and T'() are related on the image of

L9(x, P; O)NEZ2) by

(A.10) T(a) = x(€a(p)) ' T(a) up to p-adic units if x|z # 1.

~

The limit e = lim,_;c T™ exists on HI(X(U), L(x G Y3 )) for A = O, K and
K/O (see Section 2). Thus the limit e exists on £9(x,; A)N@») for A = O, K/O
and K. It is easy to see, if U, D N(Z)),

(A1) HOU,eL e KV = e (HIXU), L K)))

We write £2 . (x,¥; A) for eL2(x,P; A)N (Z2), An irreducible representation 7 of
G(A*), which is a subquotient of £7(y, 1,[), K), is called nearly ordinary of p-type x
if e (V(m)N(Z»)) 3 0 for the representation space V(x) of 7. For a subset © C I, we
can think of T(0) = [],ce T(@) and eg = lim,_. T If egV () # 0, we call 7
nearly ©-ordinary or nearly Po—ordinary.

A.5. Semi-simplicity of interior cohomology groups. Recall that 2p is the
sum of positive root of T" with respect to B. If & is a local component of a nearly
p-ordinary representation of p—type x, then for its p-component 7, (acting on V), its
Jacquet module Vg # 0, and hence, by Corollary A.2 and (A.3), we find a character
A:T(Q,) = K* such that VB[X] # 0 and Ip‘2X($)|p = |xo(z)|p (because ||p($)|p|p

|p(z)71|,), where “| |,” is the p-adic absolute value on K normalized so that |p| = ;7.
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By definition, the right modulus function dp is given by

/ ¢(u)du = dp(b) / (b1 zb)du.
N(Qp) N(Qp)

This shows that
(A.12) 55 = 027",

where p? = detoAdy is the sum of positive roots, and p is a sum of fundamental
weights with respect to B. This shows

(A.13) IAle = Ixoplp-

Note that xo is non-negative with respect to B because g is dominant. Since xo > 0,
Xop > 0, that is, xop is in the interior of the Weyl chamber of B. This shows that if

w # 1, :
(A.14) [A¥(d)]|p < |\(d)], forallde D,

because W acts simply transitively on Weyl chambers and each element in the interior
of the chamber of A has the maximum p-adic absolute value on D in its conjugates
under W. In particular, we get

THEOREM A.3. Let w be an irreducible nearly ordinary representation of p—type
X. Then there exists a character A : T(Q,) = K™ such that X Vg (mp) — Bwecw ¥
and |A|p = |px|p, where p is the sum of fundamental weight with respect to B and | |
is the absolute value on K. Moreover eH°(N(Zy),V (w,)) is one dimensional, on
which T(§) = UEU for £ € D acts by scalar |p(&)|pA(€).

Now suppose that U = U, x G(i”) with Ui(r) € U, C Up(r) for r > 0. For
prime ideals [ { p of Op, we consider Ti(a) = Ué,(w()U for the prime element w;
in O;. Then we define the Hecke algebra h;"""d(x,lz; K) by the K-subalgebra of

Endg (eH! (X (U), L(x, e K))) generated by the operators T'(c) for all & € ¥ and
Hecke operators associated to double cosets UEU with &, = 1. Since

BH!q(X(U)7L(X,1Z; K)) = HO(U, E,Cq(x, 12)\; K)N(ZP))’

we get the following semi-simplicity of the Hecke algebra from the fact that the spher-
ical irreducible representation of Go(F;) has a unique vector fixed by the maximal
compact subgroup: ‘
COROLLARY A.4. Let the notation and the assumption be as above. Then we
have
1. The Hecke module eH} (X (U), L(X,{Z)\; K)) has a base made of common eigen-
vectors of hl’]""rd(x, 12; K) if K is algebraically closed;

2. The Hecke algebra hg"’rd(x, ¥ K) is semi-simple.

Appendix B. Correction to [H95]. Since we quoted often results proven in
[H95], we here list some of serious misprints and corrections to the result in the paper.
One serious mistake is the sign of the character x in Section 7 (basically, we need to
change x by x! in Lemma 7.2 and its proof). Also in Lemma 7.2, w; (i =1,...,n)
have to be dominant characters with respect to (G, ¢B) for the lower triangular Borel
subgroup !B instead of the upper trianguler one. In the list below, P.5 L.5b indicates
the fifth line from the bottom of the page 5.
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Page, line Statement in [H95] Correction
P. 453,L. 5
P. 454’ L. 6b H;—n.ord H}‘D—n.ord for r = T(X)

P. 454’ L. 6b H;’—n.ord(q)oyp(p)iCP»P[L‘JX]) H;—n.ord(q)o,P(p)aCP,P)[L‘)X]

P. 463, L. 11
— -1 —
P. 466, L. 9b  x(m(€)) " px(¢71) x(m(€))px(671)
P. 466 L. 3b  |x(7(d))lp = In(7(d))lp Ix(m(@d)lp < In(m(d)lp
wildiag(ty, ..., tn)) wildiaglt, .. ta)
P.467L.1b  _ L _ i1
- HlSJ'Si J - HlSjSi J
P 468 L. 2 x(diag(t1, ..., tn)) x(diag(ts, ..., tn))
. . _ Ji _ —Ji
- ngign—l tj - ngign—l tj
P. 468 (%) (wwu) (fwu)
-1
P. 468 (xx)  x(m(£)) x(m(€))
P. 468 L. 11  x(n(d)) x(w(d))~?
-1
P.468 L. 16 |A(&)lp < Ix(m(E))lp IAEs)lp < [x(m(€) " p
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