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ORDER PARAMETERS, FREE FERMIONS, AND 
CONSERVATION LAWS FOR CALOGERO-MOSER SYSTEMS* 

ERIC D'HOKER+ AND D.H. PHONG* 

Abstract. The classical order parameters for the M = 2 supersymmetric SU(N) gauge theory 
with matter in the adjoint representation are exhibited explicitly as conservation laws for the elliptic 
Calogero-Moser system. Central to the construction are certain elliptic function identities, which arise 
from considering Feynman diagrams in a theory of free fermions with twisted boundary conditions. 

1. Introduction. It has been known for a long time that the elliptic Calogero- 
Moser system 

(1.1) Pi = Xi,        pi = m2^2p,{xi-Xj), 1<M<N, 

is completely integrable, in the sense that it admits a Lax pair of operators L(z), M(z) 
with a spectral parameter z [1]. Here p(z) is the Weierstrass p-function on a fixed 
torus E = C/(2uiZ + 2LJ2Z) of modulus r = c^/^i- The spectral curves 

(1.2) r = {(fc, z)] det(kl - L{z)) = 0}, 

form an N-dimensional family of branched covers of the torus S. More recently, in 
connection with Seiberg-Witten solutions of four-dimensional SU(N) supersymmetric 
gauge theories [2-5], we have found that the spectral curves (1.2) admit a natural 
parametrization of the form [5] 

(1.3) det (XI - Hz)) =      K^y(°        H{k) 

k=\-\-mhi (z) 

where H(k) — ni=i(^ — ^) ^s a monic polynomial of degree N, and the shift hi(z) is 
given by hi(z) — dz log ^li^-lr). From the point of view of four-dimensional gauge 
theories, the zeroes ki of H(k) have a very compelling interpretation: they are the 
classical order parameters of the theory (c.f. (1.5) in [5]). From the point of view of 
Calogero-Moser systems, they are by construction integrals of motion of the system. 
However, the derivation of H(k) in [5] did not provide explicit expressions for the k^s 
in terms of the Calogero-Moser dynamical variables (xi,pi). The goal of the present 
paper is to solve this problem. In the process, we also find an intriguing link between 
Calogero-Moser systems and free fermions on the torus S. 

To state the main result, we require the following notation. Let (Tm(ki, • • • , fc/v) = 
crm(^) be the m-symmetric function of the fcf's. as in 

N N 

(1.4) H(k) = JJ(fc - hi) = Y, nm<rm (fci, • ■ • , kN) k N—m 

2=1 771=0 
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Let crm(p) be the m-symmetric function of the momenta p^'s, 1 < i < N. If 5 
is any subset of {1,2, ••■ ,iV} consisting of \S\ numbers, we denote by crm(ps) the 
m-symmetric function of ps = {pi',i £ S}, for any integer m with m < \S\. The 
complement of S in {1,2, • • •} is denoted by S*. If S consists of only two elements 
{ijj}, and f(x) is an even function, we shall often write f(S) for f(xi-Xj). All subsets 
5, ps are unordered, unless stated explicitly otherwise. Finally, it is convenient to 
introduce the following modification of the Weierstrass p-function 

(1.5) p(0>(z) = p(z) + 5L. 

Here, rji and 772 are the periods dual to ui and o^- Observe that p^{z) —> 0 as q -> 0 
and z —>■ 00. Then 

Main Theorem. T/ie order parameters ki, 1 <i < N, of the gauge theory are related 
to the Calogero-Moser dynamical variables (xi,pi) by the following relations. For any 
integer K with 0 < K < N, we have 

IK/2] I 

(1.6) cjK{k) = aK{p) + Y, ™21       E       ^-2i(P(uU5oO n^^)- 
/=1 |sinsj|=2^i i=i 

l<r-,i<Z 

As mentioned earlier, this theorem is partly motivated by current investigation 
ofAf = 2 supersymmetric four-dimensional gauge theories [6-7]. The Wilson effective 
action of such theories is dictated by the spectral curves of integrable models (see 
e.g. [8-10] for reviews). But it is still unclear whether the dynamical variables of the 
integrable models have any direct interpretation in the context of gauge theories. The 
preceding theorem can be viewed as a step in addressing this question. 

In another direction, spectral curves have recently been obtained for elliptic 
Calogero-Moser systems defined by general Lie algebras G [11-13] and supersymmetric 
Q gauge theories with matter in the adjoint representation [11-15]. However, except 
in the case of Dn [13] (see also [15]), a convenient parametrization such as (1.3) is 
still not available. Such a parametrization is for example particularly valuable in eval- 
uating instanton corrections to the prepotential [5]. It is conceivable that a deeper 
understanding of the order parameters ki in the above SU(N) case, as well as the 
elliptic function identities found in the present paper, may shed light on this issue. 

Finally, we mention some related problems in the theory of integrable models 
proper. The symplectic structure of Calogero-Moser systems is attracting considerable 
attention [16-17]. The integrals of motion (1.6) may be relevant to the well known 
problem of constructing .ft-matrices for Calogero-Moser systems (c.f. [18-19]). They 
may also be of interest in the rational and trigonometric cases [20]. In particular, in 
the trigonometric case, the gauge order parameters ki have been useful in the study 
of Toeplitz determinants, symplectic volumes, and thermodynamic limits [21]. 

1. Main identities and proof of the theorem. We divide the proof of the 
Main Theorem into several steps. 

(I) In the first step, the defining identity (1.3) for the integrals ki is rewritten in 
terms of determinants D(S) similar to det L(z), but with all diagonal entries set to 
0. More precisely, recall that the Lax pair L(z), M(z) for the elliptic Calogero-Moser 
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system is given by [1] 

Lij(z) = piSij - m(l - 5ij)§(xi - Xj,z), 

I2-1) Mij(z) = mSij ^2 P(xi " xk) + 7n(l - SijWiFi - Xj,z), 
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k^i 

with 

(2.2) 
a{z)a(x) 

Here a(z), ((z) are the usual Weierstrass elliptic functions (c.f. Erdelyi [22]). Let 
S = {a(l), a(2), • • • , a(K)} be a subset of {1,2,-.., N} with |5| = K elements. We 
define D(S) to be the following K x K determinant 

(2.3) D(S) = det (l-*y)(*(^a(t) -Za(j)>*) 

There is no ambiguity in this definition since the right hand side of (2.3) is independent 
of the ordering of S. The identity (1.3) is then equivalent to 

E 
(2.4) 

n + q 
n 

mqAq{-Yap{k) 
p-t-q=N—n 

-      E      (-)l<7i(ps*)mWD(S), l<n<N. 
\S\+l=N-n 

In these identities the summation on the right hand side is over all subsets 5 of 
{1,2, • • • , N} and the functions AK(Z) are given explicitly in terms of ^-functions 

(2.5) 
AK(Z) = Y, (*) i-TKiz^iz)*-", 

n=0 ^       ' 

hn(z) 

To establish (2.4), we note that 

Miz(z-mfk)\r) N 
K{z). 

M^-r) H{k) = S '^(-mrH^k). (2-6)  

Substituting in k = A + mhi (z) and expanding at A, we find 

(2.7) 

^lUwJ^ A=A-r-m/n(z) 

AT   N-n t,   f   \h   /   \Q 

= ^ ^    n(^lU) (-)"m"+'ff("+«>(A) 

= E^W—^r^- 
K=0 
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In terms of (7p(k), the polynomials H^K\X) are just given by 

(2.8) ffW(A) = Nf(-r{^~^py°Pm
N-K-p- 

This implies that the right hand side of (1.3) can be rewritten as 

(/1V2a;i Iw \k=\+mhi(z) 
(2-9) N 

On the other hand, the determinant det(A/ — L(z)) on the left hand side of (1.3) can 
be expanded as 

N 

(2.10) det(AJ-L(z))=£m*  ^   [ JJ (A-Pi)]i?(5). 

Evidently, 

ies* i=o 

so that the left hand side of (1.3) becomes 

AT N-n 

(2.ii)        <MA/-£(*)) = £AnEm"~'~n    £    HWO^S). 
n=0 /=0 \S\=N-l-n 

Comparing (2.9) with (2.11) gives the desired identities (2.4). 

(II) The second step in the proof of the main theorem consists of, in a sense, 
separating in the determinant D(S) the dependence on the insertion points a^y) G 5 
from the dependence on the spectral parameter z. More precisely, we can write 

[tf/2] I 

(2.12) D(S) = £ BK-M      £      EK^) 
Z=0 \sinsj\=2Sij i=l 

l<i,3<l 

where p^(Si) = p^(xa — xt) if Si = {a, b} is the convention introduced in Section 
I. To describe the coefficients BM(Z), it is convenient to introduce the notation 

(2.13) p^\z) = (A)V0>(*),        n<=N. 

Then the coefficients BK(Z) can be expressed as 

BK(Z) 

(2-14) =H*   £   H^V( *'(^ntp^^"- 
The proof of the identity (2.14) is the lengthiest part of our argument, and we postpone 
it until Section III. 
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(III) The third step in the proof of the Main Theorem is to show that the coeffi- 
cients AK{Z) and BK(Z) are actually equal 

(2.15) AK{Z) = BK(Z),   K = 1,2,3,---. 

Evidently, A^z) = B^z) = 0, while A2(z) = /i2(^) - M^)2 and B2(^) = -p{0)(z). 
Since the Weierstrass a-function and the Jacobi ^-function are related by 

(2.16) ^(Ok)   ' 

p(z) = -d2
zloga(z) = -5L - 8: log^i(-^|r), 

we also have A2(z) = B2(z). It suffices then to show that both the AxizYs and the 
BxizYs obey the same two-step recursive relation 

AK+I(Z) - -^ W - KpW{z)AK-u 

BK+1(z) = -B'K(z) - Kp^(z)BK^1, 

for K > 2. The recursive relation for AK+I(Z) is easily established by differentiating 
AK{Z), and using the fact that 

/inW = -^nW^iW + hn+1(z), 

ti1(z) = -h1(z)2 + h2(z) = -p(0Hz). 

To establish the recursive relation for BK(Z), we define Bo(z) to be 1, introduce an 
additional variable y, and consider the generating function 

(2.i9) E^r^ = exP E^^r-^"^^" 
^=0 

n! 
— tJAp 

-n=2 

Differentiating with respect to y gives a recursive relation for BK+I{Z) 

(2.20) Btf+xOO = ^ (K) (-)"p("-1)(z)^-„W, 
n=l   ^       ^ 

while differentiating with respect to z gives a recursive relation for B'K(z) 

(2.21) BJ^) = £ (M (-)"+1p(n-1)W^-n^). 
n=2  ^       / 

Comparing (2.20) with (2.21) gives the desired recursive relation (2.17). The identity 
AK{Z) — BK{Z) is established. 

(IV) With the identities (I-III), we can now prove the theorem. We fix integers 
iV and n, with n < N. The sum in the right hand side of (2.4) is over all subsets 5 of 
{1,2,--- ,AT}. Setting |5| = K and using (II) and (III), we can express it as 

(2.22) Yj{-)N-n-KmKYJ^-n-K{pS.)Y.A^)Y,     P(0)(Si)-"P(0)(S;). 
^=0 5,|S|=K' q+2j=K        \sinsj\=28ij 

SiCS 
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Introduce the index p = N — n — q (not to be confused with the Calogero-Moser 
momenta!). Then the order of summations in (2.22) can be interchanged to produce 

N-n [p/2] 

(2.23)       Y, m9Mz){-)P E      E <V-2;(Ps.)m2' E     ^^ ''" P^^i). 
q=0 j=0 S,\S\=q+2j |5insi|=251-i 

However, for each j, we have the following combinatorial identity 

£     ap-2j(ps.)mV       E       P(0)('Si)"-p(0)(5i) 

(2.24) 

^ /    I C.nC.I—OX. . 

for p-2j > 0. In fact, by permutation invariance, the expressions on the two sides of 
(2.24) are proportional. To determine the coefficient of proportionality, we compare 
the coefficients of the term p^fai — £2) • • * p^(x2j-i - X2j)p2j-\-i • "PP which occurs 
on both sides. In the sum on the right hand side of (2.24), such a term occurs exactly 
once. On the other hand, such a term occurs in the sum on the left hand side whenever 
we can choose a subset S of size q + 2j, containing {!,••• , 2j}, and not containing 
{2j + 1, • • • ,p}. This means that S consists of {1, • • • , 2j}, together with q more 
elements in {p + 1, • • • , N}. There are exactly 

<"»> (VMTMn:' 
such choices. Thus the expression (2.23) becomes 

(2.26)   ^2m''Aq(z)(-y(n + q)       E      ^^(P^.^oOP^^i) ■••P(0)(5i), 
q=0 ^ ^  |5in5i|=2^i 

with p = N — n — q. Comparing with the left hand side of (2.4) gives the theorem. 

3. The determinant D(S) and free fermions. It remains to establish the 
identities in (II) of Section II for the determinants D(S). For this we need the notion 
of "/z-cycle", which we now describe. Let {1,2,--- ,A:}be any set of k indices, which we 
choose to be the first k integers just for notational convenience. Then the expression 

$12*23 •••*(*-i)jfe$*i 

= $(a;i -X2,z)$(x2 -X3,z)-'$(xk-i -xk,z)$(xk -xi,z), 

is a single-valued, meromorphic function of all insertion points xi, • • • , a^, as well as 
of the spectral parameter z. Here we have made use of the monodromy properties of 
the function $(x,z) as a function of x 

$(x + 2uja,z) =$(z,z)e2a;*c(2)-27^, 
(3.2) x 

—dx$(x - y, z) =S(x -y). 

(As a function of z, $(x,z) is already by itself single-valued on the torus E.) It is 
useful to note that in expressions such as (3.1), the function $(a;, z) can be effectively 
replaced by a(z — x)/a(z)a{x). We define a fc-cycle to be the sum of all inequivalent 
expressions (3.1) under permutations of the indices 1,2, • • • , k. Since (3.1) is evidently 
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invariant under shifts in the indices 1,2, •• • , A:, this sum corresponds to a sum over 
Sfc/Zfc, where S^ is the group of permutations of k elements. Equivalently, we can fix 
an index, say k, and write a k-cycle as 

(3.3) Ck(Xi,"' ,Xk]z) =      2^     *jfea(l)*a(l)a(2) -m®a(k-l)k, 

identifying in effect Sk/Zk with the group S^-i of permutations of k — 1 elements. It is 
easy to verify that, for k > 3, the k-cycle Ck(xi, • • • ,Xk]z) is actually a function Ck(z) 
independent of the insertion points {xi,X2, ■ • • ,#&}. Indeed, viewed as a function of 
say xi, it is meromorphic and has simple poles at the other insertion points X2,- ' iXu- 
The residues at each of these poles however cancel out between the various terms in 
(3.2), so that the fc-cycle is actually constant in each Xj. The main problem is then 
to determine the dependence on z of A:-cycles. The identity central to our approach is 
the following 

(3.4) Cjfe(z)=    Y^   ®k*{i)§*{i)a(2)--'$cx{k-i)k = P{k~2){z),        A; = 3,4,---. 
aeSfc-i 

(For k = 2 the 2-cycle is not independent of the insertion points. In fact, we have 

(3.5) $12$21 = p(z) - p{xl - x2) = fpW(z) - p^(x1 - xa), 

a well-known and basic identity in the theory of elliptic Calogero-Moser systems.) 
Postponing for the moment the proof of (3.4), we return to the study of the determi- 
nants D(S). 

Exact Formulas for D{S) 
Since the diagonal elements of the matrix D{S) all vanish, the determinant can 

be expanded as 

(3-6) £(S) = £(-r$la(l)$2a(2r--$KaW, 
a 

where the summation is only over permutations a without any fixed point. But it is 
readily seen that any permutation a without fixed point corresponds to a decompo- 
sition of the index set {1,2, • • • , K] into disjoint subsets Sj of at least two elements, 
in each of which a acts as a shift. Since the sign of a shift on N elements is (—)iV+1, 
the sign of a is (—)K+l, where / is the number of subsets Sj. All permutations with- 
out fixed points can be generated this way, by following up the decomposition of the 
index set into smaller sets 5^ with permutations within each smaller set 5^. Taking 
these "internal" permutations into account, the contribution of each decomposition 
S — \Jlj=lSj to the determinant (3.6) is a product of A:-cycles 

i 

(3.7) HD^iI-cycles]. 
i=i 

In view of (3.4) and (3.5), this establishes the fact that the determinant D(S) must be 
of the form (2.12), for some as yet complicated coefficients BK-2I(Z), 1 < / < [K/2]. 

To determine D(S), it suffices to determine the "constant term" BK{Z). This is 
because identities of the form (2.12) will be established inductively, by examining the 
poles of both sides of the equation in each of the variables xi. For example, consider 
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the double pole in the variable xi, near the value X2. For the left hand side, it is 

(3.8) -$12$21xD(S\{l,2}) = {p(0\x1-x2)-pW(z)}xD(S\{l,2}). 

For the right hand side, it is 

(3.9) 
[K/2] 

Y.BK-M      £      p(0>(S2)---p(0>(5;) 
1=1 \sinsj\=25ij 

5iC5\{l,2} 

,(0) (xi -xz). 

By induction, the expression between brackets is indeed D(S \ {1,2}). Similarly, the 
simple poles cancel. This shows that D(S) is determined up to an additive function 
of z only. 

We can derive now the explicit formula (2.14) for BK(Z). Since we are restricting 
our attention to the constant term BK{Z) in the expansion (3.6-3.7) for D(S), we can 
replace even the 2-cycles in (3.7) by p^(z). With this simplification, the contribution 
of (3.7) to BK(z) is just 

(3.10) IIp^1-2^)- 

Now the exact subsets Sj themselves no longer matter, and the only relevant infor- 
mation is their size \Sj\. For each partition of K into L2 subsets of 2 elements, L3 
subsets of 3 elements, etc. 

n=2 

(3.11) K = 2L2 + 3L3 + 4L4 + • • • = J2 nLn, 

the expression (3.10) becomes 

00 

(3.12) n[p(n"2)(*)]LB- 
n=2 

Now the number of ways of selecting L (unordered) sets of n elements each from an 
ensemble of iV elements is 

1 iV! 
(3*13^ L!(n!)L(iV -nL)V 

Thus the total number of terms of the form (3.12) is 

1 iV! 1 (iV-2L2)! 
L2! (2!)^(iV - 2L2)!     L3! (3!)^(iV - 2L2 - 3L3)! 

1       ) 1 {N -2L2-3L3)\ _ N\ 

L4! (4!)^(iV - 2L2 - SL3 - 4L4)! n^2 ^! R^^O^ ' 

Altogether, this establishes the formula (2.14). 

Free Fermions and k-Cycles as Feynman Diagrams 
Finally, we turn to the proof of the fundamental identity (3.4). The main idea is to 

view /c-cycles Ck{xi, • • • ,Xk',z) as the one-loop amplitude in a theory of free fermions 
with twisted boundary conditions on a torus and fermion propagator $(x — y, z). Here 
z is viewed as a fixed parameter. 
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First, since Ck(xi, • • * ,Xkm,z) is independent of Xi anyway, we may just as well 
integrate each Xi over the torus £ with area T2, 

^- ' d2xk Ck(z) =   /     -•■•   /     -CfcCxi,--- ,Xk\z) 

f d2xi        f d2Xk ' 
= (k-l)\         /     $(x1-X2,z)--$(xk-X1,z) 

(3.15) ^    /2        7E 

where the factor (A; — 1)! comes out since integration in each variable automatically 
takes care of symmetrization. In this integrated form, the one-loop amplitude Ck{z) 
has an even simpler interpretation, which we now develop. Starting from the free 
massless fermion propagator, 

(3.16) *(a?-2/^), 

we may construct the "full" propagator of a fermion in the presence of a constant 
(background) gauge potential with strength m, by summing up the effects of repeated 
gauge potential coupling operator insertions. The "full" fermion propagator may thus 
be defined by the geometric series 

(3.17) S(x-y\z,m) = Q{x-y,z) + ™ / d2y1§{x - yuz)^{yi - y,z) + • • • 
T2 JY 

or in terms of the recursive relation 

777/     /* 
(3.18) S(x-y\z,m) = $(x-y,z) + — /  d2yi<f>(x - yi,z)S(yi - y|z,m). 

T2 JY 

The A:-cycles Ck(z) are now easily gotten as the k — 1 derivatives with respect to m 
of the propagator S(x — y\z,m) at coincident points S(0|z,ra), as we shall use below 
in (3.26). 

Equivalently, we may characterize S(x—y\z1 m) by its monodromy and differential 
equation, which follow from the analogous properties of the propagator $(# — 2/,Z)J 

and the definitions (3.17) and (3.18), 

S{x + 2ua\z,m) = S(x\z,m)e2uj^z)-2^z, 

DS(x-y\z,m) = 5(x-y), 

where we introduce the D and D operators by 

(3.20) D = ^ - -,        D= ±dx - ^. 
ZTT T2 27T T2 

These operators are precisely the Dirac operators on the torus S in the presence of a 
constant gauge potential with strength m for left- and right-movers respectively. 

Now we need Ck(z), gotten by one closed loop, i.e. by 5(0|2:,m). Thus it suffices 
to evaluate the determinant, since 

(3.21) 77-log DetLLD = —-Tr log D = Tr^"1 = -5(0|z,m). 
am am TO 

The eigenvalues of D on the space of functions with monodromy as in (3.19) can be 
determined as usual. They are given by 

(3.22) Anin2 = —(nir - n2 +m + z),        774,77,2 G Z. 
T2 



664 E. D'HOKER AND D.H. PHONG 

We recall from [23], p. 1002, that the determinant of a Dirac operator D is given by 

(3.23) DetJD = <W0|T) 
7/(r) 

if its eigenvalues are of the form 

(3.24) Anin2 = - [(m + - - -i/i)r - (n2 + - - -i/2)]. 

In the present case, vi = 1, 1/2 — 1 — 2(m -f z), and we obtain 

(3.25) DetZ) ^ ^£±^1. 
7y(r) 

Returning to the fc-cycles Ck(z), we can write 

(3.26) Ck(z) = (^)k-1S(0\z,m) = _i9)klogMz + m\r) 

m=0 

The desired identity (3.4) follows now from the elliptic function identity (2.16). The 
proof of the main theorem is complete. 

[i 

[2; 

[3; 

[4: 

[5; 

[T 

[S 

[9 
[10: 
[11 

[12 

[13 

[14 

[is: 

[is; 

[IT- 
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