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GLOBAL PROPAGATION ON CAUSAL MANIFOLDS* 

ANDREA D'AGNOLO§  AND PIERRE SCHAPIRA^ 

1. Introduction. The micro-support of sheaves (see [7]) is a tool to describe 
local propagation results. A natural problem is then to give sufficient conditions to 
get global propagation results from the knowledge of the micro-support. This is the 
aim of this paper. 

A propagator on a real manifold M is the data of a pair (Z, A), where Z C M x M 
is a closed subset containing the diagonal, A is a closed cone of the cotangent bun- 
dle to M, and some relation holds between A and the micro-support of the constant 
sheaf along Z. In this framework, we prove that if F is a sheaf on M whose micro- 
support does not intersect —A outside of the zero-section, then the restriction mor- 
phism Rr(M; F) —t Rr(f7; F) is an isomorphism, as soon as M \ U is Z-proper. This 
last condition means that the forward set D^ — {y ^ M: (x,y) G Z for some x E £>} 
of any compact set D C M should intersect M \ U in a compact set, and the back- 
ward set (M \ U) = {x E M: {x,y) E Z for some y £ U} should not contain any 
connected component of M. 

As an application, we consider the problem of global existence for solutions to 
hyperbolic systems (in the hyperfunction and distribution case), along the lines of 
Leray [8]. Causal manifolds, and in particular homogeneous causal manifolds as con- 
sidered by Faraut et al., give examples of manifolds to which our results apply. 

2. Statement of the results. 

2.1. Normal cones. A subset C of a finite dimensional real vector space V is 
called a cone (or a conic subset), if E+ • C C C. A cone C C V is called convex 
if C + C C C, and proper if C D -C C {0}. We also use the notation Ca = -C. 
Denoting by F* the dual of V, the polar to a cone C C V is the conic subset of V* 
defined by C0 = {£: (f,t;) > 0 for every v E C}. One checks that (C0)0 is the closure 
of the convex envelop to C, and that the polar to a proper convex cone is a closed 
proper convex cone. 

Let M be a C^-manifold. If q: E —> M is a vector bundle, one naturally extends 
the above notions to subsets of E. For example, 7 C E is a cone if 7^ := 7 fl q~l(x) 
is a cone in Ex for any x E X. We identify M to the zero-section of g, and for 7 C E 
we set 7 = 7 \ M. 

Denote by r: TM —> M and TT: T*M —> M the tangent and cotangent bundle to 
M, respectively. Following [7, Definition 4.1.1], C(A,B) denotes the Whitney normal 
cone of A,B C M, a closed cone of TM. Recall that if (x) is a local coordinate 
system in M, then (xo\v0) E C(A, B) if and only if there exists a sequence (an, &n, cn) 
in A x B x E+ such that 

CLJI      7 Xoi       OJI      7 XQ,       CnyCLn       O^J      7 VQ- 

If iV C M is a smooth submanifold, CN (A) is the projection of C(iV, A) in T/vM, the 
normal bundle to N in M. 
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The strict normal cone to A C M is defined in [7, Definition 5.3.6] by A^(^4) = 
TM\C(M\A, A). Recall that if (x) is a local coordinate system in M, then (x0]v0) £ 
N(A) if and only if there exists an open cone C containing Vo, and a neighborhood 
U of x0, such that 

(2.1) un({Anu) + c) cA. 

Note that N(A) is an open convex cone of TM, N(M \ A) = N(A)a, and NX(A) ^ 
TXM if and only if x is in the topological boundary of A. 

2.2. Micro-support. Let M be a C00-manifold. Let A; be a field, and denote 
by Db(A:M) the bounded derived category of sheaves of A;-vector spaces on M. Follow- 
ing [7, Chapter 5], to F £ Db(A:M) one associates its micro-support 55(F), a closed 
conic involutive subset of T*M. Recall that T*M\55(F) describes the (co)directions 
of propagation for the cohomology of F, stable by small perturbations. More precisely, 
p $. 55(F) if and only if there exists an open neighborhood fi of p such that for any 
x £ 7r(fl) and any C^-function y? on M with ^p{x) — 0, d^p{x) £ n, one has 

(2-2) (R-TWo}*1)* = 0' 

where RF^ denotes the derived functor of sections with support on a closed subset 
W C M, and we write for short {<£> > 0} = {y £ M: (^(T/) > 0}. This is indeed a 
propagation requirement, since the above vanishing can be restated by asking that 
the natural restriction morphism 

!in^'([/;F) -> lii^^(C/n{^<0};F) 

is an isomorphism for any j £ Z. This implies that "sections" of F on 17 fl {<£> < 0} 
extend to a neighborhood of x. 

If A C M is a locally closed subset, denote by A:^ the sheaf on M which is zero 
on M \ A, and constant with fiber k on A Recall that if U C M is an open subset, 
and W C M is a closed subset, one has the estimates: 

(2.3) SS{ku) c iV(t/)oa,        SS(kw) C ^(W)0. 

2.3. Propagators. Let M be a C^-manifold. Denote by A C M x M the 
diagonal, and by q\ and ^2 the first and second projection from M x M to M. 

DEFINITION 2.1. Le£ Z C M x M be a closed subset. We say that a locally closed 
subset A C M is Z-proper if 

(i) qi is proper on Z D ^1(yl); 

(ii) qi {Z fl q^1 (A)) does not contain any connected component of M. 
Given Z C M x M as above, to a subset ^4 C M, we associate 

AJ' = 9l(Znfe1A), 

and we set x^ — {x} , x^ = {x} . With these notations, a subset A C M is Z-proper 

if and only if: (i) D^ nAis compact for any compact subset D of M, (ii) A does not 
contain any connected component of M. 

DEFINITION 2.2. Let Z be a closed subset of M x M, and A a closed cone of 
T*M.  We say that the pair (Z, A) is a propagator on M if 
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(2.4) A C Z, 
(2.5) SS{kz) C T*M x A, 
(2.6) SS{kz) fl (T*M xM)cM xM, 
(2.7) 5S(/cz) n (M x T*M) C M x M. 

(As for (2.6) anc? (2.7), recall that we identify the zero-section ofT*M to M.)   We 
say that (Z, A) is a convex propagator on M if it is a propagator and moreover 

(2.8) A is a proper convex cone. 

2.4.  Propagation theorems. We can now state our main result. 
THEOREM 2.3. Let (Z, A) be a propagator on M. Let F G Db(A:M); and assume 

that supp(F) 25 Z-proper and 55(F) fl Aa C M.  Then 

Rr(M;F) = 0. 

Part (i) of the following corollary partially extends to manifolds Proposition 5.2.1 
of [7] which only considered an affine situation, with A constant along the fibers. (See 
Remark 2.6 for further comments.) 

COROLLARY 2.4. Let (Z, A) be a convex propagator on M. Let F G Db(&;M), and 
assume that 55(F) n Aa C M. 

(i) Let W be a closed subset of M which is Z-proper and satisfies SS(kw) C Aa. 
Then 

RrV(M;F)=0. 

(ii) Let U be an open subset of M which is Z-proper and satisfies SS(ku) C A. 
Then 

Rr(M;Fc/) = 0. 

Note that (i) and (ii) are equivalent to 

Rr(M; F) ^> Rr(M \W]F), 
Rr(M; F) A Rr(M \ [/; F), 

respectively. In other words, "sections" of F on M \ W (or on a neighborhood of 
M\U) extend uniquely to M. 

The following result deals with the case where A is not convex, but is covered by 
a finite union of convex cones. A situation which appears for example in dealing with 
the Cauchy problem, real or complex. 

COROLLARY 2.5. Let I be a finite set. For j G /, let Uj be an open subset of M, 
and set N = M \ (J Uj. For any J C I, J ^ 0, let (Zj, Xj) be a convex propagator, 

jei 
and set Uj =  f| Uj. Let F G Db(/ciu)- Assume 

jeJ 
(i) Uj is Zj-proper, and SS(kuj) C Xj, 

(ii) 55(F) fl A} CM. 
Then, one has the isomorphism 

Rr(M;F) ARr(;V;F). 
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REMARK 2.6. Theorem 2.3 does not allow one to recover Proposition 5.2.1 of [7], 
since our hypotheses are stronger. More precisely, we require A closed proper convex 
and SS(F) D Aa C M, while in loc. cit. one only assumes A = 70, for 7 closed proper 
convex in TM, and SS(F) nInt(Aa) = 0. Let us give an example which shows that, in 
general, it is not possible to replace the hypothesis SS(F)n\a C M by the hypothesis 
SS(F) nlnt(Aa) = 0. 

Let M = Mx S1 be an infinite cylinder. Using the identification T*M = M x (Ix 
M), set Z = {(xu01,X2,O2) e M x M: x1 = ^2}, A = {(x,0\^r) G T*M: r > 0}, 
W = {0} x S1 C M. Clearly, (Z, A) is a propagator on M, and W is Z-proper. Setting 
F = kw, one has SS(F) = {(X,0]^T) G T*M: a; = r = 0}, and hence 

55(F) nlnt(Aa) = 0, 

55(F) n Aa £ M, 

r(M;F)^0. 

3.  Proof of the results. 

3.1. Review on sheaves. Let / : N —» M be a morphism of C00 manifolds. 
We will consider the usual operations it!/*, i?/,, /-1, /!, 0, RHom of sheaf theory. 
If F E Db(A:M), we set D'F = R7iom(F,kM)- We also make use of the absolute 
and relative dualizing complexes denoted LUM and CJJV/MJ respectively. Recall that if 
/ is smooth, then LJN/M — or

N/M [dim N — dimM], where OTN/M denotes the relative 
orientation sheaf. 

We will need the following lemma. 
LEMMA 3.1. Let Z be a closed subset of M x M containing the diagonal A. Then 

(i) ku is a direct summand of Rq2*kz, 
(ii) LUM ^ a direct summand of Rq2\Wz- 
Proof. Since the arguments are similar, we will prove only (ii). Set §2 = 92|z, and 

denote by i: A -» Z the closed embedding. Note that §2 0 i gives an identification 
A ~ M. Applying Verdier adjunction formula thrice, we get the commutative diagram 

R(q2 o OiC^ 0 i)^M =^= UM 

Rq2\Ri\vq2^M ^ R&yq^M • 

In other words, the identity of UJM factorizes through R^iq^M — Rq2\^Z' One 
concludes by using [7, Exercise 1.4]. □ 

Finally, let us list some functorial properties that the micro-support enjoys, re- 
ferring to [7] for proofs. 

Consider the correspondence of cotangent bundles associated to /: 

T*iV i— TV xM r*M —-> T*M. 
'/' U 

Let F 6 T>h(kM) and assume / is smooth, then /!F ~ OJ^JM & f~1F and 

(3.1) SS(r1F)cifU-1(SS(F)). 
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Let G G Db(fcjv) and assume / is proper on supp(G), then RfiG ~ Rf*G and 

(3.2) SSW.GJc^y1 (55(G)). 

Let F,G G Db(A:M) and assume SS(F) n 55(G)a C M, then 

(3.3) SS(F ® G) C 55(F) + 55(G). 

Let F, G G Db(A;M) and assume 55(F) n 55(G) C M, then 

(3.4) SS(Rnom(G,F)) c 55(F) + 55(G)a. 

3.2. Review on kernels. Consider the natural projections M <— M x M —> 
QI q2 

M. To K G Db(fcMxM) one associates the functors 

*K{F) = Rq2l(K^q{1F), *K(F) = RquRHom {K,q2F). 

These two functors are adjoint to each other, i.e., for F, G G Db(£;M) 

(3.5) RHom($*(F),G) - RHom (F,^(G)). 

Using the estimates we recalled in the previous section, one easily gets the following 
result. 

PROPOSITION 3.2. Let F G Db(A:M) and K G Db(A;MxM). 
(i) Assume that q^ is proper on supp(i;f) fl q^1 supp(F) and that one has the 

estimate SS(K)a fl (55(F) x M) C M x M.  Then one has the estimate 

SS{*K(F)) C {(y;n): (x9y^r,) G SS(K) for some (xrf) G 55(F)a}. 

(ii) Assume that qi is proper on supp^) Pi q^1 supp(F) and that one has the 
estimate SS(K) fl (M x 55(F)) C M x M.  Then one has the estimate 

SS{9K(F)) C {(X;0: (x,y;Z,T,) G 55(^)a for some (y^) G 55(F)a}. 

3.3. Proof of Theorem 2.3. Let us consider the kernel K — RjiUJz, where j 
denotes the embedding Z C M x M. Since K ^ R^HoTn(kz,ujMxM), by (2.8) one 
has SS(K) C SS{kz)a. By (2.7) and the fact that q1 is proper on Z D q^W', the 
hypotheses of Proposition 3.2 (ii) are satisfied. We find 

SS{*K{F)) C {fofl: (*,!/;£,i?) G SS(kz) for some (»;»,) G 55(F)a}. 

Let (x,y;^r)) G 55(A:Z) with Q/;/?) G 55(F)a. Hypothesis (2.5) together with the 
fact that 55(F) fl Aa C M, imply that (2/577) G M, and then hypothesis (2.6) implies 
(x;£) G M. We thus have 55(*K(F)) C M, and hence ^^(F) is locally constant on 
M. On the other hand, one has the estimate supp(^x(F)) C qi(Z fl q^1 W) = W1, 
and W^ does not contain any connected component of M by hypothesis. Hence 
9K{F) = 0. 

By the same argument we obtain ^^(F ®LJM) — 0? and hence 

0 = R'Eom(kM^K{F^ujM)) ^ RRom{^K(kM),F ®LJM). 

Since ^K(^M) — Rq2\Wz, Lemma 3.1 (ii) implies 

0 = RHom^Mj-P ^^M) — RHom(/i:M5F). 

REMARK 3.3. As it is clear from the above proof, one could generalize the notion 
of propagator by considering pairs (if, A), for K G Db(A:MxM)- In this case, one 
should replace Z-proper by supp(if)-proper, and hypothesis (2.4) by the following 
requirement: there exist G G Db(A;M) and a locally free sheaf of rank one L on M, 
such that L is a direct summand of $#(£). 
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3.4. Proof of Corollary 2.4. Let us prove (i). Since SS(F) n SS(kw) C M, 
we get by (3.4) that SS(RTWF) c 55(F) + A. Since 55(F) n Aa C M and A is a 
proper convex closed cone, this implies 

(3.6) 55(RrVF) n Aa C M. 

We may then apply Theorem 2.3 with F replaced by RF^yF. 
The proof of (ii) is almost the same, noticing that since 55(F) fl SS(ku)a C M, 

we get by (3.3) that 55(Fc/) C 55(F) + A. 

3.5. Proof of Corollary 2.5. Applying the functor Rr(M; • (g>F) to the exact 
sequence 

0 —> kM\N —> kM —> ^TV —^ 0, 

we are reduced to prove 

Rr(M;FMVv) = 0. 

By the hypotheses, one has the isomorphism in Db(A:M) 

(3.7) kM\N ~    0 ^ k^ -+ >      0      fc^-^Qfc^-^Ol, 
\ JC/, |J|=2 26/ / 

where 0ie/ ^c/i is in degree zero. Hence, it is enough to prove that 

Rr(M;Fuj) = 0    for any J C /. 

This follows from Corollary 2.4 (ii). 

4.  Applications to hyperbolic systems. In this section, M is a real analytic 
manifold, and k = C. 

4.1. Hyperfunction solutions. We refer to Sato [9, 10], Sato-Kawai-Kashiwara 
[11], and Kashiwara [5], for the notions of hyperfunction, wave-front set, and V- 
module, that we shall use. 

Let X be a complexification of M. Following [7, §6.2], using the natural projection 
TfifX —> M and the Hamiltonian isomorphism, we will identify T*M to a subset of 
the normal bundle TT^X^X. 

Let us denote by Ox and Vx the sheaves of holomorphic functions and of linear 
partial differential operators, respectively. If M is a coherent Vx -module (i.e., a 
system of PDE), we denote by char(A^) its characteristic variety, a closed Cx-conic 
involutive subvariety of T*X. 

DEFINITION 4.1. (cf [6]) Let A C r*M be a closed cone, and M a coherent 
Vx-module. One says that M is A-hyperbolic if 

A D CT^X (char(jM)) C M. 

(Note that, since char(.M) is Cx -conic, M is X-hyperbolic if and only if it is Xa- 
hyperbolic.) 

Recall that the sheaf BM of Sato's hyperfunctions on M is given by BM := 
RHom(D'kM,Ox) * Hd™M(Ox) ®oiM/x. 
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THEOREM 4.2. Let (Z, A) be a convex propagator on M, and W C M a dosed Z- 
proper subset satisfying SS(kw) C Aa. Let M be a coherent Vx-module and assume 
it is X-hyperbolic.  Then 

Br(M',RH(miT>x(M,TwBM)) =0. 

Proof. Setting F = RHomVx {M,13M)I it follows from [6] or [7, §11.5] (see also [1] 
for the case of a single operator) that SS(F) C CT- x (char(A'Q). Since BM is a flabby 
sheaf, one has 

RT{M-imomVx(MSwBu)) = RTW(M;F). 

The result then follows from Corollary 2.4 (i). D 
Let N C M be a real analytic submanifold, and denote by Y C X a complexifi- 

cation. One says that Y is non-characteristic for a coherent D^-niodule M, if 

TpXnch^(M) CX. 

In this case, the induced system My is a coherent Py-module.   Note that if M is 
T^M-hyperbolic, then Y is non-characteristic for M. 

THEOREM 4.3.   Let N C M be a real analytic submanifold, and I a finite set. 
For j G /7 let Uj be open subsets of M, such that N = M \ [j Uj. For any J C I, 

jei 
J ^ 0, let (Zj, Aj) be a convex propagator, and set Uj =   f] Uj.   Assume that Uj 

jeJ 
is Zj-proper, and SS(kuj) C Aj. Let M be a coherent Vx-module and assume it is 
Aj -hyperbolic for any J C I.  Then, one has the isomorphism 

RT(M;RnomVx{M,BM)) A Br(N]RHamVY{MY,BN)). 

Note that the same statement holds when replacing Sato's hyperfunctions by real 
analytic functions. 

Proof Applying Corollary 2.5 with F = R'HomVx{M,BM), we get 

Rr(M;i?«omPx(X,i3M)) -^ Rr(iV;KHomVx(M,BM)\N)- 

It follows by (3.7) that SS(kM\N) C Uj^J- Since T^M coincides with SS(kM\N) 
outside of the zero section, the fact that M is Aj-hyperbolic for any J C I implies 
that M is T^M-hyperbolic. It then follows from [6] or [7, §11.5] that 

RHomVx{M,BM)\N ^ RnomVY{MY,BN). 

D 
Let P be a differential operator on X, and denote by cr(P) its principal symbol, a 

homogeneous function on T*X. One says that P is A-hyperbolic if so is the associated 
2)-module M — VxfDxP. If (z) — (x + iy) is a local coordinate system in X, and 
(z'jQ = (x + zi/;£ + ir}) the associated symplectic coordinates in T*X, then P is 
A-hyperbolic if and only if 

a{P)(x;iri + 6)^0       for any {x]irj) e T^X, {xiO) G A, 0 ^ 0. 
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COROLLARY 4.4. Let (Z,X) be a convex propagator on M, and W C M a closed 
Z-proper subset satisfying SS(kw) C Aa. Let P be a differential operator on X and 
assume it is X-hyperbolic.  Then P induces an isomorphism 

P'.YW{M]BM)^TW{M]BM). 

Proof. Apply Theorem 4.2 with M = Vx/VxP, and note that the solution 
complex RHomVx (X, TWBM) is represented by the complex of flabby sheaves 

0 -» YWBM —> TWBM -> 0. 
p 

D 
Denote by r the automorphism of M x M given by r(xJy) = (y,x). 
COROLLARY 4.5. Let N C M be a real analytic hypersurface dividing M in two 

closed half-spaces N±, and let 6 be an analytic vector field defined in a neighborhood 
of N and normal to it. Let (Z, A) be a convex propagator on M, and assume that N+ 
is Z-proper, N~ is r(Z)-proper, and SS(kN+) C Aa. Let P be a differential operator 
on X, and assume it is X-hyperbolic.  Then P induces a surjective morphism 

P:r(M;Z?M)^r(M;tfM), 

and moreover the homogeneous Cauchy problem 

(Pu = 0, 

[loiu) = (wi,...,tUm), 

is globally well posed in the framework of hyperfunctions. (Here, m is the order of 
P, and the trace map jgfa) = (U\N,0U\N, ... ,#m-1^|jv) is well defined since Pu = 0 
implies that the wave-front of u is transversal to N'.) 

4.2. Distribution solutions. As above, let X be a complexification of M. We 
denote by Vbu the sheaf of Schwartz distributions on M. 

DEFINITION 4.6. Let M be a coherent Vx-module, 
(i)  We say that M is Pfc-hyperbolic atpeT*M if 

p i SS(RHomVx(M,VbM)). 

(ii) Let X C T*M be a closed cone.  One says that M is A-£>6-hyperbolic if it is 
Vb-hyperbolic at any p G A \ M, i.e. if 

XnSS(RnomVx(M,VbM)) c M. 

With this definition, it is clear that Corollary 2.4 (i) implies 
THEOREM 4.7. Let (Z, A) be a convex propagator on M, and W C M a closed Z- 

proper subset satisfying SS(kw) C Aa. Let M be a coherent Vx-module, and assume 
it is X-Vb-hyperbolic.   Then 

Rr(M]RnomVx{M,RrwVbM)) =0. 

REMARK 4.8. The problem, of course, is to give conditions for a system M to 
be P6-hyperbolic. If P is a differential operator on X, and M = Vx/VxP, then it 
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is well-known that M is Dfr-hyperbolic if: it is hyperbolic, has characteristics with 
real constant multiplicities, and it satisfies the Levi conditions. An analog statement 
holds for systems (not necessarily determined) by [2]. Little is known beside the case 
of real constant multiplicities, or of constant coefficients in Mn. 

Let us now consider the case of a single differential operator P. One says that P 
is Pfr-hyperbolic at p (resp. A-Dfr-hyperbolic) if so is the system M = Vx/^xP- 

COROLLARY 4.9. Let (Z, A) be a convex propagator on M, and W C M a closed 
Z-proper subset satisfying SS(kw) C Aa. Let P be a X-Vb-hyperbolic differential 
operator on X, and assume that P: Vbu —^ ^M «S stalk-wise surjective. Then P 
induces isomorphisms 

P: Tw(M-VbM) A IV(M;X>&M), 

P: H^M-VbM) ^ HlyiM&bM). 

Proof Set Vb^ — ker(P: X>6M —> ^M)- Since P\ VIM —> ^^M is an epi- 
morphism, we have an isomorphism RHomv (J)xI^XP^^M) — ^^M? 

ari(^ a short 
exact sequence 

0 -> Vb1^ -> VbM —^ VbM -+ 0. 

Applying the functor RFv^M, •), we get the long exact cohomology sequence 

0 -> IV(M;Z>&£) -> Tw{M\VbM) y rw(M;VbM) 

(4.1) ->Hl
w{M-Vbp

M) -> Hlv(M;VbM) -+ H^iM^Vbu) 

-^H^{M-Vbp
M) ->0. 

Theorem 4.7 implies H3
w{M\Vb^I) — 0 for any j, and the proof is complete. □ 

Let us discuss a sufficient condition for P to be ^6-hyperbolic. 
PROPOSITION 4.10.   Let P be a differential operator on X, and let p £ f*M. 

Assume 
(i)a(P)(p)^0, 

(ii) P: (VbM)x —> (J)bM)x is surjective for any x in a neighborhood of 7r(p)7 

(Hi) there exists an open neighborhood ft C T*M of p such that for any x G 7r(fi), 
and any C00 -function tp on M with (p(x) = 0, dip(x) G fi, one has 
(iii)i given u G (T^<QyVbM)x satisfying Pu — 07 there exists u G (VbM)x 
such that w|{(/:<o} = u and Pu — 0, 
(Hih given v G  {T^<0yVbM)x there exists u G  (^{lp<:o}VbM)x  such that 
Pu = V. 

Then, P is Vb-hyperbolic at p. 
Note that in (i) we used the embedding T*M ^ M XM T*X, which exists since 

X is a complexification of M. 
Proof Since conditions (i)-(iii) are open in p G T*M, we may find an open 

neighborhood H of p in T*M such that (iii) holds, (ii) holds in IT (ft), and moreover 
a(P)(q) 7^ 0 for any q G fi. Let x G 7r(n), and (/? be a C^-function on M as in (iii). 

Consider the morphism of exact sequences, where the vertical arrows are induced 
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byP 

(4.2)     (T{<p>0}VbM)x^-U. (VbM)x —^ (T{(p<o}VbM)x —^ (Hl^yVbM)* 

a (3 1 6 
^ \, v y 

[Y^^Vbu),^-^ (VbM)x -^ (T{(p<o}VbM)x ^^ (Hl^0}VbM)x • 

Consider the stalk-wise analog of (4.1) for W = {ip > 0}. By definition of the micro- 
support, we are left to prove that a and 6 are isomorphisms. This follows from the 
following considerations. Hypothesis (i) states that {ip = 0} C M is non-characteristic 
for F, and by Holmgren's theorem this implies that a is injective. By (ii), /? is 
surjective. Moreover, hypothesis (iii)2 says that 7 is surjective, while hypothesis (iii)i 
reads g: ker/? -» ker7. D 

REMARK 4.11. In his fundamental paper [8], Jean Leray discusses, among other 
topics, the problem of global extension for solutions to hyperbolic operators with 
simple characteristics. In particular, in loc. cit. it is shown that such operators satisfy 
the hypotheses of Proposition 4.10. 

5.  Causal manifolds. 

5.1.  Conal manifolds. In this section, we shall construct convex propagators. 
DEFINITION 5.1. We say that a cone 7 C TM is admissible if it is closed proper 

convex and Int(7x) ^ 0 for any x G M. (Here, Int^) denotes the interior of jx.) 
If 7 C TM is an admissible cone, we say that a closed subset Z C M x M is a 
7-propagator if 

(5.1) A C Z, 
(5.2) N(Z) D (M x Int(7)) U (lnt(7)a x M). 

(As for (5.2), recall that we identify the zero-section ofTM to M'.) 
PROPOSITION 5.2. If j C TM is an admissible cone and Z c M x M is a 

7-propagator, then (Z, 70) is a convex propagator. 
Proof If 7 C TM is admissible, then A = 70 satisfies (2.8). 
If Vi and V2 are two real finite dimensional vector spaces, we identify (Vi x V2)* 

to V* x V2 by ((^1,^2), (^1,^2)) = (viiVi) + (v2,V2)- Then, if Ci and C2 are two 
cones with Ci ^ 0, C2 / 0, one has (Ci x C2)0 — Cl x Cf. In particular, since 
Int^) ^ 0 for any x € Af, one has (M x Int(7))0 = r*M x 70. This last set contains 
N{Z)0 by hypothesis (5.2). Using the estimate (2.3), (2.5) follows. 

Remark that if C is an open convex cone in Vi x V2 and (O,^) G C for V2 ^ 0, 
then C0 fl (Vi* x {0}) = {0}. By hypothesis (5.2), for each x0,y0 G M there exists 
0 ^ wo G Ty0M with (0,wo) G N(Z)lXotyo). Then N{Z)0n(TZoM x {y0}) C {0}, and 
(2.6) follows. 

The proof of (2.7) is similar. D 
DEFINITION 5.3. A conal manifold is a C00-manifold M endowed with an admis- 

sible cone 7 C TM. On a conal manifold M, a continuous piecewise smooth curve 
a: [0,1] —> M is called a 7-path if the derivative from the right aj.(£) exists for any 
t G [0,1[, and moreover ar

r(t) G Ja(t)' For x,y G M, we write x ^ y if there exists a 
'j-path a: [0,1] —>• M with a(0) = x, a(l) = y. 

Clearly, ^ is a preorder relation. In general, the graph of ^ in M x M is not 
closed, and we consider its closure 

(5.3) Z1 = {(x,y):x^y}. 
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Note that Z1 may fail to be the graph of a preordering, since transitivity may not 
hold. 

PROPOSITION 5.4. Let 7 C TM he an admissible cone. Then 
(i) if W CM is a closed subset with W1 = W, then SS(kw) C joa. 

(ii) Z7 25 a 7-propagator, 
Proof, (i) By (2.3), it is enough to show that N(W) D Int(7a). Let x0 G W, and 

—VQ G Int(7a;0). There exist a local chart U at XQ, and an open conic neighborhood 
C of VQ in TXoM, such that U x C C 7. In view of (2.1), we shall prove that 

un((wnu)-c) c w. 

Since W = W;, if a is a 7-path and a(l) G W, then a(0) G W. Let x eW HU and 
v £ C with £ — i> G U. Since the segment of straight line from x — v to x is a 7-path, 
re - i> G W. 

(ii) Let us prove that N(Z1) D M x Int(7). Let (£0,2/0) ^ ^75 and ^o € Int^J. 
Take a local chart V at 2/0 and an open conic neighborhood C of w0 in T2/oM, such 
that V x C C 7. Let C/ C M be an open neighborhood of x0. By (2.1), for any x G £/, 
2/ G V, and w e C, with x G 2/^5 and 2/+w G V, we have to show that x G (y + u>) . By 
definition, # G 2/^ if and only if there exist sequences xn -^ x, yn ^t y, with a;n =<( 2/n 
(i.e., there is a 7-path from xn to yn). We may assume xn G 17, yn^ yn + u> G V. Since 
w € C, the segment of straight line from 2/n to 2/n + w is a 7-path. Composing the 
7-paths above, we get xn ^ yn + w, which implies x € (y + w)   as requested. 

The proof that N(Z7) D Int(7a) x M is similar. D 

5.2. Causal manifolds. Recall that we denote by A C M x M the diagonal, 
and by qi and #2 the first and second projection from M x M to M. Moreover, for 
i, j G {1, 2, 3} let us denote by qij the projection from M x M x M to the corresponding 
factor M x M (e.g., gi3(x,y,2;) = (x,z)). Recall that a preordering < on M is 
determined by its graph Z = {(x,y): x < 2/}, which is a subset of M x M satisfying 

(5.4) Ac Z (reflexivity), 
(5.5) q^ZHq^Z C q^ Z (transitivity). 

One says that Z is a proper preordering if it is a preordering satisfying 
(5.6) Z C M x M is closed, and 413 is proper on q^Z Pi q^Z. 

Note that the last condition in (5.6) means that D^ DE^ is compact for any compact 
subsets D and E of X. In particular, this implies that the intervals x^ fl y^ are 
compact. 

DEFINITION 5.5. A causal manifold M is the data of a manifold M and of an 
admissible cone 7 C TM such that the set Z1 in (5.3) is a preordering. If moreover 
(5.3) is a proper preordering, M is called a properly causal manifold. 

COROLLARY 5.6. Let M be a properly causal manifold, and W a compact subset 
of M. IfW^ does not contain any connected component of M, then W^ is Z1-proper 
and satisfies SS(kwi) C joa. 

In other words, we are in a position to apply Corollary 2.4. 
Proof. Hypothesis (5.5) implies that {W^y = W^. Hypothesis (5.6) implies that 

D^ fl W^ is compact for any compact subset D of M. Finally, SS(kwi) C 7oa by 
Proposition 5.4 (ii). D 

5.3. Causal homogeneous spaces. The toy model for admissible cones is the 
one considered in [7], where M is an open subset of a vector space V, and 7 = M x C C 
TM ~ M x V for a closed proper convex cone C C V. In other words, 7 is a constant 
cone field. In this case, using the notations of section 5.1, x =^ y reads x — y G C, and 
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Z1 — {(x, y): x — y G C}. This picture is invariant under the group of translations in 
V. 

Less trivial examples are obtained by considering other Lie groups. Let M = G/H 
be a homogeneous manifold, where G is a real Lie group, and H C G a closed 
subgroup. An admissible cone 7 C TM is called invariant if r^x)^) — jy for 
y = Tg(x), where Tg denotes the G-action on M, Tg(gH) = ggH. One easily proves 
(see e.g. [4, §2.2]) 

PROPOSITION 5.7. If 7 C TM is an invariant admissible cone, then Z1 is the 
graph of a preordering. 

Let us denote by < the preordering defined by Z7. Clearly, this preordering is an 
invariant ordering, in the sense that for any g G G, one has Tg(x) < Tg(y) whenever 
x<y. 

Denote by g and \) the Lie algebras of G and iJ, respectively. Denote by e G M 
the equivalence class of the identity element of G. Noticing that TeM = g/[), it is 
clear that the data of an invariant admissible cone 7 C TM is equivalent to the data 
of a closed convex cone C C g which is invariant by the adjoint action of iJ, and 
satisfies C n Ca = I), C + Ca = g. 

DEFINITION 5.8. A causal homogeneous space M = G/H is the data of a real Lie 
group G, a closed subgroup H C G, and a cone C C g satisfying the above properties. 
M is called a properly causal homogeneous space if the associated causal manifold is 
properly causal 

If (G, H) is a symmetric pair, refer to [4] for a wide family of examples of triples 
(G, H, C) inducing a properly causal homogeneous structure on M — G/H. 

Let us discuss a possible application of our results. 
In [3], Faraut constructs global fundamental solutions to invariant hyperbolic 

differential operators in the framework of distributions. His method relies on the 
theory of constant coefficient hyperbolic operators and the technique of spherical 
transforms. Let us show how our results imply the existence of global fundamental 
solutions in the framework of hyperfunctions. 

Assume that (G, iJ, C) induces a properly causal homogeneous structure on M = 
G/H. Let P be an invariant differential operator on M such that 

a(P)(e;i7] + 6)^0       for any 77 G g*, 0 G G0, 6^0. 

If e^ does not contains the connected component of e, we may apply Corollary 4.4 for 
W = e^, and get the existence of a fundamental solution 

Pu = 5e,        u erci(M,£M). 
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