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ON THE EXACT WKB ANALYSIS FOR THE THIRD ORDER 
ORDINARY DIFFERENTIAL EQUATIONS WITH A LARGE 

PARAMETER* 

TAKASHI AOKlt, TAKAHIRO KAWAI*, AND YOSHITSUGU TAKEI§ 

0. Introduction. Exact WKB analysis of linear ordinary differential equations 
of the n-th order with n ^ 2 has not yet been well established; its local aspect is 
clarified under the assumption that the discriminant of the characteristic equation is 
of simple zeros ([AKT, Theorem 1.4 and Theorem 1.6]), but its global aspect is far 
from complete understanding ([BNR], [AKT, Section 2]). The purpose of this paper 
is to examine the validity of our Ansatz concerning the Stokes geometry ([AKT, 
Section 2]) through the study of particular differential equations whose solutions can 
be explicitly given in the form of integrals. 

A class of differential equations of the third order which admits the integral rep- 
resentation of its solutions is analytically studied in Section 1. Note that this class 
of differential equations originated from some concrete quantum-mechanical problems 
([CH]). We hope the equations of this class will play an important role as a kind 
of the "model equation" in our future study of exact WKB analysis of higher order 
equations. 

As the integral representation of a solution is closely related to the Borel sum 
of the WKB solutions ([Ul], [U2], [H]), we then do in Section 2 a computer-assisted 
study of the integral to see how the configuration of the saddle points and the steepest 
descent paths is changed as the variable of the integral moves around. This approach 
is due to Uchiyama ([Ul], [U2]), and it is also related to the hyperasymptotic analysis 
due to Berry and Howls ([BH]). In a word, our Ansatz is validated in all the examples 
we have studied. 

For the convenience of the reader, here we present the Ansatz given in [AKT] 
in a slightly more precise and general form. We basically follow [AKT] in the usage 
of notions and notations such as the notion "a new turning point" and the symbol 
"0 < 1" attached to a Stokes curve. (In this paper we use the naming "a Stokes curve" 
rather than "a Stokes line" following recent literature.) Here we note that a new 
turning point is determined in terms of a self-intersection point of a bicharacteristic 
curve associated with the operator in question. (See Section 1.2 below for the precise 
definition.) We also note that the symbol "0 < 1" indicates the dominance of the 
WKB solution ipi over ipo along the Stokes curve with the symbol attached. 

Now we propose the following Ansatz concerning the Stokes geometry for an 
operator 

(o.i) H = jj!- + rfa{s)jj- + r?mi 
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where 77 is a large parameter and a(x) and b(x) are polynomials satisfying 

(0.2) 6a2^ + &*^o   if 4a3 + b2 vanishes. 
ax       ax 

Note that the condition (0.2) (the simple discriminant condition) guarantees that the 
Borel transform H of H, i.e., the partial differential operator 

Q3 Q3 Q3 
(0-3) ^^W-^flF 
is of simple characteristics on {(a;,?/;£,77) G T*C2;77 ^ 0}. In concrete examples 
we sometimes deal with operators of the form d3/dx3 4- 3rj2(ao(x) + ai(x)r]~1 + 
a2(x)rj~2)d/dx + r]3(bo(x) + bi(x)rj~1 +b2(x)ri~2 -i-b3(x)r]~s)^ but the contents of the 
Ansatz below is not affected by the regular perturbation terms such as Sai(x)r] • d/dx 
etc, as the Stokes geometry concerns only with the principal part of the operator H. 

ANSATZ. (Cf. [AKT, Section 2].) 
Assume that the Riemann surface 1Z = {(#,£) 5 £3 + 3a(x)^ + b(x) = 0} is con- 

nected. Suppose further the period integral 0 fi(x)dx for a closed path 7 in 71 should 
J y 

never be a real number. To find the Stokes geometry for the operator H we proceed 
as follows: 

(i) Draw Stokes curves emanating from ordinary turning points of the operator 
H. 

(ii) Let T be a new turning point and let X be the corresponding self-intersection 
point of a bicharacteristic curve for H (i.e., T is the x-component of the coordinate 
(x,y) of the point X). It then follows from the definition that two bicharacteristic 
curves bi and 62 pass through the point X and that —dy/dx evaluated along 61 
(resp., 62) coincides with a characteristic root tij(x) (resp., £fc(x)), i.e., a solution of 
the equation 

(0.4) £3 + 3a(x)Z + b(x) = 0. 

We then draw the Stokes curve (j,k) passing through T, that is, we consider the 
one-dimensional curve 

(0.5) hiiJX(€J(x)-Zk(x))dx = 0. 

nX nX 

The portion of this Stokes curve where Re /   (^-(a;)—^(a;))da; > 0 (resp., Re /   {^{x) 
JT JT 

—£k(x))dx < 0) is labeled as j > k (resp., j < k). 
(hi) A Stokes curve considered in (ii) should be ignored in the Stokes geometry 

until it passes through the ordered crossing point in the sense of [BNR] of Stokes 
curves considered either in (i) or in (ii). 

(iv) If a Stokes curve considered in (ii) reaches an ordered crossing point A of 
Stokes curves considered either in (i) or in (ii), then we include in the Stokes geometry 
the portion of the curve (0.5) after it passes through the point A. In particular, if 
a Stokes curve considered in (ii) never reaches an ordered crossing point of Stokes 
curves, it is ignored in the Stokes geometry. 

(v) The Stokes curves formed in (iv) together with those in (i) describe the Stokes 
geometry. 
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(vi) If three of the Stokes curves in (v) meet at a point B, then we have the 
following rule for the coefficients of the connection of WKB solutions normalized by 
choosing a (generic) point XQ near B as the end-point of their integration. 

RULE. Choose a pair of Stokes curves which form an ordered crossing at B. 
Then the connection coefficients associated with these two Stokes curves should be 
kept intact near B, and the connection coefficient of the other Stokes curve is changed 
abruptly at B so that 

(0.6) 7 + 7' = aft 

holds, where a,/?,7 and 7' are the connection coefficients as we cross a Stokes curve 
in the direction designated by the symbol -> in Figure 1. 

0< 1    a 

0<2 

•  Xl 

0 <2 

1<2 

Figure 1 

REMARK 0.1. The above Rule is based on the following observation due to 
[BNR]. (See also [AKT, Section 2].) Let us consider (in either configuration (i) or 
configuration (ii)) the analytic continuation of a WKB solution ^2 from the point XQ 

to the point Xi following the path which turns around B in a clockwise manner. Then 
the resulting function near xi is 

(0.7) ^2 + Mi + 7^0 - Parpo. 

If we do a similar continuation turning around B in an anti-clockwise manner, we will 
find 

(0.8) ^2 - 7V0 + Mi 

Since the operator H has no singular points near B, these two functions should coin- 
cide, leading to the relation (0.6). 

We note that the above Rule is thus of local character, and hence the global 
self-consistency of the above Rule is an open problem. We also note that the above 
Rule sometimes makes vanish the connection coefficient attached to some portion of 
a Stokes curve. In such a circumstance we ignore the portion of a Stokes curve in 
question in the final form of the Stokes geometry. 

REMARK 0.2. The same reasoning as above applied to a neighborhood of a new 
turning point explains why no connection phenomena occur there though the conflu- 
ence of two singularities of the Borel transform of WKB solutions occurs in general (as 
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the general theory on linear partial differential equations (see, e.g. [SKK, Chap. II]) 
tells). In fact, a solution ^ of the equation H'tp = 0 has singularities at (x,yj{x)) and 
{x,yk(x)) in general. Since dyj/dx = — ^j{x) ^ —^k(x) — dyk/dx at T, Re^/j — Re^ 
changes its sign at T along the curve (0.5). Hence the analytic continuation of ^i 
across the portion of the curve where Rey^ > Rey^ remains unchanged, while that 
across the portion where Rey^ > Re 2/7 is of the form ^ -t-'yipk for a constant 7. Thus 
7 should vanish. Otherwise stated, no connection occurs near T. Thus the point B 
in (vi) happens to be the point A in (iv), then either 7 or 7' should be 0 in (0.6). 
Essentially the same argument was also used by Voros ([V, p. 244]) in establishing 
the connection formula for the second order differential equations. 

REMARK 0.3. The connectedness assumption on the Riemann surface is to avoid 
degenerate cases, and the reality assumption on the period is to determine without 
ambiguities the dominance relation among WKB solutions; since the Borel transform 
of a WKB solution has a singularity shifted by a period (cf. [V], [DDP]) in general 
and since the dominance relation is determined by the comparison of the real part of 
the singularities of the Borel transform of WKB solutions, we need this assumption. 

1.  Some analytic properties of the Carroll-Hioe equation. 

1.1. Integral representation of a solution. In discussing the three-level 
Landau-Zener model, Carroll and Hioe ([CH, p. 2068]) encountered the following 
equation (CHO), where rj (j = 1,2,3) and ft^ and f^s are some real constants. 

— + 2z(ri + T2 + r3)z-7-y + {(-4(7*1 r2 + ^3 

(CHO) 4"r3ri)a;2 + 2'(2ri +r2) + i^12^ + (n23)2]}S 
+ {-8irir2r3a;3 - 4ri(2r2 +r-i)x 

+^(fi12)2r-3 + MVMV = 0. 

They ingeniously observed that the singular coordinate transformation 

(1.1) z = x2 

brings (CHO) to the following equation: 

(1.2) z-^Z + [t(ri + ra + r3)z + -]-^ + {-(n^ + r2r3 

+r3n)z + ^(Sn + 2r2 + rs) + ^[(fiw)2 + (fi23)2]}^ 

1 i 
-^{-ir^rsz - -ri(2r2 + rs) + — [(fi^)2^ + (^s)2^]}^ = 0. 

An important feature of the equation (1.2) is that each coefficient is linear in z\ hence 
the Laplace method gives an integral representation of a solution (1.2) in the form 

(1.3) il>(z) - Ac + irir1+ip(C + ir2r>-ip+iq({ + irs)^9 exp{(z)d(; 

with 

(n12)2        . (n23)2 

1.4) P-TT, —V and    (1=7£1 ^, 
16(ri - r2) 16(r2 - rs) 
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If we assume r^'s and f^'s contain a large parameter rj linearly, then, with the 
scaled constants being denoted by the same symbol, we find an equation with a large 
parameter rj: 

— + 2z(ri + r2 + r3)T]x—Y + {(-4(rir2 + Ws 

(CH) +r3r1WxZ + 2i(2r1 + r2)f, + Jp12)
2 + (flaa) V}^" 

H-{-8zrir2r3ry3a;3 - 4ri(2r2 + r3)r]2x 

+ ^[(^12)^3 + (n23)2ri]^3a:}^ - 0. 

In what follows we allow r/s and f^'s in (CH) to be complex, forgetting the physical 
origin of the equation. Furthermore, even if we replace (2ri +r2)r] and ri (2r2 Jrr3)ri2x 
in (CH) respectively by cir) and C2ry2a; with ci and C2 being arbitrary constants (i.e., 
unrelated to r/s), all the arguments we will give below go equally well. Hence in what 
follows we discuss the following generalized Carroll-Hioe equation (GCH), rather than 
(CH) itself: 

(fiib d2ip 
■— + 2i(ri + r2 + r^rjx-— + {(-4(r1r2 + ^r^ 

(GCH) +r3r1)7?
2
a;

2 + 2^ + i[(012)2 + (fias) V}^ 

+ {—8irir2r37;3x3 — 4c27?2a; 

+ ^Pi2)
2r3 + (O23)2r1]ry3a;}V = 0. 

In accordance with the introduction of a large parameter rj into the differential equa- 
tion, the integral representation (1.3) may be replaced (by disposing of some factor 
depending only on rj) with 

(1.5) i>(z) = Ja (C)exp(#(C,20K 

where 

3 
Mi (1.6) a(C) = n(C + *V) 

with 

3 2     ~ -r1 - cin. + C2 
(l-7.i) Mi - / w r " 1, 

(r2 -ri)(r3 - ri) 

3   2- -r2 - cir2 4- Co 
(l.T.ii) /i2 - -2 1 

0-r3 - cirs + C2 
(1.7.iii) M3 = 7^ 77 r - 1, 

(ri -r2)(r3 - r2) 

3 

I! 
(ri -r3)(r2 - rs) 



630 T. AOKI, T. KAWAI, AND Y. TAKEI 

and 

(1.8) 0(C, z) = (z + iplog(C + iri) + (-ip + iq) log(C + ^2) - iqlog(( + irs). 

Here we used the symbols ci and C2 respectively to denote (ci -\-ri + r2 + rs)/2 and 
C2/2, and the constants p and g have the same expression as in (1.4). We note that 
/i/s given above satisfy the following relation: 

(1.9) /ii + fi2 + ^3 = -3/2. 

The saddle points of the integral (1.5), i.e., the points where dfi/dC vanishes, are given 
by the following equation: 

(i.io) z+^E_ + ziP±l!l + ^ = Q. 

Let Cj(z) (j = 0,1,2) be the solutions of (1.10) and endow the precise meaning of 
the integral (1.5) by choosing a steepest descent path Cj, i.e., an integral curve of 
the vector field \/^Re(j)((, z), passing through (j(z). Then, aside from a multiplicative 
factor depending only on 77, each of them asymptotically represents a WKB solution 
whose logarithmic derivative begins with (f)(Q(z),z). 

rx 

REMARK 1.1.   When ri + r2 + 7*3 ^0, we may replace ip by exp( /   y77(7*1 + 

f2 +rs)xdx)ip to eliminate the second order part, so that the equation takes the form 
discussed in Introduction. But, to keep the symmetry of the coefficients, we do not 
employ this replacement of the unknown function in the computation below. 

1.2. Bicharacteristics of the Borel transform of (GCH). One of the most 
important ingredients of the exact WKB analysis is the structure of singularities of 
Borel-transformed WKB solutions, which propagate along the bicharacteristic curves 
for the Borel-transformed operator in the case of linear differential equations. A 
peculiar feature of the equation (GCH) is that the bicharacteristics of its Borel trans- 
form can be described explicitly in terms of elliptic functions. In this subsection we 
compute the explicit description of bicharacteristics of 

(1.11) ^ + 2i(ri+r2 4-r3)a:: 
ox6 oxzoy 

+{-4(r1r2 + r2r3 + r^x2 + kft12)
2 + (n23)

2]}  ^ 
4LV""'    ' v-*0' "dxdy2 

+{-8;r1r2r3X3 + -[(012)^3 + ^23)2ri]x}j^ 

n.     d
2ip      A      d

2^     n 

oxoy oy* 

i.e., the Borel transform (with respect to 77) of (GCH). 
Let 

(1.12)       p{x, y, f, 77) = ^3 + 2a1x^27] + 4((j2x
2 + ai)^2 + S(a3x

3 + aoa;)773 

be the principal symbol of (1.11), where <Tj and a^ denote the following constants 
respectively: 

01 = i(ri + r2 + rs),    or2 = -(rir2 + r2r3 + 7-37*1),    as = -iri^rs, 

ai = 4[(ni2)2 + (n23)2],    ao = -^p12)2r3 + (fi23)2r2]. 
lo 10 
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Here and in what follows ai is assumed to be a non-zero constant. We are interested 
in the null-bicharacteristic strip of (1.11), that is, a solution curve of the following 
Hamiltonian system in the cotangent space T*C2 of C? , which satisfies p(x, y, £, rj) = 
0: 

(1.13) 

x = 

y = 

i = 

dp 

dp 
dr) 

dp 
dx 

= 3^2 + Aaix^r] + 4:(a2X2 + a^r)2 

= 2aix£2 + 8(a2X2 + ai)^ + 24(a3x
3 + aox)r]2 

= -(2a1^
2r] + 8<T2xt'n2 + S{Sa3x

2 + ao)r}3) 

dy 

Note that its projection to the base space C? N is, by definition, a (null-) bicharac- 
teristic curve. Since pix^y^^rj) does not depend on y in our case, we may assume 
without loss of generality that rj is identically equal to 1. Furthermore the first equa- 
tion together with the third one of (1.13) forms a system in involution: 

(1.14) 
x = 3£2 + 4crix£ + 4(o-2Z2 4- ai) 

£ = -(2(7i £2 + 8<T2xZ + 8(3a3x
2 + ao)), 

which is also a Hamiltonian system with the Hamiltonian p(x,£) = p(x,y,^,rj)\v=i. 
Once a solution (#(£),£(£)) of (1.14) is given, then a null-bicharacteristic strip of (1.11) 
can be easily obtained by integrating the second equation of (1.13). 

To solve (1.14), we employ the following canonical transformation corresponding 
to the singular transformation (1.1): 

(1.15) c = 2x' 

In the (z, C)-variable the Hamiltonian system (1.14) becomes 

f i = 8v^(3^C2 + 20i< + a2z + ai) 

I C = -8v^(C3+tfiC2 + ^2C + tf3) 

with q(z, C) = ^C3 + ^i^C2 + (cr2Z + ai)C H- crs^ + ceo = 0. In particular, it follows 

®i( -f ao 

from the relation q(zi () = 0 that 

(1.17) 

holds, where 

iJ(C) 

i?(C) d=f C3 + ^iC2 + ff2C + ^3 = (C + iri)(C + *r2)(C + *»-3). 

Furthermore, substitution of (1.17) into (1.16) entails the following differential equa- 
tion for £: 

(1.18) C2 = -64(aiC + oo)fl(C) 
= -64(aiC + ao)(C + ^i)(C + *r2)(C + ^3). 
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Thus ( — £(£) is an elliptic function defined as an inverse function of the elliptic 
integral 

-/ 
d( 

where ("o is a fixed point which should be determined by the initial condition. Conse- 
quently a solution of the system (1.14) can be expressed in the following manner: 

(1.19) 

Regarding ( as the independent variable that replaces t, we can also obtain the 
explicit description for y = y(Q of the system (1.13). As a matter of fact, since 

dy _ y 

d(~ C 

= -^TTy^i^2 + 2((72^ + ai)C + S((T3z + ao)) 

r(aiC + ao)((Ji(2 + 2(J2C + 3^) - ^TTT^iC + ^o) i?(C)2V ^      u/v lb **>-*'     R{cy 

= TB.(   ~irj    +    1   ) 
3=1 

(C + irj)2      C + ir. 

with 

(1.20) ^ = Resc=-iTi{-   ^■. ") = 
ttiC + ao^        ai(-irj)+ao 
m    '      (n-rMn-rj)' 

where the indices {&, /} are chosen so that the set {j, fe, 1} coincides with {1,2,3}, we 
find 

3 

(1.21) y(0 = ]r Pji-z^- + log(C + irj)) + const 
J=I 

C + ^j 

= E^^Tzir +l0g(1 + 7^)) + const. vC + *ri      
bV      c 

Note that y ■= y(() as well as dy/d( is singular only at ( — —irj (j = 1,2,3) and 
holomorphic anywhere else (including £ = 00). The formulas (1.19) and (1.21) explic- 
itly describe the null-bicharacteristic strip of (1.11) in terms of the elliptic function 
c = at). 

Using this expression of bicharacteristics, we can prove the following Proposition. 
PROPOSITION 1.1. Suppose that ai ^ 0. Then x = 0 is a new turning point 

of (GCH), that is, x = 0 is the x-component of a self-intersection point of a (null-) 
bicharacteristic curve (x(t),y(t)) of (1.11). 

Proof. The characteristic roots at x = 0 are given by £ = 0, ±2-s/aii. In particular, 

p(0, ±2^/o^i) = p(x, y, f, ri)\x=o1z=±2y/aii,Ti=i = 0 
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holds. Let us first consider two solutions of (1.14) satisfying the initial condition 
(#0 5 £o) = (0,±2^/aii). In the (z, C)-variable such solutions correspond to the fol- 
lowing:   Since C = COO is an elliptic function of order 2, there exist two points 

t = t±(t+ / t-) where ((t) has a simple pole with the residue db     J respectively. 

Then the above solutions correspond to the solutions (^,C) = {z{t + t±)iC(t 4-1±)). 
Otherwise stated, they represent the same solution (z(£),C(£)) which actually passes 
through (x,C) = (0, ±2y/aii) at t = t± respectively. 

Let us next take a path T in the C-plane which goes from C = oo to a point Co near 
—ao/cti, turns around C — —oto/ai once and returns again to C = 00 with staying 
away from C = —ifj (j = 1,2,3) all the way. Under the mapping C = CW su(^i a 

path F corresponds to a path T in the £-plane which connects the two points t — t±. 
Since there is no singular point of dy/d( (or y — dyjdt) on Y (or rather on F), we can 
readily verify 

2/1*=*+ - y\t=t- = Jjdt = J ^dc = o. 

That is, 2/(£+) = y(t-) holds. On the other hand we have x(t+) = x(t-) = 0 as was 
observed earlier. This completes the proof of the Proposition. □ 

2. Examples. In Introduction we presented our Ansatz for the Stokes geometry 
of higher-order ordinary differential equations. In this section we confirm the validity 
of our Ansatz for the (generalized) Carroll-Hioe equations through the study of inte- 
gral representation of its solutions. We note that no confirmation of this sort has yet 
been done except for the equation discussed in [BNR] (cf. [BNR], [Ul]). As we show 
below, the validity of our Ansatz is confirmed at several delicate points; we hope the 
discussion below will considerably enhance the reader's belief in our Ansatz. 

All numerical computations (including drawing several pictures) in this section 
have been done by using Mathematica 3.0.1. 

EXAMPLE 2.1. Let us consider the equation (GCH) with the following values of 
parameters: 

n = -2 + 2,        r2 = - + 22,        r3 = l-2i, 

fi12 = -3 + 42,        n23 = 1-32, 

ci,C2 :     arbitrarily fixed constant. 

This equation has six (ordinary) turning points whose approximate values are listed 
up below: 

a! = -0.872 - O.I8I2,    as = 0.277 - 0.2372, 
as =0.261 + 0.3112,      aA = -0.261 - O.Slli, 
as = -0.277 + 0.2372,    ae = 0.872 + O.I8I2. 

Following our Ansatz, we find the following Figure 2, which is to describe the Stokes 
geometry for this example. Here, and in Example 2.2 below as well, we place cuts 
designated by wiggly lines to fix the numbering of the characteristic roots {Cj(^)}- 
Note that in this example every Stokes curve asymptotically tends to infinity along 
one of the twelve directions and that the symbol "j < fc" attached to a Stokes curve 
depends only on this direction. (Hence in Figure 2 the symbol aj < k" is attached to 
each direction, rather than to each Stokes curve for the sake of simplicity.) 



634 T. AOKI, T. KAWAI, AND Y. TAKEI 

0<1 0<2 1<2 

2<1 

2<0 

1<0 

-1.5 

1<0 

1.5 

2<0 

- 2<1 

Figure 2 

As is clear from Figure 2, there are seven new turning points, which are designated 
by "o" there (and in Example 2.2 below as well), and seven new Stokes curves ema- 
nating from them. By using the integral representation (1.5) ~ (1.8) of solutions of 
(GCH) we now confirm that Figure 2 gives the correct description of Stokes geometry 
for this example: 

First let us consider the problem in a neighborhood of an ordered crossing point, 
say, bo (cf. Figure 2). As is shown in Figure 3-1 ~ Figure 3-12, some change of 
configuration of saddle points {(j(x2)} and steepest descent paths {Cj} for integral 
representation occurs there. (Figure S-j expresses the configuration at a point x = pj. 
For the location of pj see Figure 3.) 
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Figure 3 

Figure 3-3 
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Figure 3-10 Figure 3-11 Figure 3-12 
For example, at x = p2 the steepest descent path C2 flows into a saddle point 

£1 and consequently the configuration at x — pi is different from that at x — ps (cf. 
Figure 3-1 ~ Figure 3-3). This change of configuration implies that a solution near 
x — pi obtained as an integral along the path C2, which represents (77-dependent 
constant multiple of) a WKB solution ^j should be, after analytic continuation to 
x — ps, equal to the sum of two solutions, one of which is obtained as an integral along 
C2 (representing 1P2) and the other of which as an integral along Ci (representing 
I/JI). Otherwise stated, change of configuration of {Ci(^2)} and {Cj} for integral 
representation leads to a Stokes phenomenon for WKB solutions and, in particular, 
the change at x = p2 mentioned above corresponds to the fact that x = P2 is actually 
contained in a Stokes curve. On the other hand, such a change is not observed at 
x — pio (cf. Figure 3-10). This is consistent with the requirement that the portion 
of a (new) Stokes curve containing x = pio should be ignored (i.e., represented by a 
dotted line). (See [Ul] also.) 

In a similar manner we can confirm the validity of our Ansatz at any other points 
in Figure 2 except on the portion of a (new) Stokes curve containing the new turning 
point x = 0 (note that the existence of a new turning point at x — 0 is guaranteed 
by Proposition 1.1 in Section 1); on this portion the confirmation of the statement 
is somewhat delicate; let us consider an ordered crossing point 61 in Figure 2 and 
look at the configuration of {Qix2)} and {Cj} at x = Pi3,Pi4 and pis (cf. Figure 4 
and Figure 4-13 ~ Figure 4-15). As we observe in Figure 4-14, some change of 
configuration occurs at x — P14, although the portion of the Stokes curve in question 
should be ignored by our Ansatz (cf. Proposition 1.1 in Section 1 and Remark 0.2). 
This might sound that our Ansatz might be erroneous. However, a careful study of 
the structure of the integrand of the integral representation shows that there occurs 
a delicate cancellation among the terms that might disrupt our Ansatz near x — P14. 
The detailed argument is as follows:  If we take a solution near x = pis obtained 
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•  P13 

Figure 4 

Figure 4-13 Figure 4-14 Figure 4-15 

as an integral along Ci (representing a WKB solution ^i), its analytic continuation 
from x = pis to x = pis picks up two solutions both of which are obtained as an 
integral along C2 (representing T/^)- However, the branches of a(£) in the integral 
representation (1.5) are different between these two solutions and they have opposite 
sign (cf. (1.9)), while the branches of 0(£, z) are the same since the sum of coefficients 
of log(£ 4- irj) in (1.8) vanishes. Hence these two solutions picked up must cancel and 
no Stokes phenomenon occurs with ipi at x — pu. Thus our Ansatz has passed this 
delicate examination. 

By the same method based on the computer-assisted study of integral representation 
of solutions we can also confirm the validity of our Ansatz for [AKT, Example 2.5]. 

In these examples only ordered crossing points of Stokes curves emanating from 
ordinary turning points ("Stokes curves considered in (i)" according to the terminol- 
ogy used in our Ansatz) have appeared. However, in some examples (new) Stokes 
curves emanating from new turning points ("Stokes curves considered in (ii)") may 
produce ordered crossing points. Let us consider such an example in the following: 

EXAMPLE 2.2. 

(2-1) 0 - 3(z + 2)j,2^ + (4z + 6 + 0.3i)v^ = 0. 

This equation has three turning points ao,ai and ao (cf. Figure 5). Although (2.1) 
is not of the form of Carroll-Hioe equation', the Laplace method again gives the 
following integral representation of solutions of (2.1) as all the coefficients of (2.1) are 
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2<0 2<1   2<1 

1<0 

1<0 

linear in z\ 

(2.2) 

where 

(2.3) 

and 

(2.4) 

^(z) = yo(C)exp(#(C,«))dC 

«(0 = (C-3)-1 

JL/^     x        A ixs       2A2       38^       /10 «  \,      /^       4^ *(C^) = C* - 9C3 - gC2 + ^C - (gj + ^ MC - 3). 

An interesting point is z = 60, which is an ordered crossing point of an ordinary 
Stokes curve with a new Stokes curve. Just like Example 2.1 we have investigated 
the change of configuration of saddle points and steepest descent paths for (2.2) in a 
neighborhood of 60 (see Figure 6 and Figure 6-1 ~ Figure 6-12). 
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Figure 6 

Figure 6-1 Figure 6-2 Figure 6-3 

Figure 6-4 Figure 6-5 Figure 6-6 

Figure 6-7 Figure 6-8 Figure 6-9 
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Figure 6-10 Figure 6-11 Figure 6-12 

The change of configuration obtained here is completely the same with that in 
Example 2.1, which supports the validity of our Ansatz near ordered crossing points 
of an ordinary Stokes curve with a new Stokes curve. 
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