
ASIAN J. MATH. (C) 1998 International Press 
Vol. 2, No. 4, pp. 619-624, December 1998 001 

THE GENERALIZED CHAZY EQUATION AND SCHWARZIAN 
TRIANGLE FUNCTIONS* 

M. J. ABLOWITZt, S. CHAKRAVARTY*, AND R. HALBURD§ 

Abstract. An integrable third-order system of Darboux-Halphen type that depends on three 
arbitrary parameters a, /3, and 7 is considered. The general solution of this system is given in terms 
of Schwarzian triangle functions associated with circular triangles with angles QTT, ^TT, and 771-. It is 
shown that when the three parameters a, (3, and 7 are equal or when two of the parameters are 1/3 
the Darboux-Halphen system reduces tq the generalized Chazy equation which is a classically known 
third-order scalar polynomial ordinary differential equation. This gives rise to representations of the 
solution of the generalized Chazy equation in terms of Schwarzian functions that differ from that 
given by Chazy. These results are then used to derive relations between various Schwarzian triangle 
functions. 

1. Introduction. In [1, 2] the authors obtained the system 

Ui = CJ2<^3 - ^1(^2 + ^3) 4- a, 

(1) CJ2 = ^3^1 - ^2(^3 +(Ji) +a, 

cJs = LO1LU2 — W${<JJI 4- UJ2) + a, 

where 

(2) a = a2{<jJi - U^XCJS - ^1) + ^2(^2 - ^3X^1 - ^2) + 72(^3 - ^1X^2 - ^3), 

and a, /3, and 7 are constants, as a special case of the Darboux-Halphen system 
DH-IX. Without loss of generality we choose a, /3, and 7 in (2) to have non-negative 
real parts. The general solution of the system (1-2) is given in terms of Schwarzian 
triangle functions which are associated with circular triangular regions with angles a7r, 
^TT, and 77r (see [1, 2] and below). The case a = 0 is the classical Darboux-Halphen 
system which appeared in Darboux's analysis of triply orthogonal surfaces [3] and 
was later solved by Halphen [4]. The classical Darboux-Halphen system, which is 
also equivalent to the vacuum Einstein equations for Riemannian self-dual Bianchi-IX 
metrics [5, 6], is equivalent to the classical Chazy equation [7] 

where 

(4) y :- -2(CJI + LJ2 + ^3)- 

Halphen also studied and solved equations (1-2)  [8].    For special choices of 
(a,/?,7), solutions of equations (1-2) have been obtained in terms of automorphic 

* Received January 21, 1999; accepted for publication April 6, 1999. The work reported in this 
paper was partially supported by NSF grant number DMS - 9703850. 

"^Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO, 80309- 
526, USA (markjab@newtonxolorado.edu). 

■^Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO, 80309- 
526, USA (chuck@newton.colorado.edu). The research of this author is partially supported by an 
Australian Research Council Grant, no. A69803721. 

^Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO, 80309- 
526, USA (rod@newton.colorado.edu). 

619 



620 M. J. ABLOWITZ, S. CHAKRAVARTY, AND R. HALBURD 

forms [9, 10]. In [2] the authors used Schwarzian triangle functions to show that 
a — (5 = 7 = 2/n or a = (3 = 1/3, 7 = 2/n, et eye, where n is a constant, are the 
only choices of parameter for which y defined by (4) satisfies an equation of polynomial 
type. In all cases this equation is 

d3y     0  d
2y  i 0 fdy\    _       4       f^dy       2

N 

(5) #-2^ + 3UJ   =M^[6*-y 

which was also studied by Chazy [11, 7, 12] and is often referred to as the generalized 
Chazy equation. In the next section we will show this result directly. The case n = 00 
in equation (5) corresponds to equation (3), the classical Chazy equation. 

Through our solution of the system (1-2) in terms of various Schwarzian triangle 
functions, we also obtain a number of representations (via equation 4) of the solution of 
the generalized Chazy equation (5) in terms of different Schwarzian triangle functions. 
Chazy also (implicitly) solved equation (5) in terms of Schwarzian triangle functions 
which are different from any of the representations obtained here. We show how these 
representations can be used to obtain a number of identities between the Schwarzian 
functions (hauptmodules) of different triangular groups. 

The reduction of the SDYM equations to DH-IX induces a corresponding reduc- 
tion from the associated linear problem of SDYM [13] to a linear problem for DH-IX 
[14, 15]. This linear problem is monodromy-evolving in contrast to the isomonodromy 
problems associated with the Painleve equations. The general solution of the system 
(1-2) is densely branched for generic a, /?, 7 and so does not possess the Painleve 
property, which is closely associated with integrability (see [16, 17, 18, 19, 20, 21]). 

2. The Generalized Chazy Equation. In this section we will find all choices 
of the parameters a, /?, and 7 in the Darboux-Halphen system (1-2) for which y 
defined by equation (4) satisfies the generalized Chazy equation (5). Without loss of 
generality we take !Re(n) > 0. Using the system (1-2) we obtain 

— = 2(u2LJ3 + UJ3LJ1 4- LJ1UJ2) - 6a, 

d2y _,    ■ da 
—r - -12(^1^2^3 + 4(a;i + ^2 + ^sja - 6 — , 
at* at 

d3y 
—y = -12(6J|CJ| + CJ3CJ1 + CJICJI) + 24(a;i + LO2 + t^M^^s 

2 ^da      nd
2a 

-16(cj2^3 +^3^1 +wiUJ2)a + 12a  + 4(UJI + UJ2 +^3)-77 - 63I2"' 

where 

da 
c2 

2 

-2{cr(cJ2 + ^3)^3 - UJl)(uJl -UJ2) + P   (^3 + ^l)(^l - ^2)(^2 - W3) 
at 

and 

+7* (^1 -|-CJ2)(^2 -tJsXtJs -^l)}, 

d2a 
— = 4{a2(6J3 - LJI)(UJI - UJ2)(u* + 3a;2^3 + ujj - a) 

+l32(u;i - u>2)(v2 - ^3)(^3 + 3^3^! + ul - a) 

+J
2
(UJ2 - CJSX^S - UI)(LJI + 3u;i^2 + ^| - a)}. 
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By substitution of the above results, the generalized Chazy equation (5) now has the 
form 

{l6(a;i -f UJ2 + c^s)2 - 88(a;2t<;3 -f UO^UJI + U1U2)} a + 120a2 

™/ \ da     „d2a 
-20(cc;i+a;2 +^3)^7 ~ ^-Jp 

64     r 
= ^ 21 (1 " $a2)(ui - a;2)(^3 - ^i) + (1 - 9/32)(a;2 - ^?,){^i ~ ^2) 

ob — nz y 
^ 2 

(6) +(1 - 972)(cj3 - wi)(w2 - ^3) j • 

Equation (6) must be satisfied for all solutions CJI, u;2, CJS of the system (1-2). In 
particular, we consider the three solutions with initial conditions (^i(0),cj2(0),a;3(0)) 
given by (1,0,0), (0,1,0), and (0,0,1) respectively. For these three solutions, equation 
(6) at t = 0 yields the following three equations 

(1 - 9a2)(nV - 4) = 0,    (1 - 9/32)(n2/32 - 4) = 0,    (1 - 972)(n272 - 4) = 0. 

If none of the parameters a, /?, 7 are 1/3 then a = (5 — 7 = 2/n and equation 
(6) is identically satisfied. If exactly one of the parameters is 1/3 (say a — 1/3) 
then /3 — 7 = 2/n and the right side of equation (6) is independent of UJ\ but the 
left side is not. So we cannot have exactly one of the parameters equal to 1/3. If 
a = /3 = 1/3 and 7 7^ 1/3 then 7 = 2/n and equation (6) is identically satisfied. Since 
we can cyclically permute (a,^,7), we see that the only choices of (a,/?,7) for which 
y defined by (4) and (1-2) are 

(7) (2/n, 2/n, 2/n),    (1/3,1/3,2/n),    (2/n, 1/3,1/3),    (1/3,2/n, 1/3). 

Alternatively, one could substitute the expressions for a, ~ and ~f into equation (6) 
and equate the coefficients of the resulting polynomial in CJI , UJ2, and CJ3 to zero and 
solve for a, /3, and 7. 

3.  Schwarzian Triangle Functions.  In [1, 2] it was shown that the general 
solution of the Darboux-Halphen system (1-2) is given by 

(8) 

where s is the general solution of the Schwarzian equation 

(9) {M} + fy(s) = 0 

CJi  = 
Id           h 
2dt n s(s - 1) 

CJ2 = 
Id          s 
2dt     s-V 

^3 = 
Id 1   3 

--—In-. 
2dt     s 

and 

<-'>== 5 (iH G 
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is the Schwarzian derivative and V is given by 

rim T/M    1-/32 ,   1-72   , /?2+72-Q2-I (10) V(s) = ^^ + ^p + ^3I5 • 

In order to make the parameter dependence explicit, we will sometimes write a solution 
of equation (9) as s(a,/?,7;£). The general solution of the Schwarzian equation (9) is 
given implicitly by 

(11) t(8) = ^ (11) t(s)     xi(s), 

where Xi (s) and X2 (s) are two independent solutions of the hypergeometric equation 

(12) 8(1 - s)^ + [c - (a + b + l)s]^-abx = 0, 

where a=(l + a-/?- 7)/2, 6=(l-a-/?- 7)/2, and c = 1 - 0 (see, e.g. [22, 23]). 
From equations (4), (8) and the results of the last section, we see that y can be 

represented in terms of any of the Schwarzian triangle functions s(2/n, 2/n, 2/n; t), 
5(1/3,1/3,2/n; t), s(2/n, 1/3,1/3; t), and s(l/3, 2/n, 1/3; t) by 

Id , s6 

^ ^ = 2^ln 7(731)1 • 

On the other hand, Chazy [12] analyzed equation (5) and showed that its solution is 
related to the Schwarz function J = s(l/n, 1/3,1/2). In terms of J and its derivatives, 
the general solution of equation (5) is given by 

(14) *(*) = i!U-   J6 
2dt     J4(J-1)3 

(see, for example, [23] page 195). The function J, and hence ?/, is single-valued if n is 
an integer greater than one. 

Equating the expressions (13) and (14), we obtain 

J6 -^ 
(15) T4/T     1N3 = * J4(J-1)3 ^(s-l)4' 

where ft is a constant of integration. On taking the logarithmic derivative of equation 

(15), solving for the expression — In J and forming the Schwarzian derivative {J, £}, 

we find 

V,t}+ 2   [J2      (J-l)2     J(J-1)J 

r   ^     «2 Z^8/9 8/9 8/9 
(S - I)2        8(8 - 1) 

Using the fact that J solves equation (9) with (10) for a = 1/n, (3 = 1/3, 7 = 1/2 
and s solves the same equation with (a,f3,7) equal to one of the choices in (7), we 
see that equation (16) becomes 

T     ^ {(qa - 1/9)*2 + (72 - P2 - a2 + 1/9)5 + (I2 - 1/9)}3 

(i'j J-K S2(S-1)2 
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v-3 where K = /c-1 (n-2 — 1/36) and we have used equation (15). Here a solution of 
equation (9) is defined up to a fractional linear transformation t \-+ (At+B)/(Ct-\-D), 
AD — BC — 1. For each of the cases (7), the value of K can be determined by 
substituting J given by equation (17) into the Schwarzian equation (9) with a = 1/n, 
/? = 1/3, 7 = 1/2 and using the fact that s also solves a Schwarzian equation. The 
resulting transformations are summarized in Table 1. 

TABLE 1 
Transformations between Sch'   .,zian Triangle Functions 

s = s(a,P,r,t) J = s(l/n,l/3,l/2;i) K 

s(2/n,2/n,2/n;t) 
4 (s2 - s + I)3 

27   s2(s-l)2 432 

5(1/3,1/3,2/n;t) J-         4S -16 J-     (S-l)2 

5(1/3,2/^1/3;*) -16 

s(2/n, 1/3,1/3;*) J = -48(8 - 1) -16 

Note that the last three transformations in Table 1 are related by the fractional 
linear transformations s i-^ 1 — s (between the second and third transformations) 
and s \-^ 1/s (between the third and fourth). These fractional linear transformations 
cyclically permute the angles (a,/?,7) = (1/3,1/3,2/n) in equation (9) with V given 
by (10). However the first relation between J and s is "symmetric" since it is invariant 
under these transformations. In the special case n — 00, this is a classically known 
result [24] between the the hauptmodule J(0,1/3,1/2; £) of the full modular group F 
and the hauptmodule s(0,0,0;£) of the subgroup r(2). Recall that the case n = 00 
corresponds to the Chazy equation (3) which is equivalent to the classical Darboux- 
Halphen system (equation (1) with a — 0). In this case Takhtajan [25] has also 
written the solution of the Chazy equation in terms of s( 1/3,1/3,0; t). We note that 
the relation between J(0,1/3,1/2; t) and 5(1/3,1/3,0; t) is contained in Table 1 (with 
n — 00). 
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