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POISSON FORMULA FOR RESONANCES IN EVEN DIMENSIONS* 

MACIEJ ZWORSKI+ 

1. Introduction. We consider scattering by an abstract compactly supported 
perturbation in En. To include the traditional cases of potential, obstacle and metric 
scattering without going into their particular nature we adopt the "black box" for- 
malism developed jointly with Sjostrand [23]. It is quite likely that one could extend 
the results presented here to the case of non-compactly supported perturbation as 
well - see [21] for a natural generalization of "black box" perturbations. 

We review now the basic assumptions. We work with a complex Hilbert space 
with an orthogonal decomposition 

(1.1) n^nR0®L2(Rn\B(0,Ro)), 

and with an operator 

P  : Ti —> H ,   self-adjoint with a domain V C H 

(1.2) lR^B{0iRo)V = H2(Rn \ 5(0, iJo)) 

which satisfies 

(1.3) 3 A: such that   1B(O,RQ){P + ^)~k   'ls 0f trace class , 

(1.4) P>-C,    C>0. 

These assumptions guarantee that the resolvent R{\) — (P — A2)-1 continues mero- 
morphically as an operator Hcomp —> V\oc from Im A < 0, A2 ^ crpp(P), to C when n is 
odd and to A, the logarithmic plane, when n is even. The poles of this meromorphic 
continuation are called resonances. At A ^ 0 all reasonable definitions of multiplicity 
agree. We can for instance say that the multiplicity of a pole at A ^ 0 is given by the 
rank of the polar part of R{Cj near A - see [17]. The situation is more subtle at 0 and 
rather than go into a detailed discussion we will take the multiplicity required by the 
trace formula - see [28],[30],[35] for the discussion of the resolvent near 0. 

If U(t) is the wave group for the operator P and J7o(0 is the free wave group we 
consider the natural wave trace: 

u(t) =trU(t) -Uo(t), 

which is an even distribution in t G M. The notation used here is somewhat informal 
since U and UQ act on different spaces - see [25]. The correct definition is given by 

(1.5) u(t) = tr (U(t) - ll]Rn\B(0>jRo)C/o(t)]lRn\B(o|jRo)) +tr ^B(o,Ro)Uo(t)lB(o,Ro) ■ 
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In odd dimensions the following Poisson formula was established in increasing degrees 
of generality by Bardos-Guillot-Ralston [1], Melrose [14],[15] and Sjostrand-Zworski 
[25]: 

(1.6) tn+1u(t) = tn+l Y, m(A)eiA|t| , 
AGC 

m(A) =  multiplicity of A as a resonance of P , 

in the sense of distributions on E.   The observation that we only need to multiply 
by £n+1 was made in [35].   The formula also holds exactly for super-exponentially 
decaying perturbations as was pointed out by Sa Barreto-Zworski [19]. 

We note that for t > 0 the trace formula is equivalent to 

(1.7) ^(A) = £m(0^(A-C),   0GCc°o((o5Oo)). 

The original proofs of (1.6) were based on Lax-Phillips theory [12] and in par- 
ticular on the strong Huyghens principle. The extension to the case of hyperbolic 
surfaces by Guillope-Zworski [8] provided a proof which does not require the strong 
Huyghens principle and is also applicable in the euclidean case [35]. It is based on the 
Birman-Krein formula and "global minimum modulus" estimates on the scattering 
determinant. That was followed by a local trace formula of Sjostrand [21] the proof 
of which did not involve any scattering theory but also used some "local minimum 
modulus" estimates for determinants of some holomorphic matrices. Sjostrand's for- 
mula specialized to the even dimensional compactly supported case gives the following 
weaker version of (1.7): 

(i.8) ^(A) = ^ m(c)<A(A - o + oaxm, 

n = [1/2,3/2] +1[0,1/2],   <A 6 Cc~((0, oo)). 

We remark however that the semi-classical local formula of [21] is much stronger than 
(1.8). 

By using a "local minimum modulus" theorem in the argument of [8], [35] we 
can strengthen (1.8) to obtain a global formula. This extension was motivated by a 
question asked by Vodev (see Sect.3). 

THEOREM 1. Let P be an operator sastisfying the assumptions (1.1)-(1.4) and 
let u(t) be its normalized wave trace given by (1.5). Let Ap be an open conic neigh- 
bourhood of the real axis as shown in Fig.l, cr(A) the scattering phase of P and let 
ip e C~(M; [0,1]) be equal to 1 near 0.  Then 

iX\t\ (1.9) u{t) = Y, m(\)eiXW + Y ^(A)ei 

XeAp A2eo-pp(P)n(-oo,o) 
Im A<0 

roo i 

+ m(0) + 2        ^(A) —(A)cos*AdA + vp^(*),   t^O, 
Jo dA 

^^eCoo(E\{0}),   dtvp,i, = 0(rN),Vk,N,   M—► oo. 

The scattering phase, cr(A), is a standard object in scattering theory - see [17] 
and reference given there for background information and [2] for the discussion of the 
"black box" case. Here it is normalized so that the Birman-Krein formula holds - see 
(2.8) below. 



POISSON FORMULA FOR RESONANCES 611 

FIG.  1.  Conic neighbourhoods of the real axis on the logarithmic plane. 

2. Proof of the trace formula. To prove Theorem 1 we identify the subset of 
A shown in Fig.l with C \ e27r//2E+, where e27r/2E is the cut. Then the resonances are 
symmetric with respect to the cut and they coincide with the poles of the scattering 
determinant 5(A) = det 5(A) . The unitarity of 5(A) for A > 0 implies the usual rela- 
tion 5(A)~1 = 5(A)* for Re A > 0. Hence ^(A)-1 = s(A). To simplify the discussion1 

we will consider the scattering matrix in Ap fl {Re A > 0} only and define s(X) in 
ApfiRe A < 0 so that the scattering phase defined by cr^A) = (i/27r)s'(A)/s(A) is even 
in A - see (2.8). 

The assumption (1.3) guarantees the existence of m such that for p > 0 

(2-1) J2 m(A) < Cpr
m+e ,   V e > 0, 

AeAp 
\\\<T- 

see [35].   This is deduced from the polynomial bounds of Vodev [30],[31] which for 
p < 7r/2 (all that is needed here) follow also from the earlier estimates of Sjostrand- 
Zworski [23]. 

We now put 

(2.2) Pp(A)=    H   E(A/C,m) 
C€Ap\M 

m(C) ,   E(z,p) = (l-z)ez^ z+V+-+i 

where the bound (2.1) guarantees the convergence of the Weierstrass product. 
The poles of 5(A) and ^(A)-1 in Ap coincide (with multiplicities) with the zeros 

1so that we do not need to consider global analytic properties of 5(A) 
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of Pp(X) and Pp(—X) respectively. Hence we can write 

(2.3) 5(A)=eM*)^b^,    AGApn{ReA>0}, 

where gp is holomorphic in A^ n {Re A > 0}. We now extend <7p(A), and consequently 
5(A), to Ap by setting 

9P(-X) = -9PW' 

That clearly implies that s,(X)/s(X) = s,(-X)/s(-X) for A G E \ {0} and further 
analysis shows that this identity holds through A = 0 - see Sect.3. 

We want to estimate the function gp.  For that we need to estimate 5(A) away 
from its poles and that is done exactly as in [8],[35] (see also [18]). We write 

(2.4) S(A)=/d + A(A), 

A(X) = CnXn-2E^ (-A)(J + K(\, Ao))-1^, X]*E^2 (A), 

E^ :L2(En) —+Z,2(§n-1),   Ep(0,x) = eiX<x>9)p(x), peC™(Rn), 

and where ^(A, AQ) is the operator constructed in Sect.3 of [23]: 

(2.5) K{\,\o) = [A,xo}Ro(X)(l - Xi)X4 - [A,X2]i?(Ao)x4 + X2(A2 - A2)^(A0)x4 , 

Xi e C™(Rn), xo = 1 near B(0,Ro), Xi = 1 near supp Xi-i , 
R(X0) = (p - A2)"1 , Im Ao « 0 ,   Ro(X) = (-A - A2)"1. 

To estimate 5(A) we will first estimate ||(/ + K(X,Xo))~1\\ and that is based on the 
inequality 

(2.6) ||(/ + mA0))-||<det(J+^A'Ao)lm+1) 
|det(/ + Jir(A,Ao))'n+1)r 

from [4], Theorem 5.1, Chap.V. 
Exactly as in [35], where we followed [29],[33], we see that for A 6 A,, 

|det(/ + ir(A5Ao)m+1)|<CeclAim+e. 

Using the lower modulus theorem of H. Cartan2 - see for instance [13], Theorem 4, 
Sect. 11.3 - we obtain a lower bound: 

|det(/ + /i'(A,Ao)m+1)| >Ce-Crm+i/\    \e Dfapr/QXljD^rj),   ][> < jjr , 
3 3 

uniformly as r —> oo. From this and (2.6) we obtain, as in [35], 

|s(A)| < Ce^+'W ,     AGJD(r,pr/C)\(J^(Ai,rJ),   ^r^^r. 
3 3 

If we take 77 <C 1 then for every r there exists r/2C < k{r) < r/C such that the circle 
IA - r\ = k(r) does not intersect any of the excluded discs. Then using the standard 
estimates for Weierstrass products and the maximum principle we see that 

|exp0p(A)||Pp(-A)| < CelAl(m+e)Tl , A G Ap, , 0 < p' « p. 

2We remark that a much cruder estimate would suffice here but it is nice to quote the optimal 
result which is useful elsewhere in the theory of resonances - see [18] and [26], Sect.8. 
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We then conclude (as in the proof of Cartan's theorem or yet easier as in the proof 
of Hadamard's factorization theorem3) that 

(2.7) |5fo,WI<C|A|<m+e>n-fc,   AGA,,,,   0<p"</3', 

where the symbolic property followed from Cauchy's inequalities. 
We can now prove the Poisson formula.   As in [8],[35] the starting point is the 

Birman-Krein formula: 

(2.8) u(t) = (j'(t) +        Y^        2 cos(tA) 4- m(0), 
,   f    • A2€^pp(P)\{0} 

(7(A)  =  — log 5(A) for A > 0,   cr(A) = -a{-A) for A < 0 , 
ZTT 

where the Fourier transform is of course taken in the sense of distributions. For the 
"black box" perturbation the proof was given by Christiansen in Sect.l of [2] but it is 
classical for all well known scattering problems. We note that our definition of s(A) 
implies that we can set 

Zir S(A) 

Let ip be as in Theorem 1 and even. We can then write 

t s'(A) 
a'(X) = 

27r s(A) 

= ^ ((1 - ^(A))^(A) + ^ (logPp(-A) - logPp(A)) 

+^(A)^)+/„,*(A), 

where fp^eC^ 
The argument of [8],[35] now easily gives 

t2Pu(t) = i2W j; eiXMm{\) 
lAeAp 

+ J2 eix^+m(0) + ^a'(t) + (l^jgp(t) + fp^(t) 
A2€<Tpp(P)n(-<x>,0) 

Im A<0 

for p large enough. Since gp is a symbol on E, 

has the properties stated in Theorem 1 and this completes its proof. 
We remark here that a posteriori the bound on gp on the real axis has to be 

much better than the bound provided by the estimate (2.7): we know the strength 
of the singularity of u at t — 0 and the bound on the number of resonances gives an 
estimate on the strength of the singularity of the exponential sum. Hence for elliptic 
perturbations where m = n we obtain 

|3A<fo(A)|<(7*.e(l + |A|)n+e-fe,   Ve>0. 

3We can use for instance Caratheodory's inequality - see [27]. 



614 MACIEJ ZWORSKI 

3. Review of applications. The basic application of the trace formula is in 
obtaining lower bounds on the number of resonances from the singularities of the 
wave trace. The basic Tauberian lemma was given in Sjostrand-Zworski [24] and it 
was applied there to problems in odd dimensions. One of the applications of the local 
trace formula of Sjostrand [21] was the extension of those results to even dimension - 
see Theorem 10.1 there. That becomes even clearer when we use the global formula 
(1.9). One of the interesting consequencies is based on the trace formula of Guillemin- 
Melrose [5]: 

THEOREM 2. Let P be the Dirichlet or Neumann Laplacian on a connected 
exterior domain W1 \ O where O has a smooth boundary. Suppose that the there exists 
a non-degenerate closed transversally reflected trajectory of the broken geodesic flow of 
En \ O such that no essentially different closed trajectory has the same period. Then 
for any e > 0 there exists C€ > 0 such that 

^{m(A)  :  |A|<r + Ce, | Im A| < elog|A|} > r/C€. 

For more applications we refer to [24] and [21], Sect. 10. 
The new trace formula allows also an easy extension of some of the results of Ikawa 

on the distribution of resonances for several convex obstacles to even dimensions. That 
is particularly interesting in dimension two where most of the numerical studies were 
conducted - see for instance [3] for the discussion of symbolic dynamics. We remark 
that it is rather clear that the results of [21] would suffice for this purpose but the 
global formula makes the applications even more apparent. As an example we give 
the modification of the result of [9]: 

THEOREM 3. Let P be the Neumann Laplacian onWl\0,n> 2, and let us 
assume that O — U^i Oj where Oj are mutually disjoint strictly convex obstacles 
with smooth boundaries satisfying the following condition: 

convex hull {Ok U Oi) fl Om = 0    yk^m^l. 

Then there exists a > 0 for which 

y^{m(A)   :   |ImA|<a} = oo. 

The next theorem answers a question asked by Vodev [32] and does not seem to 
follow from the local trace formula: 

THEOREM 4. Let P satisfy the assumptions (1.1)-(1.3) with n > 4 even. Ln 
addition let us assume that 0 is not an eigenvalue or a zero-resonance of P. Then for 
any 7 > 0 and k 

(3.1) u(t) -        J2       rn(\)eiXW 
ImA<7log|A| 

<Ckt-
n+2-k,   t>tk>(n + k)/j. 

We remark that in odd dimensions the polynomial bound on the number of resonances 
and the global formula (1.6) imply that the right hand side of (3.1) can be replaced 
by 0(exp(—at)), a > 0. It is quite clear from (1.9) that to establish Theorem 4 we 
need to understand the behaviour of cr^A) as A -> 0+.. A finer analysis based for 
instance on [10],[11], should show that the estimate above is optimal and that in fact 
there exists an asymptotic expansion as t —>> 00. Also, we did not attempt to study 
the more involved two dimensional case. 
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Proof. We start by observing that 

k 

(|) E     m(A)e^l-        £       m(AK < Cfce -CCfct 

^ImA<p|A| ImA<7log|A| 

ait >0,   t>tk> (n + k)/<y: 

which follows from the bound (2.1).  In fact, the derivative of the difference can be 
estimated by 

rOO rCO 

e-«i* +  /    xkx-'ltdN(x) < e-01** + CA^-^+Qli) +Ct        a:-7(t-(n+*)/7)-ida. 
JA J A 

<Ck,ee-
a'-t,   t>(n + k)/1 + e. 

Thus we need to study the behaviour of 

(3.2) ^ = tr 5(A)*S'(A) = tr (J + A(\y)A'(\), 
5(A) 

as A -> 0+, where we used the notation of (2.4). 
The assumption that P has no resonance at zero implies that the cut-off resolvent, 

XRWX, X e Cc
co(En), x = 1 near B(0,Ro), is holomorphic in (A, A71"2 log A) for 

|A| < e. To see that we recall that the free resolvent, i?o(A), is of the form i?o(A) + 
A72"2 log AM (A) where i^(A) and M(A) are entire - see Sect.l of [17]. Following [23], 
Sect.3, we write x^Wx — x(Qo(A)x+Qi(Ao)x)(/+-f (A, Ao))_1 where Qo is a cut-off 
free resolvent and K is given by (2.5). Analytic Fredholm theory shows that when 
xR(X)x is bounded, it is a holomorphic function of A and An_2logA - see [28], [30] 
for more details. 

To study (3.2) we need a different representation of A(X). If we recall the definition 
from Sect.3 of [35], A(X) comes from the radiation pattern of R(X)(—[A,x]e2^,a;^). 
To obtain a formula similar to (2.4) but involving R(X) rather than (/ + K(X, AQ))

-1 

we take Xj as in (2-5) and write 

(1 - X2)R(X)xi = i?o(A)(-A - A2)(l - X2)R(X)Xi = i?o(A)(-[A,X2]i?(A)xi), 

since (1 - X2)(-A - A2) = (1 - X2)(P - A2) and (1 - X2)xi = 0. This shows that 

A(X) = c„A"-2E^ (-A)[A,X2]i?(A)[A,x]iE^ (A), 

and the assumption on R(X) implies that A2~n^4(A) is holomorphic in A and An_2 log A 
for |A| < e. From this and (3.2) it follows that 

(3.3) a'(A) =An-3/(A,An-2logA),   A>0, 

with / smooth near 0. We then easily check that 

r*oo 
v n—3 £( \    \ n—2 i f    An-3/(A, Xn-'z log A)^(A) cos tXdX 

Jo 
= (-l)t(n-3)!/(0,0)t-n+2 + (9(t-n+1),   t->oo, 

which completes the proof as the estimates for derivatives clearly hold as well. D 
Finally we compare this result with the estimates on the heat trace. As a conse- 

quence of well known estimates on heat kernels, Sa Barreto-Zworski [20] showed that 
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when P = — A + V and P has no resonances with ImA < 0 (that is no eigenvalues 
and no zero resonance) 

tr(e-iP-e£A)=0(rt+1),   t>0. 

Werner Miiller pointed out to the author that for the behaviour as t -> oo it is more 
natural to study cr'(X) near A = 0 using the heat version of the Birman-Krein formula: 

/•CO 

(3.4) tr (e~tp - etA) =  /     e-'AV(A)dA+     ^     e"^ ,   t > 0, 
0 MiG^pp(P) 

where to make sense of the trace we used the convention employed in the definition 
of w, (1.5). Hence under the assumptions of Theorem 4 but for any n > 3 we obtain 
from its proof 

(3.5)tr (e-tp - etA) =     £     e"^ + ^ Q - l) /(0,0) r^1 + O^+i), 
^i€<Tpp(F) 

Mj<0 

where / is as in (3.3). In odd dimension it is a function of one variable, A, only. 
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