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SYMPLECTIC REDUCTION AND A WEIGHTED MULTIPLICITY 
FORMULA FOR TWISTED SPINC-DIRAC OPERATORS* 

YOULIANG TIAN+ AND WEIPING ZHANG' 

Abstract. We extend our earlier work in [TZ1], where an analytic approach to the Guillemin- 
Sternberg conjecture [GS] was developed, to cases where the Spinc-complex under consideration is 
allowed to be further twisted by certain exterior power bundles of the cotangent bundle. The main 
result is a weighted quantization formula in the presence of commuting Hamiltonian actions. The 
corresponding Morse-type inequalities in holomorphic situations are also established. 

0. Introduction. In a previous paper [TZ1], we have developed a direct analytic 
approach to, as well as certain extensions of, the Guillemin-Sternberg geometric quan- 
tization conjecture [GS], which has been proved in various generalities in [DGMW, 
G, GS, JK, Ml, M2, VI, V2]. In this paper, we generalize the results in [TZ1] to 
cases where the Spinc-complex under consideration is allowed to be further twisted by- 
certain exterior power bundles of the cotangent bundle. The main result is a weighted 
quantization formula for these twisted Spinc-complexes in the presence of commuting 
Hamiltonian actions. We also establish the corresponding Morse-type inequalities in 
the holomorphic situation. 

Let (M, CJ) be a closed symplectic manifold admitting a Hamiltonian action of 
a compact connected Lie group G with Lie algebra g. Let J be an almost complex 
structure on TM so that gTM(u,v) — LJ(U, JV) defines a Riemannian metric on TM. 
After an integration over G if necessary, we can and will assume that G preserves J 
cmdg™.1 

Let E be a G-equivariant Hermitian vector bundle over M equipped with a G- 
equivariant Hermitian connection VE. 

With these data in hand, for any integer p > 0, one can construct canonically 
a formally self-adjoint twisted Spinc-Dirac operator acting on smooth sections of the 
twisted Spinc-vector bundles: 

DAP'0(T*M)®E . ft^even^^ _> ^'odd(M,£). (Q.l) 

It gives rise to the finite dimensional virtual vector space 

Q (M,A^(T*M) ® E) = ker£f 0(T*M)®B - cokerDf 0(T*M^£. (0.2) 

Since G preserves everything, one sees easily that Q(M, A:p'0(r*M) ® E) is a vir- 
tual representation of G. Denote by Q(M, NP^(T*M)®E)G its G-invariant subspace. 

Let g (and thus its dual g* also) be equipped with an AdG-invariant metric. Let 
^i? 1 ^ ^£ dimG, be an orthonormal base of g*. Let Vi, 1 < i < dimG, be the dual 
base of {Mi<;<dimG- 
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^n fact, one does not obtain immediately these J and g™. What one obtains through the 
direct integration over G is a G-invariant endormorphism J with J2 negative as well as a G-invariant 
metric g™. One then obtains J, g™ from J, g™ easily. 
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Let /i : M -> g* be the moment map of the G-action on M.   Then it can be 
written as 

dimG 

i=i 

with each /i; a real function on M. 
Now for each V € g, set2 

n^ - r^ = ^-V^ (0.4) 

where L^ denotes the infinitesimal action of V on i£. 
DEFINITION 0.1.  We say E is fi-positive if the inequality 

dimG 

V^l Y, ^)r^{x)>0 (0.5) 
i=l 

holds at every critical point x £ M\/i""1(0) of |/x|2; the norm square of the moment 
map. 

As a typical example, the G-equivariant prequantum line bundle L over (M,LJ) 

verifying the Kostant formula ([Ko], cf. [TZ1, (1.13)]), when it exists, is ^-positive. 
Furthermore, for arbitrary G-equivariant Hermitian vector bundle F over M equipped 
with a G-equivariant Hermitian connection, there exists mo G Z such that for all 
integer m>mQ,E — Lm ® F is /i-positive. 

To state the main results of this paper, we now assume that 0 E g* is a regular 
value of/i and, for simplicity, that G acts freely on ^_1(0). Then one can construct the 
Marsden-Weinstein reduction (MG,^G)> which is a smooth symplectic manifold with 
MQ = /i-1(0)/G and the symplectic form LUG descended from u. The almost complex 
structure J also descends to an almost complex structure on TMG> Furthermore, 
E descends to a Hermitian vector bundle EG over MG with an induced Hermitian 
connection. Thus one can make the same construction of the twisted Spinc-Dirac 
operators as well as the associated virtual vector spaces Q(MG, A

P
'
0
(T*MG) 0 EG)- 

For any integer k, s > 0, let Cj: be the binomial coefficient given by 

CS - '('-'>-(-* + '>. ,0.6) 

The main result of this paper, which is a generalization of [TZ1, Theorem 4.1] in 
the Abelian group action case, can be stated as follows. 

THEOREM 0.2. If G is Abelian and E is ji-positive, then the following identity 
holds for any integer p > 0, 

p 

dimQ (M, Ap'0(T*M) 0 E)G = J2Cd^G ' dimQ (MG, A^0(r*MG) 0 EG) .   (0.7) 
k=0 

When p — 0 and E is the prequantum line bundle (when it exists) over (M, CJ), 

(0.7) is the Abelian version of the Guillemin-Sternberg conjecture [GS] proved by 
Guillemin [G] in a special case and by Meinrenken [Ml] and Vergne [VI, 2] in general 

2When there is no confusion, in this paper we will use the same notation V for the Killing vector 
field it generates on M. 
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(see also [DGMW] and [JK]). In some sense one may view (0.7) as a kind of weighted 
quantization formula with the numbers C^G as weighted coefficients. 

Also, as has been pointed out by Siye Wu and the referee, when E is the prequan- 
tum line bundle (when it exists) over (M, CJ), (0.7) may be viewed as a supersymmetric 
version of the Guillemin-Sternberg conjecture [GS] in a particular polarization. 

We will use the analytic approach developed in [TZ1] to prove Theorem 0.2. 
However, it should be pointed out that Theorem 0.2 is not a consequence of the result 
in [TZ1, Theorem 4.1], which itself is a generalization of the Guillemin-Sternberg 
conjecture [GS]. In particular, the strict inequality in (0.5) can not be relaxed to 
include the equality as in [TZ1, Theorem 4.2], even when /i_1(0) ^ 0. Furthermore, 
the Abelian condition on G is essential to both the results as well as their proofs. 
A notable feature here is that we deal with directly the general case where G may 
possibly be of higher rank. That is, we do not first prove the result for the G = S1 

case and then use the 'reduction in stages' procedure to get the full result. 
Now as in [TZ1, Theorem 0.4 and 4.8], we consider the holomorphic refinement 

of Theorem 0.2. That is, we assume that (M, CJ, J) is Kahler, G acts on M holomor- 
phically and E is a G-equivariant holomorphic Hermitian vector bundle over M with 
the G-action on E being holomorphic. If for any integers p, q > 0, denote by 

hp^(E)G = dim tf0'* (M, AP'0(T*M) 0 E)G , 

hp>q(EG) = dimH0^ (MG,AP>0(T*MG)®EG) (0.8) 

the corresponding (G-invariant) twisted Hodge numbers, then we can state our re- 
finement of (0.7) as follows. 

THEOREM 0.3. // (M,u, J) is Kahler, G is Abelian and E is fi-positive, then the 
following inequality holds for any integers p, q > 0, 

h^{E)G - h^-^Ef + • ■ - + (-l)qhp>0(E)G 

< E C*mkG (hk>q(EG) - h^-\EG) + • • • + (-\yhk>\EG)) . (0.9) 

In particular, when q — 0; one gets the following inequality for dimensions of spaces 
of holomorphic sections, 

hP'0(Ef<J2Cp
drmkG-hk'0(EG). (0.10) 

k=0 

Again, Theorem 0.3 is not a consequence of [TZ1, Theorem 4.8]. 
This paper is organized as follows. In Section 1, we construct the twisted Spinc- 

Dirac operators appearing in the context and introduce the corresponding deforma- 
tions under Hamiltonian actions as in [TZ1]. We also prove a Bochner-type formula 
for the deformed operators. In Section 2, we extend the methods in [TZ1], which 
goes back to [BL], to prove Theorems 0.2 and 0.3. The final Section 3 contains some 
immediate applications as well as further extensions of the above main results. There 
is also an Appendix in which we provide explicit constructions of certain Spinc-Dirac 
operators appearing in Section 3. 

ACKNOWLEDGEMENT. The authors would like to thank the referee for his careful 
reading and very useful suggestions. 
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1. Deformations of twisted Spinc-Dirac operators and a Bochner-type 
formula. Following [TZ1], we construct in this section the twisted Spinc-Dirac op- 
erators and their deformations to be used in the proof of Theorems 0.2 and 0.3. An 
important Bochner-type formula for the Laplacians of the deformed operators will be 
proved. 

This section is organized as follows. In a), we construct the above mentioned 
Dirac operators. In b), following [TZ1], in the situations of Hamiltonian actions 
we introduce the deformations of the Dirac operators constructed in a). In c), we 
prove the above mentioned Bochner-type formula for the Laplacians of the deformed 
operators. 

a). Twisted Spinc-Dirac operators on symplectic manifolds. Let (M,u) 
be a closed symplectic manifold. Let J be an almost complex structure on TM such 
that 

g™(v,w)=u{v,Jw) (1.1) 

defines a Riemannian metric on TM. Let TMc = TM(g>C denote the complexification 
of the tangent bundle TM. Then one has the canonical (orthogonal) splittings 

TMc = T(1'0)M 0 T^'^M, 

dime M 

A*'*(T*M)=    0   A^(T*M), (1.2) 
i,j=0 

where 

A2 

T^Af = {z e TMc; Jz = yf-iz}, 

T{0'l)M = {ze TMc; Jz = -V^z}, 

j(T*M) = A* (T(1'0)*M) 0 Aj M0'1^) , (1.3) 

and dime M is the complex dimension of M. 
For any X e TM, which h_as the decomposition Xj= X1+X2 G T^MQTWM 

in the complexification, let Xi* e T^^M (resp. X2* G T^^^M) be the metric 
dual of Xi (resp. X2). Set as in [BL, Sect. 5] that 

■c(X) = V2X1*A -V2ix2. (1.4) 

Then c(X) defines the canonical Clifford action of X on A0'*(T*M).  In particular, 
for any X, Y e TM, one has 

c(X)c(Y) + c(Y)c(X) = -2g™(X, Y). (1.5) 

Let V™ be the Levi-Civita connection of g™. Then V™ together with the 
almost complex structure J induce via projection a canonical Hermitian connection 
VT ' M on T^'^M. This in turn induces canonically, for any integer p > 0, a 
Hermitian connection V

AP
'
0
(
T

*
M

) on AP'0(T*M).  On the other hand, as was shown 
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in [TZ1], V™ lifts canonically to a Hermitian connection VA0,
*
(T

*
M)

 on A0'*(T*M). 
Let VAP

'^
T

*
M

) be the Hermitian connection on AP,*(T*M) obtained from the tensor 
product of V*

P
'
0
(T*M) and VA0.-(r-Af)B 

Now let E be a Hermitian vector bundle over M with a Hermitian connection 
VE. Let VAP'*(T*M)0£; be the tensor product connection of VAP

'*(
T

*
M

) and V^ on 
Ap'*(T*M)(g)£. 

Denote by tip>*{M,E) the set of smooth sections of AP>*{T*M) <g> E. 
Let ei,..., edimM be an oriented orthonormal base of TM. 
DEFINITION 1.1. The twisted Spirf-Dirac operator D*

P
'
0
(T*M)®E is defined by 

dimM 

Dtf*(rM)*E =   J2 c(ej)VZ''<'T'MteE : np>*(M,E) -> n^(M,E).        (1.6) 

Clearly, DAP' (
T

"
M

)®E is a formally self-adjoint first order elliptic differential 

operator. Let D^
0(T"M)®E be the restriction of DAr,0(-T'M^E on fiP'even(M,£). 

Set 

Q (M, A^(T*M) ®E)= ker<'O(r*M)0£; - coker<'0(T*M^S. (1.7) 

b).    Hamiltonian actions and deformations of Dirac operators.   Now 
suppose that (M, u) admits a Hamiltonian action of a compact connected Lie group 
G with Lie algebra g. Let /i : M -» g* denote the corresponding moment map. As 
has been explained, after an integration over G if necessary, we may assume that G 
preserves J and g™. We also assume that the G-action on M lifts to a G-action on 
E preserving the Hermitian metric as well as the Hermitian connection V^ on E. 

Let g (and thus g* also) be equipped with an AdG-invariant metric. Let ?-/ = |/i|2 

be the norm square of the moment map /i. Then H is a G-invariant function on M. In 
particular, its Hamiltonian vector field, denoted by Xn, is G-invariant. The following 
formula for Xn is clear, 

xn = -j(dny. (1.8) 

Let hi,..., hdimG be an orthonormal base of g*. Then /i has the expression 

dimG 

V>= Yl Vihu (1-9) 
i=l 

where each /i; is a real valued function on M. Denote by Vi the Killing vector field 
on M induced by the dual of hi. One easily verifies that (cf. [TZ1, Sect, lb)]) 

J{dpiiy = -V, (1.10) 

and 

dimG dimG 

xn - -2j Y, i*i(w =2 Y ^Vi- (i-ii) 

We are now ready to introduce the crucial deformation following [TZ1, Definition 
1.2]. 



596 YOULIANG TIAN AND WEIPING ZHANG 

DEFINITION 1.2. For any T e R, let D£'
0
(
T

"
M

)®
E
 &e ^e operator defined by 

IT 
DA*-°(T'M)®E = DA^iT'M)®E + VZ±ic(XW)  . fiP.*(M)jB) _,. W>*(M,E).   (1.12) 

Clearly, D^ ^ ^ is a formally self-adjoint first order elliptic differential 
operator. Also, since G preserves everything and X7* is G-invariant, one sees that 

D^    ^       '       is G-equivariant.    If we denote by £^+ the restriction of 
D^°(T*M)®E ^ nP,even(M) E^ then 

Qr (M, A^0(r*M) ® £?) = kerD^;(T*M)8B - coker D^'^E (1.13) 

is a virtual G-representation. We use as usual a superscript G to denote its G-invariant 
subspace. 

Clearly, the following easy yet important identity holds for any T G R, 

dimQT (M, AP'0(T*M) 0 E)G = dimQ (Af, AP'0(T*M) ® £;)G . (1.14) 

c).    A Bochner-type formula for the square of D^    ^       '     .   For any 
V £ g, let Ly denote the infinitesimal action induced by V on the corresponding 
vector bundles. We will in general omit the superscripts of these bundles. Let ry be 
defined as in (0.4). 

For any X, Y G TM, which have the decompositions X = Xx + X2 G T^'^M © 
T^M and Y = Yi + F2 G T^'^M © T^M respectively in the complexification, 
let A(X,Y) be the endomorphism of AP>0(T*M) defined by 

A(X,y)=^Aiy1. (1.15) 

Let ei, • • • jedimM b6 an oriented orthonormal base of TM. Then one has the 
following analogue of [TZ1, Lemma 1.5]. 

LEMMA 1.3.  The following identity for operators acting on np'*(M, E) holds, 

..  dim M -. dim M 

Lv = Vv + rZ-1- YI c(eJ)c(v™7)-i'n[vr(I-0,^]+ £ ^(e^V^K). 

(1.16) 

Proof By proceeding as in [TZ1, Lemma 1.5], one sees easily that one needs only 

to calculate ry   ^       \ 
Recall that V acts on TM by 

L^MX = V£MX - V^My,   XGr(TM), (1.17) 

from which we have 
dimM dimM 

r™(X) = -  Y,  WV,eJ)eJ=   ^  (v^y,x)e,. (1.18) 
j=l j=l 

From (1.18) one gets immediately that 

dimM 

rT*M=  j- e*AivTMV. (1.19) 
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By (1.19), (1.15) and the fact that the almost complex structure J is G-invariant, 
one deduces easily that for any integer 0 < p < dime M, 

dimM 
AP'0(T*M) =  E A(eJ,VlMv). (1.20) 

3 = 1 

(1.16) then follows from (1.20) and the arguments in [TZ1, Lemma 1.5]. □ 
We can now state the following analogue of [TZ1, Theorem 1.6]. 
THEOREM 1.4.  The following Bochner-type formula holds, 

9 9 aimLr 
^DA'-°(T-M)9Ey = ^(T-M^y _ 2V^TT ^ ^ 

2=1 

dimG 

V^TT 
dimG 

Tr [VT<1'0,MXW] +2^T J2 *'* 

rp dim G 

+ - Y, (^/::Tc(Jy^)^) + |^|2-4^/^l^(J^5^)) 
2=1 

^ dimM 

+ ^  E   (c(ei)C(v^^)+4A(eJ,V™X^))+^|^|2.        (1.21) 
3 = 1 

Proof As in [TZ1, (1.26) and (1.27)], one deduces from (1.12), (1.5) that 

r^jrp dim M ^2 

D2
T = D* + ^L  <£ cie^c (Ve3X^) - v^lTV^ + ^ |^|2 (1.22) 

3 = 1 

and, by using (1.10), (1.11) and Lemma 1.3, that 

dimG dimG - dimM 

Vxn - 2 J2 ViLv; - 2 £ p^ + 5  E ^-Jc^X^) 
2=1 2=1 J = l 

^ ^ dimG /—j dimG 

2=1 2=1 

dimM dimG 

-  £ Afo.Ve,**) +2 53 AiJViM). (1.23) 
j = l 2=1 

(1.21) follows from (1.22) and (1.23). □ 
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2. Proof of the main theorems. In this section, we apply the methods and 
techniques in [TZ1, Sects. 2-4], which are closely related to those in [BL], to prove 
Theorems 0.2 and 0.3. As in [TZ1], the key technical point is a pointwise estimate at 
each critical point x G M\/i~1(0) of7-L = |/i|2. 

This section is organized as follows. In a), we prove the key pointwise estimate 
mentioned above. In b), we prove Theorem 0.2 while Theorem 0.3 will be proved in 
c). 

a). An estimate outside of /x~1(0). Recall from Definition 0.1 that E is said 
to be //-positive if (0.5) holds at every critical point x G M\/i~1(0) oi?i = |^|2. 

The main result of this subsection, which is an analogue of [TZ1, Theorem 2.1], 
can be stated as follows. 

THEOREM 2.1. If G is Abelian and E is [i-positive, then for any open neighbor- 
hood U of JJJ~

1
(0), there exist constants C > 0, b > 0 such that for any T > 1 and 

any G-invariant section s G ftp^(M,E) with Supp s C M\U, one has the following 
estimate of Sobolev norms, 

D, A
p'0(T*M)(g).£; >C(||s||f + (T-6)|M|g). (2.1) 

Proof By examining the arguments in [TZ1, Sect. 2], one sees that in order to 
prove Theorem 2.1, one needs only to prove an analogue of [TZ1, Lemma 2.3] in our 
context. 

Thus let x G M\/i~1(0) be a critical point of Ti. Let ei,- • • ,edimM be an or- 
thonormal base of TM near x. Let (yi, • • •, VdimM) be the normal coordinate system 
with respect to {ej}^M near x. Clearly, one can choose ei, • • • ,edimM so that H 
has the following expression near x, 

dimM 

n{y)=n(x)+   £  a^ + Oflyl3), (2.2) 
i=i 

where the a/s may possibly be zero. 
We can now state our analogue of [TZ1, Lemma 2.3] as follows. 
LEMMA 2.2. If G is Abelian, then the following inequality holds at any critical 

point x G M\fi~l(0) ofH, 

I—r-dimM i—=- 

Jf = l 

..  dimG dimM 

+ 2 ^ (v^c(jyi)c(^ + |^|2-4v^A(jv-,vi))>- E N-       (2-3) 

Proof. Since # is a critical point of %, by a result of Kirwan [K, Prop. 3.12], 
x is a fixed point for the action of the subtorus generated by /i(x) ^ 0. Without 
loss of generality, we assume that hi, • • •, /idim G has been chosen so that the duals of 
hi, • • •, hr generate this subtorus denoted by Gi. Let G2 be the subtorus generated 
by the duals of /ir+i, • • •, /idimG- Then the original torus has the factorization 

G = Gi • G2  with  Gi H G2   finite. (2.4) 
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Clearly, one has that 

Hi(x)=0,   r + 1 <2<dim(7. (2.5) 

Denote by Fx C M the connected component containing x of the fixed point set 
of the Gi-action. Then Fx is a totally geodesic submanifold of M and J preserves the 
tangent bundle TFX. Denote k — dimF^. 

Since the GVaction commutes with the Gi -action, G2 acts on Fx. 
To summarize, one has 
LEMMA 2.3. a). If 1 < i < r, then Vi\Fx = 0 and fii\Fx is constant; 

b). ifr + l<i< dimG, then ^(x) = 0 and (dfjLi)*\Fx G T(TFX). 
Proof. Since G2 acts on Fx, for any r + 1 < i < dimG, T^l^ G T(TFX). Thus by 

(1.10), (dfjii)* = JVi e T(TFX). The other parts of the lemma are clear. □ 
Without loss of generality, one may choose ei, • • •, edim M near x so that ei, • • •, et 

is an orthonormal base of TFX. Let {yj}i<j<dimM be the corresponding normal 
coordinates near x. Then from Lemma 2.3 one deduces that, near x, this orthonormal 
base can be further arranged so that 

r dim M 

5>i(i/)|2 = IM*)!2 + E ^2 + o(M3) (2-6) 
2=1 j = /c + l 

and 

dim G A; 

E iMi(y)l2 = Ea^2 + 0(^3)- (2-7) 
2=r+l j=l 

(2.6) and (2.7) together provide a splitting of H near x according to the splitting 
(2.4). 

From (1.10) and (2.6) one deduces, at x, that 

i=l 

From (2.8), one deduces, at x, that 

/—r- dim M    r 

^r E E(c(ei)c(2vr^^))+4^(ei'2vr^^))) 
j=i *=! 

/-T 

2=1 

^Tr[2vT(-)M(Miyi) 

dimM /    /—=- ^\ dimM 

i=fc+l ^ ^ i=A:+l 

where the last inequality follows from the obvious inequalities that 

IcfoMJe,-)! < 1 (2.10) 
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and 

2v/-L4(e„Je,) + i = i-2e»''*A.,,. 4 (2.11) 

with e}'0 e T^M (resp. e0/1 G T^^M) the (1,0) (resp.  (0,1)) component of the 
complexification of ej. 

On the other hand, by Lemma 2.3, for each r 4-1 < i < dimG, fii can be written, 
near x, as 

fj'i(y) = ^2bijy3+0{\y\2)' 
3 = 1 

By (2.7) and (2.12), one deduces that 

dim G    k k 

i=r+l j=l j=l 

which, together with (1.10), imply 

dim G k 

E w*)i2 = I>- 

From Lemma 2.3, (2.14), (1.10) and (2.10), one deduces, at x, that 

-r- dim M dimG 
1  E    E   {c(ej)c(vlM(niVi))+4A(ej,VlM(niVi))) 

j—1   i=r+l 

(2.12) 

(2.13) 

(2.14) 

dimG 

+ E  -v=r 
i=r-\-l 

-ITr v^-'^^K) + lc(J^)c(V;) + |T/^ 

dimG dimG 

-2^/=l J] ^(JT/i,yi)=  E v^JViMVO > - £ 1°; 
2=r4-l 2=r+l i=l 

(2.15) 

From (1.11), (2.9), (2.15) and Lemma 2.3, one gets (2.3). The proof of Lemma 
2.2 is completed. □ 

Since E is //-positive, using Theorem 1.4, (0.5) and Lemma 2.2, one can proceed 
in the same way as in [TZ1, Sect. 2], with almost no changes, to prove Theorem 2.1. 
That is, we first prove pointwise estimates analogous to [TZ1, Prop. 2.2] around each 
point outside of /x_1(0), in using Lemma 2.2 when dealing with critical points of H, 
and then glue them together to get the global estimate (2.1). The essential point in 
this last gluing step is again as in [TZ1] that each Ly., 1 < i < dimG, vanishes when 
acting on G-invariant sections. We leave the details to the interested reader. □ 

REMARK 2.4. A notable difference between Lemma 2.2 and [TZ1, Lemma 2.3] is 
that even with some of the a/s being negative, one does not have in general a strict 
inequality in (2.3). This means that the ^-positivity of E is necessary for Theorem 
2.1 (compare with [TZ1, Remark 2.4]). 
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b). Proof of Theorem 0.2. If F is a G-equivariant Hermitian vector bundle 
over M, we denote by FQ its induced bundle on MQ (cf. [TZ1, Sect. 4a)]). 

As in [TZ1], Theorem 2.1 allows us to localize our problem to sufficiently small 
neighborhoods of ^_1(0). While near ^~1(0), we can directly apply the analysis and 
results in [TZ1, Sects. 3 and 4a)], which are closely related to [BL, Sects. 8, 9], to 

the G-invariant restriction of DT   ^       ' 
Combining the above arguments, one deduces using (1.14) the following analogue 

of [TZ1, (4.3)] (of course for different twisted bundles and conditions), 

dimQ (M, AP'0(T*M) ® E)G = dimQ (MG, (AP'0(T*M) 0 E)G) . (2.16) 

Now since G is Abelian, the normal bundle to /i_1(0) is equivariantly trivial. 
From this fact one deduces directly the weighted splitting 

(A^0(r*M))G = 0 Cp
d^G ■ Ak'0 (T*MG), (2.17) 

where the numbers C^^Q have been defined in (0.6). 
Theorem 0.2 then follows from (2.16) and (2.17). □ 
REMARK 2.5. In view of Remark 2.4, the /x-positivity condition (0.5) can not 

be weakened in general to include the equality as in [TZ1, Theorem 4.2], even when 
/i-1(0) is nonempty. 

REMARK 2.6. Though its proof is of the same method, Theorem 0.2 can not 
be deduced from results in [TZ1] without imposing further conditions. The point is 
that if one wants to apply directly the results in [TZ1] to our situation, one needs the 
condition that at every critical point x G M\/i_1(0) of H, 

dimG 

v^E^r*™^0' (2.18) 
i=l 

which clearly does not imply (0.5). 

c). Proof of Theorem 0.3. We now assume that (M, CJ, J) is Kahler and 
G acts on M holomorphically. Furthermore, we assume that E is a G-equivariant 
holomorphic Hermitian vector bundle over M on which G acts holomorphically and 
that V^ is the unique holomorphic Hermitian connection. 

The key observation is, similarly as in [TZ1, Remark 1.4], that for any T € R we 
have in this situation 

JJAP'0(T*M)®E 

= y/2 (e-™/2Q*P>0(T*M)®EeTH/2 + eTn/2 fc*>°(T*M)®E\ * e-TH/2\       ^^ 

Furthermore, one has clearly an analogue of [TZ1, (3.54)]. Thus by the same reason 
as in [TZ1, Sect. 4d)], all the arguments before this subsection preserve the Z-grading 
nature of the twisted Dolbeault complex on M with coefficient bundle AP'0(T*M)®E, 
and this leads to the following holomorphic refinement of (2.16) which holds for any 
integer q>0, 

hp>q{E)G - h™-l{E)G + • • • + {-l)qh^{E)G < h^q ((Ap'0(T*M) 0 E)G) 
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-h0^-1 ((AP'0(T*M) 0 E)G) + • • ■ + (-l)g/i0'0 ((AP'0(T*M) <8) JB)G) .        (2.20) 

On the other hand, one verifies directly that the splitting (2.17) is holomorphic 
in this situation. 

(0.9) is then a consequence of (2.17) and (2.20). While (0.10) follows clearly from 
(0.9). 

The proof of Theorem 0.3 is completed. □ 

3. Applications and further extensions. In this section, we discuss some 
immediate applications and possible extensions of Theorems 0.2, 0.3 as well as the 
methods and techniques involved in their proofs. 

This section is organized as follows. In a), we apply Theorem 0.2 to get a vanishing 
multiplicity result for twisted de Rham-Hodge operators and a weighted multiplicity 
formula for twisted Signature operators. In b), we prove a negative analogue of 
Theorem 0.2, that is, we prove a weighted multiplicity formula in the case that '>' is 
replaced by '<' in (0.5). We also show that the strict inequalities are necessary. In 
c), we discuss briefly the case where 0 G g* is not a regular value of the moment map 
/i. Finally, we discuss in d) the applications to the typical example where E is the 
prequantum line bundle over (M, LJ). 

a).  Applications to twisted de Rham-Hodge and Signature operators. 
Set 

QdR(M,E)=   0   Q(M,Ap'0(r*M)®£)-  0 Q (M, AP'0(T*M) 0 E)    (3.1) 
Pleven p=odd 

and 

dime M 

Qsis(M,E)=    0   Q(M,Ap<0(T*M)®E). (3.2) 

One verifies easily that Q^^M.E) (resp. Qsig(M,E)) is exactly the virtual vector 
space associated to the twisted (by E) de Rham-Hodge (resp. Signature) operator 
on M. The following result gives the corresponding multiplicity formulas for these 
operators. 

THEOREM 3.1. Under the same assumptions as in Theorem 0.2, the following 
identities hold, 

dimQdR(M,£)G=0, (3.3) 

dimQsig(M,£0G = 2dimGdimQsig(MG,£G). (3.4) 

Proof. Theorem 3.1 follows easily from Theorem 0.2 and the definitions (3.1), 
(3.2) with some elementary computation. □ 

REMARK 3.2. The assumption that 0 E g* is a regular value of n is essential, 
particularly for the vanishing property (3.3). This will be discussed further in c) and 
d). 

b). Weighted multiplicity formula for //-negative bundles. A G-equi- 
variant Hermitian vector bundle E over (M, UJ) with G-invariant Hermitian connection 
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V^ is said to be ^-negative if at every critical point x G M\/i_1(0) ofJi — |/x|2, one 
has 

dimG 

v^ J2 Mz)7f»<0, (3.5) 
2=1 

instead of (0.5). 
For any //-negative bundle E1, one can introduce the same deformation of twisted 

Spinc-Dirac operators as in Definition 1.2, but take T -> —oo, instead of +oo, to 
prove the following result. 

THEOREM 3.3. If G is Abelian and E is [i-negative, then the following identity 
holds for any integer p > 0, 

dimQ(M,Ap'0(T*M)(g)£)G 

= (-l)dimGECdimG -d^O (MG,A*'0(T*MG) ® EG) . (3.6) 

Proof One can proceed similarly as in Section 2 to prove Theorem 3.2. The key 
point to note is that now the analogue of Lemma 2.2 should take the following form 
at any critical point x G M\/i_1(0) ofH — |/i|2, 

■—=- dim M i—=- 
1  E   (c(ei)c(v™^)+4A(eijV™^))-^ 

4 

1  dim G dim M 

+ 2 E (v/::ic(jyi)c(^) + |^|2-4v/^TA(jyi,K)) < E M-        (3-7) 
2=1 j = l 

We leave the details to the interested reader (Compare also with [TZ1, Remark 
4.5]). □ 

As immediate applications, one gets analogues of Theorem 3.1 for /i-negative 
bundles. One also gets Morse-type inequalities as refinements of (3.6) in holomorphic 
situations. 

REMARK 3.4. We use a simple example to illustrate that even with /i-1(0) ^ 0, 
one can not weaken the //-positive (resp. //-negative) assumption in (0.5) (resp. (3.5)) 
by an equality to get a weighted multiplicity formula similar to what happens in [TZ1, 
Theorem 4.2]: Taking M to be P1 with its standard 51-action and E — M x C, one 
verifies directly that dim<2dR(M, C)G = dim(2dR(M, C) = 2 / 0. 

REMARK 3.5. It is also clear that the Abelian condition on G is essential for 
our argument. In fact, an example due to Vergne (cf. [JK, pp.686]) shows that the 
Abelian condition on G is necessary for Theorem 3.3 in the case where p = 0 and E 
is the dual of the prequantum line bundle over (M, CJ) (when the latter exists). 

c). The case where 0 G g* is a singular value of \i. We now make a brief 
discussion on the possible generalizations of our main results to the case where 0 G g* 
is a singular value of \i. 
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When p = 0 and E is the prequantum line bundle over (M,a;) (when it exists), 
the quantization formula for singular reduction has been established by Meinrenken- 
Sjamaar [MS] (see also [TZ3] for an analytic treatment as well as extensions in certain 
situations). One notable feature in this case is the phenomenon that 'the singular value 
0 is removable' in the perturbative singular quantization formula [MS, Theorems 2.5, 
2.9]. However, as we will see, the situation for the case where p is nonzero is rather 
different. 

In the simplest case where G is the circle, a fairly general singular localization 
formula, which can indeed be applied to our situation, has been proved in [TZ2, 
Theorem 6.7]3. To be more precise, let V be the Killing vector field on M generated 
by the unit base of g and let FQ = /i_1(0) fl {x e M; V(x) = 0} be the subset of the 
fixed points of the G-action contained in ^_1(0). Then one has the following result, 
which can be proved by a combination of the arguments in Section 2 with those in 
the proof of [TZ2, Theorem 6.7] (Compare also with [Br]). 

THEOREM 3.6. If G = S1, E is fi-positive and 0 £ g* is a singular value of fi, 
then 

dim Q (M, AP'0(T*M) 0 E)G 

= E^dTJc • dimQ (MGfo-, A*'0(T*MG,o-) ® EGt0-) + indD£°f*M)®E(V) 
k=0 

= J2CP^G-<i^Q(MGM^k'0(T*MGfi+)^EGfi+)+indD^f'M^E(-V), 
k=0 

(3.8) 
where MGj0±   are the symplectic reductions fi  1(±£) with e > 0 sufficiently small 

and EQQ± the induced bundles from E, while DF   }; (iV) ^7/ be defined in 
Appendix. 

COROLLARY 3.7.  Under the same conditions as in Theorem 3.6, one has 

dimQMM,Ef = indD^T'M^E(V)-indDC0(T'M)&E(V) 

= ind<70(r*M)®B(-V) - ind<;;'0(T*M)®£(-n (3-9) 

REMARK 3.8. In the next subsection, we will show that even when E is the 
prequantum line bundle over (M, CJ), the contributions of FQ to the right hand sides 
of (3.8), (3.9) may well be nonzero. This explains the essential difference between the 
p = 0 and p y^ 0 cases as mentioned above. 

REMARK 3.9. If G is of higher rank, one can apply Theorems 3.6, 3.7 inductively 
to get localization formulas for dim<2(M, AP'0(T*M) 0 E)G and dimQdR(M,E)G, 
respectively. 

d).   The case where E is the prequantum line bundle over (M, u).   In 
this section, we assume E is the prequantum line bundle L over (M, CJ), of which we 

3 See also [Br] for a direct analytic treatment as well as extensions to the holomorphic case. 
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assume the existence.  Then L is a G-equivariant Hermitian vector bundle over M 
with G-invariant Hermitian connection VL such that 

v^i 
-(VL)   =w. (3.10) 

Z/i 

Furthermore, we assume that /x verifies the Kostant formula [Ko] (cf. [TZ1, (1.13)]) 

Lvs = V^5 - 2Try^l{fjL, V)s, s G r(L), V G g. (3.11) 

The following result is clear. 
PROPOSITION 3.10. L is ^-positive. 
One of the novelties for the prequantum line bundle is that there is a stan- 

dard shifting trick to reduce the computation of dimensions of nontrivial components 
of the G-representation Q(M1A

P,0(T*M) (g) L) to those of trivial components of G- 
representations of the form Q(M, AP'0(T*M) ® E) with E to be '/i-positive'. 

To be more precise, for any & E Z, 1 < z < dimG, set 

f = €lhl H ^dimG^dimG E g* . (3.12) 

Let C^ be the G-equivariant complex line bundle M x C over M with G-invariant 
Hermitian connection Vc^, on which G acts by 

Lvs = Vy's + 27rVZl(^V)s, s E r(Cc), F E g. (3.13) 

The existence of C^ is clear. 
Set 

L4 = L(g)Cc. (3.14) 

Then L^ is canonically a G-equivariant Hermitian vector bundle over M with the 
tensor product connection V1^. Furthermore, G acts on L^ through the formula 

Lvs = Vv*s-2^-1(1*-t,V)s, 5Er(Lc), V E g. (3.15) 

Since G is Abelian, /z^ := // — £ may also be regarded as a moment map for 
the Hamiltonian action of G on (M,a;). One then has the following extension of 
Proposition 3.10, which can be verified directly. 

PROPOSITION 3.11. L^ is ^-positive. 
Let Q(M, Ap'0(T*M)(g)L)£ denote the f-eigenspace of the G-representation Q(M, 

Ap'0(r*M) 0 L). That is, Lv acts on Q(M,AP'0(T*M) 0 L)c by multiplication by 
2^^/—T(£, V). Then one verifies directly that 

dimQ (M, Ap'0(r*M) 0L)C = dimQ (M, Ap'0(r*M) 0 L^)G . (3.16) 

This is the shifting trick mentioned above. 
Now when £ is a regular value of /z, in view of Proposition 3.11 one can apply 

Theorem 0.2 to get a weighted multiplicity formula calculating dim Q(M, APl0(T*M)® 
L^)G and thus the ^-multiplicity of Q(M.AP>0(T*M) (g> L) in terms of quantities on 
the ^-symplectic reduction MQ^ — /x~1(£)/G. When £ is not a regular value of 
/i, one may first apply Theorem 3.6 and then an induction procedure to calculate 
dimQ(M,A^0(T*M)<g)L)4 via (3.16). 
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By summing over all these £'s, one has clearly that 

dimQ (M, Ap'0(r*M) 0 L) = ^dimQ (M, Ap'0(r*M) <8) L)   . (3.17) 

In particular, in the case where G = S1, if for any such ^ denote by F^ — /i_1(^) PI F 
where F is the fixed point set of the G-action on M, then one can combine the above 
reasoning with Corollary 3.7 to get 

dimQdR(M,L) = £ (ind<r(T*M)^(y) - md^0^^^^)) .  (3.18) 

REMARK 3.12. Note that if £ is not contained in the image of the /i, then it is 
automatically a regular value of //. In this case, MQ^ = 0- By Theorem 0.2, one sees 
immediately that in the summations in (3.17) and (3.18), the £ actually runs through 
the integral lattice points contained in the image of fi. 

Now if the Euler characteristic x{M) of M is nonzero, then from (3.18) and the 
Atiyah-Singer index theorem [AS], which gives that 

dimQdR(M,L)=x(M), (3.19) 

one deduces by (3.17) that at least one of the terms dimQ(M, Aeven'0(T*M)(g>L)£ and 
dimQ(M, Aodd'0(r*M) 0 L)^ should be nonzero. In view of (3.16), (3.18), Theorem 
3.6 and Corollary 3.7, this provides a concrete example mentioned in Remark 3.8. 

Appendix. The construction of the Dirac operators appearing in The- 
orem 3.6. Let W be a 51-equivariant Hermitian vector bundle equipped with a 
51-equivariant Hermitian connection. The purpose of this appendix is to make ex- 
plicit constructions of the Spinc-Dirac operators D]? +(±V) appearing in Theorem 
3.6 (Compare with the Appendix in [TZ2]). 

Let N be the normal bundle to FQ, then N inherits naturally an almost complex 
structure JJV, a Hermitian metric gN as well as a Hermitian connection V^. 

Since V is a generator of the 51-action, y/^lLy acts on A^ as a covariantly 
constant invertible self-adjoint operator commuting with Jjsf. Let N+,N- be the 
positive and negative eigenbundles of \/—T^y |iv respectively. Then JN preserves N±, 
and one has the canonical splittings 

JV±<8)C = ivi1,0)©iv£0,1). (A.1) 

Let Sym(A^|1'0^) (resp.  Sym(A'i0'1^)) be the total symmetric power of N+   ' (resp. 

iVi0,1)). Then Sym(^i0'1)) 0 Sym(JVJ1,0)) 0 det(^1'0)) 0 W\Fo is an infinite di- 
mensional vector bundle over FQ, on which \/^TLy acts as a covariantly constant 
self-adjoint operator. Furthermore, its zero eigenbundle, denoted by (Sym(iVI' ^) <g) 

Sym(A^|1'0)) (g) det(^1'0)) 0 W\Fo)
s\ is of finite dimension. 

DEFINITION A.l. The operator D]? +(V) is defined as the (twisted) Spin0-Dirac 
operator on FQ, 

£>$;,+00 : ft0'even (Vo, (Sym (jV*0*1*) 0 Sym (ivj1'0^ 0 det (jvi1,0)) ® W|Fo)
5 \ 

Fo, (Sym (N^
1)
) ® Sym (N£'

0)
) 0 det (N£'

0)
) 0 W\Fo)     ) .    (A.2) ->fi 0,odd 
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If we change V to —V, we get the similar definition of D^ +{—V). 
By setting W = AP'0(T*M) 0 E, one gets the Dirac operators appearing in 

Theorem 3.6. 
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