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COLLAPSING FOLIATED RIEMANNIAN MANIFOLDS* 

F.T. FARRELLt AND L.E. JONES* 

0. Introduction. We develop here a foliated version of the Cheeger-Fukaya- 
Gromov theory [4] (C-F-G theory) of "collapsing Riemannian manifolds" for Rie- 
mannian manifolds equipped with one-dimensional foliations. In a prior paper [8] the 
authors have examined in detail the "lowest dimensional strata" in the C-F-G theory. 
Our constructions in this paper combine the results of [8] (which are reviewed in sec- 
tion 1 below) with ideas from our paper [7]. In a separate paper [9] foliated collapsing 
theory is applied to obtain new topological rigidity results for some classical aspherical 
manifolds. We take this opportunity to clarify a point in [9]; namely the meaning of 
the term "diagonal action" in [9, p.257, line 34] which should be interpreted as follows: 
let ai, a2,.. • , as G F be a complete list of coset representatives for TT in F. Then 

a^i,..- iVs) = (aiaa^yi),... ^aaj1^)) 

where yi G M and a G TT. 

In this introductory section the main results of foliated collapsing theory are 
formulated (cf. 0.5,0.6). 

A complete Riemannian manifold (M, g) is said to be A-regular: for some sequence 
of positive numbers A = {^}, if we have 

I V^l < Ai 

where the indices i vary over the natural numbers and ^R is the 2-th covariant 
derivative of the curvature tensor (cf. [4;pg. 334]). Note that the 0-th condition means 
the sectional curvatures are pinched; i.e., bounded away from ±oo. The C-F-G-theory 
[4] applies to any complete A-regular Riemannian manifold M. 

A one-dimensional smooth foliation ^ of a complete Riemannian manifold (M, g) 
is said to be A-regular, for some sequence of positive numbers A — {Ai}, if for each 
locally defined unit cross section F of J we have 

I V* *1 < Ai 

where the indices vary over all natural numbers and where \jlF is the z-th covariant 
derivative of F. Foliated collapsing theory applies to any complete A-regular Rie- 
mannian manifold M with one-dimensional A-regular foliation #. The foliated theory 
gives a covering of a portion of M by "long and thin" open submanifolds Ei, i G / 
("long" in the direction tangent to $ and "thin" in the direction perpendicular to J) 
each of which is the domain of a fiber bundle projection Ei —> Bi whose fiber is a 
product of a Euclidean space with a closed aspherical manifold having an infrasolv 
fundamental group and whose base space is a rectangle in a Euclidean space. The 
collection of all these projections overlap one another in a well-behaved manner. 

In the remainder of this paper (M, g) will denote a complete A-regular Riemann- 
ian manifold and # will denote a smooth one-dimensional A-regular foliation for (M, g). 
For any numbers a,/? > 0 let M(a,/?) denote the subset of M described in 0.1 below. 
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Our first foliated collapsing result (cf. 0.5) states that any point p G M(a, /?) is "close" 
to one of the three types of "infrasolv cores" described below in 0.2,0.3. 

0.1. The subsets Xa^ and M(a,/3) of M. For any subset X C M and any 
numbers a, /3 > 0 we denote by Xa^ the subset of all y G M for which there is a 
smooth path / : [0,1] —► M of length less than a which is contained in a leaf of # 
and which satisfies /(0) € X and d(/(l),y) < /?. 

For each point x G M let ^4^ denote the "arc" of length equal to 2a centered 
at x and contained in a leaf of #• (If the leaf L containing x has length < 2a, then 
Ax = L is a circle.) Then M(a:, /?) will denote the set of all x G M such that diameter 
(Ax) > /?. 

0.2. Infrasolv cores of type I and type II. An infrasolv core (of type I or 
II) for (M7g) consists of a smooth submanifold U C M with dU = 0, an open subset 
B of some Euclidean space, and a smooth bundle projection r : U —> B, such that 
the following hold. 

(a) The fibers of r are closed aspherical manifolds with TTI an infrasolv group; 
i.e., TTI is virtually poly-Z. 

(b) B is a product Bi x B2, where B2 is an open ball centered at the origin of 
some Euclidean space, and where Bi is either a point or an open ball centered 
at the origin of R. 

(c) U C M has a well defined open tubular neighborhood of radius equal radius 
(B2). (If B2 is a point, then radius {B2) is defined by this property.) 

Let r = ri x r2 denote the factorization of r corresponding to the factorization B = 
Bi x B2 of B given in 0.2(b). If Bi is a point we say that r : J7 —> B is of type /; 
in this case the radius of r is defined to be the radius of B2. If Bi is a ball in R we 
say that r : U —> B is of type //; in this case the radius of r is defined to be the pair 
(a, 8) where a = radius (J5i) and where 8 — radius (^2). 

0.3. Infrasolv core of type III. These type of structures exist only if T^ is 
an unoriented line bundle. In this case we let (M,$,g) denote the two fold covering 
of (M, #, g) such that T^ is the oriented line bundle. An infrasolv core of type III for 
(M, g) consists of a smooth submanifold U C M with dU = (/) and a map r : U —> B, 
where B — Bi x B2 with Bi = [0, a) for some a > 0 and B2 is the open ball centered at 
the origin of some Euclidean space. We let ri, r2 denote the factors of r corresponding 
to the factors I?i,i?2 of B. The maps r,ri,r2 must satisfy (a)-(c) below. 

(a) There is an infrasolv core of type II for (M,g) represented by a map f : 
U —> B, where B = Bi x B2 with i?i = (—a, a) and B2 = #2, and where 
?7 is the preimage of U under the covering projection TT : M —> M. 

(b) The map f is equivariant with respect to ^-actions tpi : Z2 x M —> M and 
ip2 ' Z2 x B —> B: where ipi is the covering space action for TT : M —> M 
and where ^(x^y) =-(—x,y) for all (x,y) G Bi x 52- 

(c) r is the quotient map of f under the actions ipi, -02 • 
(d) If I? denotes the open tubular neighborhood for U in M of radius equal 

radius (^2) (cf. 0.2(c)), then 7r(E) is an open tubular neighborhood for U in 
M of radius equal radius (B2). 

We define the radius or r (of type III) to be equal to the radius of r (cf. 0.2). 

0.4. Thickened infrasolv cores. Let r : U —^ B denote an infrasolv core for 
(M,g) of radius 8 or (a, 8). Note that properties 0.2(c), 0.3(d) assure us that U has 
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a well defined open tubular neighborhood E of radius S in M. This means that the 
exponential map exp:TJ-j(C7) —> M is a smooth embedding onto a subset E C M, 
where J^radius^) and T±j(f7) denotes the set of all vectors v G TM^ such that v 
is perpendicular to U and \v\ < S. The orthogonal projection p : E —> U is just the 
composition of the usual fiber bundle projection T-Ls{U) —> U with exp-1 : E —> 
T-Ls{U). We define maps s: E —> B, Si : E —> Bi for i = 1, 2, and t : E —> R by 

(a) s = r o /} and s^ — r^ o p; 
(b) t(g)=d((/)p(g)). 

We shall say that (s,t) is a thickened infrasolv core for (M,g) associated to r. The 
thickened infrasolv core (5, £) has the same type (I,II, or III) and radius as does the 
infrasolv core r. 

0.5. Existence Theorem. There is a positive integer 77 depending only on 
dimM. Let a, fl, 81,82 > 0 be given numbers and let a > ai > a2 > ... > o^-i > 
o^ > 0 be a given decreasing sequence satisfying eioii > 100a^-j_i for all i. Then there 
exists a number A > 1 (which depends only on a,/3:A = {Ai}:dimM), and there exist 
an arbitrarily small decreasing sequence of positive numbers Si > 82 > ... > £77-1 > 
Sr/ > 0 which have arbitrarily small quotients 61/8281-1; and for each p £ M(a,/3) 
there exists a thickened infrasolv core (s,t) for (M,g) with p G E, and there is an 
integer j G {1, 2,..., rj}, all which satisfy the following. 

(a) Radius (s,t) = Sj if {s,t) is of type I; radius (s,t) — (aj,Sj) if (s,t) is of 
type II or III. 

(b) 

(c) For any x G E we have that 

(d) Suppose we have that 

t(p) <828j, 

\S2{p)\<828j, 

\si(p)\ <e1aj. 

EC {x}701*'™*. 

y e {xy*, 

for x,y G E and for (1/, fi) G [0, 7aj] x [0, \8j].  Then we also have that 

\si(x) - si(y)\ < i/ + eiaj, 

\s2(x) - S2(y)\ < Xfi + \t{x)v + 828j, 

\t(x) - t(y)\ < fi + Xt(x)i/ + 828j. 

0.5.1. Remark. The second inequality of 0.5(d) (in the special case when /J, = 0 
and x G U) suggests that along each fiber L of r2 : U —> B2 the tangents T$ must 
be £2^-close to the tangents TL. In fact (for infrasolv cores of type II and III) the 
foliation # must be tangent to each fiber L (cf. 2.5.1(a) and 0.3), and 

|JDSI(T;)| = M , \Ds(w)\ < X\w\ , \Dt(w)\ < \w\ 

must hold for all v G T^u and all w G T{E - U) (cf. 0.3,0.4,2.4.1-2.4.4). These facts, 
together with certain "curvature" conditions established in §2 for infrasolv cores of 
type II and III (cf. 2.5.1(a), 1.1), imply the three inequalities of 0.5(d). For infrasolv 
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cores of type I the foliation 3" is not necessarily tangent to each fiber Lofr:U —Y B, 
but the angular distance from T$\L to TL is much less than £26j (cf. §5); and 

\Ds(w)\ <X\w\ , \Dt(w)\ < \w\ 

hold for all w E T(E — U). These properties, together with certain "curvature" 
conditions established in §5 for infrasolv cores of type I (cf. 5.1.13,5.1.23.2(b), 1.1), 
imply the three inequalities of 0.5(d) for thickened infrasolv cores of type I. 

Our next theorem describes the relation between two thickened infrasolv cores 
associated to points p^p' E M by Theorem 0.5 provided p and p' are sufficiently close. 

0.6. Comparison Theorem. The thickened infrasolv cores given by 0.5 can 
be chosen to satisfy the additional properties listed below. Let (s,t) and (s'^t') be two 
such thickened infrasolv cores for (M, g) which have radii (o^-, Sj) (or 5j) and (o^/, Sji) 
(orSji) respectively, which are associated to the pointsp^p' E M(a,j3) by 0.5. Suppose 
E fl E' ^ (j) and that j = j'.  Then the following hold. 

(a) (s,£) and (s'^t') are of the same type, dimU = dimU', and B — B'. 
(b) For all x e En E' we have \t(x) - £'(a;)| < £26j. 
(c) There is an affine isomorphism A2 : R^ —> Rfc (where k — dimB2) which 

satisfies 

|A2|<A, |A^|<A, 

and 

IA2 o S2{x) — s^ix)] < £2&j for all x E E C[ E' 

where A > 1 depends only on a,/?, A = {Ai},dimM. Moreover if (s,i) is of 
type II or type III then there is an isometry Ai : R —> R such that 

|Ai o 51(0:) - s'i(x)\ < £iaj 

for all x E E fl E*; and if (5, t) is of type III then Ai ^identity. 

0.6.1. Remark. In the event that j < j' much can also be said about how the 
projections (s,t) and (s'^t1) overlap. These details are not given here since they are 
not needed for the application of foliated collapsing theory carried out by the authors 
in [9], 

Outline of the paper. 
In §1 we review the main results of our paper [8]. 
In §2 we use the results of §1 to verify Theorems 0.5,0.6 for infrasolv cores of type 

II and of type III. 
In §3 we state and prove two lemmas (from linear algebra) which will be used in 

§5 to aid in the construction of infrasolv cores of type I. 
In §4 we introduce the set of smooth embeddings Hp(XSc) and formulate and 

prove several lemmas about these embeddings. These lemmas, in conjunction with 
those formulated in §3, will be used in the construction of infrasolv cores of type I in 
§5. 

In §5 we use the results of §1,§3,§4, together with ideas from the authors' paper 
[7], to verify Theorems 0.5,0.6 for infrasolv cores of type I. 

There is also one appendix at the end of this paper, in which we examine the A- 
regularity condition placed on the foliation # for M in terms of special local coordinate 
systems for M. 
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1. Local collapsing theory. We let (M,g) denote a complete Riemannian 
manifold which is ^-regular for some sequence A = {Ai} of positive numbers. In this 
section we review the main results of our paper [8] (cf. Theorems 1.3 and 1.5 below). 
Our Existence Theorem 1.3 states that near any p € M there is an "infranil core" as 
described in 1.2 and 1.3; this theorem was verified in [8] by considering the "lowest 
dimensional strata" in the local C-F-G theory. Our Comparison Theorem 1.5 (also 
proven in [8]) formulates a "stability" property for infranil cores which satisfy the 
conclusions of 1.3. This "stability" is of essential importance in the sections 2 and 5 
for verifying Theorems 0.5, 0.6. 

In 1.1-1.3 below we let r : U —> B denote a smooth mapping from a submanifold 
U C M (with dU = (j)) onto a Riemannian manifold (B,g). 

1.1. The curvature K(f;M). We let K{f\M) denote the gib of all numbers 
a > 0 which satisfy the following properties for any smooth path / : [0,1] -» U: 

(a) Q(TUm,Pf(TUm)) < <7(length(/)); 
(b) ||Df/(1) - Pf(Drm)\\ < <r(length(/)). 

Here Q(V,W) denotes the angular distance between planes V and W (i.e. the maxi- 
mum of the angular distance from each vector of V to W and from each vector of W 
to V); and Pf denotes parallel translation along / in (M,g) in part (a). In part (b) 
Pf(Dff(o)) is defined to be the composite map 

Pr0f o Df/(o) onoPj : TUf(i) -> TBr0f(i) 

where Pj is parallel translation in (M,g) along the path f(t) = /(I — t), and TT : 
TMj-(o) -* TUf(o} is orthogonal projection, and Pfof denotes parallel translation along 
rof in (B,g). 

1.2. Infranil cores. An infranil core for (M, g) consists of a smooth submanifold 
U C M with dU = (j), an open subset of some Euclidean space B C Rn with g 
denoting the Euclidean metric, and a smooth bundle projection f : U —> B, such that 
the following properties hold. 

1.2.1. (a) The fibers of r are infranil manifolds; in particular they are closed 
aspherical manifolds with TTI an infranil group. 

(b) B is an open ball centered at the origin of Rn. 
(c) U C M has a well defined tubular neighborhood of radius equal radius 

(B). (If B is a point, then radius (B) is defined by this property.) 
The radius of an infranil core f is defined to be the radius of B. 

Now let f : U -> B denote an infranil core of radius 5. We shall say that r : U —> B 
is (e.'d)-rigid, for numbers e, $ > 0, if the following properties hold. 

1.2.2. (a) K(r;M) < e^-1). 
(b) diameter (f~1(x)) < e5, for all x G B. (This refers to the diameter of 

the manifold f""1(x) with respect to its Riemannian metric inherited 
from(M,<?).) 

(c) For any w G TU which is perpendicular to the fibers of f we have that 

(1 - e)M < \Dr{w)\ < (1 + e)\w\. 

(d) For each v G TM^ which is perpendicular to U there is a smooth 

path / : [0,1] —> U, which starts and ends at the foot of v, and which 
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satisfies 

length (/) < eS and tf < 0(v,Pf(v)). 

The following theorem has been proven in [8; Theorem 0.3]. 

1.3. Existence Theorem. There is an integer fj > 0 and a number # £ (0,1) 
which depend only on dimM. For any given e G (0,1) there is an arbitrarily small 
decreasing sequence of positive numbers Si > S2 > £3 > ... having arbitrarily small 
quotients Sj/eSj-i. There is, for each integer n > 0 and for each p G M, an infranil 
core r : U —> B for (M,g) and a point p' G U which satisfy the following properties. 

(a) The radius of r is equal Sc for some c G (n,n + fj). 
(b) f is (e, '^)-rigid. 
(c) d(p,p,)<^caiid|f(p,)|=0. 

1.4. Thickened infranil cores. Let f : U -+ B denote an (e, i?)-rigid infranil 
core of radius 5 > 0. Note that property 1.2.1(c) assures us that U has a well defined 
open tubular neighborhood E of radius 5 in (M, g) and that the orthogonal projection 
p : E -> U is a well defined bundle projection map. (The meaning of 1.2.1(c) is 
that the exponential map exp:T~-(U) —>> M is a smooth embedding with image E, 

where 6 = radius(f) and where T^{U) denotes the set of all v G TM^ which are 

perpendicular to U and which satisfy |T;| < 8] the orthogonal projection p : E -> U 
is just the composite of the usual fiber bundle projection TMU) -> U with exp-1 : 

E -> T~-{U).) Define s : E -> B to be the composite f o p; and define t : E -+ R by 

f(a:) = d(x,p(x)) for all x G E. The pair of maps (s,t) represent a thickened infranil 
core of diameter 8 which is the "thickening" for the infranil core f. For each x G {0,8] 
we let B{x) denote the open ball of radius x centered at the origin of B, and we set 

E{x) = sT1 (W) H i-^iO.x)) and U{x) = f"1^^)). 

The following theorem has been proven in [8; Theorem 0.5]. 

1.5. Comparison Theorem. Given 1? > 0 we let £, 8 > 0 denote sufficiently 
small numbers, where how small is sufficient depends only on 13, A — {Ai},dimM. 
Let fi : Ui -> Bi,i = 1,2, denote {e,^)-rigid infranil cores both of radius 8. If 
Ei{S/9) fl E2{8/9) ^ (f) then there is an isometry A : R^-^R^ (where k = dimBi) 
such that the following properties hold for each x G Ei fl E2. 

(a) dimUi — dimJJ^ and Bi — B2. 
^ |ti(a;)-t2(a;)| < 0(E)6. 

(c) |Aosi(a;)-S2(x)| <0{e)8. 

1.5.1. Remark. The notation "©(e)" appearing in the inequalities of 1.5(b)(c) 
means that there is a C^-function g : R-»R with g{0) = 0, which is independent of 
the infranil cores fi,f2 and of the numbers e,8, such that when O^) is replaced by 
the number \g{e)\ then the resulting inequality is actually true. 

The following remark has been verified in [8; Remark 0.5.2]. 

1.5.2. Remark. It is a consequence of the (£,^-rigidity for fi,f2, and of the 
inequality Ei{8/9) fl E2{8/9) ^ (j), that properties 1.5(a) -(c) are equivalent to the 
following three properties. For each x G U2 H Ei let fx : [0,1] -> pi1{pi{x)) denote 
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the geodesic with /x(0) = x,fx(l) — pi{x); and let Qi denote the foliation of f/j by 
the fibers of fi. 

(a) length (/x) < 0{e)~5. 
(b) ®{Pu{TU2\x),TUl]p,{x)) <0{e). 

(c) QlPjATg^Tg^w) <0{g). 

2. Construction of infrasolv cores of type II, III. Let a, /3, M(a, (5) be as in 
Theorem 0.5. There are subsets Mi(a,/3) C M(a,f3),i = 1,2,3, defined in 2.3 below. 
The main result of this section (cf. 2.4, 2.5) is the construction for each p G M2(a, (3) 
(or p E M3(a,/?)) of an infrasolv core Tp : Up -^ Bp of type II (or of type III) such 
that the collection {r^} satisfies all the conclusions of Theorems 0.5 and 0.6, and in 
particular satisfies the statements of 0.5(b) with respect to our present choice of p. In 
section five below we will construct for each p G Mi (a,/?) an infrasolv core of type I. 

Before giving a precise statement of the main results of this section we state two 
lemmas (cf. 2.1, 2.2) which will be needed in their formulation and proof. These 
lemmas will be proven at the end of the section. 

The first of these lemmas is concerned with a map }p : (—5a, 5a) x B(p,j3) —> M 
defined as follows. Let B(p,(5) denote the set of all vectors v G TMV with \v\ < (3 
which are perpendicular to #, and define fp\0x B(p, (3) to be the restriction to B(p, (3) 
of the exponential map exp: TM —> M. For each x G B(p,(3) choose a unit speed 
parametrization hx : R ->• M for the leaf of # which contains /p(0, x) such that /ix(0) = 
/p(0,x) and such that hx(Q) is smooth in x. Now for each (5, x) G (—5a, 5a) x B{p, (3) 
set fp(s,x) = hx(s). Note that for /? sufficiently small fp will be a smooth immersion. 
How small is sufficient depends only on dimM and A — {Ai}, where both M and 
# are A-regular for the same sequence A\ cf. A.l and [8, A. 1.2]. Let Jj denote a 
unit length vector field on (—5a, 5a) x B(p,P) tangent to the first factor; note that if 
fp(s,x) = /„(*',z') then Dfp(&(8,x)) = ±Dfp(§-t(s',x')). 

2.1. Lemma. Suppose that fp(s,x) = fp(s'^x') for (s,x) ^ (s'^x') in (—a, a) x 
B(p,/32). Then one of (a), (b), or (c) must hold, provided (3 > 0 is sufficiently small 
(How small is sufficient depends only on a, A — {Ai},dimM.) 

(a) Dfp(^(s,x))=Dfp{§-t(S',x')) andp < \s - s'\. 
(h) DfP(-§-t(s,x)) = Dfpi-ltis^x')) and /J2|s - s'| < \x - x'\. 
(c) Dfp(£t(s,x)) = -Dfp(£(s',x')). 

The second of these lemmas refers to a selection of infranil cores rp : Up -> Bp, 
p G M(a,/3), which satisfy the conclusions of Theorem 1.3 with respect to some 
selection of numbers i, n, {Sj} as in 1.3, and in particular satisfies 1.3(c) for our present 
choice of p. Let Ep denote the thickening of Up described in 1.4; let 0p be the foliation 
of Up by the fibers of rp; and let # be one dimensional foliation of M refered to in 0.5. 

2.2. Lemma. Properties (a)-(c) hold provided (3 is sufficiently small (how small 
is sufficient depends only ona^A — {Ai}, dimM) and provided the {5j} are sufficiently 
small (how small is sufficient depends only on a,(3,A = {Ai},dimM). 

(a) The angles between the leaves of # and of &p are bounded below by /33. 
(b) If the restricted bundle T'S^   is not orientable then the angles between the 

leaves of $ and Up are bounded below by ft3 — 0(e). 
(c) If the restricted bundle T^^   is orientable then the angles between the leaves 

of $ and Up is bounded above by 0(e). 
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2.3. The subsets Mi(a,j8) C M(a,/?),i = 1,2,3. A point p G M(a,(3) is in 
M2(a,(3) iff neither 2.1.(a) nor 2.1.(c) hold for any (s,x): (s*,xf) in (—ay, ay) xB(p,5y) 
where y = (^rj) - 2. A point p G M(a,/3) is in M3(a,P) iff 2.1(a) doesn't hold for 
any (s,a;), (s'^x') in (—az,az) x B(p,5z), where z = (fry) -2, but 2.1(c) does hold for 
some (s,a;), (s7, a;7) in (—0^,0^) x B(p, Sy). Set 

MiCa,^) = M(a,/?) - (M2(a,/3) U Msfafi)). 

Note that the sets Mi(a, /?), i = 1,2,3, are well defined provided 77 is divisible by 5. 
Now we can formulate the two main results of this section. In both of the following 

propositions we assume that /? > 0 is small enough to satisfy the hypothesis of Lemmas 
2.1,2.2. Note that this assumption will cause no loss of generality in our statement of 
Theorems 0.5,0.6. In fact if p' > f3 > 0 then we have M(a,)9

/) C M(a,/?) (cf. 0.1); so 
if 0.5 and 0.6 have been proven for /3, they also hold true for ft'. 

2.4. Proposition. Ifp G M2(a,0) (or ifp G Ms(a, P)) then there is an infrasolv 
core rp : Up -> Bp of type II (or of type III) which satisfies 0.5(a)-(d). 

2.5. Proposition. The collection of all infrasolv cores {rp : p G M2(a,/3) U 
M3(a,/3)} /rora ^.^ a/50 satisfy 0.6(a)-(c). 

The idea for the proof of 2.4 is quite simple in the special case that T^ is ori- 
entable. We use Lemma 2.2 to construct a portion of the infranil core rv : Up —V Bp 

which is "transverse" to #. Then we "flow" this transverse portion of rp in the direc- 
tion of Tg' over the time interval (—ac, ac) to obtain the infrasolv core rp : Up -> Bp, 
where c > 0 is the integer subscript for 8 associated to fp in 1.3. Because this idea 
is referred to again later (in greater detail) it will prove convenient to carry out this 
idea before beginning the proof for 2.4. 

2.6. Flowing the transverse part of rp. There are the following two cases to 
consider: T^^   is orientable; T^^   is not orientable. Here Ev is the thickening for 

the domain Up oifp (cf. 1.4). 

Case I: T^^   is orientable. 

In this case Up is close to tangent to # (cf. 2.2(c)) and 0p is transversal to #; 
cf. 2.2(a). Let (sp,ip) denote the thickening for rp described in 1.4, and let c > 0 
denote the integer subscript for 5 in 1.3. Recall that Bp is an open ball centered at the 
origin in some Euclidean space R*\ Let q G ^1(0) be any point, and let Vp denote 
all vectors v G T(Up)q which are perpendicular to f~1(0) and to # and which satisfy 

\Drp(v)\ < |(5C where | | denotes the Euclidean norm. We set 

QSp = expoDrp(Vp), 

iXp = r;1(<Bp), 

Cp = 5;1(Bp)nf-1([o,^c)), 

where exp : TR^ —> Ilk is the exponential map for Euclidean space.  We also have 
mappings 

Xp '. lip   y J5p,Sp '' v^p   y ^p^p '. Lp   y xi., 

defined simply as the restriction maps rp|iip, sp\(£p, tp\(£p respectively. We call tp,Sp, tp 



COLLAPSING FOLIATED RIEMANNIAN MANIFOLDS 451 

the "portions of rp,sp,ip transversal to #". For each y £ <£p choose a unit speed 
parameterization Uy : R -> M for the leaf of J containing y, such that ^(O) = y and 
such that Uy{Q) is a smooth vector field along i£p. Then define a map 

fp : R x e^ -> M 

by fp(Sj2/) = Uy(s). Note it follows from 2.2 that fp is a smooth immersion. Note that 
fp accomplishes the "flowing" of the transverse portions of rp,sp, tp in the direction of 
#. We will also have use for the following notation: 

»p(t) = ®P n Bp{t)^p{t) = iip n /7p(t), gp(t) = (Ep n Ep(t) 

for any t G (0, ^c], where the sets Bp(t), Up(t),Ep(t) have been defined in 1.4. 

Case II: Tg^   is not orientable. 

In this case Up is already transverse to # (by 2.2(b)), and we may set 

-Sc) andilp = Up(-l ^P = ^P(O^C) and Up = t/p(-5c). 

To get (£p we let Tp denote all vectors v E TM|^   with |i;| < |(5C which are perpendic- 
ular to both ilp and 5r. Then we set 

<£p = exp(rp), 

where exp : TM -> M is the exponential map. The maps 

Xp I lXp      r  -Op,Sp !  v^p      r ^Opj tp  .  \^p      r Xu, 

are defined simply as the restriction maps rp\ilp,sp\(£piip\(£p respectively. For each 
t E (0, |JC] sets <Bp(f),ilp(£), ep(t) are defined by 

<Bp(t) = Bp(t), iip(t) = L/pW, <Bp(t) = epn Ep{i). 

Note that there is a smooth immersion 

fpiT^^^M 

which is just the inclusion (£p C M on the zero section of the bundle Tg^ and which 
maps each fiber of T$\£p locally isometrically onto a leaf of #. 

Proof of Proposition 2.4- As we have indicated above we wish to obtain the 
infrasolv core rp by "flowing" the "transversal portion" of rp in the direction of # over 
the time interval (—ac, ac). In order to fill in the details for this argument it is clearly 
necessary to first understand the relation between the numbers (3,61,82, rj, {5j} of 0.5 
and the numbers e, fj, {Sj} of 1.3. In the remainder of this proof we shall assume that 
these numbers are related as follows. For any numbers a, b E (0,1) we let a « b 
denote that the ratio | is much greater than 1. 

2.4.1.  (a) IOO77 Krj. 
(b) Sj « Sj but eSj « e^Sj for all integers §77 < j < rj. 
(c) Sj « (5 for all j. 

The proof naturally breaks into the two cases p E M2(CK,/?) and p E M3(a,/3). 

Case I: p E M2(a,/3). 
In this case we select the positive integer n of 1.3 as follows. 
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2.4.2. n= fr/. 
Now we can deduce the following important property of fp from 2.1,2.3,2.6,2.4.1, 
2.4.2 and from the inequalities n < c < n -f- fj of 1.3. (See also the results A.2 and A.3 
in the Appendix to this paper.) 

2.4.3. There is A 6 (0, |), which depends only on a,P,A = {Ai},dimM, such 
that fp : (—ac,ac) x (£p(\5c) -> M is an embedding. 

Select the infrasolv core rp \UV ^ Bp of type II and the integer j of 0.5 as follows. 

2.4.4. (a) j = c. 
(b) Up = fpd-aj.aj) x Uptfj)) and Bp = (-aj.aj) x Sp^-). 
(c) Tp : Up -> Bp is equal to the composition map 

f-1 idXtp 

Up^(-aj,aj) xttpiSj)—^(-ay,^-) x *Bp(6j). 

Let (sp,tp) denote the thickened infrasolv core associated to the infrasolv core rp of 
2.4.4 by 0.4. We can deduce from 1.3,2.6,2.4.1-2.4.3, and from results A.2 and A.3 in 
the Appendix to this paper, that the thickened infrasolv core (sPitp) and the integer 
j satisfy 0.5(a)-(d). 

Before proceeding to the next case we remark that there is an "extension" of 
each of the infrasolv cores rp : Up —> Bp just constructed to a larger infrasolv core 
fp'.Up -t Bp of type II for 5 which satisfies the following properties. 

2.4.5. (a) Up C UP,BP C BpJp\Up = rp. 
(b) The fp have radius (2^,^) where Sj <<Sj << 5j. 

The fp shall be referred to in the proof for Proposition 2.5.   They are obtained by 
"extending" the preceding construction for the infrasolv cores by simply replacing 
the 
{fij : 1 ^ j ^ l} m 2.4.4 by positive numbers {Sj : 1 < j < rj} which satisfy 

Sj « Sj « Sj 

and replacing the numbers {aj : 1 < j < rj} in 2.4.4 by the numbers {2aj : 1 < j < rj}. 

Case II:pGM3(a,^). 
In this case we select the integer n of 1.3 as follows. 

2.4.6. n= fr/. 

We may choose (s,x), (s'.x1) G (-ajn+^+3,an+^+3) x Bp(Sn+fi+3) such that 

d ,      A „   f d 
fp{s,x) = fP{s

,,x') and dfp f ^{s.x) J = -dfp I ^(s',^) 

(cf. 2.1,2.3,2.4.1,2.4.6). Note that there is a smooth embedding 

h: X -> (-an+ji,an+fi) x Bp(Sn+^) 

where 
X = ( —an+^+2,^n+f?+2)  X Bp(Sn+jj+2) 

uniquely determined by properties 2.4.7(a)(b), which also satisfies properties 2.4.7(c)- 
(e). (See result A.3 in the Appendix to this paper; and use the smallness of the Si and 
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Si/Si-i (cf. 1.3), and use the inequalities eiai > 100ai+i of 0.5.) 

2.4.7.  (a) h(s,x) = (s',x'). 
(b) fp o h(t, y) = fp(t, y) for all (*, y) e X. 
(c) dh(&(t,y)) - -&(Ht,y)) for all fry) G X. 

(d) \h(0,y)\ < 10an+^+3 for all y G ^(^+^+2). 
(e) There is an orientation reversing isometry I : R —> R such that 

\(m,0)-h(t,y)\<~5. n+77+l 

for all fry) eX. 
Now we can use 2.4.7(c)-(e) to derive the following property. 

2.4.8. 1(a) = a for some a G (—30an+fy+3,30an+^+3). 
Set 

2.4.9. q = fp(a,0). 
Consider now the infranil core rq : Uq —)■ Bq of radius Sc given by 1.3. Since n < c < 
n + rj (cf. 1.3) it follows from 2.4.7-2.4.9 that TJi^ is unoriented. (See also A.2 and 
A.3.) Thus case II of 2.6 may be applied to get a smooth immersion fg : ^S^eg —>• M. 
Now we can deduce the following important property of fg from 2.1,2.3,2.6,2.4.1,2.4.6- 
2.4.9 and from the inequality n < c < n + 77. (See also results A.2 and A.3 in the 
Appendix to this paper.) 

2.4.10. There is A G (0,1/2), which depends only on a, ft, A = {Ai},dimM, 
such that 

is a smooth embedding. (Where for each a > 0, we let ^(30 denote the collection of 
all vectors v G T($) with \v\ < a.) 

Select the infrasolv core rv : Uv -> Bv of type III and the integer j of 0.5 as 
follows. 

2.4.11. (a) j = c. 
(b) Up = UiTa.iS^Sj)) and Bp = [0,a,) x ^(Sj). 
(c) rp : Up —> Bp is equal to the composition map 

where 7Ti(v) = \v\ and 7r2 : T$ -> M is the standard projection. 

Let (sp,tp) denote the thickened infrasolv core associated by 0.4 to the infrasolv core 
rp of 2.4.11. Now one can deduce from 1.3,2.6,2.4.6-2.4.10,2.4.1, and from the results 
A.2 and A.3 of the Appendix to this paper, that the (sp,tp),j satisfy 0.5(a)-(d). Note 
in particular that we must use the restriction of 0.5 that eiai > 100a;+i for all i, in 
conjunction with 2.4.8 and 2.4.9, in order to derive the inequality |sp,i(£)| < eictj of 
0.5(b). 

Before concluding this proof we remark that there is an "extension" of each of 
the infrasolv cores rp : Up —> Bp constructed in this step to a larger infrasolv core 
fp : Up —> Bp of type III which satisfies the following properties. 

2.4.12. (a) UpCUp,BpCBp,fp\Up=rp. 
(b) The fp have radius (2aj,6j) where Sj « Sj « Sj. 
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The fp shall be referred to in the proof of Proposition 2.5. They are obtained by 
simply "extending" the construction for the infrasolv cores r^ by a procedure similar 
to that described in Case I. 

This completes the proof for Proposition 2.4. 
Proof of Proposition 2.5. We use Theorem 1.5 to verify that the infrasolv cores 

rp:Up-± Bp, p G il^a,/?) U M3(a,P) 

of type II and of type III constructed in the proof for 2.4 satisfy the conclusions of 
Theorem 0.6. 

Case I: p € M2(a,j8). 
We must verify properties 0.6(a)(b)(c). Towards this end we first note that any 

infrasolv core rv : Uv -^ Bv constructed in Case I of the proof for 2.4 satisfies (in 
addition to properties 0.5(a)-(d)) the following properties. We let <5V denote the 
foliation of U by the fibers of rv] Bv — Bp^ x Bp^ denote the two factors of Bp (cf. 
2.4.4(b)) and we let rp^ : Up -> Bp,2 be the composite of rp with projection onto the 
second factor. 

2.5.1.  (a) J is tangent to each fiber of 7^2. 
(b) K(rp]M)<62(Sj)-

1. 
(c) diameter(L) < 626j for each L 6 0p. 
(d) For any v G TU ,r-i,QxB    % which is perpendicular to T<5P we have 

(l-e2)\v\<\Drp(v)\<(l + e2)\v\. 

(e) There is $ > 0 which depends only on a, A = {A;},dimM. For 
each v G TM\Up which is perpendicular to Up, there is a smooth path 
/ : [0,1] -> Up which starts and ends at the foot of v and satisfies 
length(/) < £2^ and $ < Q(v,Pf(v)). 

Note that the infranil core rp : Up -+ Bp used in Case I of the proof for 2.4 to 
construct rp : Up —> Bp satisfies properties 1.3(a)-(c); properties 2.5.1 (a)-(e) are simply 
a reflection of those properties and of the relations in 2.4.1. (See also 2.2(c), and results 
A.2 and A.4 in the Appendix to this paper.) 

For example to verify 2.5.1(b) we argue as follows. From 1.2.2 (which holds by 
1.3(b)) and from 2.6, it follows that 

K(vp:M)<0(e)S-1. 

This last inequality, together with Theorem A.4 in the Appendix to this paper, implies 
that 

K(iPi (-5a, 5a) x B(p, /?)) < 0(e)S-1 

where fp : ii -» *Bp is defined by *Bp = *Bp,iip = /~1(llp), and fp = Vp o fp. It 
also follows from 2.6 (case I) and from Theorem A.2 in the Appendix to this paper, 
that the angle between iip and the first factor of (—5a, 5a) x B(p, 03) is everywhere 
bounded below by a positive number which depends only on a, A = {A;}, dimM. We 
may deduce from the existence of this lower angular bound, and from the preceding 
curvature inequality, that 

K(fp; (-5a, 5a) x B(p, /?)) < 0(e) 'S'1 
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where rp : Up -> Bp is defined by Bp — Bp, Up — /^r1(C/p), and rp — rp o fp. Now this 
last inequality, together with 2.4.1 and A.4, imply property 2.5.1(b). 

2.5.2. Remark. We note that the extensions fp : Up -> Bp of 2.4.5 also satisfy 
2.5.1(a)-(d). 

We let r : U —>• B and r' : U' —>■ JB
7
 denote any two infrasolv cores constructed in 

Case I of the proof for 2.4 whose thickenings (s.t) and (s'^t') satisfy E Pi E' ^ </>. 
We shall first deduce from 2.5.1, 2.5.2 and Claim 2.5.3 (stated below) that (s,t) and 
(s'.t1) satisfy properties 0.6(a)(b)(c). Then we shall complete the proof of Case I of 
2.5 by verifying 2.5.3. Let f, f' denote the extensions of r, r' given by 2.4.5, and let 
(s, Pjiis',?) denote their thickenings. And let & and 0 denote the foliations of U' 
and U by the fibers of r' and f, respectively. 

2.5.3. Claim. We have that E' C E. For each x G U', let fx : [0, !]_-> M 
denote the geodesic in p~l(p{x)) with fx(G) = x and fxiX) — P(x)> where p : E —> U 
is the orthogonal projection map.  The following properties also hold. 

(a) length (/) < 0(62)6j. 
(b) e{Pf(TU[m),TU\m)<0(e2). 
(c) 0(P/(T(S;/(O)),T(S|/(1))<O(£2). 

First note that if the angular distance between two planes is sufficiently small 
then the planes must have equal dimension. Thus 2.5.3(b)(c) imply 0.6(a). 

Now we construct the isometry Ai : R —> R and the affine map A2 : R^ -» R^ 
of 0.6 as follows. Choose x G E n E' and let Ai denote the translation which maps 
si(x) to s,

1(x), where si,s,
1 denote the first coordinates for s,s'. Let V denote all 

v G TM\X which are perpendicular to both s~1(s(x)) and #. Note that it follows 
from 2.5.1 and 2.5.2 that each derivative DS2 : V -> R^ and Ds'^ : V ->• R^ is 
an invertible linear transformation, where 52,53 denote the second coordinates for 
Sjs'; let L : R^ -> R^ denote the composition L = (Ds^) o (Ds2\v)~1. Now set 
A2 equal the affine map which maps S2(x) to s^ix) and whose derivative is equal L. 
It is straightforward to argue now, based on 2.5.1-2.5.3 and on Theorems A.2 and 
A.4 in the Appendix to this paper, that Ai and A2 satisfy the properties listed in 
0.6(c), and that 0.6(b) also holds, provided £2 is replaced by 0(62) in 0.6(b)(c). Now 
choosing 63 = max{£2, 0(62)}, and replacing 62 in 0.5 and 0.6 by €2', we see that all 
the infrasolv cores rp \UP -± Bp,p G M2(a,/3), constructed in the proof of Proposition 
2.4, and their associated thickened infrasolv cores (s^, tp), p e M2(a, /3), satisfy all the 
properties listed in 0.5 and 0.6. 

Verification of Claim 2.5.3. Now we wish to apply 2.5.1,2.5.2 and 1.5 to verify that 
the thickened infrasolv cores (s,£) and (s'^t') satisfy 2.5.3. We will be applying 1.5 to 
two new infranil cores, which will be denoted by fi : Ui —> Bi, i = 1,2, with thickenings 
denoted by (si,ii),i — 1,2. The new infranil cores will be constructed from the 
"extended" infrasolv cores f, f' of 2.4.5 by taking small pieces of these infrasolv cores. 
(Note: these new infranil cores f;,i = 1,2, will not be the infranil cores used in the 
proof for 2.4 to construct the infrasolv cores r, r'.) These new infranil cores will both be 
(e,i^-rigid and of radius equal 6, for e = \£2, S = X5j, and 1? = tf, where e, 5j^d come 
from 2.5.1, and where A >> 1 depends only on a, A = {^},dimM. Then 1.5 may 
be applied to the fi,i = 1, 2; and 2.5.3 will be an immediate consequence of 1.5(a)-(c) 
and of 1.5.2. Towards constructing the f;,z = 1,2, we let x G U' be as in 2.5.3, and 
let xi G U and X2 G U' denote the image of x under orthogonal projections E -» U 
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and E' -> U' (thus X2 = x). Note that there are affine maps Ti : R^^ -> R^1, i — 1, 2, 
such that Ti(f(a;i)) = 0 and Ts^^xs)) = 0, and such that £>(Ti of) : r©^ -+ TR^1 

and D(r2 o f7) : (T^7)^ -> TRJ^2 are both linear isometries (where T&1- denotes 

the orthogonal complement to T<& in Ti7, and where (T©')-1 denotes the orthogonal 
complement to T& in Tf/7). Let Bi,i = 1,2, denote the open ball in R^ of radius 5 
which is centered at 0 G Rfci. Set C7i = (Ti o r)~l(Bi) and define fi : Ui -> B1 to be 
the restriction Ti o r\Ui] also set U2 — (T2 o f')-1^) and define r2 '• U2 -± B2 to be 
the restriction T2 o f')^. Note that 25i(l/9) fl ^2(1/9) ^ ^ (because d(a;i,a;) < 3^- 
for 2 = 1,2, and 8 — X8j with A >> 1). Note also that the truth of 2.5.1(a)-(e) for 
the f, f' (cf. 2.5.2) implies immediately that the fi,i = 1,2, are both (£,i?)-rigid and 
of radius equal 8, where e, 8, $ have been defined in the beginning of this paragraph. 
Thus we may apply Theorem 1.5 (cf. Remark 1.5.2) to the f;, i — 1, 2, to complete the 
verification for Claim 2.5.3. 

This completes the verification of Proposition 2.5 when p G M2(a,/3). 

Case II: p G Mafa,/?). 
Properties 0.6(a)-(c) have already been verified in the preceding case for infrasolv 

cores of type II. So in the remainder of this proof we will let r : U —>• B and r' : U' -> B1 

denote any two infrasolv cores of type III constructed in Case II for the proof of 2.4 
whose thickenings (s,£) and (s',t') satisfy E fl E' ^ </>, and we will show that r, r' 
satisfy 0.6(a)-(c). 

We have the following claim where j comes from 2.4.11. 

2.5.4. Claim.   |si(a;) - s'lCx)! << Sj for all x G E n E'. 
Putting aside for a moment the verification of this claim, we note that it may 

be used to complete the proof for Proposition 2.5 (for p G Mz(pL,f3)) as follows. The 
assumption EC\E' ^ (j), and 2.5.4,2.4.1, together imply that Ei(8j/9) Hi^^/Q) 7^ <j>, 
where f 1, f2 denote the infranil cores of radius 8j used in Case II for the proof of 
Proposition 2.4 from which r,r1 are constructed. Thus we may apply 1.5 to fi,f2 to 
conclude that they are related as in 1.5(a)-(c), where the number 8 of 1.5 is equal to 
8j. Now it follows from 1.3 and 1.5 (as applied to f, r^), from 2.4.1 and Case II of 2.6, 
and from 2.4.11 and 2.5.4, that r,r1 satisfy 0.6(a)-(c). (See also results [8;A.1.1 and 
A. 1.2] and see Theorem A.2 in the Appendix to this paper.) 

Verification of Claim 2.5.4- Let p : M -> M denote the two fold covering for M 
such that the corresponding two fold cover $ for J has an orientable tangent bundle 
T^; let f : U —>• B and r' : U' —>• B* be the corresponding two fold coverings for the 
r, r' (cf. 0.3). The extension f for r given by 2.4.12 lifts to an extension f for f. Note 
that r, f, r' are all infrasolv cores of type II. Let (5, i) and (s7, t') denote the thickenings 

for f, r'. Note that Ef C E (cf. Claim 2.5.3). To verify 2.5.4 it will suffice to show that 
for each x G s'"1^) we have that |fi(x)| << 8j (cf. 0.2,0.3). Let ^ : Z2 x M -> M 
denote the group action by the covering transformations for the covering p : M -> M. 
We note first that 

x^(i,x)ep-1(M^j)) 

since by 2.6 and 2.4.11 we have that s/j"1(0) C EzfiSj) and since the ^-action leaves 
p~l(E2(28j)) invariant. Also, because diameter (£2(28j)) < 108j (cf. 1.2,1.3 as applied 
to f2) it follows from this fact, 2.4.1 and the path connectivity of p~1(E2{28j)) that 
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d(x,il>(l,x)) « 5j. We conclude from this inequality that 

2.5.5. Iti(z)-!i(^(1,20)| « Sj- 
On the other hand, we have for all y G E that 

2.5.6. li(2/) = -Si(^(l,y)). . 
Now the desired inequality |si(a:)| << Sj follows from 2.5.5 and 2.5.6. 

This completes the proof of Proposition 2.5. 

Proof of Lemma 2.1. We assume that none of the conditions 2.1(a)(b).(c) hold, 
and we complete the proof of 2.1 by deriving a contradiction. We shall assume in the 
following proof (and also in the proof for Lemma 2.2) that 

2.1.0. (3«l. 
We will need the following properties concerning the immersion 

fp : (-5a, 5a) xB{p,f3) -> M 

of 2.1. For each pair of points (5, x), (s', x') as in 2.1 there is a smooth embedding 

h : (-2a, 2a) x B(p, f33/2) -+ (-5a, 5a) x B(p, (5) 

which is uniquely determined by properties 2.1.1 (a) (b), and which also satisfies prop- 
erty 2.1.1(d) in which K1 denotes the i-fold composite of h with itself. (See A.2 and 
A.3 in the Appendix.) 

2.1.1. (a) h[s,x) = (s'.x'). 
(b) /p(*,2/) -fp'Q h(t,y) and h(t,y) = {h1(t,y),h2(y)) both hold for all 

(^2/) ^ (—2a,2a) x B(p,l33/2), where hi( ,y) is an isometry in the 
t- variable. 

(c) There is K > 1 which depends only on a, A = {A;},dimM, such that 
£ < ||l?/p|(tiy)|| < « for all (t,y) G (-2a, 2a) x B(p^3/2). 

(d) For each integer i > 0, and for each (t,y) for which all of {h^(t,y) : 
0 ^ j £ *} are well defined and lie in (—a, a) x B(p,f33/2), we have 

^<||^%V)||<«- 

For i — 0,1,2,3,... we set hl(s,x) = (si,Xi) whenever all of {hj(s,x) : 0 < j < i} are 
well defined and lie in (-a, a) x B(p,f33^2). We let 

/T1 : (-2a, 2a) x B{p,f33/2) -+ (-5a, 5a) x B{p,(3) 

be the map given by 2.1.1 when the roles of (s,t) and (s'jf) are reversed; and we set 
(h~l)l{s,x) — (s-i,x-i) whenever all of {(h~1y(s,x) : 0 < j < i} are well defined 
and lie in (—a,a) x B(p,f33/2). We deduce from the failure of 2.1(a)-(c), and from 
2.1.1, that the (si,Xi) satisfy the following properties provided (3 is sufficiently small 
(cf. 2.1.0) and s < s*. (Here 2.1.0 is interpreted so as to imply that «/? << 1.) 

2.1.2. (a) 0 < Si+i -$i< 2KP
2
. 

(b)  \xi+i -Xi\< 2K,p2(si+1 -si). 

k 

Since l^i+fc — Xi\ < "S^lxi+j — Xi+j-i\ for all i, fc, it follows from 2.1.2 that 
i=i 

2.1.3. {xi+k - Xi\ < 2hi02(si+k - si) < 8K,f32a. 
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We conclude from 2.1.3, and from (SQ^XQ) € (—a,a) x B(p,P2), that the following 
holds. 

2.1.4. \xi\ <8tt/?2(a + l). 
Now we conclude from 2.1.0,2.1.2(a) and from 2.1.4 that (si+i,Xi+i) and (si-i,Xi-i) 
are both defined and lie in (-a, a) x B(p,/?3/2), provided Si € (-Q: + 3^/32,a-S/c/?2). 
(Here 2.1.0 is interpreted so as to imply that 8Ac/?2(a.+ 1) << /?3/2.) Using this last 
fact, together with 2.1.2(a), 2.1.4, and SQ G (—a, a), we deduce the following. 

2.1.5. For each t G (—a, a) there is (si,Xi) such that 

It-Sil + lxil < l2K(32{a + l). 

Since fp(si+k,Xi+k) = fp(si,Xi) for all z, fc, it follows from 2.1.1(c) and 2.1.5 that 

diameter (/p((-a,a) x 0)) < 50/c2
y5

2(a -j-1). 

This last inequality implies that 

2.1.6. pgM(a,f3f) ifp'>50K2p2(a + l). 

Note that P > 50K
202 (a + 1) follows from 2.1.0; so we conclude from 2.1.6 that 

p $ M(a,/?). Since our original assumption is that p G M(a,f3), we have arrived at 
the desired contradiction which completes the proof of Lemma 2.1. 

Proof of Lemma 2.2. First we will verify 2.2(a). Suppose that the angle between 
$ and 0p is less than /?3 at some point of Up. It follows from 1.3(b) that the next 
property holds. 

2.2.1. The angle between # and <5p is less than 2/?3 everywhere. 

Now set V — fpl{Up) and set S) — fpl{&p)- All the following properties are a 
consequence of 2.1.1(c) and 2.2.1. 

2.2.2. (a) V is a smooth submanifold of (-5a, 5a) x B(p,0). 
(b) S) is a smooth foliation of V; each leaf is a closed subset of (-5a, 5a) x 

B(p,0). 
(c) The angle between any leaf of ij and -^ is less than GAC

2
/?

3
 everywhere. 

Now we complete the proof of Lemma 2.2(a) as follows. Our strategy is to choose 
(s,x) and (s'^x') in (—a, a) x B{p,(32) which satisfy the hypothesis of 2.1 but don't 
satisfy any of the conclusions of 2.1. This contradiction could be traced back to our 
assumption that 2.2(a) doesn't hold, and thus would complete the proof of Lemma 
2.2(a). First we use 1.3(c) and 2.1.1(c) to choose (s,x) G V satisfying 

2.2.3. |a;| + \s\ < SK€5C. 

Let L denote the leaf of ft which contains (s,x). We conclude from 2.2.2(b)(c) 
(as applied to L) and from 2.2.3, that for any number t > 0 satisfying 2.2.4(a) there 
is (t,y) G L which satisfies 2.2.4(b). 

2.2.4. (a) 0 <t-s <a- 3K£5C. 

(b)  M < UK
2P3. 

We appeal to 1.3(b) and 1.2.2(b), and to 2.1.1(c), to choose (s',x') G L such that 
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2.2.5. (a) fp(s,x) = fp(s',x'y, 
(b) \t-s'\ + \y-x'\ <3Ke5c. 

Note that 2.2.3, 2.2.4(b), 2.2.5(b) imply that (s,x) and (s^x') satisfy 2.2.6(a)(b)(c), 

provided the number t of 2.2.4 is chosen to be t = /?3 + 5, and provided /? and % are 
sufficiently small (cf. 2.1.0 and the hypotheses of 2.2). 

2.2.6. (a)  Is-s'l < i/32. 

(b) fe^ < ^2. 
(c) (^^^^arOG^^aJxBCp,^2). 

We note that 2.2.6 would contradict the conclusions of Lemma 2.1 provided that (5, x) 
and (5', xf) do not satisfy property 2.1(c). Thus the proof of lemma 2.2(a) is completed 
by this contradiction. 

If our present (syx) and (s7, x1) do satisfy 2.1(c) then we must continue our argu- 
ment as follows. Set t = |/33 -f s. Note that there is (t,y) £ L related to (s:x) as in 
2.2.4(b). Note also that there is (s',xf) G L which is related to (i,y) and to (s,x) as 
in 2.2.5 and 2.2.6. If the pairs (s,x) and (s',x') don't satisfy property 2.1(c), then we 
arrive at the desired contradiction as in the preceding paragraph. However if the two 
pairs (5, x) and {s'', x'), as well as the two pairs (s, x) and {s'', re7), both satisfy property 
2.1(c), then we conclude that the two pairs (s',x') and (s,,xi) do not satisfy property 
2.1(c). Moreover we conclude from 2.2.6 (first as applied to the pairs (s,x), (s',x'), 
and then as applied to the pairs (s,x), (s^x')) and from 2.2.5(b) (first as applied to 
the pairs (£, y), (s^x'), and then as applied to the pairs (f, y)1 (s\x()) that the two 
pairs (s'jx') and (s'.x') also do not satisfy 2.1(a)(b). 

This completes the proof of Lemma 2.2(a). 
In order to complete the proof for Lemma 2.2(b) (c) we use some of the ideas from 

the proof of Theorem 1.5; cf. [8;§1]. We let / : Rm -> M denote the composition of 
a linear isometry Rm —> TMV with the exponential map TMP -> M. Note that for 
5C > 0 sufficiently small the restricted map / : Bm(Sc) -> M is a smooth immersion, 
where Bm(5c) denotes the open ball of radius Sc centered at the origin in Rm. Set U = 
f-HUp) nBm(Sc/3) and set (8 - f^^^^c/S) and set y = /-1(3r)|Sm(Jc/3). 
We note that it follows from 1.3(a)-(c) (See also [8;A.1.1 and A.1.2].) that for 5C > 0 
sufficiently small there are vector subspaces L C TR^ and H C V C TR™ which 
satisfy the following properties. For any x G Rm and v G TR^ we let P(v) G TKQ

1 

denote the (Euclidean) parallel translate of v. 

2.2.7. For each x G U we have 

e(y,pcn4))<0(£~), 
e(ir,p(T(Sit))<o(e), 

e(L,P(T$x))<0(e). 

To complete the proof of 2.2(b)(c) it will therefore suffice to verify their following 
"linearized" versions. 

2.2.8. (a) f33 - 0{£) < 0u(L,y) ("linearized,, version of 2.2(b)). 
(b) GU(L,F) < 0(e) ("linearized" version of 2.2(c)). 

Here 0U(I/, V) denotes the (unsymmetrical) angular distance from L to V, i.e. 0M(L, V) 
denotes the maximum of all the angular distances from vectors v G L to V. 

As a first step towards verifying 2.2.8 we remark that the "linearization" of prop- 
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erties 1.2.2(a)-(d) given in [8;1.3-1.5] still hold. That is for each x,y 6 Bm(±5-C) with 
f(x) = f(y) there is a smooth embedding h : JB

m(|^c) —>• Bm(5c) which is uniquely 
determined by property [8;1.3(a)] and there is an isometry h : Rm -^ Rm which ap- 
proxiates /i as in [8;1.3(b)]. Furthermore properties [8;1.4(a)(b), 1.5(a)(b)] hold when 
Hi,Vi in [8;1.4] are replaced by our present HrV. 

To verify 2.2.8(a) (when T^.^  is not orientable) we first choose h as in [8;1.3,1.4] 

such that dh(-^(x)) = —^(h(x)) holds for all x G J5m(|5c), where ^ is a unit vector 

field on Bm(±5c) tangent to y. It then follows from [8;1.3(b)] and from 2.2.7 that the 
rotational part of h, denoted by hr, satisfies the following property where v denotes a 
fixed unit vector in L. 

2.2.9. Q{-v,hr(v)) <0{£). 
We write v = v\ 4- V2 4- ^3 where ^i G if, i>2 G V and is perpendicular to H, v^ is 
perpendicular to V in Rm. To complete the verification of 2.2.8(a) it will suffice (by 
2.2(a) and 2.2.7) to show that l^l < 0{e). Note that it follows from [8;1.4(a)] that 

2.2.10. Q(v2X(v2)) <0(e). 
Note that 2.2.9 and 2.2.10 together imply the desired inequality l^l < 0(e). 

This completes the verification for 2.2.8(a). 
To verify 2.2.8(b) it will suffice to show that |v31 < 0(E), where ^,^1,^2,^3 are 

as in the preceding paragraph. We use [8;1.4(b)] to choose h of [8;1.3] such that 

2.2.11. 0(t;3,hr(v3))->^/4. 
Note that it follows from the hypothesis of 2.2(c) that dh(-^(x)) — ^(h(x)) holds for 
all x G Bm(±5c). Thus from 2.2.7 and from [8;1.3(b)] we deduce that 

2.2.12. e(v,hr(v)) <0(e). 
Finally, using the fact that h leaves U invariant (cf. [8; 1.3(c)]) in conjunction with 
2.2.7 and [8;1.3(b)] we get that 

2.2.13. (a) Qu(hr(v1+V2),V) < 0(e). 
(b) Qu(hr(v3),V)>±iK-0(e). 

Note that 2.2.11-2.2.13 together with the original properties of ^,^1,^2,^3 imply the 
desired inequality \vs\ < 0(e). 

This completes the proof for Lemma 2.2. 

3. Two lemmas from linear algebra. In this section we state and prove two 
lemmas concerned with collections of affine isomorphisms / : R^ -» R^. These results 
will be needed (in addition to 1.3 and 1.5 of §1, and in addition to 4.2 and 4.3 of §4) 
in section 5 below to carry out the construction of infrasolv cores of type I. 

Recall that an affine isomorphism f : Tlk -4 Rfc is the composition of a linear 
isomorphism// : R* -4 R^ with translation by a vector tf G Rfc, i.e. f(x) = if(x)+tf; 
we set 11/11 = max{|x — f(x)\ : \x\ < 1}. For any finite collection of affine isomorphisms 
A we set ^ = {,/:/ G A}, tA - {tf : / G A}, and \\A\\ = max{||/|| : / G A}. 
We shall say that A is (tu, d)-cyclic, for some numbers oj,d > 0, if there is an integer 
/ > 0 and an element g G A such that A = {/_/, /-/+i, •. •, fi-i, //} and for each 
i G {-1,-1+ 1,...,/- 1,7} we have that \i(gl) -/ fi\ < UJ and \t(g%) -t f%\ < ud; the 
element g G A is called an (UJ, d)-generator for A. 

In the following two lemmas, we let Ai C A2 C ... C Ak+2 denote a given 
increasing sequence of finite collections of affine isomorphisms of R^; 0 < ai < 0,2 < 
... < ax < 1, with x — (k 4- 4)A;+4, and 0 < di < ^2 < ... < dk+2 < 1 are given 
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increasing sequences of numbers; v > 1 and u > 0 are given numbers.   All of these 
sets and numbers satisfy the following hypotheses. 

3.0. Hypotheses. 
(a) Each Ai^i G {1, 2,..., k -h 2}, is (CJ,G^)-cyclic with an (u;, ^-generator gi 6 

Ai. Moreover we have for each i £ {1,2,..., k + 2} that 

- < \iAi\ < v and \tAi\ < di. 

That is I < \B(x)\ < v for all B G/ A^ x G R^ with |x| = 1; and \u\ < di 
for all u G i^. 

(b) We have, for all i G {1, 2,..., x - 1} and all j G {1, 2,..., A; -f 1}, that 

lOOOkai < (ai+i)2, 

dj <       -i*1; and 

ai 
a; < 

2(1/ + i): 

(c) The cardinality of A&+2 has an upper bound independent of the {a^} and of 
the {dj}. 

3.1. Existence Lemma. For some integers y G {1,2, ...,# — 1} and 2 G 
{1,2,...,A: + 1} there is a vector subspace V C R^ o,nd a point q G R^, with \q\ < dz+i, 
which satisfy properties (a) - (c). Moreover the (uj,dz+i)-generator gz+i for Az+i 
satisfies property (d). 

(a) For each unit vector v G V and each f G Az+i we have that \if(v) — v\<ay. 
(b) For each unit vector u G R^ which is perpendicular to V, there exists f G Az 

such that \if(u) — u\ > a^+i. 
(c) For each f G Az+i there is v G V such that \f(q) — (q + v)\ < 0{-^—)dz+i. 

(d)\gz+1{q)-q\<0{^)dz+1. 

REMARK. Actually q = 0 will work in the above lemma, for the right choice of 
x,y. 

The preceding lemma may be viewed as a linear-affine analog of Theorem 1.3: 
instead of the infranil core provided by 1.3 there is the plane P = q + V provided by 
3.1. The next lemma may be viewed as a linear-affine analog of Theorem 1.5: instead 
of the closeness of two infranil cores provided by 1.3 there is the closeness of the two 
planes Pi — qi + Vi and P2 = q<2 + V2 provided by 3.1. 

3.2. Comparison Lemma. Suppose that UJ is sufficiently small (how small is 
sufficient depends only on the cardinality of Az+i and on the {ai}). Let Vi, V2 C R^ 
be subspaces and let qi,q2 G R^ be points, with \qi\ < dz+i, such that both of the pairs 
(Vi,qi),i = 1,2, satisfy properties 3.1(a)-(d). Then the pairs (Vi,(7i) and (V^,^) are 
close in the following sense. 

(a) Q(yuV2)<0^). 
(b) \qi +v1-q2\< 0{{a^i)2)dz+i for some Vi G Vi. 

Proof of Lemma 3.1. We will first construct for each 5 G {1,2,...,£ + 2} a vector 
subspace Vs C Rfc satisfying the following assertions. 
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3.1.1. There are integers xi,X2,.. • ,^fc+2 € {1,..., A: + 2} such that statements 
s 

(a) and (b) below are satisfied when we set ys = 2_]xt(k + 4)A:+4-£ an(j Zs = ys + (A; + 

4)A;+4-s. The subspace V8 C Rfc satisfies: 
(a) For each unit vector v G Vs and each f € As we have that |z/(v) — v\ < kay3. 
(b) For each unit vector u G R^ which is perpendicular to Vs, there exists / G As 

such that \if(u)—u\ > aZs. 

The construction of Vs,ys proceeds by induction. Set Ws^ = ys-i + r(k + 4)/b+4-s for 
each r G {l,2,...,fc + 2} (where yo = 0). If there is no unit vector v G R^ such that 
\if(v) — v\ < aWs2 holds for all / G As, then we may set Vs = {0} and ys — wSji. 
Otherwise there is a unit vector vi G R^ such that \if(vi) — vi\ < aWs2 holds for all 
/ G As, and we set V^i = span{?;i}. If there is no unit vector v G V^ (where V^\ 
denotes the orthogonal complement for V^,! in R*) such that \if{v) — v\ < aWs3 holds 
for all f £ As, then we set Vs — Vs,i and ys — wSj2' Otherwise there is a unit vector 
i>2 G Rfc perpendicular to Vs^ such that \if(v2) — V2I < a^^ holds for all / G As, and 
we set VSi2 = spanl^i,^}- We proceed in this way until we arrive at the following 
situation: Vs^ = spanj^i, ^2,..., Vr} where {vi,V2, ■ • •, vr} is an orthonormal set such 
that \if(vi) — Vi\ < aWsi+1 for all i G {1, 2,..., r} and all / G As] for each unit vector 
v G R^ which is perpendicular to VSir we have that \if(v) — v\ > aWsr+2 for some 
/ G As: Then we set Vs = V^r and ys = Ws^+i- 

This completes the verification for 3.1.1. 
Next we verify the following relation between Vs and Vg+i. 

3.1.2. eu(vs+1,vs)<4k^±. 

Towards verifying 3.1.2 we let u G V^+i denote a unit vector and v^w its components 
in VS,V^- respectively. Note we have (from 3.1.1 for s,s + 1 and from the triangle 
inequality) that 

aZs\w\ - kays < \if(w) - w\ - \if(v) - v\ < \if(u) - u\ < kays+1 

for some / G As; from which we deduce that \w\ < 2k y
a
s+l . This last inequality 

implies 3.1.2 because Qu(u, Vs) < 2\w\. 
We note that as a consequence of the inequality lOOOkay < a^+i (assumed in 3.0 

for all y) we have that the following relations exist. 

3.1.3. (a) 1000kays+1 <aZs. 

.(c) a2+2/s+1 <\aZs. 

As a consequence of 3.1.2 and 3.1.3(a), we see that dim(Vs) > dim(Vs+i) for all s G 
{1,2,..., A:+l}. So we may choose s G {1,2,..., fc+l} such that dimC^) = dim(Vs+i). 
It then follows from 3.1.1(a)(b), 3.1.2, 3.1.3(a) that Vs+i satisfies the following. 

3.1.4. For each unit vector v G K+n there is / G As such that \if(v)—v\ > \(iZs. 

We can now define the subspace V C R^ and the integers ?/G{l,2,...,a:-l} 
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and z G {1, 2,..., k + 1} of 3.1 as follows: 

V = V;+i,z = s,y = ys+i + 1. 

That the (V, y,^) satisfy 3.1(a) is immediate from 3.1.1(a) (as applied to s + 1) and 
from 3.1.3(b). That the (V,y,z) satisfy 3.1(b) is immediate from 3.1.4 and 3.1.3(c). 

Now we will use 3.1(a)(b) to deduce 3.1(c). Note that in proving 3.1.(a)(b) we 
have not used the hypothesis (from 3.0(a)) that each Ai is (CJ, di)-cyclic. However 
in proving 3.1.(c) we shall need the following weak form of this hypothesis (easily 
deduced from 3.0(a)). 

3.1.5. For each g, f € Az+i we have that \g(tf) — f{tg)\ < 2(1 -I- i/)Ljdz+i. 

We shall also need (in proving 3.1(c)) the following relations between the numbers 
c^a^a^+i, dzidz+i which are an immediate consequence of the properties of these 
numbers assumed in 3.0. 

3.1.6.    (a)    fly+2(t;+l)a; 2_a^ 

(b)   Mil^ < (-H*-)dz+1. 

Now to complete the proof of 3.1(c) we choose q = 0 in 3.1; consequently we have that 

3.1.7. tf = f(q)-q 

holds for any / 6 Az+i. We write tf = v + w where v E V and w 6 V±. To verify 
3.1(c) it will suffice (by 3.1.7) to show that \w\ < 3(^)dz+1. Using 3.1(b) we choose 
g G Az such that \ig(w) — w\ > ay+i\w\. Using 3.1(a) (as applied to g and v), and 
this last inequality, and the triangle inequality, and the fact that \v\ < \tf\ < dz+i (cf. 
hypothesis 3.0), we get: 

3.1.8. ay+1\w\ - aydz+1 < \ig(w) - w\ - \ig(v) - v\ < \ig(tf) - tf\ < \g(tf) - 
tf\ + \t9\- 

On the other hand we may deduce from the conditions \tg\ < dz and |//| < v imposed 
by hypothesis 3.0, and from 3.1.5, and from the triangle inequality, that the following 
holds. 

3.1.9. \g(tf) -t f\ + \tg\ < \g(tf) - f(tg)\ + \f(tg) -t f\ + \tg\ < 2(1 + v)udz+1 + 
(i/ + l)dz. 

By combining 3.1.6, 3.1.8, 3.1.9, we get \w\ < S(-^—)dz+i as desired. 
Now to complete the proof of Lemma 3.1 it remains to verify 3.1(d). Towards 

this end we first apply 3.1 (a)(c) to the(u;, e/z-^-generator p^+i of Az+i to conclude 
that 

3.1.10. KgUiil) -q)- <9z+i(q) - ?))| < TsO(^)dz+1 

holds for all s G {-/, -/+!,...,/}, where Az+i = {fi : —I < i < 1} (cf. the para- 
graph preceding 3.0) and where rs > 1 depends only on s,u. Since the cardinality of 
Az+i (and hence also the cardinality of /) is bounded above by a number independent 
of the {ai} and the {dj} (cf. 3.0(c)) it follows from 3.1.10 that 



464 F.T. FARRELL AND L.E. JONES 

3.1.11. \{9l+1{q)-q)-8(gz+1(q)-q))\ < 0(^)dz+l. 

On the other hand, there is (by 3.1(b) and 3.0(b) and by our above choice q = 0) an 
integer s ^ 0, s € {—/, —/ + 1,..., /} such that 

3.1.12. \fs(q)-q\<dz. 

By 3.0(a) and our choice q = 0, we have that 

3.1.13. \fs(q)-gs
z+1(q)\<udz+1. 

Now by combining 3.1.11-3.1.13 with the inequalities 

dz < ——dz+i and ujdz+i < ——dz+1 
dy + l (ly+l 

(cf. 3.0(b)) we get 

3.1.14. \s{gz+1{q) - q))\ < 0{^)dz+1. 

Finally 3.1(d) is a consequence of 3.1.14. 
This completes the proof of Lemma 3.1. 

Proof of Lemma 3.2. First we will prove 3.2(a). For any unit vector u G Vi we 
write u = v + w where v € V2 and w E V^. It will suffice (in verifying 3.2(a)) to show 
that \w\ < 2^-. Using 3.1(b) (as applied to w G V^) we may choose g G Az such 

that \ig(w) — w\ > ay+i\w\. This last inequality, together with 3.1(a) (as applied to g 
and v G V2) and the triangle inequality, imply that 

3.2.1. ay+iH - ay\v\ < \ig(w) - w\ - \ig(v) - v\ < \ig(u) - u\. 

On the other hand, by applying 3.1(a) to g and u G Vi, we get that 

3.2.2. \ig(u)-u\ <ay. 

Now, by combining 3.2.1, 3.2.2 with the inequality \v\ < 1, we get the desired inequality 
\w\ < 2—u-. 
1     '   —      Gy+l 

Now we will verify 3.2(b). Set qi—q2 = v + w where v G Vi and w G Vf1; then it 
will suffice (in verifying 3.2(b)) to show that \w\ < 0(^a

ay^2)dz+i. Towards this end 
we first note that as a consequence of 3.0 and 3.1(a)(b) we have that 

3.2.3. (a) |z^+i(t;)-i;| < ayH 
{b)  \igz+1(w)-w\>^~^-ay+1\w\ . 

where gz+i denotes the (cj,dz+i)-generator for Az+i (cf. 3.0(a)) and a denotes the 
upper bound for the cardinality of Az+i posited in 3.0(c). By applying 3.1(d) to both 
of qi,i = 1,2, we get that 

3.2.4. \gz+1(qi)-qi\<0(^)dz+1. 
Next we note that 

igz+i(w) - w = {gz+i{qi) - qi) - (^+ife) - ^2) - (i9z+i(v) - v); 
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by applying the traingle inequality to this equality, in conjunction with 3.2.3(a) and 
3.2.4, we get that 

3.2.5. \lgz+1(w)-w\<0{7^-i)dz+1+ay\v\. 

Note that |^| < d2+i for i = 1,2 (cf. the hypothesis of 3.1) and thus \v\ < 2dz+i; 
hence 3.2.5 implies that 

3.2.6. \igz+1(w) -w\< 0(^)4+i. 

Finally 3.2.3(b) together with 3.2.6 imply the desired inequality \w\ < 0(,a
ay p^z+i- 

This completes the proof of Lemma 3.2. 

4. The set of embeddings Hp(A<5c)« We let a,/?, A = {Ai} be as in 0.5, and 
let £, 6C be as in 1.3,2.6; let rp : Ep -> Bp denote the (thickened) infranil core referred 
to in 2.2 and 2.6. In this section we always assume that 

4.0. T3 is orientable. 

Thus there is the smooth immersion jp : R x (£p -» M described in case I of 2.6. 
For each t E (0, ^Sc) there is the subset £p(£) C <£p described in 2.6. If A G (0, |) 
is sufficiently small (how small is sufficient depends only on a,/3, A = {^4j},dimM) 
then for each pair of points (£1,2/1) and (£2,2/2) in (—a,a) x <£p(\5c) which satisfy 
fp(£i?2/i) — ^(£2,2/2), there is a smooth embedding 

h : (-a, a) x 6p(A(5c) -> (-4a, 4ai) x (SP(-5C) 

which is uniquely determined by the following properties. 

4.1. (a) h{tuyi) = h(t2,y2). 
(b) fpo/i = fp. 

We denote the collection of all such embeddings by 

(c) HP(XSC) 

If for g, h G HP(XSC) and for some (£, 2/) G (—a, a) x (£p(A(5c) we have that g(h(t, y)) = 
(£, 2/), we will say that g is the inverse of h and write /i_1 = g; note that for sufficiently 
small A and Sc the inverse /i-1 is always well defined. If for g, h, h' G HP(XSC) and for 
some (£,2/) G (—a,a) x ^P(XSC) we have that g(t,y) — h'(h(t,y)), we will say that g 
is the composition of h! with /i and write g — h' o h] note that the composition h' o h 
need not exist; note also that for sufficiently small A, 6C the composition hl o h (if it 
exists) is uniquely determined. 

We shall prove the following two lemmas concerning HP(X5C). 

4.2. Lemma. There is a number K > 1 which depends only on a, /3, A — 
{Ai\^divaM. Suppose that A,5C are sufficiently small (how small is sufficient de- 
pends only on a,/?, A — {Ai},dimM).   Then there is an integer I G (0,8-p- + 4) and 

an element g G HP(KX5C) such that the following hold 
(a) For each integer —I<i<Ithe power gl is a well defined element of 

HP(K,X5C). 

(b) For each h  G  Hp(X5c),  there is an integer —I<i<I such that h = 
Qi 

y\(-a,a)x£p(\dc) 
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In the next lemma we let T denote the foliation of (—4a, 4a) x SXV by the fibers 
of idxtp : (-4a, 4a) x Up -+ (-4a, 4a) x <Bp, where tp : ilp ->► <Bp comes from 2.6. For 
each h G Hp(XSc) set T4 = /i((-a,a) xllp(AJc)) and set Th — h(T\{-a,a) xilp(A<5c)). 
All the geometric constructions in the next lemma refer to the pulled back metric fp{g) 
on R x (£p, where g denotes the given metric on M. 

4.3. Lemma. Suppose that A, Sc are sufficiently small (how small is sufficient 
depends only on a,/3, A = {Ai},dimM). Then for any h G Hp(X5c) and any z G Vh, 
there is a path u : [0,1] —)> R x (£p with ii(0) = z and u(l) G R x iip which satisfies 
properties (a) - (e). 

(a) length (u) < 0(£)8C. 
(b) 0(T(R x iip)u(i),JVm)u(o))) < 0{e). 
(c) e(r(r)tt(i),pu(r(rfc)u(o))) < o(e). 
(d) K(idxtp]Ilx (Bp)+K((idxvp)oh-1;Ilx €p) < 5Hi. 

fej diameter (L) < 0(e)6c for all L G T for /or a// L G %)• 

Proof for Lemma 4-2. For any h G HP(X5C) we let /i = {hi^hi) denote the two 
components of h corresponding to the first and second factor of R x <£p and set 

4.2.1. (a) /ii,i(x) =/ii(a;,2/i) 

for all x G (—a,a), where yi comes from 4.1. Note that fti^ extends to a translation 
/ii5i : R-»R (cf. 4.0). Note also that both /i2(^i,^2) and hi(xi,X2) — ^1,1(^1) depend 
only on £2, for (^i,^) G (—a, a) x £p(\8c)\ thus we may set 

(b) hi^fa) = hi(xi,X2)-hi,i{xi) 
(c) h2{x2) = ^2(^1,^2) 

for all £2 G €p(A5c). We have the following claim. 

4.2.2. Claim. There is a number p > 1 which depends only on a,f3,A = 
{A;},dzmM. For sufficiently small 5C (m i.^j and for all (xi,^) G (—a, a) x 6p(A5c) 
t/ie following properties hold. 

(a) h(xi,X2) = (^1,1(^1)+ ^1,2(^2),^2(^2))- 
W 1^1,2(^2)1 < pA^c and h2(x2) G (£p(pA5c). 
^ ///i Z5 no^ ^/ie identity imbedding then /i^i Z5 a translation satisfying 

\hi,im > \P2
. 

We shall first use Claim 4.2.2 to complete the proof of Lemma 4.2, and then we 
will verify Claim 4.2.2. 

Set J — 4[50-p-] + 28, where [x] denotes the least integer greater then x, and let 
Ai < A2 < A3 < ... < Aj denote a sequence of numbers which satisfy the following. 

4.2.3.  (a) Each Aj depends only on a,^,^4 = {Ai),dimM\ \i = A. 
(b) Ai+i > p2\i for all i, where p > 1 comes from 4.2.2. 
(c) Hp(Xidc) is well defined when Aj replaces A in 4.1. 
(d) Properties 4.2.2(a)-(c) hold when A is replaced by any Aj. 
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Note that for each h 6 Hp(Xi6c) there is a unique h G Hp(\i+i5c) such that 

h\(—a,a) x &p(\i5c) = h 

(cf. 4.1 as applied to Ai,A;+i); thus by identifying h with its extension h we get an 
inclusion Hp(Xi5c) C Hp(Xi+18c) for each i 

The reader can deduce the following properties directly from 4.2.1-4.2.3, and from 
the hypothesis (placed on Sc by 4.2 and 4.2.2) that 5C is sufficiently small. 

4.2.4. For any i — 1,2,..., J - 1, and for any ft, ft' G Hp(Xi6c), the following 
hold. 

(a) |ftljl(0)|<2a + Ai+i5c. 
(b) \hl\(0) + hlil(0)\<2\i+16c. 

(c) l^i,i(0) - fti,i(0)| < |/?2 implies ft - ft7. 
(d) |(ft7 oh)iA(0) - fti,!^) - fti,i(0)| < 2Xi+15c, provided ft7 oft is well defined in 

Hp{Xi+i5c). 
(e) ft7 o ft is well defined in Hp(\i+i8c) if Ift'i i(0) + fti,i (0)| < |a, or if there is 

# G i7p(Ai+i5c) such that 

lffM(0)-^i,i(0)-/«i,i(0)l<^2 

(in which case g — ft7 o ft). 

For example, to verify 4.2.4(e) we proceed as follows. First suppose that the inequality 
Ifti^OHfti^O)! < fa of 4.2.4(e) holds. Then it follows from 4.2.2(a) (b) and 4.2.3(b), 
and from the preceding inequality, that there is a point (£, y) G (—a, a) x £p(A;Jc) such 
that h(t,y) G (—a, a) x <£p(Xi5c) and such that h'(h{t,y)) G {—a'.a.') x €p(Ai+iJc) 
where a' = 5Xi+i5c + |a; so ft7 o ft G i7p(Ai+i Jc) as claimed in 4.2.4(e). Next suppose 
that the inequality |#i,i(0) - ft^^O) - fti,i(0)| < \l32 of 4.2.4(e) holds for some g G 

Hp(\i+i5c). Since each of pfijfti.ijfti i extends to a translation R—>-R, we may use 
the formulae in 4.2.2(a) (and the remark at the end of the preceding paragraph) to 
extend each of #-1,ft,ft7 to maps R x €p(Ai+iJc) -)•. R x (Sp(|Jc); we denote these 
extended maps by ^~1, ft, ft7. It follows from the inequality |^i,i(0)-ft7

1)1(0) —fti,i(0)| < 
j/32, from 4.2.4(b) as applied to g, from 4.2.3(b), and from 4.2.2(b) as applied to 
p,ft,ft7, that the compositon §_1 o ft7 o ft is well defined on (—a, a) x £p(Xi5c) and 
satisfies K*?-1 o hl o ft)i,i(0)| < |/32. Thus, by 4.2.4(c) (as applied to g-1 o ft7 o ft), we 
conclude that g~1 oh1 oh is equal the identity map on (—a,a) x <£p(XiSc); from which 
we deduce that g = ft o ft on (—a, a) x <£p(\i5c). It follows from this last equality 
that ft7 o ft is well defined in .Hp(A;+i<$c), and is in fact equal to g. This completes the 
verification of 4.2.4(e). 

To complete the proof of Lemma 4.2 we need now appeal only to 4.2.4. For 
any given i < \ J we choose, from among all the ordered pairs (ft, ft') of elements in 
Hp(XiSc) with ft / ft7, that ordered pair (ft, ft7) for which the number |ft^ 1(0) — fti,i(0)| 
is minimal. Then it follows from 4.2.4, and from the sufficiently small hypothesis for 
<SC, that we have only the following three possibilities: 

(1) ft is the identity embedding and Hp(XiSc) — {ft, ft7, ft7-1}; 
(2) ft7 o ft-1 G Hp{Xi+i&c) and every element of Hp(XiSc) can be written as a 

power (ft7 o ft-1)-? for some j G {—/, — / + 1, — / + 2,..., J} and for some 
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/ G (0,8-p- + 4), where (h' o /z-1)-7 G i^p(Aj+i+j^c) for each such j; 

(3) h1 oh~l G i7p(Ai+i5c) and for some / G Hp(Xi5c) we have that (hf oh~1)of g 

HpiXiSc) but (ft' o h-1) o f G flpCAi+aJc). 
Note that if (1) or (2) occurs for some i G {1,2,..., | J} then we can complete the 
proof of 4.2 by defining K and g of 4.2 by 

ft = Aj/Ai, 

and recalling that A = Ai (cf. 4.2.3(a)). If (1) or (2) is never satisfied for any i G 
{1,2,..., | J}, then (3) must hold for all i G {1, 2,..., | J}; from which it follows that 
the cardinality o£Hp(\ij5c) is greater than (\J) — l- On the other hand it follows from 

4.2.4(a)(c), and from the equality J = 4[50-p-] 4- 28, that the cardinality of Hp(Xij5c) 

is less than | J— 1. This contradiction shows that there is i G {1, 2,..., | J} for which 
(1) or (2) holds. 

This completes the proof of Lemma 4.2 modulo the verification of Claim 4.2.2. 

Verification of 4-2.2. Property 4.2.2(a) is an immediate consequence of 4.2.1(a)- 
(c). Property 4.2.2(b) follows after some argument from 1.3,2.2,2.6,4.2.1. (See also [8; 
Appendix 1] and the Appendix to this paper.) 

Towards verifying 4.2.2(c) we first wish to translate the possible conclusions of 
Lemma 2.1 into statements concerning any map h G HP(XSC). We start by noticing 
that 2.1(c) never occurs when 4.0 is asusmed to hold. By appealing to 1.3,2.1,2.2,2.6, 
we conclude that each h G HP(XSC) must satisfy at least one of the following two 
properties. (See also [8; Appendix 1] and the Appendix to this paper.) Note that 
properties 4.2.5(a) (b) below correspond to properties 2.1(a)(b) respectively. 

4.2.5.  (a) hi^i is a translation satisfying |/ii,i(0)| > |/32. 

(b) /ii?i is a translation satisfying |/ii,i(0)| < —hr-5c. 

Thus to complete the verification of 4.2.2(c) it will suffice to show that if ft^i satisfies 
4.2.5(b), then h must be the identity embedding. Note that the "sufficiently small" 
hypothesis placed on A in 4.2, together with properties 4.2.2(b) and 4.2.5(b), imply 
that the distance in R x (£p from z to h(z) satisfies 

d(z,h(z)) «SC 

for all z G (—a, a) x <£p(X5c). On the other hand the restricted map 

fp:(--5C:-5c)x£p(-5c)^M 

must be an embedding (cf. 1.3,2.6). So if h were not the identity embedding, then the 
preceding inequality would lead to a contradiction since we must have that jp(z) — 
fp(h(z)) by 4.1(b). 

Proof of Lemma 4-3. We use an argument similar to that used in Case I of the 
proof given for Proposition 2.5. The following properties replace properties 2.5.1(b)- 
(e) in that argument. In the following we let r : U —> B denote either 

id  x tp : (-4a, 4a) x Up -¥ (-4a, 4a) x Q5p 
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or 
id  x Vp o /i-1 : Vh -> (—a, a) x Q3p 

where h, Vh are as in 4.3; and we let 0 denote the foliation of U by the fibers of r. 
Recall that in 4.3 the product R x £p is equipped with the metric pulled back from 
M along fp : R x £p -> M. 

4.3.1. (a) K{r:Kxep)< ^M 

(b) diameter(L) < 0(e)8c for each L e 0. 
(c) For each v G TU\r - l(oxi8p) which is perpendicular to T0 we have 

that (1 - 0(e))\v\ < \Dr(vj\ < (1 + 0(e))\v\. 
(d) There is i? > 0 which depends only on a, A = {^4;}, dimM. For each 

v G T(R x (£p)\u which is perpendicular to TU there is a smooth path 
/ : [0,1] —> R x (Bp which starts and ends at the foot of v and which 
satisfies 

length(/) < 0(e)5c and Q(v,Pf(v)) > $ . 

Properties 4.3.1(a)-(d) follow immediately from 1.3(a)(b), as applied to the infranil 
core of 2.2 used in the construction of fp : R x i£p —> M in 2.6. (See also [8; Appendix 
1] and the Appendix to this paper.) 

Note that properties 4.3(d)(e) are an immediate consequence of property 4.3.1 
(a)(b). Thus to complete the proof of Lemma 4.3 it remains to deduce properties 
4.3(a)-(c) from 4.3.1 by simply repeating the argument used in the proof for 2.5 that 
deduced 2.5.3 from 2.5.1(b)-(e). Here is an outline of that argument. Let the path 
u : [0,1] -> R x Q:p in 4.3 be given by u(t) = (zi,U2(t)), where z = (^1,^2) and where 
U2 : [0,1] —> (£p is the geodesic in the fiber of the orthogonal projection map (£p -> iip 
which connects Z2 to its image in iip. We take the images under fp of a small piece 
of ((-4a, 4a) x i£p, T) near u(l) and of a small piece of (Vh,Th) near u(0) to get two 
infranil cores which (by 4.3.1(a)-(d)) satisfy the hypothesis of 1.5. By applying 1.5 
and 1.5.2 to these infranil cores we can deduce properties 4.3(a)-(c). 

This completes the proof of Lemma 4.3. 

5. Construction of infrasolv cores of type I. In this section we complete 
the verification of Theorems 0.5 and 0.6 by proving the following two results. 

5.1. Proposition. For eachp G Mi(a,0) there is an infrasolv core rp : Up —> Bp 

of type I,II, or III which satisfies properties 0.5(a)-(d). 

5.2. Proposition. The collection of all infrasolv cores {rp : p G M(a,/3)} 
constructed in 2.4 and 5.1 satisfy properties 0.6(a)-(c). 

We shall first carry out the proofs for 5.1 and 5.2 in the special case that T$ 
is orientable. Then we will use these special cases of 5.1,5.2 and some additional 
arguments to prove 5.1,5.2 in the case that T$ is not orientable. 

Proof of 5.1 when T^ is orientable. In this proof we assume that the integers n, 77 
of 1.3 are related by 

5.1.1.  (a) 307) < n < 6O7/. 

Thus the subscript c for 8 in 1.3 satisfies 

(b) ce {307?+ 1,3(M7+ 2,...,61*7-1}. 
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Let fp:Up-^ Bp denote the infranil core of 2.2, and let vp : ilp -> Q3p denote the map 
associated to fp in 2.6 (Case I). In this proof we assume that the integer k of 3.0 and 
3.1 is given by 

(c) k = dimQSp; 

the number is > 1 of 3.0 and 3.1 is given in 5.1.3(b) below, and is dependent only on 
a, /?, A — {Ai}, dimM; and the number u > 0 of 3.0 and 3.1 is given by 

(d) "=4^- 

Note that u given by 5.1.1(d) is consistent with the restriction placed on u by 3.0(b). 
We also assume that the €2, rj, {Sj : 1 < j < rj} of 0.5, and the £, 77, {5j : 1 < j}, c 

of 1.3, and the {dr : 1 < r < k -f 2}, {ay : 1 < y < (k + 4)/c+4} of 3.0, are related as 
follows. 

5.1.2. (a) 2Q0(k + 4)k+srj = ri. 
(b) Sj'-i « dj but eSj « -^Sj'-i hold for all 2 < j < lOOfj and all 1 < 

/ < (k + 4:)k+5 and all 1 <y < (A: + 4)A;+4-l, where f = j(k + 4)k+5. 
(c) dr = SXr where xr = c(k 4-4)fc+5 - r(k + 4)^+4, for r = 1,2,.. .,jfe + l. 
(d) (oj^i)2^1 << £2^' for al1 ^ G {a;r+1,a;r+i + l}a;r+i + 2,... ,xr - 1} 

and for all r, ?/. 
(e) Note that j^yz « €2 for all 1 < y < (k + A)k+4 - 1 follows from 

(d) above; note also that e « -^ for all 1 < y < (k + 4)*;+4 - 1 
follows from (b) above. 

We note that properties 5.1.2(a)-(e) are consistent with properties 2.4.1(a)(b), and 
with the restrictions placed on the z/, {dr : 1 < r < k + 2}, {a^ : 1 < y < (k + 4)fc+4} 
by the hypothesis 3.0. The reader should keep in mind that for the duration of this 
proof that fp of 2.2 satisfies 1.3(a)-(c) for £,£,77,71,0 as in 5.1.1 and 5.1.2; Sp^ip are 
associated to fp by 1.4; and tp,5p,tp are the maps associated to the rp,Sp,ip by 2.6 
(Case I). 

Since we are assuming that 4.0 holds in this proof we may use all of the facts 
verified in §4 concerning Hp(XSc). In particular we would like to investigate the map 

h2 :.<EP(\6C) ->£p(-<5c) 

of 4.2.2 in more detail. In particular we note that (by Lemma 4.3 and Claim 4.2.2) /12 
"almost" permutes the fibers of s^; thus a quotient map 1)2 : ^8p(XSc) -4 Q3p(^5c) for 
/i2 should "almost" be defined which satisfies Spoh2 = f)2 0Sp. We define f)2 in 5.1.3(a) 
below; since /i2 only approximately maps each fiber of Sp\(£p(\5c) into another fiber 
of 5p, we must replace the desired equality sp o /12 = 1)2 0 BP by its approximation in 
5.1.3(c). 

Recall that *Bp is the open ball of radius |<5C centered at the origin of some 
Euclidean space Rfc. In what follows we will identify T(!Bp)o with R^ via the Euclidean 
exponential map, and we shall also identify each T(^3p)x^x G Q3p, with T(<Bp)o via 
Euclidean parallel translation. Now choose q G t:~1(0), and let V C Tiiq denote all 
vectors in Tiiq which are perpendicular to Tt~1(0).   Note (by 1.2.2 and 2.6) that 
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Dvp : V -» T(iBp)o is an isomorphism, whose inverse we denote by 

L : R* -> V. 

Note (by 1.2.2,2.6, and 4.3,4.2.2) that the composition map 

is also a linear isomorphism. Thus we define an affine isomorphism f)2 ' Rfe -> Rfe by 

5.1.3. (a) f}2(0) = 5P o ft2(g) and .D^ = ^p o D^ 0 ^. 

We claim that 1)2 satisfies 

(b) |\Dl)211 < i/ and |^2(0)| < ^A(5C, where i/ > 1 depends only on a,l3,A = 
{Ai},dimM. 

(c) \l)2 °Sp(y) -Sp0 h2{y)\ < 0(e)5c for all y G <£p(\5c). 

REMARK. Throughout this section the norm of a linear transformation A is 
denoted by \\A\\. 

Note that second inequality of 5.1.3(b) is an immediate consequence of 5.1.3(a) 
and of 4.2.2(b) (See also A.2 and A.3 in the Appendix.) Towards verifying the first 
inequality of 5.1.3(b) we first note (by 1.2.2 and 2.6) that there is a linear isometry 
I :Rk ^V such that 

\\I-L\\<0(e), 

where L is the linear map of 5.1.3(a). Next we note (by 1.2.2,2.6,4.3,4.2.2, and A.2,A.3 
in the Appendix) that the linear map Dsp o Dh2\V of 5.1.3(a) satisfies 

\\DspoDh2\\ </i, 

where fi > 0 is a number which depends only on a, (3, A = {^j^dimM. Now these 
last two inequalities, together with 5.1.3(a), imply that the first inequality in 5.1.3(b) 
is true. 

Towards verifying 5.1.3(c) we first note that (by 1.2.2,2.6, and [8;A.1.6]) we have 

5.1.4. (a) K(5P;M)< 2M 

Next we note that it follows from 5.1.3(a), and from 1.2.2 and 2.6 and 4.2.2, that 1)2 
satisfies the following properties. (See also A.2 and A.3 in the Appendix.) 

(b) fa °Sp(q) -Zp°h2(q) =0. 
(c) \\D(l)2 0sp)lq-D(spoh2)\q\\<0(e). 

Now property 5.1.3(c) follows easily from 5.1.4(a)(b)(c). (See also A.1-A.4 in the 
Appendix and [8;A.1.1,A.1.7].) 

Our plan now is to apply Lemmas 3.1,4.2,4.3, together with 5.1.3, to complete 
the proof for Proposition 5.1 when T^ is assumed orientable. First we will use 4.2 and 
5.1.3 to define the sets of affine maps Ai C A2 C ... C A&_j_2 to which we will apply 
Lemma 3.1. For any given r 6 {1, 2,..., k + 2} we choose A in 4.2 to satisfy 

5.1.5. (a) K\5C = ^dr 

where K, > 1 is also described in 4.2. Let #,/ be as in 4.2 for this choice of A; and set 
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(b) Ar = {\)2 : h G HP{K\5C) and h = g1 with -I <i< /}. 

In order to apply Lemma 3.1 to the collections {Ar} of 5.1.5 the following hy- 
potheses (of 3.0) must hold true for all r = 1,2,..., k + 2 : |/Ar| < z/; |tAr| < dr; each 
collection Ar is (cj,dr)-cyclic; the cardinality of A.k+2 has an upper bound indepen- 
dent of the {a^} and the {dj}. The first two hypotheses are implied by 5.1.3(b) and 
5.1.5. The third hypothesis is immediate from 5.1.1(d), 5.1.2, 5.1.3, 5.1.5(b), and from 
the fact that / < 8 J^ + 4 where I comes from 4.2 and 5.1.5(b). The last hypothesis is 
a consequence of 5.1.5(b) and the inequality I < 8-p- -f 4 of 4.2. 

Thus we may apply Lemma 3.1 (see also Remark following 3.1) to get integers 

y € {1, 2,..., (fc + 4)AH-4 - 1} and z G {1, 2,..., k + 1} 

and a vector subspace Vp C Tlk which satisfy 3.1(a)-(d). For each t G (0, |£c) let Vp(t) 
denote the open ball in Vp of radius t centered at the origin, and set Wp(t) — r"1 (Vp(£)). 

Here we are identifying V^(|5C) with a subspace of Q5p via the composition map 

Vp{\sc) C Rk = T(2>p)o^2V 

Let g denote the map of 4.2 and 5.1.5(b) when r = z -\-1 in 5.1.5, and set 

Xp = g{{-a, a) x Wp(dz+1)). 

Let #1,1 and 02 denote the maps associated to g in 4.2.1 and 5.1.3. Note that for each 
q G Xp there is a unique geodesic uq : [0,1] —>- R x <£p with uq(Q) — q which meets 
R x Wp(\&c) perpendicularly at uq(l). Now we have the following crucial claim, from 
which we can complete the proof of Proposition 5.1. 

5.1.6. Claim. 
(a) /33 « g11(0) « cy, where j = c(k + 4)/c+5 - (z + l)(k + 4)fc+4 + y. 
(b) |fl2(0)[<b(^)dz+1 

(c) length (uq)<0(^)dz+1. 

(d) 0(r(Rx Wp^Sc))Uq{lvPUq(T(Xp)Uq{0)) <o(^r). 

We will first use this claim to help us complete the proof of Proposition 5.1. Then 
we will verify Claim 5.1.6. 

Choose a smooth function / : R -> R which satisfies: 

(a) m = { ° 
(b) 0 < f(t) < $ and |/"(t)| < ^ 

where C is a positive constant independent of /3. 

5.1.7. ^  ^_/0   ifa;<0 

if a; > i/?3 

Define a map F : Xp —> R x <Ep by 

5.1.8. (a) Xp - Xp n [(-i/?3,5l)1(0) - i/33) x €p] 
(b) F(quq.2)=uq(l-f(q1)) 

where Xp^q G Xp,uq come from 5.1.6, and (#1,22) G R x (Sp are the coordinates of 
q, and / comes from 5.1.7. Note it follows from 5.1.6-5.1.8 (see also 5.1.2) that F 
is a well defined one-one smooth embedding. We also have two smooth maps pi,P2- 
Image (F) -» Vp defined by 
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5.1.9. pi = 7r2 o Qp o TTI |Image(F) 
P2 = 7r2 o sp O TTi o p-1 o JP

-1 

where TTI : R x l£p -> €p denotes projection onto the second factor and 7r2 : Sp -> V^ 
denotes orthogonal projection in RA We claim that the following relations exist 
between the maps Pi>P2, where in these relations we use the following notation: r > 1 
is a number which depends only on a,/3,A = {Aj},dimM; x £ Image(i?) and v G 
T(Image(F))x] also w G T(Ima,ge(F))x is any vector which is perpendicular to the 

fibers of the composite projection R x (£p-^»(£p—^Q3p. 

5.1.10. (a) Mz) -p2(x)\ < 0(^)dz+1. 

(b) \Dp1(v)-Dp2(v)\<b{^IM 
(c) ±M < pPiHI <rH. 

These properties can be deduced from 5.1.5-5.1.9, and from 3.1(a)(d) as applied to £J2 
and Vp] note that 3.1(d) as applied to $2 and V^ is just property 5.1.6(b), with q — 0 
in 3.1(d) (cf. Remark following 3.1). (See also 4.2.2, 5.1.2, and 5.1.3 as applied to g.) 

We define a third smooth map ps : Image(F) ->> Vp by 

5.1.11. pz(x) = /(m)p2(x) + (1 - /(xi))pi(a;) 

for each re G Image(F), where x = (xi,^) are the components of a; corresponding to 
the first and second factors of R x <£p% 

Finally we can define j and Tp : Uv -> Bp of 0.5 as follows. 

5.1.12. (a) j = c{k + 4)A;+5 - (* + l)(ifc + 4)fc+4 + y. 
(b) Bp = ^((Ji-). 
(c) Up = fp(p3 1(5p)), where fp comes from 2.6. 
(d) For each x G E/p, we set rp(a;) = ^(x') for any x' G f~ 1{x). 

Note it follows from 5.1.1-5.1.12 (see in particular 5.1.9-5.1.11) that r^ : Up —> Bp 
is a well defined smooth fiber bundle projection each fiber of which is diffeomorphic to 
a mapping torus for a self diffeomorphism of a fiber of xp : Up -» ^Bp of 2.6. (See also 
1.3 and 2.6.) Thus each fiber of rp is an aspherical manifold with infrasolv fundamental 
group, as required in 0.5. In more detail, we set 

C = g-1(P31(Bp))np^(Bp) 

and note that g2(C) npJ'1(Bp) = </> and that C is a tubular neighborhood for 

Image (F)n(--/33x^p) 

in Image(F) (cf. 5.1.7, 5.1.8). Thus the quotient space p^1(Bp)/ ~ (where x ~ y for 
x, y G p^1(Bp) if x G C and g(x) — y) is a mapping torus for a self diffeomorphism 

Image (F) n (-^3 x Cp) -^ Image(F) H (-i/33 x gp). 
D D 

Now by the construction of ps (cf. 5.1.9-5.1.11) it follows that ps o g(x) = ^(x) holds 
for all x G C; thus p^ induces a map 

■I>3l~:tel{Bp)l~)^Bp. 
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Note that p^ : Image(F) —> Bp is a fiber bundle with each fiber p^1(x),x € Bp, 
diffeomorphic to (—1,1) x r"1^) (cf. 5.1.9-5.1.11); note also that g(C np^1(x)) C 
p^ix) and that C np^1(a;) is a tubular neighborhood for p^fe) D (—1/33 x (Bp) 
in p^1(x). Thus each fiber (ps/ ~)_1(a;) of the map p3/ ~ is diffeomorphic to the 
mapping torus for a self diffeomorphism t"1^) —> r~1(a;). Finally, we let 

fp/ ~: (P^(BP)/ ~)^M 

denote the map induced by fp\p^1(Bp). Note that by 5.1.2(c)(d), 5.1.5, 5.1.12(a)(d) 
the map fp/ ~ is a one-one smooth immersion and rp = (ps/ ~) o (fp/ ^)_1; thus 
each fiber of rp is also a mapping torus for a self diffeomorphism r~1(a;) —>• r~1(j;) as 
claimed. 

Note that rp satisfies properties 0.2(a)-(b). Note also that property 0.2(c) for rp 

can be deduced in part (that is locally) from the following curvature property for rp. 

5.1.13. Claim.  K(rp;M) « f^. 

We will verify Claim 5.1.13 (along with Claim 5.1.6) at the end of this proof. To 
deduce that 0.2(c) is satisfied globally we need (in addition to 5.1.13) to appeal to the 
following properties: to 1.2.1(c) and 1.3, as applied to f^; to 2.6 Case I, for the relation 
between tp and rp] and to 4.2, 5.1.2(b)(d)(e), 5.1.5, 5.1.6(a)(b), 5.1.12(a), from which 

we deduce that g of 5.1.6 satisfies^ G Hp(s2Sj) and HpfaSj) = ^(^r1), where g is 
as in 5.1.5(b) and K comes from 4.2 and 5.1.5(b). (See also 5.1.6-5.1.12.) 

Let sp : Ep -> Bp and tp : Ep —y R be the thickening for the infrasolv core rp (cf. 
0.4). We leave the deduction of properties 0.5(a)-(d) for the thickened infrasolv core 
(sp,tp) as an exercise for the reader (cf. 5.1.1-5.1.13 and 1.3 and 2.6). 

This completes the verification of Proposition 5.1 in the case that Tg is orientable, 
modulo the proof of Claims 5.1.6 and 5.1.13. 

Verification of Claim 5.1.6. First we verify 5.1.6(a). If #1,1 (0) < 0, then we 
replace g by p-1. Then we get /33 << #i,i(0) from 4.2.2(c), assuming that (3 « 
min{l, a} and that g ^ id. There is no loss in assuming that /? << min{l, a} in 0.5, 
since M(a,(3') C M(a,/?) holds for all p' > 0. On the other hand if g = id, then 
Hp(XSc) — {id}; which would contradict the fact that p G Mi (a,/?) (cf. 2.1, 2.3, 5.1.1, 
5.1.2, and recall that Tg' is orientable). 

To get the second half of the inequality in 5.1.6(a), 51,1(0) << oij, we first choose 
h G Hp(dz) such that 0 < /ii,i(0) << aj (cf. 2.1, 2.3, 5.1.1, 5.1.2, 5.1.12(a), and use 
the properties p G Mi(a,/3) and that TJ is orientable). Use 4.2 and 5.1.5 to write 
h = gl for some i G {-/, —/+!,...,/}. By applying 4.2.2(a)(b) to g we conclude 
that pi,i(0) << aj/i. 

Since 02 is the (a;,(i2+i)-generator for A2+i we may apply 3.1(d) to £2 (with 
q = 0 as in Remark following 3.1) to conclude that 5.1.6(b) holds. 

Finally we verify 5.1.6(c)(d) by applying Lemmas 3.1 and 4.3. Since 92 £ Az+i 
(cf. 5.1.5(b)) we may apply Lemma 3.1 to 02 and Vp to conclude that 3.1(a)-(d) hold. 
Now recall that g G Hp(XSc), where A = -^ (cf. 5.1.5(a)); thus we may apply Lemma 

4.3 to conclude that Vg and Tg satisfy properties 4.3(a)-(e) when A replaces A in 4.3. 
Now 5.1.6(c)(d) are a consequence of 3.1(a)-(d), 4.3(a)-(d). (See also 5.1.2 and 5.1.4.) 

Verification of Claim 5.1.13. First we note it follows from 1.3 and 2.6 that 
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5.1.13.1.  (a) iif(tp0 7ri|(-3a,3a) xilp;Rx €p) < Hii 

where TTI : R x (Ep -4 <£p is projection onto the second factor. (See also the Appendix 
to this paper.) Note that it follows from 5.1.13.1(a), and from the relation between sp 

and xp given in 2.6 Case I, that 

5.1.13.1. (b) if(spo7ri|(-3a,3a) x £p(^c);Rx gp) < ^. 

Since Wp(dz+i) = v'1 (Vp(dz+1)) it follows from 5.1.13.1(a) that 

5.1.13.2. #((-30!, 3a) x ^(4+i);R x gp) < ^ 

where for any submanifold A^ C R x <£p we denote by if (TV; R x <£p) the curvature 
K(T] R x (Ep) of the constant map r : A^ —>• {1}, as described in 1.1. Since 

Xp = g((-a,a) x Wp{dz+1)) 

it follows from 5.1.13.2 that 

5.1.13.3. K(XP\R x gp) < ^. 

Now it follows from 5.1.2, 5.1.6-5.1.8, and from 5.1.13.2 and 5.1.13.3, that 

5.1.13.4. K(Image(F);Rx £p) < O(^)^ + m. 

We note that property 5.1.13.4 is the first of the two properties (cf. 1.1(a)(b)) which 
define the inequality 

5.1.13.5. KfaRx <£„) < 0(^)^ + ^ 

for i = 1,2,3. The second of the two properties which defines the inequalities of 
5.1.13.5 (cf. 1.1(b)) is deduced for i = i,2 from 5.1.13.1(b) and 5.1.13.4 and from 
5.1.9; and the second of these properties is deduced for i = 3 from 5.1.7,5.1.11, and 
from 5.1.13.5 where i = 1,2. Finally we note that Claim 5.1.13 is a consequence 
of 5.1.2, 5.1.13.5 (for i = 3), and of the facts that Up C M is locally isometric to 
Image(F) C R x <£p via fp and that p3 = rp o (fp|Image(F)). 

This completes the verification of Claim 5.1.13. 

Proof of 5.2 when T$ is orientable. Let rPi : UPi -4 BPi,i = 1,2, denote two 
infrasolv cores of type I of radius 5j as constructed in the proof of 5.1 when T$ 
is orientable (where pi,P2 € Mi (a,/?)); and let (sPi,tPi),i — 1,2, be the thickened 
infrasolv cores associated to the rPi,i — 1,2, as in 0.4. To complete the proof of 5.2 
we must verify properties 0.6(a)-(c) for (spj,^) and (sp2,tp2) when Ep1 fl Ep2 ^ (/). 

Towards this end we first note that there is a number 0 < r < 1, which depends 
only on a, A = {Ai}, dimM, and there is a smooth embedding 

e : (-4a,4a) x (Bp2(r5c) -» R x <£pi 

which satisfies the following properties. (To verify 5.2.1(b) we use that EPl r\Ep2 ^ 0, 
and refer to the construction of rp1,rp2 in 5.1.1-5.1.12.) 

5.2.1. (a) fp1 o e = fP2|(-4a,4a) x €P2(rJc). 
(b) e(0 x tntfj)) C (0,5a,) x ^(ty). 
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We define a subset W C <£p1 by requiring that 

(-a, a) x W = e((-4a, 4a) x Wp2 (Jj)) P|(-«5«) x ^PI 

where the sets WPi(t),i — 1,2, are defined prior to 5.1.6. Let 

vPi(t):WPi(t)^VPi(t) 

i = 1,2, denote the restricted map x:Pi \Wpi (t), where the VPi(t) are also defined just 
prior to 5.1.6. Let $]Pi(t),i = 1,2, denote the foliation for WPi(t) whose leaves are 
the fibers of the tp. (£). We let ft denote the foliation for W whose leaves L £ f) are 
defined by the equations 

(-a, a) x L = e((-4a, 4a) x Z/) P)(-a, a) x gpj 

where 1/ is a leaf of S^P2. In the following claim the geoemtric measurements are all 
made with respect to the metrics on <£p1 and <£P2 that they inherit as a subsets of M 
(cf. 2.6). 

5.2.2. Claim. For each x € W there is a smooth path fx : [0,1] —)• <£Pl satisfying 
the following properties 

(a) fx(0) = xjx(l) G Wp^rSc), and length (fx) « e^j. 
(b) ®{T{WPAT5c))fx{l),PfSnW)fxW)) «E2. 

(e) e(T(SiPl(T~5c))Ml),Pfx(T(S))M0))) «e2. 
(d) K(vPi(5j)]£Pi)«^fori = l,2. 

By examining the details of the preceding proof (cf. 5.1.6-5.1.12) and reviewing 
the relations in 5.1.1 and 5.1.2, the reader can see that properties 0.6(a)-(c) follow 
directly from Claim 5.2.2. Note that, in 0.6(c), A2 may be defined in a manner 
similar to that given in the proof of Proposition 2.5 Case 1. (See the two paragraphs 
proceeding Claim 2.5.3.) 

Thus to complete the proof for Proposition 5.2 (when TJ is orientable and pi,P2 £ 
Mi (a,/?)) it will suffice to verify Claim 5.2.2. 
Verification of Claim 5.2.2. 

First we note that 5.2.2(d) is a consequence of Claim 5.1.13 and of 5.1.1 and 5.1.2. 
(See also 5.1.6-5.1.12.) 

We shall employ Theorem 1.5 and Lemma 3.2 in carrying out the verification of 
5.2.2(a)-(c). 

We introduce the following notation in anticipation of applying Theorem 1.5. For 
each t G (0, ^5C) let <5Pi(t),i — 1,2, denote the foliations for HPi{t),i = 1,2, by the 
fibers of tp. |itp. {t), i = 1,2. Let it C <£Vl denote the subset defined by the equation 

(-a, a) x ii = e((-4a, 4a:) x itp2 {T5C)) p|(-a, a) x gp1 

and let 0 denote the foliation for it whose leaves L G 0 are defined by the equations 

(-a, a) x L = e((-4a, 4a) x L') p|(-a, a) x gp1 

where L' G 0p2(rJc). Now for any positive number t sufficiently small (i.e. for t < T'8C 

where r' G (0, r) depends only on a, r, A — {Ai}, dimM) we can define a fiber bundle 
projection r : il(t) -* 05(t) as follows. Choose q G il such that 0 x q G e((-4a,4a) x 
r"1^)), and let Q5(t) denote the set of all vectors v G T(il)9 which are perpendicular 
to T((S)9 and satisfy \v\ < t. Let B(t) denote the image of *B(t) under the exponential 
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map exp:<B(£) -> M. Recall that £Pl C M. Note that the orthogonal projection 
Pt : B(t)"—> it is a well defined embedding with image denoted by T(t). Let ii(t) 
denote the union of all leaves of 0 which intersect with T(£); and set <5(t) = 0\ii(t). 
Now define r : U(t) -> Q5(*) to send each leaf L € 0(t) to exp"1^"1^ fl T(t))). Note 
the following properties can be deduced from 1.3,2.6 (as applied to rPl and Xp2) and 
from the preceding construction of r. 

5.2.3. For t = r7SCl each of the bundle maps r : il(t) -> 05(i) and r^j : iXp1 (t) —> 
QSp^t) is ((!?(e, Jtf'J-rigid (cf. 1.2.2), where tf' > 0 depends only on t? of 1.2.2 and on 
a,l3,A = {Ai},dimM. 

For each t 6 (0, r7^] we let (£(£) denote the tubular neighborhood of radius t for iX(i) 
in Cp^ Cp^t) has been defined in 2.6 as the tubular neighborhood of radius t for 
iip1 (t) in <£P1. It follows from the hypothesis EP1 D EP2 ^ 0 of this proof that 

5.2.4. (a) <£(*) C epi is well defined for all t G %r'5c]. 
(b)  (Bdr^n^dr^)/^ 

Now we want to use Theorem 1.5 and Remark 1.5.2 (as applied to r : il(r/Jc) -> 
©(r'Jc) and tpj : iip^r'Jc) -> ^Bp^r^c)), in conjunction with 5.2.3 and 5.2.4, to 
conclude that the following properties hold. 

5.2.5. For each x E iX{T'8c) there is a smooth path fx : [0,1] —>- ^p1 which 
satisfies: 

(a) /z(0) - x,^(l) G ilPl, and length {fx) < 0(e)6c. 
(b) e(Pfx(T(ii(rr6c))fxi0)),T(iiPl)fxil)) < 0(e). 

(c) e(Pfx(T(<5(TrSc))fx{0)),T(<5Pl)fxil)) < 0(e). 

[Note that <£Pl may not be an ^-regular Riemannian manifold, nor is it complete, 
with respect to the metric it inherits from (M,g). Even though ^4-regularity and 
completeness are both implicit assumptions of 1.5, we can nevertheless still apply 1.5 
and 1.5.2 to yield 5.2.5. One way to see this is to "thicken" the relevant maps 

r : U(t) -» 03 (t) and tPl : iiPl (t) -> <BPl (t) 

by flowing ii(t), iiPl (t) in the direction of the foliation # of M over the time inter- 
val (—tit) to get thickenings ii(t),iipi(t) for il(t),ilPl(t) and by defining thickenings 
»(*),»„,(*) for 05W,BPl(t) by 

B(t) = (-t,t) x Q3(f) and »Pl(t) = (-t,t) x BpiW. 

Now a thickening r for r is defined by ^(^(s^q)) = (s,x(q)) for all s G (—M) and all 
g G ii(t), where ^ : R x M -> M denotes the unit speed flow in the direction of the 
leaves of J. And a thickening t^ for xPl is defined in a similar manner. Finally, we 
define infranil cores t' : il'^) -+ ^'(t) and xl

pi :iJi!pi(t) -> Wpi(t) as follows: Let QS'ft) 
and tB' (t) denote the open balls of radius t centered at the origins of %$(t) and ^Pl (£); 
set il'^) = (r)-1^'^)) and set 11^(t) = (xp1)-

1(%1(t))] finally, we set r' = rlil'^) 
and set t^ = xPl\iipi(t). Note that t' and r^ are infranil cores in (M,g) which have 

radius t and which are both (O(e), &)-rigid when we set t = T'SC (cf. 5.2.3). Moreover, 
we have that (B'^T'SC) fl Zp^r'Sc) ^ 0 (cf. 5.2.4(b)). Thus we may apply Theorem 

1.5 to t' : il,(T,6c) -> <B'(T
1
5C) and r^ : il^ (T'5C) -> 05^ (r7^) to derive 5.2.5(a)-(c).] 
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Now we use Lemma 3.2, in conjunction with 5.2.3-5.2.5 (and 5.1.1,5.1.2), to com- 
plete the verification of Claim 5.2.2(a)-(c). We define Vi, V2, Qi, Q2 of 3.2 as follows. For 
the Vi of 3.2 we take Vp1 (which was defined just prior to 5.1.6), and we define qi — 0. 
We get the V2> Q2 of 3.2 as follows. Let q G it be as in the construction of r in the pre- 
ceding few paragraphs and set #2 = Spi ((/)• Note that q G W, where W is defined just 
prior to 5.2.2; let P denote the subplane of T{W)q which is perpendicular to T{$)) {$) 
is also defined just prior to 5.2.2), and let V2 denote the Euclidean parallel translation 
to the origin of the image of P under the derivative map DsPl : T{£Pl)q -> T(R/%2. 

We are just about ready to apply Lemma 3.2 to complete the verification of Claim 
5.2.2(a)-(d). In this application of 3.2, we let the numbers {a^}, {di} be as in 3.0-3.2 
and 5.1.2; and we let the collection of affine maps {A;} (of 3.0-3.2) be the same as 
used in the preceding proof (cf. 5.1.5) when in that proof we set p — p1. We note 
that the hypotheses of 3.2 do not necessarily hold for both (Vi,gi) and (^,^2) with 
respect to the numbers ay,ay+i,dz,dz+i and the collections Az,Az+i (although these 
hypotheses do hold for (Vij^i))- However we do have the following claim. 

5.2.6. Claim. There is a number r" G (0,1) which depends only on a, ft, A = 
{Ai},dimM. All the hypotheses of 3.2 are satisfied for the Vi,qi,V2,q2 just described 
with respect to aj/,aj/+1,(i

/
z,^+1, A'.,, A^+1 given as follows: 

a'y - —dy and a'y+1 = r"ay+1] 

d'z = -^dz and d'z+1 = — dz+l] 

A^ = Ai for i — z, z + 1. 

The verification for Claim 5.2.6 for (Vi, qi) is immediate, since (as we have just pointed 
out) the pair (Vi,gi) satisfies the hypothesis of 3.2 for the numbers ay,ay+i,dz,dz+i 
and for the collections of affine maps AZl Az+i. The verification of Claim 5.2.6 for 
(^2,^2), which appeals to 5.1.1-5.1.6 and to 5.2.3-5.2.5, is left as an exercise for the 
reader. Thus we may apply 3.2 to conclude that Vi, #1, V^ ? (Z2 are related by 

5.2.7. (a) e(Vi)^)<0(^), 
y + 1 

(b)  \qi + vi - q2\ < 0{-^y)d'z+1 for some ^ G Vi. 

Now we can deduce Claim 5.2.2(a)-(c) from 5.2.5 and 5.2.7. (See also 5.1.1-5.1.6.) 
This completes the proof for Proposition 5.2 when T'S is assumed to be orientable. 

Proof of 5.1 when T$ is not orientable. We begin by introducing the following 
two subsets of Mi (a, /?). 

5.1.14. Mi,i(a,j8) C Mi(a,)3),i = 1,2. Note (by 2.3) we have that for any p G 
Mi (a,/?) there are points (s,x), (s'.x') G (-aziaz) x B(p,5z) which satisfy 2.1(a), 
where z — fr? - 2. A point p G Mi (a,/?) is in Mi)i(a,/?) iff there are no points 

(s,ir), {s',x') G (-aZf,az') x B(p,Sz>) 

which satisfy 2.1(c), where z' = 45(A: + 4:)k+5fj. (Note by 5.1.2(a) we have that 
z' < ir/ - 15.) Set Mia(oL,fi) = Afi(a,/?) - Mhl{a,f3). 
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Now we divide the proof into two cases p G MI?I(Q;,/3) or p G Mi52(a,/3). 
Case I:  pG Mi,i(a,/3). 

In this case we define the integer n of 1.3 by 

5.1.15. (a) n = 58fj. 

Thus the integer c of 1.3 satisfies 

(b) c G {58/7 + 1,587jj + 2,..., 59^ - 1}. 

Note that 5.1.15 is consistent with 5.1.1 (a)(b). We let vr : M -> M denote the 
two fold covering for M such that the corresponding two fold covering J for # has an 
orientable tangent bundle T$] and choose p G M such that 7r(j3) = p. Let g denote 
the pull back of the metric g along TT, and let 0 : Z2 x M -> M denote the group 
action by the covering transformations for TT : M —> M. Since TJ is orientable we 
may apply to (p,M,g) the special case already proven of Proposition 5.1 to get an 
infrasolv core rp : Up -> Bp for (M,g) of type I and of radius Sj, where j is given by 
5.1.12(a) and where c of 5.1.12(a) comes from 5.1.15. (The more specific stipulation 
of n,c in 5.1.15(a)(b) now replaces their less specific description in 5.1.1(a)(b).) Note 
that it follows from 5.1.14,5.1.15 (see also 5.1.1-5.1.12) that ^(l,Ep) n Ep = <f>. Thus 
we may define the desired infrasolv core rv \UV -± Bp by 

jD<p  — ±J p j 

Up - n(Up), 

Tp = rp o (nlUp)"1. 

We note that rp is an infrasolv core for (M,g) whose associated thickening (sp,tp) 
satisfies the conclusions of 0.5. 
Case II: p G Mi,2(a,/?). 

In this case we define the integer n of 1.3 by 

5.1.16. (a) n = 327}. 

Thus the integer c of 1.3 satisfies 

(b) cG {32/7 + 1,3277 + 2,. ..,33/7-1}. 

Note that 5.1.16 is consistent with 5.5.1(a)(b).   We also assume that the numbers 
£2, {${} of 0.5 satisfy the following property for all i (which is consistent with 5.1.2). 

5.1.17. Si+1 « £2Si. 

Using the same notation as in Case I above, we have the infrasolv core rp : Up —> 
Bp for (M,g) of type I and of radius dj, where j is given in 5.1.12(a) and where c of 
5.1.12(a) comes from 5.1.16. 

There is also a second infrasolv core r'-iUp —> B'- of type I and of radius Sj, 
defined by 

B'p = Bp,U'p = 4>{l,Ui),r>p(x) = rtm,x)). 

Let 0p, &p denote the foliations of Up, Up by the fibers of r^r^. We also define the 



480 F.T. FARRELL AND L.E. JONES 

thickening maps s^ : E'p -K B'^ and t'p : E'p -+ R for r^ (cf. 0.4) by 

E'P = 0(1,^),^(a;) = Sp(4>(l,x)),t'p(x) - ^(^(l.a:)). 

We note that 5.1.14,5.1.16 (see also 5.1.1-5.1.12) imply that 

5.1.18. Ep(Sj+1) n E'.(Sj+1) # (j) where 

^(t) = 5^1(B^))ntj1([o,t)) 

and 

^(t) = s7
1(B^))nt'j1([o,*)) 

with x G J3p(t) or x G JB£(£) iff |^| < t. Thus we may apply the arguments similar 
to those already used in the proof given above for the special case of Proposition 5.2 
when $ is assumed orient able (cf. 5.2.2 and its verification), together with 5.1.17 and 
5.1.18, to conclude the following. 

5.1.19. For each x G K such that |r^(x)| < |Jj, there is a smooth path fx : 

[0,1] -> M satisfying: 
(a) fx(0) = x,fx(l) G Up and length (fx) « £26). 
(b) e(T(Ut)fmil),Pfm(T(U}>)fmio))) «e2. 
(c) Q{T{®p)fx{l),Pfx{T{&p)fx{Q))) «e2. 

Now we define a group action ip : Z2 x Bp —> Bp as follows. Choose q G ^1(0) 
and set q1 — rp o p o 0i(g), where 0i(x) = 0(1, x) and where p : Ep ^ Up is the 
orthogonal projection map. Note that it follows from 5.1.17 and 5.1.18 that 

5.1.20. (a)  {q'l « £2^. 

Let W denote the set of all v G T(Up)q which are perpendicular to r^"1(0), and let 

exp: W -> M 

denote the exponential map. There is a smooth embedding I : Bp(e2Sj) -+ Up which 
is uniquely determined by the following requirements. 

(b) rp o I : BpfaSj) —> Bp is equal the inclusion Bp(£2Sj) C Bp] and 
Image(/) C poexp(W). 

Let k = dim£?p and define a linear map L : Rfc —>• R^ to be the derivative (at 0) 
of the composite map rp o p o fa o / : Bp -> Bp, where (j)i(x) = 0(1,x) and where 
T(Bp)o and T(Bp)q> (the actual domain and range of L) are identified with R^ under 
Euclidean parallel translation. Note that L satisfies the following two properties, 
where in 5.1.20(d) T denotes another linear map T : R* -» R*\ (See 5.1.6 - 5.1.12 as 
applied to both rp and r'p and see 5.1.18,5.1.19,5.1.20(a)(b).) 

(c) ||L|| < b, where b depends only on a,P,A = {Ai},d\mM. 
, (d) T2 = id and ||T-X|| « £2. 

Now if T : R^ -> R^ is in fact a linear isometry (e.g. T(Bp) = B^), then we may 
define ip : Z2X Bp ^ Bpby ^(1, re) =T(a;). If T is not an isometry we can choose (by 
5.1.20(c)(d)) a new inner product <, > on R^ with respect to which T is an isometry 
and which is related to the usual inner product <, >k on R^ as follows. 
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(e)  < v,v X (< v,v >k) < r < v,v > holds for all v G R^ where r > 1 
depends only on a,/3,A = {Ai}, dimM. 

Then we replace the original r^ : Up —> Bp and K : U* —> B', by the restrictions of 
rp and r^ to the pre-images of these maps of the <, >fe-ball of radius Sj in Bp = Bp. 
We note that the relevant properties of 5.1.18 and 5.1.19 (and also of 5.1.6-5.1.13) are 
still satisfied by these new r^rL So in the remainder of this proof there will be no 
loss of generality in supposing that T : Rfc —)• R^ is in fact a linear isometry (e.g. 
T(Bp) = Bp), and that ip : Z2 x Bp-> Bp is thus well defined by ip(l,x) = T(x). 

We have the following relation between the two actions 

ip : Z2 x Bp -> 5^ and 0 : Z2 x M -> M 

where V'I^) = ^(l,x) and 0i(a;) = 0(1, a;) in what follows. (See 5.1.18-5.1.20; see 
also 5.1.6-5.1.12 as applied to rp and r'p.) 

5.1.21. For all x E Up for which both rpopofa^x) and ipi orp(x) are well defined 
we have that the following inequalities hold: 

(a) \rpo po ^(x)-tp! orp(x)\ « e2$j; 
(b) WDirpopo^x -Difa orp)x\\ « 82- 

Note that if rp : Up -^ Bp were invariant under the group action 0 : Z2 x M -> M 
and the group action ip : Z2 x Bp -} Bp (i.e. £2 = 0 in 5.1.20-5.1.21) then we could 
define the desired infrasolv core rp : Up —> Bp of type I for (M, ^) as follows: let Bp C 
Bp denote the fixed point set for the action ip : Z2 x Bp -» Bp, and define rp : Up -> Bp 

to be the quotient of rp : rp1(Bp) -> Bp under the Z2-actions 0 : Z2 x Up -> Up and 
ip : Z2 x Bp -+ Bp. 

Properties 5.1.20-5.1.21 tell us that rp : Up —>• B^ is approximately (but in general 
not exactly) invariant under the two Z2-group actions 0 : Z2 x M -> M and ^ : 
Z2 x Bp —> Bp. We shall use these properties to construct a "geometric average" for 
rp and rL denoted by r^ : C/^ —> JB^, which approximates rp and which is invariant 

under the Z2-actions 0 : Z2 x M —t M and ip : IJ2 x Bp -> B^. Then, replacing 
rp by r^ in the construction of the preceding paragraph, we get the desired infrasolv 
structure rp : Up -» Bp for (M, g). 

5.1.22. The geometric average of r^ and r^. First we will construct the 
geometric average U'l of Up and UL This consists of an infinite limit process. 

The first step in this process replaces Up and U'^ by Up^i and U'^ constructed as 
follows. For all x G Up, let gx : [0,1] —> Ep denote the geodesic which begins at x in a 
direction perpendicular to Up and which ends at UL and set 

Up,i =   U {9X{\)}. 
xeUp 

And for each x' G UL let gx> : [0,1] -> E'^ denote the geodesic which begins at x' in a 
direction perpendicular to Up and which ends at Up, and set 

^,1= U {^(5)}- 

We note that 5.1.19(a)(b), together with 5.1.13 as applied to rp and rL imply that 
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Ufri and Up! are well defined smooth submanifolds of M which are C1 close to Up 
and Up, respectively, and which are even closer to one another (in the C1 -metric) than 
were the Up and UL (In fact by 5.1.19(a)(b) we have that the C1-distance from Up 
to Up is << 62] and the C0-distance from Up to Up is « £28j-) We also note that 

U^ = <p(l,Up,i). 
We remark that there is some difficulty with the construction of'f/^i and U^ 

away from large compact subsets of Up and UL i.e. "near the boundaries" dUp = 
c\osuve(Up) - Up and dUp — closure (Up) — Up of Up and Up. the geodesies gx and 

gxi might not exist for x,x' "near" dUp and dUp. This difficulty can be overcome 
by referring, when need be, to "extensions" of rp^r'p (easily constructed by taking 8j 
slightly larger in 5.1.6-5.1.12). 

Now in the construction just carried out if we replace Up, Up by Up^,U'p^ we will 
get the submanifolds Up^, Up2 (instead of the submanifolds Up^^U'p^). Proceeding by 
induction we can use the same methods to construct the submanifolds Up,r+i,U'p r+l 

from the submanifolds Up^,Upr. We can deduce from 5.1.13 (as applied to rp and 
r'p), and from 5.1.19, that the following properties hold. In the following we also use 
the notation Up,o = Up and Up0 = Up, note that for each integer r > 0 we have 

that Upir = 0(1, Up,r). Recall that for any smooth submanifold V C M we denote by 

K(V; M) the curvature K(T) M) of the constant map r : V —> {1} defined in 1.1. 
00 

5.1.22.1. There is A > 0 with ]PAr << £2-   For each integer r > 0 and for 
r=l 

each x G [/pjr+i, there are smooth paths gx : [0,1] —► M and hx : [0,1] -» M with 
^(0) — hx(Q) = x and ^(1) ^ Upjr and hx(l) G Up r+1 which satisfy the following 
properties. 

(a) length^+lengtMM < Ar+1^. 
(b) e(T(Up,r)gx{1),P9x(T(Up,r+1)x)) < A-+1. 
(c) e{T(U^r+1)hm(1)9Phm(T(UPlr+i)x)) < Ar+1. 
(d) ^([/p,r+1;M)«^7i. 

We can now define the geometric average of Up and Up, denoted by Up, to be 
the point set limit space of the sequence {Upir : r = 0,1,2,...}. Note that 5.1.22.1, 
together with the fact that Upr — 0(1, Up,r) for all r, assures that this limit is a well 

defined C1 -submanifold of M which satisfies the following properties. 

5.1.22.2. (a) <I>(1,UZ) = U'J. 

(b) K(U^,M)«£26J1. 

(c) For each x 6 Up there is a smooth path fx : [0,1] -»• M, with 
/x(0) = a; and /a;(l) € f/p, which satisfies 

Q(T(Up)Ml),Pfm(T(U^hl0)))«e2 

and length (Z^) << 628j. 

And, since C1-submanifolds can be approximated arbitrarily close (in the C1 -metric) 
by C^-submanifolds, we may assume, in fact, that Up of 5.1.22.2 is a C00-submanifold 

of M. This completes our construction of the "geometric average" of Up and UL 
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Now we will construct the geometric average of the maps rf, and r£, denoted by 

Recall that p : Ep -+ Up denotes the orthogonal projection map; we deduce from 
5.1.22.2 that p : U^ -> Up is well defined except possibly "near" dUj! = closureCt^') - 
U^. Now we set 

5.1.22.3. r'l(x)= ■ ±(tKl,rp o p^x)) + rp o p(x))), 

for each x G U* which is not "near" dUp. We can deduce from 5.1.22.1-5.1.22.3, and 
from 5.1.21, that the following properties hold if we are not close to the boundary 
dUV. 

5.1.22.4. (a) rp(<j)(l,x)) = ip(l,rp(x)) for all x e Ug. 

(b) K(r'!;M)«e25-1. 
(c) \rp(x)-rpop(x)\ « eiSj &Xid\\D{r'p)x-D{rpop)x\\ < e2 for each 

xzU'l. 

As we have remarked there is some difficulty "near" the boundary dUp both 
in the construction of r'! and in assuring that properties 5.1.22.4(a)-(c) hold. To 
overcome these difficulties we use "extensions" of rp and r'L (The extension of rp 
is easily constructed by taking 8j slightly lager in 5.1.6-5.1.12; then the extension of 
r'p is gotten by applying the preceding construction to this extension of rp.) Now 
the actual geometric average of the two maps rp and r'^ is gotten by restricting the 
extension of r't to its preimage for Bp. This new r't satisfies 5.1.22.4(a)-(c) even near 
the boundary Up. Note that 5.1.22.4(b)(c) and 5.1.22.2 assure us that r't is a smooth 
bundle projection map with fiber diffeomorphic to the fiber of rp. Thus r't is an 
infrasolv core as desired. 

Applying the fixed point construction described in the paragraph following 5.1.21 
to r'p completes the proof for Proposition 5.1 when TJ is not orientable and p G 
Mi|2(a,/?). 

Proof of Proposition 5.2 when T^ is not orientable. 
Case I: p G MM(a,/?). 
This is just a repetition of the proof given for 5.2 in the case that T^ is orientable. 

(See Case I in the preceding proof.) 
Case II: p 6 Mi,2(a,/?). 
We must verify properties 0.6(a)-(c) for any two infrasolv cores rPl, rp2 associated 

to points pi,P2 G Mi}2(a,/?) such that the thickenings EVi,i = 1,2, overlap. Let 

TT : M -± M 

denote the two fold covering for M such that the pull back $ of $ under TT has oriented 
tangent bundle. In the notation of the preceding proof there are (for i = 1,2) points 
pi G 7r~1(pi), and infrasolv cores rp^r't which are related as in 5.1.22.2 and 5.1.22.4, 
and group actions ^ : Z2 x Bpi —> Bpi such that the r^. : UPi —> Bpi are just the 
quotients of the maps r'p. : r'p. ~1(Bpi) —> Bpi under the group actions (j) and ^ (where 
Bpi is the fixed point set for iijj). We may apply the arguments contained in the proof 
of Proposition 5.2 when # is orientable to the infrasolv cores rpi,i = 1,2 (where the 
integer n of 1.3 is now given by 5.1.16, instead of by 5.1.1 as was originally the case 
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in the arguments referred to). We conclude (from this special case of 5.2) that the 
thickenings of the infrasolv cores r^, i = 1,2, (denoted by (sp{,£p.),z = 1,2) are 
related to one another as in 0.6(a)-(c). Now it follows from 5.1.22.2 and 5.1.22.4 that 
the thickenings of the infrasolv cores r't^i = 1,2, (denoted by (s^.,^.),^ = 1,2) are 
also related to one another as in 0.6(a)-(c) (for.a slightly larger value of €2 in 0.6 than 
that associated to the {sp^tp^.i — 1,2). Let ^ : Z2 x Rfc —V Rfc denote the linear 
extension of the ^ : Z2 x Bpi -> Bpi, and let A2 : Rfc -> Rfc be the affine isomorphism 
which is associated by 0.6(c) to 5^ and s^; i.e., A2 o s'^ is approximated by s'^ to 
within £28j. Note that it follows from 0.6(a)-(c) as applied to (s^,^) and (s^,^), 
and from the fact that spi o fa = ifa o spi for i = 1,2, that the following holds: 

5.2.8.  1(2^) o A2(x) - A2 o (i^i)(x)| < 0(e2)<Jj, for all x e B'^. 

Define A'2 : 1V -> 2^ as follows: let ^V C R^ denote the fixed point set of ii/S, and set 

A^x) = -(2$ioA2(x)+A2(x)). 

It follows from 5.2.8, and from 0.6(a)-(c) as applied to r^ and r^2, that properties 
0.6(a)-(c) also hold for the pair rVl,rP2 when A2 : R^ -4 R^ is replaced in 0.6(c) 
by A'2 : {V -4 2^ and when £2 is replaced by Ofa). (Note that both iV^V are 
isomorphic to the same Euclidean space R^ ; thus we have AJ, : R^ -4 R^ as required 
in 0.6(c).) 

This completes the proof for Proposition 5.2 when TJ is not orientable. 

Appendix. Let (M,g) denote an A-regular complete Riemannian manifold and 
let J denote a smooth one-dimensional A-regular foliation for M. In this appendix we 
formulate the A-regular condition for # in terms of the immersed normal coordinates 
for (M,g) (cf. Theorem A.l below). In addition we formulate two results analogous 
to [8; Theorem A.1.2, Corollary A.1.3], where the normal immersed coordinates of [8; 
A.1.2, A.1.3] are replaced by the immersions fp : (-5a, 5a) x J3(p, 0) -t M of Lemma 
2.1. (See Theorem A.2 and Corollary A.3 below.) 

In the following theorem we let / : B™ —> M be the immersion of [8; Corollary 
A.1.2], where /(0) is randomly chosen, i.e., / is immersed normal co-ordinates. Recall 
that B™ is the open ball of radius £ > 0 centered at the origin in Rm (where m — 
dimM); let-zi.,^, • • • j^m denote the standard coordinates for Rm, and define maps 

^(4^^/(A(:c))5jD/(_^(a;))). 
* 3 

Let J denote the smooth one-dimensional foliation of B™ obtained by pulling # back 
along / : Bf -* M, and let 

d_ 
1 dxi w = Yj»i 

i=l 

denote a smooth unit length vector field (measured with respect to the metric {gij}) 
on B™ which is everywhere tangent to §. 

A.l.   Theorem.   There is a collection B = {Bi} of positive numbers Bi, B2, 
£3,... which depend only on the A = {Ai} and dimM. For all i, k, {ji,J2, • • •, jk}, x E 
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B™ we have that 

dkWi . Xl      „ 
(x)\<Bk. 

OXj1 uXj2 . . . OXjk 

In the next theorem, and its corollary, we let fp : (-5a, 5a) x B(p,(3) —> M 
denote the immersions defined in the third paragraph of §2 and referred to in Lemma 
2.1. Recall that, for p e M, B(p,P) denotes the open ball of radius (3 centered at the 
origin of T$±, where Tg1- denotes the orthogonal complement for TJ in TM. For 

each p E M, we choose an orthonormal basis for T3\- and let 2/2,2/3, ••• ,2/m denote 

the coordinates for Tg1- with respect to this choice; we let yi denote the standard 
coordinate in the interval (—5a, 5a). 

A.2. Theorem. There is rj > 0 and a collection C — {d} of positive num- 
bers Ci,C2,C3,... which depend only on a, A = {Ai},dimM. For each p G M and 
each P E (0,rj) the immersion fp : (—5a, 5a) x B(p,P) —> M satisfies the following 
properties. Let.gp-ij : (—5a,5a) x B(p,/3) —> R be defined by 

9rM = 9(Dfp(-^:(y)),DfP(^(y))) 

for all y E (-5a, 5a) x B{p,f3).  Then, 
(a) fp(0) = P arid gp-jjiO) = (J*-. 

(b) \dy.$v9£:!dy.h (y)l ^ ^ for al1 k,hJ>{su...,sk},y E [-4a,4a] x Bfafl). 

In the following corollary of Theorem A.2, we let fp : (-5a, 5a) x B{p,(5) -> M and 
fpi : (—5a, 5a) x B(p',(3) —> M denote two of the immersions of A.2; and for any 
number t E [0, /3), we let i?(p, t) denote the open ball of radius t centered at the origin 
of B(p, (3). We let 2/1,2/2, • • • ? 2/m and y,

11y!2,... ,y
f
m denote the coordinate systems for 

(-5a, 5a) x B(p,P) and for (-5a, 5a) x B(pf,f3) 

referred to in A.2. 

A.3.  Corollary.   There is a number 5 > 0 which depends only on the {d} and 
dimM; there is also a collection of positive numbers {Ci} which depends only on the 
{Ci} and dimM. For any two points y E (—a, a) x J3(p, <5/3) and y1 E (—a, a) x 
B(p,,5P) which satisfy 

fp(v) = fAv'), 
there is a smooth embedding 

h : (-2a, 2a) x B(p,5P) -> [-5a, 5a] x B(p',0) 

which is uniquely determined by the properties listed in (a) below. Moreover h also 
satisfies property (b) below. 

(a) h(y) = y', and /p|(-2a,2a) x B(p,5(3) = fpi o h. 
(b) Let h = (hi,h2, • •. ,hm)  denote the coordinates for h with respect to the 

coordinate system 2/1,2/2? ••• j2/m-  ^or a^ V ^ (-2a, 2a) x B(p,5l3),i,k,{ji, 
J2,-.,jk} we have 

f)kh 
I-     -g ni   -     (y)\<Ck. dyhdyh...dyjh 
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In our final theorem of this appendix we shall need the following notation. Let 
U C M denote a smooth submanifold of M without boundary, and let r : U —¥ B 
denote a smooth mapping into an open subset B of some Euclidean space. For any 
given 

fp: {-5a,5a) xB(p,/3) -> M 

from A.2, we define a submanifold U C (-5a, 5a) x B(p: (3) and a map f : U -± B by 

U = fp1(U), 

B = B, 

r = rofp. 

Let K(r; M) denote the curvature of r in (M,g) (as defined in 1.1); and let 

i<:(f;(-5a,5a) xjB(p,/3)) 

denote the curvature of f in (—5a, 5a) x J3(p,/3) computed (as in 1.1) with respect to 
the Euclidean metric e = S'jdyidyj on (—5a, 5a) x B(p,/3). 

A.4. Theorem. Suppose that U C Image(fp). Then there is a number r > 1; 

which depends only on the {Ci} and dimM, such that 

-K(r; M) - 1< i^(r; (-5a, 5a) x B(p, /3)) < rK(r; M) + r. 
r 

Proof of Theorem A.l Let v denote the covariant derivative on B™ with respect to 
the pulled back metric {gi,j}, and let {Lfj} denote the Christoffel functions associated 
to V and {<7i,j}- The ^.-regularity of # is expressed locally by the following inequalities. 

A.l.l.  | x/rW\ <Ar for all r. 

We regard W as a tensor field on B™ of type (1,0); then for each r = 1,2,3,... 
the r'th covariant derivative \jrW is a tensor field on B™ of type (l,r). Note that 

A.l.2. W(dxi) = wi 

follows from the definition of W. 
To compute \/W(dxi, ■^~) apply A. 1.2 and the product rule 

—((W^dxi)) = (Va/a*, W)(<fci) + W(vd/Bx.dxi) 

together with the two equalities 

(V8/dzsW)(dxi) = yWidxi,—)) 

and 

s s 

to deduce that 
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A.1.3. vW(^i,^7) = f^ + E.ri>8. 

Likewise to compute \/2W(dxi, ^7, ^-) we appeal to A.1.2 and A.1.3, and to 
the product rule 

s:(vn'(*.,^))= 
(Vd/dxk V ^(dari, —) + S/W{s7d/dxkdxi, ^-) + v^C^i) Vd/dxk ^7)) 

together with the equalities 

(Va/a.. V W)(dXi, —) = TfW&u ^-, ^) 

d d 
VW{S7a/axkdxi, Q^) = Y. ~rU V W{dxs, —) 

and 

to deduce that 

A.1.4. 

2TTr/ ,       ^      ^  .        92
«;J 9   ,v^^n-       \     V^T-,»   ,dws     v-^^c      x 

fdWj 

"dXe +E-rL#+Eri^)- 
t 

Proceeding by induction, and using the tricks of the preceding few paragraphs, 
it can be shown that for r = 1, 2,3,..., and for every choice of indices ji,J2, • • • ,jr £ 
{1,2,..., m} we have that 

A.1.5. ^Widxt, ^-,^-,...,^-) = dXji^dXjr + E 

where E is a sum of terms which are products of lower order (i.e. less than order r) 
partial derivatives of the {r*^} and the {w;}. [Note that both the number of such 
summands in E, and the number of such factors in each summand, is bounded above 
by a number depending only on dimM = m and r.] 

Now Theorem A.l can be proven by using an induction argument, based on 
properties A.1.1 and A.1.5. (See also [8;A.1.2.1,A.1.2.2].) 

This completes the proof for Theorem A.l. 

Proof of Theorem A.2. We first remark that property A.2(a) is immediate from 
the construction given for 

/p:(-5a,5a)x5(p,/3)->M 

in the third paragraph of §2. 
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Thus it will suffice to prove property A.2(b). The proof of A.2(b) hinges on the 
8 171       f) 

following claim. For each of the vector fields W — /"^i"^— referred to just prior to 
2=1 

Theorem A.l we may assume without loss of generality that 

A.2.1.   Claim.   There is another set of coordinates xi,X2, • • • ,xm for B™   and 

another collection of positive numbers {Bi} which satisfy the following properties. 
(a) £-(x) = W(x) for all x e B?e. 

(b) Xi(x) = Xi(x) for all i and for all x £ J5?1  with xi(x) = 0. 
9£ 

(c) The {Bi} depend only on the {Bi) and on dimM. 

(d) \dxjld
dx*i...dxjh(

x)\ < Bk for allk and all {ji,..., jk}. 

We shall first use the preceding claim to complete the proof for A.2(b), and then 
we shall verify the claim. 

Let c : R -+ M denote a unit speed parametrization of the leaf of $ containing 
p £ M satisfying c(0) = p. For each i £ Z, we set ti = i-^ and we set pi = c(ti). For 
each i £ Z, we will denote the immersion / : B™ -> M of [8; Corollary A.1.2] which 
maps 0 to pi by 

fi :B™->M 

(i.e., fi is the immersed normal co-ordinate map sending 0 to pi) and we denote the 
vector field W and the coordinates xi,...,xm associated to fi by A.2.1 by 

Wi and £»,!,...,£i>m. 

Note that, by [8; Corollary A. 1.3], there is for each i £ Z a smooth embedding 

which is uniquely determined by the following properties. 

A.2.2.(a) filB^^fi^ohi. 

(b) Xi+i ohi(0) = (-p-,0,0,...,0), wheieXi+1 = (xi+iii,...,Xi+itm). 

We note also that for (3 > 0 sufficiently small (i.e. f3 << e), and for i £ Z satisfying 
\i\ < 94§, there is a smooth embedding 

9i:[ti-i,ti]xBip,0)^B^ 

uniquely determined by the following properties. 

A.2.3. (a) fp\[ti-1,ti]xB(p,l3)=fiogi. 
(b) gi{ti)=0. 

For each i £ Z there are functions m : B1^1 -> R771-1 and Vi : B7^'1 -> R which 

are uniquely determined by the following properties. [£?™_1 denotes the open ball of 

radius j^e centered at the origin in R™-1]. 
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A.2.4. For each q e B±   we have that 

£t+i,i 0hi(q) =xiA(q) - (^e)+Vi(xii2(q),-..,Xiim(q))] 

and 

Xi+ij+i o hi{q) = ^"(£1,2(0), • • • ,Xiim(q)) 

for all j — 1, 2,..., m — 1, where w^ = (i/^i,..., iAi>m_i). And for each i G Z satisfying 
|2| < 94§ there are functions n : ^J-1 -> R771"1 and 5^ : E^-1 -> R which are 

uniquely determined by the following properties. [Here B™"1 denotes the open ball 
of radius /? centered at the origin in Rm-1.] 

A.2.5. For each q £ [^~i,*i] x B(p,/3) we have that 

^,1 0^(g) =2/i(g) -;ti + Si(y2(q),---,ym(q))l 

and 

^ij+i 0 P*(9) = ri,j(y2{q), • • • ,ym(q)) 

for all j = 1,2,.. .,m - 1, where r* = (r^i,... ,ri}m-i). 

The reader can easily check that there exists the following important relations 
between the {ui}} {vj, {rj, {5^}. 

A.2.6. (a) For alii > 1 we have that 

ri - (ui-i o Ui-2 o ... o ixi) o n; 

and for alii < 1 we have that 

U = (txr1 o ^ o ... o u"1) o n. 

(b) For all i > 1 we have 

i-l 

5i = si 4- ^J^j 0 {UJ~I 
0 ^j-2 0 • • • 0 ^1) 0 ri] 

and for alH < 1 we have that 

0 
Si = 5i. - ^Vj o (uj1 O UJ+! o ... o UQ

1
) O n. 

Note also that there will be no loss of generality in assuming that si 
and ri satisfy the following properties. 

(c) n — identity. 
(d) sl = 0. 

By applying the inequalities of A.2.1(d) (to each of the coordinate systems x^i, 
...., Xiim5 i € Z), and by applying the inequalities of [8;A. 1.3(c)] (to each of hi), it 
is easy to deduce that the functions u^Vi satisfy the following inequalities, for some 
collection of positive numbers D = {Di] which depend only on the A = {Ai) and on 
dimM. Let xi,... ,xm_i denote the standard coordinates for R771-1. 
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A.2.7.  For all x e B7^1, fc, {ji, J2,. • • Jk} we have that 
10 c 

and 

vxji • - • vxjk 

■       dkVi 

dxj^ ... dx 

(x)\ <Dk 

(x)\<Dk. 
3k 

Now we can use A.2.6 and A.2.7 to deduce the following inequalities for the r^s^. 

A.2.8. There exists a collection of positive numbers D = {5;}, which depend 
only on the A = {A;}, a, and dimM, such that for all £ G J3(p,/?),i, k, {ji, J2, • • • ,jk} 
we have: 

(b) \a^k-(x)\ < Dk. 

To see this we note that A.2.6 and A.2.7 together imply that 

■       dkri 
OXj^ . . . OXjk 

and 
■       dk

Si 

UXji . . . OXjk 

ix)\ <Dk}i 

(x)| < jDjb.i, 

where Dk,i is a positive number depending only on the {DQ, DI,..., Dk} of A.2.7, and 
on the integer z, and on dimM. Since r2-,5i are only defined if \i\ < 94^, and since 
e > 0 need only depend on A = {Ai} and m =dimM (cf. [8;A.1.1, A.1.2]), we may 
define the{Dk} of A.2.8 by 

Dk =  maximum!JDk i : lil < 94 —} 

and be assured (by the two preceding inequalities) that A.2.8(a)(b) both hold, and 
also be assured that {5^} depends only on the A — {A;}, a, dimM. 

Now we can complete the verification of property A.2(b) as follows. First, by 
appealing to A.2.1(d) and A.2.8 (see also A.2.5), we can deduce that the gi : [ti-i, tj\ x 
B(p,P) —> R™ of A.2.3 satisfy the following inequalities. 

A.2.9. There exists a collection of positive numbers E — {£;}, which depend 
only on A — {^4i}, a and dimM, such that for all y G (-5a,5a) x B{p,P),i,k,{ji,J2, 
...,jk} we have 

1      fl*fr      (y)\<Ek 
dyhr-dyju 

where | | denotes the Euclidean norm on B™. 

Next we note that the metric {gp-jj} of A.2 (which was defined to be the pull back 
along fp : (—5a, 5a) x B(p,f3) -> M of the metric g on M) can also be obtained (on 
[U-i, U] x B(p, /?)) by first pulling g back to B™ along fi : B™ -» M (to get the metric 
{gij} of [8;A.1.1 and A.1.2]), and then pulling, back this {gij} of [8;A.1.1] along the 
map 

0i:[ti-i,*i].x£(p,/3)->Rm. 
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Finally, by appealing to [8;A. 1.1(b)] and A.2.9, together with the preceding remarks, 
we can easily deduce property A.2(b). 

This completes the proof of Theorem A.2, modulo the verification of Claim A.2.1. 

Verification of Claim A.2.1. First integrate the vector field W on B™ to get a 
partial flow ip : S -> B™, where S C R x B™ is the maximal subset of R x B™ on 
which the partial flow ip is well defined. We may deduce from A.l that 

A.2.1.1.  (a) Sc [-2e,2e} x B™. 
(b) [-Ie>Ie]xB^c5. 

We may also deduce from A.l and A.2.1.1 (a), and from the existence theory for 
ordinary differential equations, that ip satisfies the following inequalities. 

A.2.1.2. There is a collection of positive numbers B = {Bi} which depend only 
on the B = {Bi} of A.2.1 and on dimM. For all (t,x) G 5, ft, {ii,j2, • • • ,jk} we have 
that 

dkip 
OXj1 . . . OXjk 

Now we can define the new coordinates xi, X2,..., Xm by 

A.2.1.3. 

Xi{ip(t, (0,a;2,...,xm)) = < 
{  Xi      II 2 > 1 

Note that properties A.2.1(a)(b) are immediate from A.l and from A.2.1.3. Also note 
that it follows from A.2.1.1(b) that the coordinates xi,X2, • • • 3^m are well defined on 
B?/a by A.2.1.3. 
Finally, note that properties A.2.1(c)(d) follow directly from A.2.1.2 and A.2.1.3. 

This completes the verification of Claim A.2.1, and also the proof of Theorem 
A.2. 

Proof of Corollary A.3. We let {2/1,2/2, ■ • ■, 2/m} and {y^ y'2,..., y^} denote the 
coordinates for 

(-5a, 5a) x B(p,/?) and (-5a, 5a) x B(p',f3) 

provided by A.2; and let Qp^jdyidyj and Qp'-ijdyldy'j denote the pull back of the 
metric g on M along the maps fp and fP'. Properties A.2(a) (b) hold for both of these 
pull backs. Thus, for sufficiently small // > 0 (how small is sufficient depends only on 
the {Ci} and on m = dimM), the exponential map for the metric gp.ijdyidyj 

exp : B(y^(3) -► (-5a, 5a) x B(p,j3) 

is a well defined embedding of the open ball of gp.ijdyidyj-vdidius equal fifi centered 
at the origin in T((—5a,5a) x B(p,P))\y] and the exponential map for the metric 
Qp'&jdy'idy'j 

exp7 : B(yf^(3) -> (-5a, 5a) x E(p,,/3) 

is a well defined embedding from the open ball of gp'^^dy^dy'^-v^dms equal /z/3 centered 
at the origin in T((-5a,5a) x B^',(5))\yi. 
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Let B™^ denote the open ball of radius fi(3 centered at the origin of Rm, and let 

f:B^^(-5a,5a)xB(p,f3) 

and 

denote the composition of linear isometrics B™^ ->- B(y,fiP) and Bfy ->> B(y'\fil3) 
with the exponential maps exp and exp', respectively. Let / = (/i,...,/m) be 
the coordinates of / with respect to the 2/1,2/2? ■•• J2/A; coordinates, and let /' = 
(/{J • • • J fin) t)e the coordinates of / with respect to the 2/i>2/2> • • • > 2/fc coordinates and 
let xi, #2, • • •, ^m denote the standard coordinates for Rm. By appealing to properties 
A.2(a)(b), we can verify (as in the proof of [8;A.1.2]) that the maps /, /' satisfy the 
following properties. 

A.3.1. (a) There are numbers {Ci} which depend only on the {d} and dimM. 
For all x G B™p,i, k, {ji,..., jk} we have that 

and 
ftp. 

-(x)\<Ck. 

Let B™^1 C B™p denote the subset of all points q € B™p whose first standard coordi- 
nate vanishes. There is no loss of generality in assuming that the maps / and /' also 
satisfy the following properties. 

(b) f(B™^1) is perpendicular to the first factor of (-5a, 5a) x B(p,/3) at 

2/5 and f'iB™^1) is perpendicular to the first factor of (-5a, 5a) x 
B{P',(3)<ity' 

(c) fpof = fp>of>. 

We may (by A.3.1(b)) define smooth embeddings 

F : (-3a, 3a) x B^f1 -> (-5a, 5a) x B(p,P) 

'dxh ■ ■ ■ 9xjk 

dfl      , 
dxh • • • dxjk 

and 

as follows. 

F' : (-3a, 3a) x B^'1 -> (-5a, 5a) x B(p',P) 

A.3.2.(a) F(t,x)-/(x) + (t,0,0,...,0). 
(b) F'(t,x) — f'(x) + a(t, 0,0,..., 0), where the number a is defined by 

the equation Dfp(-^{y)) = aDfp^-^r^y'))] note that a = ±1. 

It is immediate from A.3.1(a) and from A.3.2(a)(b) that F,F' satisfy the following 
properties. Let F = (Fi,..., jPm) and F' = (i^,..., i^) denote the coordinates of F 
and F' with respect to the 2/1,2/2, • • •, Vk coordinates and the 2/i»2/2 J • • • ? 2/jfe coordinates, 
respectively. 



COLLAPSING FOLIATED RIEMANNIAN MANIFOLDS 493 

(c) For all (t,x) e (-3a, 3a) x B™^1 ,i,k,l,{ji,.. .,jk-i} we have that 

dkFi 

dltdxjl...dxjk_l 

and 

(x)\<Ck + l 

dkF'. 
(x)|<Cfc + l. 

dltdxh ...dxjk_l 

Now we define the map h : (-2a, 2a) x B(p, 5/3) -> (-5a, 5a) x Bfj)', 60) of A.3 
by 

A.3.3. /i = F/o(F-1|(-2a,2a) x B(p,S(3)). 

Note that h is well defined by A.3.3 provided 5 is chosen sufficiently small to assure 
that B(p,5/3) C po /(EJ1"1), where p : (-5a, 5a) x B(p,/3) -> B(p,f3) is projection 

onto the second factor. Note also that property A.3(b) follows easily from A.3.2(c) 
and A.3.3. The verification of property A.3(a) is left as an exercise for the reader (cf. 
A.3.1(b)(c) and A.3.2(a)(b) and A.3.3). 

This completes the proof of Corollary A.3. 

Proof of Theorem A.4- Let h : [0,1] -> (-5a, 5a) x B(p,(3) denote any smooth 
path, and we let P/l>e( ) andP/lj5( ) denote parallel translation along h with respect 
to the Euclidean metric e = 8)dyidyj and the pulled back metric g — Qijdyidyj, 
respectively. Let \engthe(h) and lengthy(h) denote the lengths for h computed in 
terms of the metrics e and g, respectively. Theorem A.4 is an immediate consequence 
of the following claim. 

A.4.1. Claim. There is a number UJ > 1 which depends only on the {Ci} and 
on m = dimM. For any smooth path h : [0,1] —» (—5a, 5a) x B(p,/3) and any unit 
vector 

vGT((-5a,5a)xB(p,p))lm 

we have: 
(a) ®(Ph,g(v)iphAv)) <u{lengthe{h)) 
(b) - lengthe(/i) < lengthg(h) < uj(lengthe(h)). 

Note that A.4.1(b) follows easily from A.2(a)(b). 
To verify A.4.1(a) we first note that A.2(a)(b) imply the Christoffel functions Tfj 

associated to g = gijdyidyj satisfy the following inequalities. 

A.4.2. There is a positive number C which depends only on the {Ci} and dimM. 
For all y € (—5a, 5a) x B(p,/3) and all i,j, k, we have that 

\^Ay)\<c. 

Now A.4.2, together with the classical differential equations for parallel translation in 
the metric g — gijdyidyj, imply A.4.1(a). 

This completes the proof for Theorem A.4. 
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