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HARMONIC ROUGH ISOMETRIES INTO HADAMARD SPACE* 

PETER Lit AND JIAPING WANG* 

0. Introduction. In a paper of Wan [W], he proved that for each holomorphic 
quadratic differential defined on the Euclidean 2-disk, D2, there exists a harmonic 
diffeomorphism from the real hyperbolic plane H^ into itself, such that its Hopf dif- 
ferential is the given holomorphic quadratic differential after representing H^ by the 
Poincare model. In addition, he also proved that this correspondence is one-to-one 
from the set of holomorphic quadratic differentials that are bounded with respect to 
the hyperbolic metric to the set of quasi-conformal harmonic diffeomorphisms from 
H^ onto itself. It is known in the literature that a quasi-conformal diffeomorphism 
of H^, when viewed as a quasi-conformal diffeomorphism of D2, induces a quasi- 
symmetric homeomorphism from S1, the boundary of JD2, onto itself. Conversely, 
every quasi-symmetric homeomorphism of S1 can be extended to a quasi-conformal 
diffeomorphism of i^ by identifying the geometric boundary of H^ with 51. Inspired 
by all these, R. Schoen [S] posed the following conjecture: 

CONJECTURE 0.1. The set of quasi-symmetric homeomorphisms of S1 has a one- 
to-one correspondence to the set of quasi-conformal harmonic diffeomorphisms of H^. 

Specifically, this conjecture asserts that any quasi-symmetric homeomorphism of 
S1 can be extended uniquely to a quasi-conformal harmonic diffeomorphism of H^. 
In [L-T 3], Tarn and the first author confirmed the uniqueness part of this conjecture. 
They showed that if two quasi-conformal harmonic diffeomorphisms of H^ share the 
same boundary map, then they must be identical. Combining with Wan's theorem, 
the mapping which sends a bounded holomorphic quadratic differential to the quasi- 
symmetric homeomorphism of S1 - via the quasi-conformal harmonic diffeomorphism 
- is injective. Their argument relied on a precise version of the Bochner formula 
concerning the distance function between two harmonic maps and the fact that the 
energy density has a uniform positive lower bound for a quasi-conformal harmonic 
diffeomorphism of H^. However, it is unclear whether the last fact remains valid in 
higher dimension. 

In a recent joint paper of Tarn and Wan [T-W], they proved that this mapping is 
analytic and its image is open. On the other hand, surjectivity of this mapping still 
remains an open question. It is worth pointing out that a successful verification of 
the surjectivity will give a parametrization of the universal Teichmuller space by the 
space of bounded holomorphic quadratic differentials (see [T-W]). 

In general, the Dirichlet problem at infinity for proper harmonic maps between 
two real hyperbolic spaces has been extensively studied by Tarn and the first author 
in a series of papers [L-T 1], [L-T 2] and [L-T 3]. When the boundary map is C1 and 
has nowhere vanishing energy density, they obtained rather complete and satisfactory 
results concerning the existence, uniqueness and regularity of the proper harmonic 
extensions. Later, Donnelly [D 1, D 2] extended some of their results to arbitrary 
rank-1 symmetric spaces. 
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The purpose of this paper is to formulate a generalization of Schoen's conjecture 
to higher dimensional real hyperbolic spaces and other rank-1 symmetric spaces. A 
major advantage in dimension 2 over higher dimensions is that if the boundary map of 
a harmonic map from H^ onto itself is a homeomorphism, then the harmonic map must 
be a diffeomorphism. The lack of this phenomenon and other 2-dimensional properties 
of harmonic maps makes the class of quasi-conformal harmonic diffeomorphisms too 
restrictive in higher dimensions. It turns out that the notion of harmonic rough 
isometry is more natural than the notion of quasi-conformal harmonic diffeomorphism 
in dimension greater than 2. We would also like to point out that in his proof of 
the celebrated rigidity theorem, Mostow [M] made extensive use of pseudo-isometries 
which are slightly more restrictive than rough isometrics. Though the two definitions 
are quite similar, there are however some subtle differences which are important in 
the course of development. 

In the first section, we will develop some basic properties of rough isometrics 
between two Hadamard spaces. Here a Hadamard space is a nonpositively curved 
and geodesically complete metric space. For metric spaces, we adopt the definition of 
curvature bounds in terms of triangle comparisons with the model spaces. The class of 
Hadamard spaces is considerably more general than Cartan Hadamard manifolds and 
includes many infinite dimensional objects such as Hilbert spaces and non-locally com- 
pact buildings. Throughout this paper, unless otherwise indicated, either the domain 
or the target metric space is assumed to have strictly negative curvature. This extra 
assumption is necessary for showing that a rough isometry induces a boundary home- 
omorphism between the geometric boundaries of the domain and the target spaces. 
Moreover, two rough isometrics induce the same boundary map if and only if they are 
bounded distance from each other. When M — N and it is a finite dimensional rank-1 
symmetric space, combining with an argument of Mostow [M], we conclude that the 
induced boundary map of a rough isometry must be quasi-conformal over the corre- 
sponding division algebra K associated with M. We refer the reader to [M] for the 
precise definition. It should be pointed out that when K = E or the symmetric space 
M is the real hyperbolic space iJ^, this definition coincides with the standard one and 
the induced boundary map is quasi-conformal between the standard sphere 5n~1 and 
itself. In the following, when a map between the geometric boundaries of a rank-1 
symmetric space is referred to be quasi-conformal, it is understood to be so over the 
corresponding division algebra K associated with the symmetric space. Conversely, 
an argument by Tukia [T] can be applied to show that every such quasi-conformal 
map of the geometric boundary between a rank-1 symmetric space and itself can be 
extended into a quasi-isometry (hence a rough isometry). Restricting ourselves to 
rank-1 symmetric spaces, we post the following generalization to the conjecture of 
Schoen. 

CONJECTURE 0.2. Let M be a rank-1 symmetric space. Then every quasi-con- 
formal map from the boundary at infinity of M to itself can be extended uniquely to a 
harmonic rough isometry from M to itself. 

In view of the preceding results, the conjecture is equivalent to saying that there 
exists a unique harmonic map of bounded distance from every rough isometry of M. 
Certainly, the same question can be asked for more general domain and target spaces 
other than rank-1 symmetric space. When both the domain and target are the same 
higher rank irreducible symmetric space of noncompact type, this question admits a 
complete and affirmative answer. In fact, a recent result of Kleiner and Leeb [K-L] 
says that every rough isometry between such a space is of bounded distance away from 
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an isometry which is clearly a harmonic map. Moreover, Theorem 2.7 implies that it 
is unique. To verify our claim that Conjecture 0.2 is a generalization of Conjecture 
0.1, we show (Theorem 1.8) that a harmonic map between the real hyperbolic plane 
iJl and itself is a quasi-conformal diffeomorphism if and only if it is a rough isometry. 
It is pertinent to point out that the existence part of Conjecture 0.2 is valid when 
the rank-1 symmetric space is either a quaternionic hyperbolic space or the Cayley 
plane. This follows immediately by the following theorem of Pansu [P 1], due to the 
simple fact that an isometry is a harmonic map. Hence the remaining open cases are 
the real hyperbolic spaces H^ and the complex hyperbolic spaces H^. As supporting 
evidence to the conjecture, we point out that Tarn and the first author solved the 
Dirichlet problem for proper harmonic maps between real hyperbolic spaces when the 
boundary map is C1 with nonvanishing energy density. In particular, if both the 
domain and the target are the same real hyperbolic space H^ and the boundary map 
is further assumed to be quasi-conformal, then it can be verified that the resulting 
harmonic map between H^ and itself is a rough isometry. A similar statement holds 
for the case of complex hyperbolic space from the work by Donnelly in [D 1]. 

PROPOSITION 0.3 [P 1]. Let M be either a quaternionic hyperbolic space HQ or 
the Cayley hyperbolic plane H^. // u : M —> M is a rough isometry, then there exists 
an isometry v : M —>■ M such that u is of bounded distance from v. 

In section 2, we will prove that the uniqueness part of Conjecture 0.2 is valid. 
In fact, uniqueness holds in the more general setting when M is a Cartan-Hadamard 
manifold and iV is only assumed to be a Hadamard space with strictly negative cur- 
vature, and both M and iV have cocompact isometry groups. In this case, a harmonic 
rough isometry between M and iV must be uniquely determined by its boundary map. 
Combining with Pansu's theorem [P 1], this implies that (Corollary 2.6) a harmonic 
rough isometry between HQ (or H^) and itself is an isometry. Recall that a geometric 
version of Mostow's rigidity theorem asserts that if Si and S2 are two compact, rank-1 
locally symmetric spaces of the same type that are homeomorphic to each other, then 
they are in fact isometric. By applying the Eells-Sampson theorem, if one deforms the 
homeomorphism to a harmonic map u : Si —> S2, then Mostow's theorem follows if 
we can show that the harmonic map is an isometry. Lifting u to a map u : M —> M 
between the universal coverings of Si and S2, it follows that u is also harmonic. The 
equivariant property of u implies that it is also a rough isometry. At this point, if 
we can prove that u is an isometry, then u itself must be an isometry. Corollary 2.6 
asserts that this is indeed the case when M is either HQ or H^. Since we do not 
require the harmonic rough isometry to be equivariant for the validity of Corollary 
2.6, we can view this as a generalization of Mostow's theorem for the trivial group in 
this setting. Using a recent result of Kleiner and Leeb [K-L], we also obtain a similar 
generalization to the higher rank case. 

Finally, in the last section, we prove the existence part of Conjecture 0.1 for a 
certain class of quasi-symmetric homeomorphisms. In particular, a quasi-symmetric 
homeomorphism / : 51 —> S1 is extendable to a quasi-conformal harmonic diffeomor- 
phism of H^ if / has isolated points which are not C1 or have vanishing energy density, 
and near each of those points / has an expansion of the form ra/i(r) for some positive 
C1 function h. 

The authors would like to thank Rick Schoen for suggesting us to investigate in 
the direction of harmonic pseudo-isometries in higher dimensions. Also, we would like 
to thank him for pointing out the work of Pansu. The second author would like to 
express his gratitude to Bernhard Leeb for sending him the reference [K-L], and also 
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to Leon Simon for his interest in this work. 

1. Properties of Rough-Isometries. In this section, we will prove some basic 
properties of rough isometries between two Hadamard spaces. Let us begin by recalling 
the definition of a rough isometry. 

DEFINITION 1.1. Let X and Y be metric spaces. A map u : X -> Y is said to be 
a rough isometry if there exist positive constants k, b and c, and a map v from Y to 
X such that, 

(A) k~1d(xi,X2) — b < d(u(xi)iu(x2)) < kd(xi,X2) + b 

for all #1, X2 G X, and d(u o v(y),y) < c for all y G Y. In this case, we say that the 
map u is a (A;, b) rough isometry and that X and Y are rough isometrically equivalent. 

It is easy to check that the map v in the preceding definition is also a rough 
isometry from Y to X and d(v ou(x),x) < c for all x G X. Note that in general a map 
u which satisfies (A) and maps X onto Y is a rough isometry from X to Y. In fact, we 
can define v : Y —> X by v(y) G u~1(y) for y G Y. Then it is easily verified that for all 
ye Y, d(uov(y), y) < c. In fact, we may take constant c to be zero. A result of Mostow 
[M] says that a map satisfying (A) between two Cartan Hadamard manifolds of the 
same dimension must be onto if it is also continuous. In particular, this implies that 
any continuous map satisfying (A) between two such manifolds is a rough isometry. 
We would like to point out that if we replace the bounds of d(u(xi),u(x2)) in the 
definition of rough isometry by 

k~1d(xi,X2) — b< d(u(xi),u(x2)) < kd(xi,X2), 

then the map u is said to be a pseudo-isometry. One obvious difference in the two 
definitions is that a rough isometry may not be continuous while a pseudo-isometry 
is necessarily Lipschitz. 

For metric spaces, one may use triangle comparisons to define curvature bounds. 
This idea seems to be due to A. Wald [Wa] and it has been developed by a Rus- 
sian school of mathematicians centered around A. D. Alexandrov. Let us recall the 
definition of a metric space with a curvature upper bound. 

DEFINITION 1.2. Let M^ be the two dimensional model space of constant cur- 
vature k. A complete metric space (X,d) is said to have a curvature upper bound k, 
denoted by Kx < k, if the following two conditions are satisfied: 

(1) (X,d) is a length space, i.e., for any two points P,Q G X, the distance 
d(P,Q) is realized as the length of a rectifiable curve connecting P and Q. In this 
case, such a distance realizing curve is called a geodesic. 

(2) Let P, Q, R be three points in X and choices of geodesies 7P)Q of length r, 
1Q,R of length p, and ^R^P of length q connecting the respective points. If k > 0 we 
assume that r'+p + q < 27r/\/k. For any 0 < A < 1 let Q\ be the point on JQ^R such 
that 

'd(Q\,Q) = \p, 

and 

d(Qx,R) = (l-\)p. 

Consider the possibly degenerate triangle in M| whose sides have length given by p, 
q, r and opposite vertices P, Q, R, there is a corresponding point Q\ such that 

d{Qx,Q) = \p, 
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and 

d(Qx,R) = (l-\)p. 

Thend{P,Qx)<d(P1Qx)- 
A complete metric space is said to be non-positively curved (NPC) if Kx < 0. 

Furthermore, an (NPC) space (X, d) is called a Hadamard space if it is geodesically 
complete, namely, passing through any two points in X there exists a (necessarily 
unique) geodesic line. By the completeness of (X,d), this is equivalent to require 
that any geodesic of (X,d) can be locally extended. Clearly, every Cartan Hadamard 
manifold is a Hadamard space. As a trivial infinite dimensional example, a Hilbert 
space is a Hadamard space. 

Let I be a geodesic line in an (NPC) space (X, d). Then it is easy to see that for 
every point p £ X there exists a unique point q G I such that d(p,q) = d(p,l). We 
define a map 717 from X onto / by 717 (p) = q and call TT/ to be the orthogonal projec- 
tion map from X onto l. Let us first state a proposition concerning the orthogonal 
projection map 717 which is well-known in the Riemannian manifold setting and can 
be proved by a standard Jacobi field argument. Here the argument is slightly more 
complicated and it is given in the appendix. 

PROPOSITION 1.3. Let (X,d) be a metric space with curvature Kx < —a2 < 0. 
Let L be a rectifiable curve in X and of distance R away from the geodesic line I. 
Then the orthogonal projection map 717 from X onto the geodesic line I contracts the 
length of L by a factor cosh(aR), i.e. |7r/(L)| < C0J^[R^ ■ 

One immediately sees from the above proposition that the orthogonal projection 
map TT/ is a Lipschitz map of Lipschitz constant 1 when X is an (NPC) space. 

PROPOSITION 1.4 [E]. Let M and N be Hadamard spaces such that either KM < 
—a2 or Kpj < —a2 for some a > 0. Let u be a rough isometry between M and N. For 
a geodesic segment (3 with end points mi and 777,2 in M, let 5 be the geodesic segment 
connecting u(mi) and 1/(7772) in N. Then there exists a constant c independent of (3 
such that the Hausdorff distance <ifl-(w(/3),<5) < c. 

The following lemma readily follows from Proposition 1.4 if A7" is locally compact. 
However, a Hadamard space in general is not necessarily so and some argument is 
needed. 

LEMMA 1.5. Let M and N be Hadamard spaces such that the curvature of N 
satisfies Kjy < —a2 for some a > 0. Let u be a rough isometry between M and N. 
Then for any geodesic line /3 in M, there exists a unique geodesic line 8 in N such 
that the Hausdorff distance dH(u(f3),5) < c, where constant c is independent of (3. 

Proof. Let (3 be a geodesic line in M. We parametrize /? by arclength over the 
interval (—00,00). For each t > 0, let /3t be the geodesic segment /3|[_^]. Let St be 
the geodesic segment in N determined by u((3(—t)) and u{f3{t)). Then Proposition 1.4 
implies that there is a constant c independent of /? and t such that dH{u([3t),St) < c. 
Choose a sequence of numbers U such that ti > kb and £;+i > U -f A:(4Z -f b -f 2c). Let 
pi — (3t. and Si — Stt.. We claim that the sequence of geodesic segments Si converges 
to a geodesic line 5. Then it is evident that dH(u(P), S) < c. Note that for 0 < i < j, 

(1.1) sup<i(x,5j) < sup d(x,u(Pj)) + dH{u(Pj),Sj) 
xESi x€di 

< supd(x,u(Pi)) + dH(u(pj):Sj) 
xedi 

<dH{Suu{Pi))+dH{u{PJ),Sj) 

<2c. 
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Let li be the geodesic line containing 5i. Then we have 7r;.+1(^) C Si+i. In fact, 

(1.2) d(u(/3(ti))X0(ti+i))) > fc-1^/^),/^!)) - b 

> 2c 

and 

(i.3) diumMMPi-u+i))) > k^dm&K-u+i)) - b 
>k-1{ti+1+ti)-b>2c 

In view of (1.1), (1.2) and (1.3), one concludes that nii+l(u((3(ti))) G Si+i. Similarly, 
7r/i+i(w(^(—ti))) G £;+i. Thus, 7r/i+1((5i) C Ji+i. Now pick up a point xi G Si and 
define a sequence of points Xi G Si inductively by xi+i = 717.+1 (xi). We first show that 
the sequence of points x^ converges to some point x G N. For any i > 1, let ji be the 
segment of Si joining Xi to u(fi(ti)). Let Li = |7i| be the length of 7;. In view of (1.1) 
and the choice of U, 

(1.4) Li = dixiMPiU))) > diTrMPiU-iMMPiU)) 

>d(u(0(ti-1))M0(ti)))-2c 

> k~l{ti -ti_i) -b-2c 

>4*-1. 

Denote the length of 7i7i+1(7i) by i^j. Then by (1.1), 

(1.5) Hi>Li- d(xi, li+1) - d{u((3(ti)),li+l) 

>Li- 4c. 

Let Ri be the distance between 7^ and li+i. Proposition 1.3 then implies that 

(1.6) HiCos\i{aRi) <Li. 

Using (1.4) and (1.5), we obtain from (1.6) that 

a Li — Ac     V Li - 4c 

for some constant Ci depending on a and c only. Thus, for a given z, there exists a point 
y G Si between Xi and u(/3(ti)) such that d(y1 Zi+i) < Ci2~\ The same argument shows 
that there exists a point z G Si between Xi and u(f3(—ti)) such that d{z, h+i) < ci2-\ 
The convexity of the function (i(a;, U+i) then implies that 

(1.7) d(xi,Xi+i) = d(xi,li+i) <ci2~\ 

This implies that £; is a Cauchy sequence and by the completeness of iV, Xi must 
converge to some point x G N. 

To show the convergence of ^, we parametrize Si by arclength over an interval 
[-bi,ai) containing 0 such that ^(0) — x^ By (1.4), one sees that both en and bi goes 
to infinity. For each fixed real number s, we will show that lim^oo Si{s) exists in iV. 
In the following, we give the argument for the case that s > 0. For any i > 1, by (1.1), 
there exists a point P G Si+i such that 

(1.8) d(u(P(ti)),P) = diuiPiU)),^!) < 2c. 
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Consider the ordered sequence of points Xi, u(P(ti)), P and Xi+i. Since the curvature 
KN < —a2, iV in particular is an (NPC) space. By the quadrilateral comparison 
theorem (see [K-S] or the appendix), there exists a convex Euclidean quadrilateral 
ABCD in E2 satisfying \AB\ = d^X/^;))) = Li, \BC\ = d(^(/3(^)),P), \CD\ = 
d(P, Xi+i) and \DA\ = d(xi+i, xi) such that if we let E and F be the points on the sides 
AB and CD respectively with \AE\ = A and \DF\ = /z, then d{Si{X)Ji+1(fi)) < \EF\. 
In particular, that shows the angles ZADC > ir/2 and /.BCD > 7r/2. Choose points 
G and J on the sides AB and CD, respectively, such that \JD\ = s and that GJ 
is perpendicular to CD. Let i? be the projection point of A onto the line passing 
through C and D. Then 

|iJJ| = \HD\ 4- |DJ| < \AD\ + s 

Let K be the point on AB such that if C is perpendicular to CD. In case ZABC > 7r/2, 
we see that \AH\ > \GJ\. In this case, we conclude that 

\GJ\ < \AH\ < \AD\ < ci2-\ 

If ZABC < 7r/2, then \KC\ < \BC\. Let us then consider the quadrilateral AKCH. 
Since AH, GJ, and KG are all perpendicular to HC, we conclude that 

_ |Aff||jc|    lirqiffJI 
1     '"     \HC\ \HC\ 

\BC\\HJ\ 
< \AD\ + 

\CD\ 

,      (2c)(c12-
1 + a) 

SClZ     + \CD\ 

where we have used (1.7) and (1.8). However, since 

\CD\ > \AB\ - \AD\ - \BC\ 

>4i-1 -c^-*-2c 

this asserts that 

(1.9) \GJ\ < c(s)2-i 

for some constant c(s) depending only on s. Finally, let T be a point on the side AB 
such that \AT\ = s. Then using (1.7) and (1.9), we obtain 

(1.10) <*(*(*),*+!(«))< |7V| 

< \GJ\ + \GT\ 

<|GJ| + ||GA|-|^T|| 

= |GJ| + ||GA|-|J2?|| 

< \GJ\ + \AD\ + \GJ\ 

< c{s)2-i. 

It is now clear that (1.10) implies that the limi^oo 8i(s) exists. 
To show the uniqueness of such geodesic line 5, let 5i and ^ be two geodesic 

lines parametrized by arc-length such that <i#(u(/3),<5j) < c for i = 1 and 2. This 
implies that d/f(<5i,<52) < 2c.  Using Proposition 1.3, one shows that for any ii and 
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^2, d(^i|[*i,£2]>^2) -> 0 as £2 — h -> 00. In particular, liminf^oo d(5i(t), J2) = 0 
and liminf^-oo d{5i(t),52) — 0. Convexity of the function &(x,&2) now implies that 
d(<5i(£),<$2) '= 0 for all t. Hence, b\ = 62, and the proof is complete. 

In the following, we will use Lemma 1.5 to discuss the behavior of a rough isometry 
at the infinity. For an (NPC) space, one defines its geometric boundary as in the case 
of Cartan Hadamard manifolds. Let X be an (NPC) space. Two geodesic rays Pi and 
P2 of X are defined to be equivalent if their Hausdorff distance dniPiifo) is finite. 
Then the geometric boundary of X is the set of equivalence classes of geodesic rays 
and it is denoted by d^X. The geometric boundary d^X is also referred to be the 
sphere at infinity for the space X. It is clear that for x G X and p G d^X^ there 
exists a unique geodesic ray emanating from x which represents p. Thus, the pointed 
Hausdorff topology on rays emanating from x G X induces a topology on d^X. It is 
easy to see that this topology is independent of the base point x. In the following, it 
is assumed that dooX carries such a topology. When (X, d) is a Hadamard space, one 
checks that d^X is homeomorphic to the unit sphere centered at an arbitrary point 
x G X. Let u, M and iV be the same as in Proposition 1.4. Applying Lemma 1.5, one 
concludes that for a geodesic ray /3 emanating from x in M, there exists a geodesic 
ray 8 in N emanating from u{x) such that dniudS)^) < c, where c is a constant 
independent of /?. 

PROPOSITION 1.6. Let M and N be Hadamard spaces. Suppose that either 
KM < —a2 or Kjy < —a2 for some a > 0. Then every rough isometry u : M -> N 
induces a homeomorphism between the spheres at the infinity. Moreover, two such 
rough isometrics ui and U2 between M and N induce the same boundary map at the 
infinity if and only if d(ui(x),U2(x)) < c for all x G M. 

Proof. Fix a point x in M. For p G dooM, let ft be the geodesic ray emanating 
from x which represents p. By the remark following Lemma 1.5, there exists a geodesic 
ray 8 emanating from u(x) such that dH{u((3),8) < c, where c is independent of /?. 
Let q G <9ooN be the point represented by the ray 8. Then </>(p) = q defines a map 
from DOQM to dooN. It is easy to see that 0 is a surjective homeomorphism. 

To prove the second conclusion, note that it is clear that ui and U2 induce the 
same boundary map if d(ui)U2) < c for some constant c. Conversely, suppose ui and 
U2 induce the same boundary map at infinity. We first assume that Kjy < — a2 for some 
a > 0. This assumption asserts that N has more than one geodesic line. In particular, 
d^N has more than two points. Thus, by the surjectivity of the induced boundary 
map of ui, we conclude that ^M contains more than two points. Therefore, for 
every p G M, there exists a geodesic line li in M passing through p and a point x G M 
such that x is not on the line Zi. We parametrize li over (—00, 00) such that li(0) = p- 
Let L be the broken geodesic connecting Zi(—1), x and li(l). By the continuity of 
the orthogonal projection map TT^, one concludes that TT/^L) is connected and hence 
must contain point p. In particular, one finds a point y G L such that TT^ (y) = p. It is 
clear that y is not on the line Zi. Let Z2 be the geodesic line passing through p and y. 
It is then easy to see that TT^ (Z2) = p as M is an (NPC) space. By Lemma 1.5, there 
exist geodesic lines 71 and 72 in iV such that dif (ui(Zi),7i) < c and dn(^(h),^) < c 

for i = 1, 2. In particular, we have ui(p) G Tc7i 0X^72 and 1*2 (p) £ Tcji nTc72, where 
Tcji is the tubular neighborhood of 7; of size c, i = 1 and 2. Let vi and V2 be two 
rough isometrics from N into M such that d(uiOVi(w),w) < f and d(vi oui(z), z) < f 
for all z G M and w G N, where / is a constant. Without loss of generality, we may 
assume that Ui and vi are (A:, b) rough isometrics. For z = vi(w) G vi(Tcji), it is easy 
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to see that 

d(z,li) = d(vi(w),li) 

< kd(ui o vi (w), Ui (/i)) + b 

< kd(ui ovi(w),w) +kd(w,'yi) + kdH(ui(li),'yi) + b 

< kf 4- 2kc + b. 

Thus, we conclude that vi(Tc^i) C Teh, where c — kf + 2kc + b. Similarly, we get 
vi(Tc72) C Teh- Since 112(3)) € Tc7i nTc72, this implies that vxfaip)) G Tg/i nTc/2. 
Let us set q — ^1(^2(7?)). If we let gi to be the point vr/^g) and #2 the point 7r/2(g), 
then noting that n^ih) = P we obtain 

d(ui(p),W2(p)) < d(wi(p),wi(g)) +d(ixi(g),U2(p)) 

<kd(p1q) + b + f 

<kd(p,q1) + kd(q,q1) + b +f 

= kd(7Ti1(q2),iTi1 (q)) + A;d(g, /1) + 6 + / 

< kd(q2,q) + kc + b + f 

= kd(q,l2) + kc + b + f 

< 2kc + b + /, 

where we have used the fact that Af is an (NPC) space and the projection TT^ is 
distance decreasing. This completes the proof for the case Kjy < — a2 for some a > 0. 
Now if XM < — a2 for some a > 0, then the preceding argument can be applied to 
show that d(vi(y),V2(y)) < c for all y € N. Thus, for x G M, we conclude that 

d(^i(x),^2(a:)) < kd(vi(ui(x)),vi(u2(x))) + 6 

< kd(x, vi {U2{x))) + kf -{-b 

< kd(x,V2(u2{x))) + kd(v2(u2(x)),vi(u2(x))) + kf + kb 

<kf + kc + kf + kb, 

and the proof is complete. 
In [M], Mostow considered the notion of quasi-conformal mappings over a division 

algebra K and showed that a pseudo-isometry between a rank-1 symmetric space and 
itself that is equivariant with respect to some cocompact group actions must induce a 
boundary homeomorphism which is also quasi-conformal over the division algebra K 
associated with the symmetric space. This conclusion is also valid for rough isometries. 

COROLLARY 1.7 [M]. Let M be a rank-1 symmetric space. If u : M —> M is a 
rough isometry, then u induces a quasi-conformal homeomorphism on the geometric 
boundary of M. 

To justify our claim that Conjecture 0.2 is a generalization of Conjecture 0.1, we 
will show that these two conjectures are equivalent when M = N = H^. 

THEOREM 1.8. Let u be a harmonic map between the real hyperbolic plane H^ 
and itself Then u is a quasi-conformal diffeomorphism if and only if u is a rough 
isometry. 

Proof. First observe that a harmonic rough isometry is a pseudo-isometry, hence 
it will be automatically surjective. Let u be a (&, b) rough isometry. Since u is 
continuous, for every p G H^ and r > 3k2b, we have Bu^(r/k) C u{Bp(r)) (see [M, 
p. 74]). By [J], we know then the Jacobian of u is positive at p. Thus, the Jacobian of 
u is positive everywhere. Since the boundary map induced by u is a homeomorphism, 
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we conclude that u is a diffeomorphism of H^ and itself. On the other hand, since 
u(Bp(b)) C Sw(p)((fc + 1)6), the gradient estimate of Cheng [C] implies that the energy 
density of u is uniformly bounded above by some constant. Now a result of Wan [W] 
says that u must be a quasi-conformal diffeomorphism. Conversely, if u is a quasi- 
conformal harmonic diffeomorphism, then the same theorem of Wan [W] also asserts 
that u has energy density uniformly bounded from above and below by two constants 
Ci, C2 > 0 such that 

ci < e(u) < C2. 

The upper bound implies that 

d(u(x),u(y)) < C2d{x,y). 

The lower bound together with the assumption that u is quasi-conformal implies that 
the differential of u is uniformly bounded away from 0. This gives the estimate in the 
opposite direction, and hence u is a rough isometry. 

2. Uniqueness. In this section, we will prove the uniqueness part of Conjecture 
0.2. In fact, uniqueness holds for general Cartan-Hadamard manifolds with cocompact 
isometry groups. Specifically, we will show that a harmonic rough isometry is uniquely 
determined by its induced boundary map at infinity. Together with Proposition 0.3, we 
are able to conclude that a harmonic rough isometry between a quaternionic hyperbolic 
space ( or Cayley hyperbolic plane) and itself must be an isometry. Notice that we do 
not require the harmonic map to be equivariant with respect to any group action. In 
particular, this can be viewed as a generalization of the Mostow rigidity theorem to 
the universal coverings. 

In the following, we shall consider more generally harmonic maps from smooth 
manifolds into metric spaces. The fundamental theory of this setting has been intro- 
duced and studied by Korevaar and Schoen in their important paper [K-S] . We shall 
show that the aforementioned uniqueness result is also valid for such harmonic maps. 
Let us begin with the following two lemmas which are also of independent interest. 
The idea of their proofs was originated in forthcoming paper of Korevaar and Schoen, 
where they proved that the distance between two harmonic maps is subharmonic, 
however more technical effort is required to deal with the uniqueness situation. 

LEMMA 2.1. Let M be a Riemannian manifold and N an (NPC) space. Let u be 
a harmonic map from M to N. Then Ad2(u(x),p) > 2e(u)(x) weakly, where p is a 
fixed point in N and e(u)(x) is the energy density function of u. 

Proof. Let rj(x) be a nonnegative smooth function with compact support in M. 
Let ti be a compact domain containing the support of 77. For 0 < t < 1, let Ut be the 
map such that for each x G M, ut(x) is on the geodesic segment joining u(x) to p with 

d(ut(x),u(x)) —tr](x)d(u(x))p). 

For x,y G M, consider the ordered sequence of points p, u(x) and u(y). Since iV 
is an (NPC) space, there exists a comparison triangle with corresponding vertices 
P, Q and R in R2 such that d(p,u(x)) = \P - Q\, d(u(x),u(y)) = \Q - R\ and 
d(u(y),p) — \R — F|. Let A and B be the points on the side Pi? and PQ respectively 
such that |JR - A\ — d(ut(y),u(y)) and \Q - B\ = d(ut(x),u(x)). Then we have 

d(ut(x),ut(y))<\A-B\. 
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Direct computation yields 

\A - B\2 = \R- Q\2 - t(V(x) + ri(y))\R - Q\2 

+ t(ri(v) - v{xM\P - Q\2 - |P - R\2) + 0(t2). 

Therefore, 

(P(ut(y),ut(x)) < d2(u(y),u(x)) - t(r](x) + r1(y))d2{u(y),u(x)) 

+ t(Ti(y) - V(x))(d2(u(x),p) - d2(u(y),p)) + 0(t2) 

Integrating and averaging on the subset \x - y\ < e of Q x Q we deduce by letting 
e -> 0 that 

En(ut) < EQ{U) - 2t [ ri(x)e(u)(x)dx 
Q 

t I{Vr}{x),Vd2{u{x),p))dx^O{t2) 
Jn 

Since u is harmonic and ut = u on 50, we have 

EQ(u)<EQ(ut). 

Hence we conclude that 

2 / 7)(x)e{u)(x)dx <-     (Vr){x),Vd2{u{x),p))dx + 0(t). 
Jn Jn 

After letting t —> 0, we derived the inequality 

2 /   r)(x)e(u)(x)dx < - /  (\/r](x),\/d2{u(x),p))dx 
J M JM 

and the lemma is proved. 
LEMMA 2.2. Let M be a complete Riemannian manifold and N a complete metric 

space with Kjy < 0. Let u and v be two harmonic maps from M to N such that d(u, v) 
is constant.  Then either u = v or both u and v have their image lie on a geodesic line. 

Proof. Suppose that u ^ v. For each 0 < t < 1, define map ut such that ut(x) is 
the point on the geodesic segment joining u(x) and v(x) with 

d(ut(x),u(x)) =td(u(x),v(x)). 

We claim that ut is a harmonic map from M into iV. In fact, for any compact smooth 
domain fl C M, let wt be the harmonic map from 0 to N such that wt = ut on <9ft. 
Such wt exists by the fact that N has negative curvature, which in particular is an 
(NPC) space (see [K-S]). From the argument in [K-S], we have 

M{wt, u) > 0,        Ad(wt, v) > 0. 

Hence, the maximum principle implies that 

d2(wt(x),u(x)) < sup d2(wt(y),u(y)) 
yesn 

= sup d2(ut(y),u(y)) 
yesn 

= t2d2(u(x),v(x)) 

for x eft. Thus, 
d(wt(x),u(x)) < td(u(x),v(x)), 
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and similarly, 

d(wt(x),v(x)) < (1 — i)d(u(x),v(x)). 

Triangle inequality implies that 

d(wt(x),u(x)) + d(wt{x),v(x)) — d{u{x)1v{x)). 

Therefore, wt{x) lies on the geodesic segment joining u{x) and v{x) and 

d(wt(x),u(x)) = td(u(x),v(x)). 

The definition of ut implies that ut = wt on ft. In particular, ut must be harmonic, 
and the claim follows. 

We will now show that 

d(u(x),u(y)) = d{ut(x),ut{y)) 

for all x and y in M. More generally, we will argue that if / and g are two harmonic 
maps from M into iV with d(f,g) being constant, then d(f(y),f(x)) = d(g(y),g(x)) 
for all x and y. Let r](x) be a nonnegative smooth function with compact support in 
M. Let ft be a compact domain containing the support of 77. For 0 < t < 1, let ft and 
gt be the maps such that for each x G M, ft(x) and gt{x) are on the geodesic segment 
joining f(x) and g(x) with 

d(ft(x),f(x))^tr](x)d(f(x),g(x)) 

and 

d{gt(x),g(x)) = tr){x)d(f{x),g{x)). 

For x and y in M, consider the ordered sequence of four points f(y), f(x), g(x) and 
g(y). Since N is an (NPC) space, there exists a comparison convex quadrilateral 
with corresponding vertices P, Q, R and S in E2 such that d(f(y),f(x)) = |P - Q|, 
d(/0i0, (/(*)) = 10 " ^1, d(g{x),g(y)) = \R - S\ and d(^(y),/(y)) = |5 - P|. Let 
Pt and 5^ be the points on the side PS such that |P - Pt\ = d(ft{y),f(y)) and 
|5 - St| = d(g(y),gt(y)). Similarly, define Qt and i^ to be the points on the side QR 
such that \Q - Qt\ = d(f(x), ft(x)) and |P - Rt\ = d(g(x),gt(x)). Then we have 

ci(/tW,/t(2/))<l-Pt-Qtl 

and 

d{gt(x),gt(y)) < \St- Rt\. 

Using the fact that |P — 5| = \Q — P|, a direct computation shows that 

\Pt-Qt\2 + \St-Rt\2 

= \P- Q\2 + |5- R\2 - t(T,{x) + v(y))\Q -P + S-R\2 

+ 2t2Mx) -:V(y))(Q - R) +n(y)(Q - P) + v(y)(S - R)\2 

<\P- Q\2 + \S- R\2 - t(T){x) + vivMQ - P\ - \S - R\)2 

+ 4t2Mx) - viytflQ -R\2 + 2V
2(y)\Q - P\2 + 2r1

2(y)\S - R\2}. 



HARMONIC ROUGH ISOMETRIES INTO HADAMARD SPACE 431 

Hence, the quadrilateral comparison asserts that 

d2(Mx),My)) + d2(gt(x),gt(y)) 

<d2(f(x),f(y))+d2(g(x),g(y)) 

-t(V(x)+r](y))(d(f(x),f(y))-d(g(x),g(y)))2 

+ 4t2(r](x)-r,(y))2d2(f(x),g(x)) 

+ 8t2{V
2(y)d2(f(x)J(y))+r1

2(y)d(g(x),g(y))2). 

For a fix point x and a tangent vector Z at x, let us denote expx(sZ) to be the geodesic 
emanating from x in the direction Z. Using a regularity theorem of [K-S], the harmonic 
maps / and g are Lipschitz continuous. Hence, the functions d(f(x):f(expx(sZ))) 
and d(g(x),g(expx(sZ))) are differentiable almost everywhere. Let us denote the 
derivatives with respect to s evaluated at 5 = 0 by |/*(^)| and |<7*(Z)|, respectively. 
Integrating and averaging on the subset \x — y\ < e of ft x Ct and letting e -> 0, we 
deduce that 

En{ft) + EQ(gt) 

<EQ(f)+EQ(g) 

-2t f   r](x)(\MZ)\-\g*(Z)\)2dv(x,Z) + ct\ 
JSQ ISQ 

where SCl is the unit tangent bundle over ft and c is a constant independent of t. 
Since both / and g are harmonic and ft — /, gt = g on <9fi, we have 

ifo(/)<JWt), 

En(g)<En(gt). 

In particular, we conclude that 

77(a:)(|/*(Z)|-|^(Z)|)2d/i(a:,Z)<c*. 
Jss fSQ 

Letting t ->> 0, we have 

/   Tl(x)(\U(Z)\-\g,(Z)\)2dfi(x,Z) = 0. 
JSQ 

Since r)(x) is arbitrary, we conclude that |/*(Z)| = |g*(Z)| for almost all tangent 
vector Z. Clearly, this implies that d(f(y),f(x)) = d(g(y),g(x)) for all x and y. In 
particular, we have d(u(x),u(y)) = d(ut(x),ut(y)) for all x, y and 0 < t < 1. 

Fix any point x G M and let 7 be the geodesic line containing u(x) and v(x). If 
the image of u is not on 7, then there exists y such that ix(y) is not on 7. Consider 
the ordered sequence of four points u(y), u(x), v(x) and v(y). Since N is an (NPC) 
space, there exists a comparison convex quadrilateral with corresponding vertices A, 
B, C and D in E2 such that d(u(y),u(x)) = \A - B\, d(u(x),v(x)) = \B - C\, 
d(v(x)Jv(y)) = \C - D\ aiid.d(v(y),u(y)) — \D - A\. Let At and Bt be the points on 
the side AD and BC respectively such that l-A-Atj - t\A-D\ and \B-Bt\ - t\B-C\, 
then 

\At-Bt\ = \A-B\ 

= d(u(y),u(x)) 

= d(ut(y),ut(x)). 
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Therefore, the quadrilateral ABCD can be isometrically embedded in the space iV. 
This contradicts the assumption that KN < 0, and the lemma follows. 

THEOREM 2.3. Let M be a Cartan Hadamard manifold and N a Hadamard space 
with KM < —a2 < 0. Suppose that both M and N have cocompact isometry groups. 
If u and v are two harmonic rough isometrics from M to N which induce the same 
boundary map at the infinity, then u = v. 

Proof. Let us first observe that since both u and v are rough isometrics from M to 
iV, Proposition 1.6 applies and u and v indeed induce boundary maps at the infinity. 
In fact, Proposition 1.6 shows that both u and v induce a homeomorphism between 
the spheres at infinity of M and iV. Moreover, the assumption that they share the 
same boundary map implies that d(u,v) < c. In particular, the sphere at infinity 
dooN of N is homeomorphic to 5n-1, where n = dimM, which is evidently compact. 
By the fact that iV is a Hadamard space, one easily verifies that the spheres of iV are 
homeomorphic to dooN. This asserts that. iV is locally compact. Harmonicity also 
implies that both u and v are uniformly Lipschitz continuous on M. Indeed, since M 
has cocompact isometry group, there exists a compact subset A in M such that for 
every point x € M there exists an isometry 0 on M with 0(a;) € A. Choose R > 0 
and point p G A such that A C BP(R). For x E M, choose an isometry 0 on M such 
that (j)(x) G A. Then it is clear that 

<P(BX(2R)) = Bm(2R) C BV{4R). 

Note that the map u o (j)~1 is harmonic on B^^R) and its total energy over this 
ball satisfies 

(2.1) EB^QR^UOQ-^^EB^R^U). 

Let 77(2/) = rj(d(x, y)) be a smooth cut-off function on M such that r](y) = 1 on BX(2R) 
and rj(y) = 0 outside the ball BX(4R). Since M is a Cartan Hadamard manifold with 
cocompact isometry group, it is easy to see that \Arj(y)\ < c(R). Applying Lemma 
2.1 and using the fact that u is a (k, b) rough isometry, we have 

(2.2) EBx{2R)(u)= f e(u)(y)dy 
BX(2R) 

< / 7]{y)e(u){y)dy 
JBX(AR) 

<\ f d2(u(y),u{x))ArJ(y)dy 
z JBX{AR) 

<c(R)(4kR + b)2 

= c(R,k,b). 

By Theorem 2.4.6 in [K-S], we conclude from (2.1) and (2.2) that uo(j)~l is uniformly 
Lipschitz continuous on B^^ (R) with Lipschitz constant bounded by a constant only 
depending on R, k and b. Thus, u is Lipschitz continuous on BX(R) with Lipschitz 
constant bounded by-c(R,k,b). Since x is arbitrary, we conclude that u is uniformly 
Lipschitz continuous on M. The same argument also shows that v is uniformly Lip- 
schitz continuous on M. 

Since d{u,v) < c, we may choose Xi € M such that 

lim d(u(xi),v(xi)) = sup d(u(x),v(x)). 
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By assumption that both M and. ..iV have cocompact isometry groups, there exist 
isometries fa on M and ^ on iV such that (f)^l(xi) G A and ipi(u(xi)) G B, where A 
and B are two fixed compact subsets of M and N respectively. Consider now 

fi = ipi o M o ^ 

and 

^ =lpiOVofa. 

It is clear that both /^ and gi are (A:, 6) rough isometries for some (A;, b) independent 
of i as both u and v are rough isometries. Let yi = 0^1(xi) G A. The compactness 
of 4 implies that, by choosing a subsequence which we also denote by {yi}, yi -> y. 
Note that 

/t(2/i) =^« 0uofa{yi) 

= i)i{u(xi)) G JB 

and 

d(My)Ji(yi)) <kd(y,yi) + b. 

Thus, by the compactness of Z? and the fact that yi -* y, we conclude that /;(?/) is a 
bounded sequence. Since N is locally compact, we can find a convergent subsequence of 
fi(y), also denoted by fi(y). Together with the fact that fi are (&, 6) rough isometries 
and N is locally compact, it follows that a subsequence of /;, also denoted by fi, 
converges to a map / and the convergence is uniform on compact subsets. Since 
fi has uniformly bounded Lipschitz constants, / is also a harmonic rough isometry. 
Using the fact that 

d{fi,9i) = d(u,v) < c, 

by further choosing a subsequence, we conclude that gi also converges to a harmonic 
rough isometry g. Because both u and v have bounded Lipschitz constants, we also 
see that 

d{f(y),g{y)) = lim d{fi{y),gi{y)) 
i—>oo 

= lim dtyi o u o fa{y), fa o v o fa{y)) 
i—yoo 

= lim d{uo(t)i(y),vofa(y)) 
i—>oo 

> lim d(w o fa(yi),vo fa(yi)) 

- lim d(w ofa{y),uo fa{yi)) 

- lim divofa^tvofafa)) 

> lim d(w(a;i),v(a;i)) 

-2c lim d(fa(y),fa(yi)) 
i—too 

However, 

= sup d(u(x),v(x)). 
xeM 

d{f,g) = lim d(fi,gi) = d(u, v) 
2—>00 
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implies that function d(f,g) achieves its maximum at y. Since / and g are harmonic 
and N is an (NPC) space, an argument in [K-S] showed that 

Ad(/,0)>O. 

Hence the maximum principle implies that d(f, g) must be a constant function. The 
assumptions that / is a rough isometry and iV has negative curvature imply that the 
image of / does not lie in a geodesic line. The preceding lemma asserts that u = v, 
and theorem is proved. 

COROLLARY 2.4. Let Mn and Nn be Cartan-Hadamard manifolds with cocom- 
pact isometry groups. Suppose that the sectional curvature of N is strictly negative. 
Let u and v be two harmonic maps from M to N satisfying (A) such that they induce 
the same boundary map at the infinity.  Then u = v. 

Proof. Since u and v are harmonic maps, they both are continuous maps satisfying 
(A) between Cartan-Hadamard manifolds of the same dimension. Lemma 10.1' of [M] 
implies that u and v must map M onto N, hence u and v both are rough isometrics 
between M and iV. Since the sectional curvature of N is negative and N has a 
cocompact isometry group, the sectional curvature of iV satisfies KN < -a2 for some 
a > 0. Therefore, Theorem 2.3 applies and u = v. 

If M and N are two Cartan-Hadamard manifolds with strongly negative sectional 
curvatures, i.e., -b2 < KM, KN < —a2 < 0, then a result of Gromov [G] implies that 
every quasi-confermal diffeomorphism u : M -> iV is uniformly Holder continuous. 
Since u~l is also a quasi-confer mal diffeomorphism from N onto M, u~1 is uniformly 
Holder continuous/An easy argument then implies that the map u is a rough isometry 
between M and iV as pointed out in [P 2]. Applying Theorem 2.3 to this setting, we 
have the following corollary. 

COROLLARY 2.5. Let M and N be Cartan-Hadamard manifolds whose sectional 
curvatures are strongly negative and both M and N admit cocompact isometry group 
actions. Then every quasi-conformal harmonic diffeomorphism from M onto N is 
uniquely determined by its induced boundary map at infinity. 

Combining Proposition 0.3 with Corollary 2.4, we obtain the following result 
which may be view as a generalization of Mostow's rigidity theorem to the trivial 
groups for the quaternionic hyperbolic spaces or the Cayley hyperbolic plane. 

COROLLARY 2.6. Every harmonic rough isometry between a quaternionic hyper- 
bolic space HQ and itself or between the Cayley hyperbolic plane H^ and itself is an 
isometry. 

Using a recent result of Kleiner and Leeb [K-L], we can also generalize this result 
to the higher rank case. 

THEOREM 2.7. A harmonic rough isometry between an irreducible symmetric 
space of noncompact type of rank at least two and itself is an isometry. 

Proof. Let M be an irreducible symmetric space of noncompact type of rank 
r > 2. Let u be a harmonic rough isometry between M and itself. Then by [L-K], 
there exists an isometry v between M and itself such that the distance between u 
and v is bounded. Since M is a Cartan Hadamard manifold with cocompact isometry 
group actions, the argument of Theorem 2.3 implies that the distance between u and 
v is constant. If u is not identically equal to v, then for p G M let 7 be the geodesic 
connecting u(p) and v(p). Let ei,..., en be an orthonormal frame at p such that 
dv(ei) = 7/(t;(p)). For each 2 = 1,..., n, let us define the vector Xi tangent to M x M 
by Xi — du{ei) + dv(ei). Since d(u,v) is identically constant, the second covariant 
derivative of d defined on M x M satisfies dxiXi — 0- Hence by Proposition 1 of [S-Y], 
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the curvature operator of M must satisfy (R(dv(ei),dv(ei))dv(ei),dv(ei)) = 0 for all 
i. Note that v and hence dv is an isometry. We therefore conclude that the Ricci 
curvature of M at point v(p) vanishes in the direction dv(ei). On the other hand, 
M is an Einstein manifold with negative scalar curvature. In particular, its Ricci 
curvature is strictly negative everywhere. This contradiction implies that u must be 
identical to v to begin with. This completes the proof. 

3. Existence in Dimension 2. In this section, we turn to address the existence 
problem for proper harmonic maps between two real hyperbolic planes. In [L-T 3], 
Tarn and the first author established an existence theory for the Dirichlet problem 
between two real hyperbolic spaces for the class of boundary maps which are C1 with 
nowhere vanishing energy densities. Later, in [Wg], the second author generalized 
their existence result to a larger class of boundary maps by allowing some specific 
type of singularities. In what follows, we restrict ourselves to the situation that both 
the domain and target are the hyperbolic plane and further generalize these results. 
As a consequence, we conclude that every real analytic quasi-symmetric map between 
the unit circle S'1 and itself admits a (necessarily unique) quasi-conformal harmonic 
diffeomorphic extension. This partially answers the conjecture of Schoen mentioned 
in the introduction. 

Using the upper half-space model, M^_, for the hyperbolic plane iJ|, the rectan- 
gular coordinates (x, y) and the polar coordinates (r, 0) are related by 

x = rcosO,        y — rsm6. 

Also the hyperbolic metric is given by 

dx2 + dy2 

dsz 

y2 

-dr2 + —5-de2. 
r2 sin2 9 sin2 U 

For a map u : H^ —> H^, if we use polar coordinates on both domain and target and 
write u(r,9) = (/(r,9),g(r,#)), then the tension field of u is given by 

(3.1) r1(^)=r2Ao/sin2^-2r2sin2^cot(^)^9/      ^ ^ * ^ 

sin26> /<9/\2     0 . o/,      / ^gdf 1    J  *       2sin2<9cot(#)   y   J 

dr dr f       \ dr 

/ x dg df 
d9j    """ "^Waode 

and 

(3.2) 

f2 \d9j w/ \d9 

Here the Laplacian AQ is the Laplacian with respect to the Euclidean metric on M2. 
THEOREM 3.1. Let f be a map from the extended real line R onto itself. Suppose 

that f is C1 and has nowhere vanishing energy density on M except for a finite set 
of points {pii-.-iPk}- Assume that near each point pi, after choosing pi and f(pi) 
as origins for the domain and target, the map is of the form /(r, 0) = (rahi(r),0) 
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and /(r, TT) = (ra/^(O, TT), /or some a > 0; and for positive C1 functions hi and h2 
satisfying hi(0) = /i2(0) and ^(0) = /^(O). T/zen t/iere zs a proper harmonic map 
u : iJ^ -> if^ 5wc/i that u — f at the infinity. Moreover, if f is also a homeomorphism, 
then u is a quasi-conformal diffeomorphism. 

Proof. We only give the proof for the case k = 1 as the proof for the general case 
is similar. We claim that for given e > 0 there exists an extension of / to a proper 
map F from H^ into H^ satisfying the following properties. 

(1) The Jacobian of the map F satisfies J(F) > C > 0 for some constant C 
independent of e outside a compact subset of H^. 

(2) The energy density function of F satisfies e(F) < c. 
(3) The tension vector field of F satisfies sup^^) ||r(F) || (x, y) < e, where 5(e) > 

0. 
Once this claim is established, the existence of the harmonic map u then follows by 
applying the argument of Theorem 6.4 in [L-T 3]. Moreover, from the argument one 
concludes that the map u has bounded energy density and the Jacobian of u is nowhere 
vanishing outside a compact subset. If the boundary map / is a homeomorphism, then 
one sees that the Jacobian of u is nowhere vanishing everywhere by Theorem 7.1 in 
[J]. Hence u becomes a diffeomorphism. Since u has bounded energy density, from 
[W] one knows that u is quasi-conformal. 

To verify the claim, without loss of generality, we may assume that the point pi 
and f(pi) are the origins of the domain and target. Also, we may assume that in terms 
of polar coordinates, when 0 < r < 1, /(r, 0) = (rahi(r),0) and/(r, TT) = (rah2(r),7r), 
where hi and h2 are C1 positive functions and hi(0) = ^2(0), ^i(O) = /^(O). Let v(r, 0) 
be the function defined on the upper half plane such that AQV = 0, v(r, 0) = hi(r) and 
v(r,7r) = h2(r). Let the function g solve the following ordinary differential equation 

(3.3) g" sin2 6 - (g1)2 sin2 6 cot(g) + a2 sin2 9 cot(g) = 0 

with boundary conditions g(0) = 0 and ^(TT) = TT. By [Wg], such g exists and g is 
smooth on [0, TT] with 0 < ci < gl < C2 on [0, TT]. We now extend the boundary map / 
to a map u defined on the half disk 0 < r < 1, 0<#<7rby 

(3-4) u(r,0) = (rav(r,e),g(e)). 

Since hi and /i2 are positive, we know v is also positive. So u defines a map from 
the half disk into H2. Using the fact that 0 < Ci < g' < C2 and v is C1 up to the 
boundary and positive, one verifies that the energy density e(u) of u is bounded and 
the Jacobian J(u) satisfies J(u) > C3 > 0 for 0 < r < C4 < 1. In the following, we 
estimate the tension field of u. By (3.1) and (3.4), noting that g only depends on 6, 
we have 

(3.5) rl(„)=r>Ao(,..„)si^_l!^(^) 

2 sin20 fd(rav)Y 2 dgdij^v) 

Since v is a harmonic function and its boundary value is C1 and positive, we have 
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v > c> 0, \Vov\ < c (see [G-T]). Therefore, 

(3.6) 
dv 
dr 

<c. 
dv 
80 

< cr, 

Using (3.6) and the fact that 0 < ci < g' < C2, we conclude from (3.5) that 

(3.7) Ir1^)! <cra+1sin(9. 

From (3.2) and (3.4), we have by using (3.3) 

(3.8) r2(.) =^sm2g+
r2s^2/f(g) W^    " 

sin2^cot(c/) fd(rav)\       , ,., . 2 ,,      . . 

9r 

/„       9v       9IT^    .oN sin2^cot(o) 
= [2an;— +r2|Vo^|2J  ^-^ 

However, v is C1 up to the boundary and its boundary value is positive, we conclude 
from (3.8) that 

(3.9) |T
2
(IO| <crsin<9. 

Therefore, by (3.7) and (3.9), we have 

(3.10) ||r(ti)||2 = /.        Jr1^)!2 + -i—|r2(^)|2 

sin2 0 9 sin2 0 
< cr —^—— + cr 

sin (#) sin {g) 

< cr2. 

In conclusion, we can choose Cs(e) > 0 sufficiently small such that for 0 < r < C5 < 1 
the map u satisfies ||T(W)|| < e/2. Note that for r > C5/2 the boundary map / is 
C1 with nowhere vanishing energy density. In particular, by [L-T 3], there exists a 
proper harmonic extension w from H2 into H2 such that w is C1 up to the boundary 
and w — f on the boundary for r > C5/2. So the energy density e(n;) of i/; satisfies 
e(w) < CQ which may depend on e. On the other hand, from [L-T 1] we know that the 
map w is conformal and e(w) = 2 near the boundary. Thus, we may choose 61 small 
such that J(w) > 1 and e(w) < 3 for y < Si. Finally, let 0 be a smooth function with 
compact support in the half disk 0<r<C5,0<#<7r such that 0 < (f)(r:0) < 1 
and 0(r, 0) = 1 for r < C5/2. We now define map F and in terms of rectangular 
coordinate system F(x,y) — (j){x,y)u(x,y) + (1 — (j)(x,y))w{x,y). Clearly, F is well- 
defined provided that y is small and F = u for r < C5/2 and F = w for r > C5. Using 
the fact that both iz and w are C1 up to boundary, we conclude from the computation 
in [L-T 3] that 

||r(F)||<0||r(ti)|| + (l-0)||r(ii;)|H-O(j/) 

when C5/2 < r < C5 and y is small. Therefore, by choosing S even smaller, we have 
Ilr(^?)|| < e when y < 5. From J(u) > C3 and J(w) > 1, and e(u) < c and e(w) < 3 
when 2/ is small, one easily sees that J(F) > c > 0 and e(F) < c, where c is independent 
of e. In conclusion, we have verified such F satisfies the claim. The theorem is thus 
proved. 
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For a real analytic quasi-symmetric map between S1 and itself, Theorem 3.1 is 
clearly applicable. 

COROLLARY 3.2. Every real analytic quasi-symmetric map between S1 and itself 
can be extended to a quasi-conformal harmonic diffeomorphism between H^. 

4. Appendix. In this section, we will give a proof of proposition 1.3. We start 
with the following lemma. 

LEMMA 4.1. Let I be a geodesic line containing a point R in H2. Let Q be an 
interior point of the triangle APRS in H2, where P is a point on I. Then d(Q, S) is 
an increasing function of d(P,R) as P moves along I with d(P,Q), d(Q,R), d(R:S) 
and d(5, P) fixed. 

Proof. Let p = d{P,Q), q = d(Q,R), r = d(R,S), s = d(S,P), and d(P,R) = t. 
Denote the angles ZPRQ = 0, APRS = a, ZRPQ = </> and ZRPS = (3. We will 
show that a — 9 is an increasing function of t. Note that 

cosh t cosh q — coshp = cos 0 sinh t sinh q, 

hence 

cosh t cosh p — cosh q 

sinh t sinh q sin 0 
_ sinh p cos (j) 

sinh t sinh q sin 0 

Let y — d(Q,l) and x — d(F,7r/(Q)). Then direct computation gives 

sinh q sin 0 = sinh?/, 

and 

sinh p | cos 01 = sinh x cosh y. 

Similarly, if we let y — d(S,l) and x = d(P,7r/(5)), then 

_ sinh s cos ft 
sinh t sinh r sin a' 

sinh r sin a = sinh y 

and 
sinh s | cos /3| = sinh x cosh y. 

Thus, if 0 > IT/2 and <f> < 7r/2, then 

OLt-0t> 0. 

If both /? and (j) are less than 7r/2, then 

lf sinh rr cosh y      sinh x cosh y v 
(4.1) at-0t = -T-T— ( — r-r—: j • 

smh tv      sinh y smh y 

In this case, let S be the geodesic segment joining S and 71-/(5). It is clear that 5 
intersects PQ at some point T. Define z = d(T,l), then z < y. Direct computation 
yields 

sinh x cosh y      sinh a; cosh z 

sinh y sinh z 
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Combining (4.1) and (4.2) yields, 

sinh x,     1 1 
on - Ot = —— (—-r- - ——) > 0. 

smn t   tann z     tann y 

Finally, we consider the case when both cfi and /3 are greater than 7r/2, then 

,4 ^ _ 1     /     sinhxcosh7/      sinhxcoshes 
(4.3) at-9t = -— r^ ^ + r1-3-^ . 

smh £x sinh 7/ smh y      ' 

Let 7 be the geodesic line passing through 5 and 717 (S). It is clear that 7 does not 
intersect PQ, but the line passing through P and Q intersects 7 at some point PL. If 
we define /i = d(H,l), then h>y. Direct computation yields 

, A A. sinh ^ cosh y      sinh x cosh h 
(4.4)  :  =  ; . 

sinh y sinh h 

This combining with (4.3) implies, 

sinh x 1 1 
sinht      tanh/i      tanh^   — 

In conclusion, at — Ot > 0 and a — 9 is increasing. Now it is easy to see that d(Q, S) 
is increasing with respect to t, and the lemma is proved. 

Let 0^ denote the two dimensional model space of constant curvature —a2. So 
it is the standard M2 when a = 0 and H2 if a = 1. The following quadrilateral 
comparison property for a metric space X with curvature upper bounds follows from 
a substantially more general theorem due to Reshetnyak [R]. A proof of the case that 
X is an (NPC) space has been included in [K-S]. The same proof also works for the 
more general case that Kx < —a2 by noticing Lemma 4.1. We shall not reproduce 
the details here. 

PROPOSITION 4.2. Let (X,d) be a metric space with Kx < —a2 for some a > 0. 
Let P, Q, R and S be an ordered sequence of four points in X. Then there exist 
points Pj Q, R and S in H^ so that they form the consecutive vertices of a convex 
quadrilateral in_IHg with d(P,Q)_=_d(P,Q), d(Q,R) =d(Q,R), d(R,S) = d{R,S), 
d(S,P) =d(5,P); d(P1R) <d{P1R) and d{QJS) < d(Q,5). 

Such a convex quadrilateral formed by P, Q, R and S in IH^ is called the com- 
parison quadrilateral corresponding to the ordered sequence of points P: Q, R and S 
inX. 

PROPOSITION 4.3. Let (X,d) be a metric space with Kx < —a2 for some a > 0. 
Let P, Q, R and S be an ordered sequence of four points in X. Let P, Q, R and 
S be the consecutive vertices of a comparison quadrilateral in EI^. For any given 
0 < X^fi < 1, let us define P\ (P\) to be the point which is a fraction A of the way 
from P (P) to S (S) on the geodesic 7^5 (yp §)• Similarly, let Q^ (Q^) be the point 
which is a fraction /i of the way from Q (Q) to R (R) on the geodesic JQ,R (JQ^R)- 

Then 

d(Px,Q^<d(Px,Q^. 

Proof. A proof of the case a = 0 has been given in [K-S]. We only need to consider 
the case a > 0. Without loss of generality, we may assume that a = 1. Let us first 
show that 

d(P,Q^<d(P,Q^. 
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Let p = d{P,Q), q = d(Q,R), r = d(R,S) and s = d(5,P). Also, let AABC be a 
triangle in HP such that d(A,B) = p, d(JB,C) = g and d(C, A) = d(P,R). Let B^ be 
the point on the side determined by £? and C such that d(B^^B) = fiq. Then we have 

d(P,QM)<d(A,BM). 

However, 

coshd(A., 5M) = coshpcosh(/ig) ——(coshpcoshg - coshd(A,C)) 

. .    N     sinh(/io) . -   - 
< coshpcosh(/ig) ——- (coshp cosh q — coshd{P,R)) 

= coshd(jP,(5M), 

therefore 

d(P,QM)<d(A,BM)<d(P,QM). 

Analogously, we conclude that 

d(5,QM)<d(5,QAi). 

Let ADEF be a triangle in M2 such that d(F,QM) = d(D,E), d{Q^,S) = d(B,F) 
and d(F,E) = s. Let .DA be the point on the side determined by D and F such that 
d{D\,D) — As. Then we have 

d(PA,QM) <<*(£, BA). 

However, since 

coshd(E,DA) 

= coshd(D,E)cosh(As) - ^IM(Coshd(D,J5) cosh s - coshd(£,F)) 
sinh s 

,   ,/-~ ^  w     , /,   s      sinh(As)       ,    N      sinh(As)       ,   ,._ ^  x = coshd(P,Q„)(cosh(As) r-^coshs) +     . ,       coshd(5,QM) 
sinhs smns 

sinh(As)       ,    N      sinhfAs)       ,   _,=   - , 
< coshd(P,Q»)(cosh(As) H^-2 cosh 5) +     . ,       coshd(5,QM) _ ^ smns sums 

= coshd(PA,<3M), 

hence 

d{Px,Q^<d{E,Dx)<d{Px,Qtl)) 

and the proof is complete. 
We are now ready to prove Proposition 1.3. 
Proof of Proposition 1.3. Without loss of generality, we may assume that L is 

a broken geodesic connecting points pi, P2, • • •, Pk in order. The general case then 
follows from a simple approximation argument. In what follows, we will show that for 
each geodesic segment ft connecting pi and p;+i, z = 1,..., fc — 1, one has 

MA)I <     m 
cosh(aP)' 
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and this will imply that 

M£)I<£>(A)I 

/£ IA 
—' cosh.(aR) 

L\ 
cosh(aR) 

For simplicity of notations, we call $ to be (3 and its end points g and q. Let j — iri(q) 
and t = iTiig). Consider the quadrilateral formed by the ordered sequence of points 
g, q, j, t and the corresponding comparison quadrilateral with consecutive vertices G, 
Q, J, T in IHI^. Let 7 be the geodesic line passing through J and T. We first note 
that the angles satisfy 

ZGTJ > 7r/2,        and        ZQ JT > 7r/2. 

In fact, for any point H on the segment TJ, write d(H,T) = /i<i(T, J) for some 0 < 
^ < 1. Pick up a point h on the side determined by t and j such that d(/i, t) — /Jid(t,j). 
Then Proposition 4.3 implies that 

d(G,H)>d(g,h) 

>d(g,t) 

= d(G,T). 

Since H is arbitrary on TJ, one concludes that ZGTJ > 7r/2. Similarly, one also 
conludes that ZQJT > ir/2. Therefore, we may find points M and N on the side GQ 
such that T = 7r7(M) and J = 7r7(JV). For a point y on the segment MiV, it is then 
clear that 7r7(y) = F £ TJ. Let y and / be the points on the segments gq and tj 
respectively such that d(y,g) = d(Y,G) and d(f,t) = d(F,T). Then 

R<d(y,f) 

<d(Y,F) 

= d(Y,1). 

Therefore, the segment MiV is at least of R distance from 7. We then conclude that 

1 7V       J] - coshR 

However, 7r7(M7V) = TJ, hence 

= \TJ\ 

= MMAOI 
|MiVl 
coshR 
\GQ\ 

coshR 

cosh R' 
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which completes the proof. 
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