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DENSITY OF MEMBERS WITH EXTRA HODGE CYCLES IN A 
FAMILY OF HODGE STRUCTURES* 

CHING-LI CHAI+ 

Abstract. Let MK(G,X) be a Shimura variety over C; let L be a Q-subgroup of G whose 
G((Q)-conjugacy class corresponds to a prescribed type of Hodge cycles. For every subvariety V of 
MK(G,X), denote by S(V,L) the subset of points of V whose Mumford-Tate group is contained in 
a (^((QJ-conjugate of L. We define an invariant c(G,X,L) depending only on the G(R)-conjugacy of 
L. The main result says that for every subvariety V of codimension at most c(G,X,L), the subset 
S(V, L) is dense in V in the metric topology. The value of c(Gr,X, L) is tabulated in many examples. 

0. Introduction. The question we address in this paper is part of a more general 
question: Given a variation of Hodge Q-structures over a complex analytic variety V, 
do the points of V corresponding to members in this family having extra Hodge cycles 
of a given type form a dense subset of V? 

A special case of this question was raised in [1]. Let V C Ag be a subvariety of 
the moduli space Ag of principally polarized abelian varieties of dimension g over C, 
and for any integer A; between 1 and g — 1 denote by Sk{V) the subset of V consisting 
of all points x G V such that the corresponding abelian variety Ax has an abelian 
subvariety of dimension k. In [1], Colombo and Pirola gave a sufficient condition for 
Skiy) to be dense in V with respect to the metric topology. They also proved that 
if V is a subvariety of the Jacobian locus TQ/lg) of codimension at most g — 1, then 
Si(V) is dense in V. Here T(Mp) denotes the locus of jacobians of complete smooth 
curves of genus g in Ag. Using the same criterion, Izadi showed in [5] that if V is 
either a subvariety of Ag of dimension at most #, or V is a subvariety of T(M^) of 
dimension at most p, then 5i(V) is dense in V. 

This paper was started by the attempt to understand the meaning of the re- 
sults of [1, 5] in a more general context. We replace the parameter space Ag by a 
Shimura variety MK(G,X), and allow Hodge cycles more general than idempotent 
endomorphisms of a polarized abelian variety to arrive at the more general question 
stated at the beginning; see §1 for the precise formulation. In our setting, the subset 
Sk(V) of V C Ag is replaced by a subset S(V,L) of V C MK(G,X), where L is a 
reductive subgroup of G defined over Q. We define an invariant c(G, X, L) G N which 
has the property that S(V,L) is dense in V if V has codimension at most c(G,X,L) 
in MK(G,X). This generalizes [1, 5]. The invariant c(G,X,L) depends only on the 
G(]R)-conjugacy class of L in G] its value in the case considered in [1, 5] is g. 

Our method differs from those used in [1, 5] only at the end, where we further 
linearized the problem to compute c(G, X, L). This is the content of §2; it allows us to 
replace the geometric arguments used in [1, 5] by a simpler linear algebra argument, 
which makes the invariant c(G, X, L) easy to compute. We illustrate this in §3 and 
tabulate the value of c(G, X, L) in many cases. For instance in the situation considered 
in [1, 5], our result says that if V C Ag is a subvariety of codimension at most g, then 
Sk{V) is dense in V for any k between 1 and g — 1. Another example of our result is 
that for every subvariety V in ^9 of codimension at most 10, the subset of points of 
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V corresponding to abelian varieties attached to a polarized K3 surface form a dense 
subset in V. The examples in §3 occupy more than half of this paper. The reader is 
advised to go over just one or two of them to see the results in action. 

Although in most irreducible cases the invariant c(G, X, L) is positive when L is 
reasonably large, it is not always so; we give two such examples. In one example G is 
of type EQ and Lad is of type D5. In another example G is of type £7, and Lad is of 
type DQ. 

1. Formulation. We shall follow Deligne's point of view on Shimura varieties 
and think of a Shimura variety MK{G,X) as a parameter space of Hodge structures 
whose Hodge group (or, special Mumford-Tate group) is contained in G; see [2, 3, 
4]. The notation and convention in those papers will be generally followed. More 
specifically, let G be a connected reductive linear algebraic group over Q, let X be a 
G(E)-conjugacy class of M-homomorphisms from § = ResC/RGm to G such that the 
following conditions are satisfied: 

1. For one (hence for every) h G X, under the adjoint representation Ado h of S 
on Q — Lie(G), g is a Hodge Q-structure of type C {(1, —1), (0, 0), (—1,1)}. 

2. For one (hence for every) h G X, Ad o /I(A/^T) induces a Cartan involution 
on Gad xspecq SpecR. 

3. Every nontrivial simple Q-factor of G is non-compact. 

For every compact open subgroup K C G(Af) — Y['pG(Qp)i the complex analytic 
variety G(Q)\X x G(Af)/K has a canonical structure of a complex quasi-projective 
variety; we denote it by MK(G,X). When K is small enough (for instance if it is 
neat) MK(G,X) is smooth. Since the properties of MK(G,X) we consider do not 
depend on the choice of K, we shall assume for simplicity that MK(G,X) is smooth. 
Because the argument we use is entirely differential geometric, the canonical model 
and other arithmetic structures of MK(G,X) will not be used in this paper. 

To every finite dimensional Q-rational representation p : G —> GL(VP) of G on 
a finite dimensional Q-vector space Vp , there is a variation of Q-rational Hodge 
structure over X naturally attached to p; it descends to MK{G,X) if K is small 
enough. For G — GSp2g, X = M^ = the Siegel upper-and-lower half space of genus 

g, K C GSp2g{^) the principal congruence subgroup of level n and p the standard 
representation, we get the family of Hodge structures H^^C^Q) over Ag,n, where 
/ : A -> Ag,n is the universal principally polarized abelian variety with level-n- 
structure over Ag^n^ n > 3. 

The following construction is used in [1, 5]. To every C-vector subspace W C 
Lie(A(C)) of dimension &, one associates to it its underlying E-vector space, thought 
of as an E-vector subspace of the E-vector space H^ (A(C), E). This gives a map from 
the complex Grassmannian of £;-dimensional subspaces of Lie(A(C)) to the real Grass- 
mannian of 2/c-dimensional subspaces of H^^C), E). To adapt this construction to 
our setting, first observe that the only 2/c-dimensional E-subspaces of ^(^(C^E) 
which appears are those such that the restriction of the polarization form to them 
are non-degenerate. So we can replace the target real Grassmanian space by the quo- 
tient Sp2g(R)/Sp2k(^) x Sp2g-2k W- Notice that the source complex Grassmannian 
can be written as a quotient C/p(E)/[/A;(E) x [/"^(M), and that E/jfc(R) x ^-^(E) 
is the intersection of Sp2g{^) ISp2kiM) with the maximal compact subgroup ^(E) 
of Sp2g (E). Hopefully the above discussion either motivates the definition and the 
construction below or illustrates them. 
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Let L be a (^-rational reductive subgroups of G such that there exists a homo- 
morphism h : S -> G in X which factorizes through L. 

DEFINITION 1.1. For an analytic subvariety V C MK(G,X), S(V,L) denotes 
the subset of V consisting of all points x £ V of the form x — \{h,g)\ with h € X, 
g e G{Af) such that h factorizes through 7 • L • 7-1 for some 7 e G(Q). 

REMARK, (i) Clearly S(V,L) = S(V,L') if L and L' are conjugate under G(Q). 
The subset S(V,L) is equal to the intersection of S(MK{G,X),L) with V. 

(ii) The condition that h factorizes through Ad(j) • L means that the special 
Mumford-Tate group for h is contained in Ad^) ■ L. This justifies our assumption 
that L is reductive, since the special Mumford-Tate group for any Hodge structure is 
reductive. 

(hi) In the case G — GSp2g, X = H^, and L the intersection of G with the 
product GSp2k x GSp2g-2k diagonally embedded in GL2g, S(V,L) is equal to the 
subset Sk (V) of V defined in the introduction. 

We denote by € the set of all E-rational subgroups L' of G conjugate to L under 
G(M); it has a natural structure as a real-analytic manifold. Let II denote the set 
consisting of all pairs (h,L') with h G X, L' 6 £ such that h factorizes through L'. 
Again II is a real-analytic manifold. The two natural projections pri : II -> X and 
pr2 : II -» £ are both real-analytic maps. The group G(M) operates on the left of 
II, X and £, and the two projections are both equivariant with respect to G(M). For 
the given subvariety V C MK{G,X), let V be the inverse image of V in II, and let 
(j) : V. -» £ be the restriction of the projection II -» £ to V\ 

PROPOSITION 1. Assume that (j) : V —> £ is generically a submersion, i.e. 0 is 
a submersion outside a nowhere-dense real-analytic subset Z of V. Then S(V,L) is 
dense in V for the metric topology. 

Proof We only need to recall the well-known fact that G(Q) is dense in G(E) 
for the metric topology, and to observe that the projection map iprl : V -» V is 
surjective. An elementary topological argument concludes the proof: For non-empty 
open subset U of V, the image of pr^1(C/) — Z under (f) is open in £, hence contains 
a G(Q)-conjugate of L. D 

Next we compute the image of the differential of the map (p : V -> £. Let 
y = (h,Li) be a point of V which lies over a smooth point of V. Then y is a 
smooth point of V as well. Denote by NG(LI) the normalizer of Li in G, and let 
Ng(Li) — Lie(NG(Li)) be its Lie algebra, which is also equal to the normalizer 
NQ(II) of li = Lie(Li) in g — Lie{G). We identify the tangent space of £ at the point 
[Li] G £ with Q/NQ(II). Let V be the inverse image of V in X. The fiber at h e V 
of V -> V maps under </> onto the set of all ^-conjugates of Li, where Kh denotes 
the centralizer of h in G. Therefore the differential of (f) at the point y = (ft, Li) 
sends the ^ri-vertical tangent space onto th + NQ(II)/NQ(II), where th — Lie(Kh). 
Following the literature we denote by p the (—l)-eigenspace of Ad(h(y/^1)) in g, 
identified with the tangents space of X as usual. The tangent space of V at the point 
ft G V then become an M-vector subspace of p, which we denote by U. The image of 
dcf) at (ft, Li) is equal to th + U + NQ(II)/NQ(II) under our notation. The Lie algebra 
g acquires a M-Hodge structure under Ad o ft, and p is a E-Hodge substructure with 
Hodge decomposition pC^C = g1'-1©^-1'1. Hereg1'-1 andg""1,1 are the (1,—1) and 
(—1, l)-components of g 0^ C respectively, and g-1,1 is identified with the complex 
tangent space of X at ft. Then U ®RC = U1'1 © U~hl, with I^1'-1 C g1'1 and 
U"1*1 C g-1'1. Moreover U~lil is the complex tangent space of V at the point ft. 
Since ft factorizes through Li C NoiLi), Ng(li) is an E-Hodge substructure of g; we 
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write its Hodge decomposition as 

1,-1 m AT  /T^O.O m Ar  /r  \-l,l iv0(ri) ^M c = ^(ii)1'-1 e iv0(ii)
u'u © iV0(ll) 

Clearly iVg([i)0'0 = iVfl([i) n th. Moreover th + U + iV0(t) = g if and only if t/"1'1 + 
Ngih)"1'1 = Q~1,1- We record the above in the following: 

PROPOSITION 2. Let (ft, Li) 6e a pomtf o/ V" /ym^ ofer a smooth point of V. 
Identify the tangent space ofV at ft wz^ft an E-vec^or sub space U Cph = the (—1)- 
eigenspace of Ad(h(y/^-i)) in g. We identify the tangent space of £ at L\ with 
Q/NQ(II). Then the image of the differential of 0 : V —> £ at (ft,la) is equal to 
£h 4- U + iVg(li); w;ftere th denotes the (-\-l)-eigenspace of Ad(ft(\/—T)) ^ g. Conse- 
quently (p is a submersion at (ft, Za) z/ and on/y if U-1,1 + ^(^i)-1,1 — 0-1'1. 

COROLLARY 1.1. Let V, V, V be as above. Suppose that there exists a point 
ft £ X lying over a smooth point of V and an element Li € £ such that ft factorizes 
through Li, and such that the tangent space C/-1,1 of the inverse image VofV in X 
at ft is transversal with TVgQi)-1,1 in g-1,1.  Tften S(V, L) is dense in V. 

REMARK, (i) We shall see that when the codimension of V in MK(G,X) is 
smaller than or equal to a constant c(G,X, L), then for every smooth point [(ft,g)] 
of V with ft 6 X, g 6 G(Af), there exists an Li E € satisfying the condition in the 
corollary. 

(ii) Suppose that the condition of the corollary is not satisfied by any point [(ft, g)] 
in V. This gives us a system of equations satisfied by all points of V. We can 
differentiate these equations to get linearized equations. In this paper we shall only use 
the vertical directions, although it is conceivable that differentiation in the horizontal 
directions may produce further information. 

2. Further linearization. Let G, X, L be as before. For an element ft : § —> G 
in X, denote by Kh the centralizer of ft in G. We abbreviate to N the (—1,1)- 
component ^(Q-1,1 of the normalizer NQ({) of I = Lie(L) in g. Our discussion in 
the last section led us to make the following definition. 

DEFINITION 2.1. Let Li be a G(M)-conjugate of L and ft : § -> Li C G be 
an element of X. When ^(Q-1,1 C g-1'1, define c(G, ft, Li) to be the largest non- 
negative integer such that for every C-vector subspace U C g-1,1 of codimension 
< c(G, ft, la), there exists an element k G if/^M) such that U + k • iVg(li)''1,1 • &_1 = 
g-1'1. When ^(I)-1,1 == g-1,1, c(G,ft,Li) is defined to be oo. Clearly c(G, ft, la) = 
c(G, Ad(g) ■ h,Ad{g) ■ Za) for every g G G(G(E). It-is easy to check that in fact 
c(G,ft,Za)•= c(G,ft/,Z2) for any G(IR)-conjugate L2 of L and any element h' : S —» 
Z2 C G m X. So we write c(G, X, (£) instead o/c(G, ft, Li). 

REMARK, (i) It is immediate from the Corollary of Proposition 2 that S(V, Z) 
is dense in V for every analytic subvariety V C MK{G,X) of codimension at most 
c(G,X,€). 

(ii) Clearly c(G, ft, Z) can be computed after base change to E, i.e. it is insensitive 
to the Q-structure. It is also clear that the invariant c(G, ft, Za) can be computed from 
the ^-representation g-1,1 and the C-vector subspace iV^li)-1,1 in g-1,1. This 
prompts us to make the following definition. 

DEFINITION 2.2. Let p be a real-analytic linear representation of a real-analytic 
Lie group K on a finite dimensional C-vector space Vp. Let N be a C-vector subspace 
ofVp- When N ^ Vp, define d(K,p,N) to be the largest non-negative integer such 
that for every C-vector subspace W of Vp of codimension at most d(Kjp,N)j there 
exists an element k E K with Vp = W + p(k) -N. When N — Vp, d(K, p, N) is defined 
to be 00. 
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REMARK. Clearly c(G,h,L) = dfT^g-1'1,^(O-1,1) in the context of the two 
definitions above. Hence the results we have proved so far shows that the subset 
S(V, L) of V is dense in V for every analytic subvariety V C MK(G, X) of codimension 
atmostd(ii:A,fl"M,iV0(O"u). 

We list some trivial properties of the invariant d(K, p, N) in the following lemma. 
The proofs are omitted. 

LEMMA 2.1. (1) d(K,p,N) = d{K,p,p(k) ■ N) for every k G K. 
(2)d(Kip,N1)>d(K,p,N2) ifAhCNi. 
(3) d(K,p1ep2,N1 eiV2) < mm(d(K,puN1),d(K,p2,N2)) if Nt C VPl, N2 C 

vP2. 
(4)d(K,p1®P2,N1(BVP2) = d{K,puN1). 
(5) d(K,p (g) A, N) = d(K,p,N) for every 1-dimensional representation A : K -> 

Cx of K. Here the representation space of p 0 A is taken to be Vp, with p ® \(k)v = 
X(k)p(k)v for all v 6 Vp. 

LEMMA 2.2. Let pi, p2 be two complex linear representations of K as above. 
Assume either that the real analytic Lie group K is connected, or that K is the group 
of real points of a connected real linear algebraic group K and the two representations 
pi, p2 are both algebraic.   Then 

d(K,p1®p2,N1®N2) = mm(d(K,puN1),d(K,p2,N2)) 

for any C-vector subspace Ni C V^./i = 1,2. 
Proof We may assume that iVi ^ VPl, N2 ^ VP2. Let W be a vector subspace 

of Vp1 0 Vp2 of codimension at most mm(d(K,pi,Ni),d(K,p2,N2)). Consider the 
non-empty subsets Ui C K consisting of all elements k E K such that VPi = Pi(k) • 
Ni + (Vp- fl W), i = 1,2. Each Ui is the complement of a closed real-analytic subset 
of K. So Ui fl U2 y^ 0 when K a connect real analytic group. When K is the 
real points of a connected real linear algebraic group K and pi, p2 are algebraic, 
each Ui is the set of real points of a non-empty Zariski open subset Ui of K. So 
J7! n f/2 7^ 0, so C/i H C/2 = (^i n E/2) W 7^ 0 since Ui fl C/2 is unirational over M. 
Clearly W + (/Oi 0 p2)(k) • (iVi 0 ^2) = VPl 0 yp2 for any keUiH U2 and the lemma 
is proved. □ 

REMARK. In the situation we are interested in, K is the centralizer of an element 
heX, therefore K is a connected real linear algebraic group and Lemma 2.2 applies. 
This often reduces the computation of the invariant c(G, X, <£) to the cases when X 
is irreducible. Then Lemma 2.1 allows one to reduce further to the case when G is 
simple over M. 

PROPOSITION 3. Let p be a finite dimension complex linear representation of a 
real Lie group K. Assume either that K is a connected real-analytic group, or that K 
is the group of real points of a connected real algebraic group K and p is an algebraic 
representation of K. Let t = Lie{K). Let N, W be C-vector subspaces ofVp. Then 
&im{W + N) > &im(W+p(k)-N) for alike K if and only if p{t) ■ (N'DW) C W + N. 

Proof The proof is an exercise, but we give it here since it does not seem to 
be well-known. We first choose a basis vi,... ,va of W fl N. Then extend it on the 
one hand to a basis ui,... ,va,wi,... ,Wb of W, and on the other hand to a basis 
vi,... iVa,va+i,... ,i>a-fc of -N- For 1 < i < a, consider the function fi : K —> 
Aa+6+c+1 on K9 defined by 

fi(x) - p(x)vi A p{x)va+i A • • • A p(x)va+c A vi A • • • A va A wi A • • • A wb . 
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Clearly each fi is a real-analytic function on K, and it is a regular rational function 
on K in the algebraic case. First suppose that dim(W + N) > dim(W 4- p(k) • iV) 
for all k £ K. Then each fi(x) is identically 0 on K. Differentiating /;, we see that 
p(t) • Vi E W + iV for each i = 1,... , a. Conversely, if p(t) • (N O W) C W + A^5 

then the derivatives of each fc are zero, hence fi is identically zero on K. The same 
argument shows that the function 

x H^ p(x)ui A • • • A /9(x)iic+i A vi A - • - A va A Wi A • • • A Wb 

is identically zero on K for any choice wi,... , uc+i of c+ 1 elements among the basis 
vi,... , va, i>a+i,... , i^a+c of N- This just means that dim(Ty + p(k) -N) < a4-6 + c = 
dim(W + N) for all keK.U 

COROLLARY 2.1. Le£ K; p be as in Proposition 3. Let N be a vector subspace of 
Vp.  Then 

d(K,p,N) =min{codim(iVi,iV)|iVi CN,N + p(t) • iVi C yp} . 

REMARK, (i) This corollary turns the computation of d(K, p, N) into a question in 
finite dimensional representations of Lie algebras, and is quite useful. Also notice that 
we can complexify the representation p of the Lie algebra 6 in computing d(K, p, N). 

(ii) Although it is not feasible to give the value of d(K, p, N) in every case of 
interest, we will give many examples to illustrate our result. The irreducible rep- 
resentations of interest to us include the second symmetric product of the standard 
representation for An, the second exterior product of the standard representation of 
An, the tensor product of the two standard representations for Am x An, the stan- 
dard representation of J9n, the standard representation of Dn, (one of the two of) the 
half-spin representation of D*, and (one of the two of) the miniscule representation of 
EQ. 

3. Examples. We asserted that the invariant 

c = c(G,XX)=c(G,h,L)=d(Kh,NB{l)-1>1) 

is easy to compute in any given situation. In this section we illustrate this point 
in many examples. As we remarked before, this invariant depends only on the real 
groups underlying G, the G(E)-conjugacy class of the real group underlying L, and of 
course the space X. So from now on we assume that G is a connected reductive linear 
algebraic group over E, and that L is a reductive subgroup of G over E. In all the 
examples below the connected components of X are irreducible hermitian symmetric 
spaces, so G is simple modulo center. Because of Lemma 2.1 (5), the value of c does 
not change if we replace G by Gad, so we may freely change G to G' with Gad = G/a . 
It is well-known that G is the inner twist by Ad(h(\/^1)) of its compact form, and 
jih = h o p, is the fundamental coweight corresponding to a special vertex of the 
Dynkin diagram of the compact form of G, cf. [3] §1. In describing our examples, we 
shall give just a representative G among those with the same derived group, indicate 
the conjugacy class of /x^, and give a description of (a representative of)L. We also 
give the Dynkin diagram for (G,X); the vertex labeled with /x is the special vertex 
corresponding to the fundamental coweight /i^. 

3.1. (Sp2n, Sp2n1 x ••• x S^nJ? rii + •••nr = n. First we bring up the case 
discussed in the introduction. Here 
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G — GSp^n, ^ is the Siegel upper-and-lower half space of genus n.   The 
homomorphism h which sends an element a + 6^/—T G Cx to 

(a -b. \ 
b a 

a -b 

\ b a   j 

gives an element of X. 
• The group Kh is centrally isogenous to the unitary group U{n). 
• The Dynkin diagram is: 

OLI      OLI     #3 ttn-i   an o o -o— • • • —o  < o 

• The roots of G are ±Xi ± Xj, 1 < i < j < n. The simple roots are 

C^l = Xi       X2 5 • • •  j #n—1 ^^ ^n—1       ^n?   ^n ^^ -^^n • 

• The subgroup L in this example is the image of the diagonally embedded 
Sp2ni x • • • x Sp2nri where each n* > 1, and ni + • • • + nr = n, r > 2. 

• The Lie algebra of the normalizer of L in G is equal to I itself. 
• After replacing Kh by {/(n), the representation g-1,1 becomes the second 

symmetric product of the standard representation of f/(n); the subspace TV C 
5""1,1 is identified with 

Si2(Cll)<&--®S2(C1'') c52(Cn). 

• The value of the invariant c in this case is 

c = min {rii + n^l < i < j < r} . 

Our result says that for every analytic subvariety V C An of codimension at 
most this value of c, the set of all points in V such that the corresponding 
principally polarized abelian variety is isogenous to the product of r abelian 
varieties of dimension ni, • • • , nr is dense in V for the metric topology. 

Proof. We give a proof for the case r — 2; the general case is similar. Moreover 
the same method applies to other examples, so we omit the proofs in most cases later. 
After complexifying the representation, we see that we are dealing with the second 
symmetric product of the standard representation GL{Vi © V2), with dim(Vi) = ni, 
dim(V^) = 712, n — ni + n2. The subspace iV is S2{Vi) © S2^). We choose a 
basis ei,... , eni for Vi and a basis eni+i,... , eni+n2 for V2. This gives us a diagonal 
maximal torus in GL(Vi © V2). The representation space S2(Vi © V2) has weights 
a;a + xt, 1 < a < 6 < ni H- n2, each with multiplicity one. The subspace N is a direct 
sum of weight spaces, with weights Xa + £& with 1 < a < b < ni and xa + a;^ with 
ni + 1 < a < 0 < ni 4- 712- 

First we show that c < ni + 712. Let iVi be the direct sum of weight spaces with 
weights xa + Xb with 2 < a < b < ni and a:a + xp with ni -f 2 < a < /? < ni + 712- 
Clearly xi + a;ni+i is not a weight of g[n • iVi + JV, so flln • Ni + AT C 52(Vi 0 y2). 
Hence c < codim(Ar1,N) = m +712- 

Conversely, let W C N be a subspace of codimension at most ni + 712 — 1. The 
intersection of M7 with the direct sum of weight spaces with weights xi -f x^ with 
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1 < b < ni and xni -f xp with ni + 1 < (3 < 712 contains a non-zero vector q. 
One quickly sees that g(n • q + N contains the weight space with weight xi + 2^1+1 • 
Similarly one sees that Q{n'W+N contains every weight space xa+a:a with 1 < a < ni, 
ni + 1 < a < m + n2. Hence gln • W + iV = S2^ © Vs). □ 

3.2.  {Sp2n^(p,q)),P + q = n. 
• In this example, the pair (G^X) is essentially the same as in Example 3.1 

above, except that we take G to be GSp2n, rather than the adjoint group of 
it. So K is isogenous to U(n) x U(l). 

• The group L is isogenous to U(p1 q) x U(l) via a central isogeny, p+q = n. Its 
derived group Lder has roots ±(xa — x^) with 1 < a < b < p and ±(xa — xp) 
with p+l<a<l3<p + q. We assume that p < q. 
The symplectic embedding L M- G arises in a PEL-type Shimura variety situ- 
ation as follows. Start with an imaginary quadratic field K, a 2n-dimensional 
Q-vector space H with a K-action, a non-degenerate alternating pairing (,) 
on H, and a C-action on H ®Q R. Assume that the involution on End(H) 
defined by the alternating form (,) leaves the image of K and C stable, and 
induces the complex conjugation on them. Moreover, assume that the bilinear 
form 

(vi,V2) H> (vly-i -V2) 

on H (g)Q E is symmetric and positive definite. The algebra K ®Q C = C x C 
operates on H 0Q E, and has E-dimension 2p, 2q when localized at the two 
maximal ideals of K <g>Q C = C x C. 
Such a PEL-data gives a simple algebra with involution (End/^il), *), which 
gives rise to the symplectic embedding L C G. With the C-action coming 
from the Cx -action as in Example 3.1, we may assume that the K 0Q E = C- 
action on H ®Q E is such that a + by/^1 € C operates via the matrix 

/ 
2px2p 

a -b 
b a 

a -b 
b a 

a     b 
—b   a 

\ 

\ 

b 
a 

2qx2q / 

The roots of L are ±(xa — Xb) with 1 < a < b < p, ±(xa — xp) with p + 1 < 
a < [3 < p + q, and ±(xa + xp) with 1 < a < p and pH-1 < 0 < p + q. 
The Lie algebra of the normalizer of [ = Lie(L) is equal to i itself.   The 
subspace N = l"1,1 has dimension pg, with roots (xa + xp) with 1 < a < p 
and p+l < (3 <p + q. 
c = p — min(p, n — p). 
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The direct sum of the weight spaces in TV with weights (xa + xp), where 
2 < a < p and p+l<f3<p + q, is a subspace iVi of codimension p in JV. 
Moreover the weight space for 2xi is not contained in Ni + gln • iVi. This 
shows that c < p. The other half of the proof is omitted. 

3.3.  (50(2,2n - 1), 50(2,2m - 1) x 50(2n - 2m)), m < n. 
• In this example, G is equal to 50(2, 2n—1), and L is the standardly embedded 

50(2,2m - 1) x S0{2n - 2m). 
• The Dynkin diagram is 

ai a2 as OLn-l     <*', o— —o— —o— • •  0=^=0 
A* 

• The roots of G are ±Xi ± Xj with 1 < i < j < n, and Xi with 1 < i < n. The 
simple roots are 

Oil ^ Xi     X2, • • • Oin—i =: xn—i — xny (y.n = xn . 

The coweight fih corresponds to the only special vertex ai. 
• The maximal compact subgroup K is isomorphic to 50(2) x 50(2n — 1). 

The roots of Kder are ±Xi ± Xj with 2 < i < j < n, and Xi with 2 < i < n. 
The representation g-1,1 of iv has weights xi and Xi ± xa with 2 < a < n. 
As a representation of KdeT = S0(2n — 1) it is isomorphic to the standard 
representation. 

• The roots of L are ±Xi ± Xj with 1 < i < j < m, ±Xi ± Xj with m + 1 < i < 
j < n, Xi with 1 < i < m. The normalizer of I in £ is equal to L 

• The subspace I-1,1 of g-1,1 has weights xi and xi ± a;a with 2 < a < m. 
• The invariant c = 2m — 2. 

3.4. (5p2",50(2,2n — 1)). The roots and Dynkin diagram for Bn are already 
recalled in Example 3.3 above. Here we start with a group L of type Bn and embed it 
in a symplectic group. An instance of this embedding is the Kuga-Satake construction 
of abelian varieties associated to a polarized K3 surface using the Clifford algebra. 

• The group L is the Spin double cover of 50(2,2n—1). The spin representation 
is the fundamental representation of L with highest weight §(#1 H h xn). 
It has dimension 2n. Its weights are 

&«/ = 9   ]L   €^Xi' Xv        9 
l<e<n 

where e = (e(l),... , e(n)), with each e(i) = ±1. Let A be the abelian group 
defined by 2n generators Ae, where the e's are as above, and 2n_1 relations 
Ae + A_e = 0. Clearly A is a free abelian group of rank 2n~1. This spin repre- 
sentation gives an embedding of L into 5p2™ • Let the weights of the standard 
representation of Sp2^ be the 2n generators Ae, and the spin representation 
is such that the weight Ae of G goes to the weight x\ of L. The roots of G 
are of course the Aei — Ae2's. 
The coweight /Jh of L corresponds to the homomorphism which sends xe to 
|e(l), hence also the the homomorphism which sends Ae to |e(l). From this 
one see that 5~1'1 has weights Aei — X€2 with ei(l) = 1 and 62(1) = —1. 
We have Lie(NG{L)) = Lie(L) since the spin representation is irreducible. 
The embedding N = I-1,1 M- g-1,1 is determined from the map between the 
weights by duality. 
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• We have c = n in the present situation. 
Let Ni C N be the sum of weight spaces with weights xi + X2i • • -Xi + xn. 
Then iVi has codimension n in iV, and one checks that N + t - Ni ^ g-1,1. 
Hence c < n. The other part of the proof is omitted. 

3.5. (U(p,g),U(pi,gi) x •••U(pr,gr)), YsPi =PiT,qi = (l- 
• In this example the real group G is equal to U(p, q), defined by the diagonal 

hermitian form with signature (p,q). The subgroup L is equal to U(pi,gi) x 
• • • XJ(pr, Qr)), with pi + • • • + pr — p, qi -f • • • + qr — q, diagonally embedded 
inG. 

• The Dynkin diagram for (G, X) is 

o o— o— • • • —o o 

• The simple roots of G are a\ — x\ — X2, ■ - ■ , a^q-i = xp+q-i — xv+q. Simi- 
larly for each U(Pi, qi). The maximal compact subgroup K of G is U(p) xU(^). 
The normalizer of the [ in g is equal to L 

• The weights of g-1,1 are xa — x/j, with 1 < a < p and pi < /? < p + Q'. As a 
representation of K it is isomorphic to the standard representation of U(p) 
tensored with the dual of the standard representation of U(g). The weights of 
t-1,1 consists of those xa — xp such that there exists an i between 1 and r, with 
PiH hpi_i + l < a < pi-\ Vpi and^iH hft-i + l < (3 < qi H Vqi. 

• The invariant c = min {min(pi, ^i)|pi • gi 7^ 0, 1 < i < r}. 

3.6. (50(2,2n - 2), 50(2,2m - 2) x 50(2n - 2m)), m < n. 
The Dynkin diagram for (G,X)-is • 

o- 
■ai      0:2      as       an_3Q;n_5\^ 

an 

• The real group G is equal to 50(2,2n — 2), defined by the diagonal quadratic 
form with signature (2,2n — 2). The reductive subgroup L is equal to 50(2, 
2m - 2) x 50(2n - 2m), m < n, diagonally embedded in G. 

• The roots of G are isci ± x^, 1 < z < j < n.   The simple roots are ai = 
X\       X2 5 • • •  5 an_i  ::= Xn—\       Xn, Qfn 

::= Xn—i -+- Xn. 

• The maximal compact subgroup iiT of G is 50(2) x 50(2n — 2). The compact 
roots are ±Xi ± Xj, 2 < i < j < n. The normalizer of [ in g is equal to L 

• The weights of g-1,1 are xi±X2,... ,xi±xn. As a representation of 50(2n — 
2) = KdeT it is isomorphic to the standard representation of 50(2n - 2). The 
subspace iV = I-1,1 has weights xi ± X2, • •. , X'I ± xm. 

• The invariant c = 2m — 3 

3.7.  (l?»JDH1x...D»),n1 + ... + nr=n. 
The Dynkin diagram for (G, X) is • 

—.0- 
ai      a2     as       a'n-s^n-^ 

an-i 

• This hermitian symmetric space is denoted D1^ in [3]. It occurs for PEL-type- 
D Shimura varieties. The subgroup L considered here is a diagonally embed- 
ded reductive subgroup, which is a product of groups of type D^,... D^, 
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where r > 2 and each rii > 1. 
• The roots and simple roots of G are the same as in Example 3.6 above. 

The maximal compact subgroup K of G is isogenous to U(n) via a central 
isogeny. The compact roots are ±(xi — Xj), 1 < i < j < n. The roots of 
L consists of those ±Xa ± #6 such that there exists an z, 1 < i < r, with 

.  ni + • • • + n^-i + 1 < a < b < ni + • • • + r^. 
• The weights for g~1,1 are Xi + Xj, 1 < i < j < n. Each weight space has 

dimension one. As a {-representation it is isomorphic to the second exterior 
product of the standard representation of u(n). 

® The normalizer of I in g is equal to 1. The subspace I-1,1 has weights xa +£&, 
where there exists an i, 1 < i < r, with ni 4- • • • + rii-i + 1 < a < b < 
ni H \-ni. 

9 The invariant c = min{ni + n^ — 2|i 7^ j}. 

3.8.  (EG,Df). Something will be glaringly missing if we do not include excep- 
tional groups in our examples. For hermitian symmetric domains, the only exceptional 
groups that appears are EQ and E7. We first discuss the EQ case. 

© The Dynkin diagram is 
a-i as      a4 a* a6 
0— —0 0— —0— —0 
/^ 

o a2 

• G is adjoint of type EQ. The root space is 

Yl  fi'^lfe =fr = -6 
^l<i<8 

with inner product induced by the standard Euclidean inner product.   The 
roots are 

±Xi ±Xj        1 < i < j < 5 

and 

• 

• 

±±(x8-x7-x6+  Y, i-1)"®*) 
1<2<5 

with J2i<i<5 "(i) = 0 (mod 2). The simple roots are 

Oil  = ^(xi - X2 - x3 - X4 - £5 - XQ - x7 + Xs) 
0*2 — Xi + X2 
az= X2- xi 
®4 = Xs — X2 

^5 = ^4 - £3 

^6 = ^5 - £4 

There are two special vertices, ai and ae, exchanged under an outer auto- 
morphism. Here the coweight fih corresponds to the special vertex ai. 
The maximal compact subgroup K is isogenous to 50(10) x 50(2) via a 
central isogeny. The compact roots are ±Xi ± Xj with 1 < i < j < 5. 
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• g-1,1 has weights 

±(xs-x7-x6+  £ (-ly^Xi) 
l<i<5 

with X^i<2<5 u(i) = 0 (mod 2). This representation of Lie(Kad)) = 0o(lO) is 
the half-spin representation of so(10) of dimension 16. Each weight space is 
one-dimensional. 

• In this example, the subgroup L C G is of type D^, with simple roots ai, 0:2, 
0:3, 0:4, 0:5. The roots of L are ±Xi ± Xj, 1 < i < j < 4 and 

±-(x8-X7-X6-X5+    ^   (-ly^Xi) 
l<i<4 

with Y^KKA 
u(i) = 1 (mod 2). The image of the homomorphism h factorizes 

through L, giving rise to a hermitian symmetric space of type Df. 
• The normalizer Ng([) of [ = Lie(L) in g is equal to [ itself. 
• The subspace ^(Q-1,1 of g-1,1 has dimension 8; its weights are 

l<i<4 

with I]i<i<4i/(^) = 1 (mod 2)- 
• Regarded as a representation of the Lie algebra of the derived group of K, 

the weights of g"1'1 are KEi^st-1)^^), with £i<;<5 "W - 0 (mod 2">' 
The weights of the subspace iV = ^(l)-1,1 are those for which z/(5) is odd. 

• c = 4 in this example. 
Proof. The direct sum iVx of the weight spaces with weights ^(#1 +£2 +^3 — 

^4 -^5), |(^i + ^2 -^3+^4 -^5), |(^i -^2+^3+^4 -^5)5 |(-^i+^2 + 
£3 4- £4 — £5) has codimension 4 in g-1,1, and iV -+-1 • iVi does not contain the 
weight space of |(-£i - ^2 - £3 - £4 + £5). So c < 4. Conversely let VF be 
a subspace of N of codimension at most 4. Then the intersection of W with 
the direct sum of weight spaces with weights |(—xi — X2 — £3 + £4 — £5), 

^(-^1-^2+^3-^4-^5), ^(-zi+^-zs-^-^s), |(^i-^2-^3-^4-^5) 
is not zero. So t ■ W contains the weight space of |(—xi — £2 — £3 — £4 + £5). 
Similarly £ • W contains the weight space of the other three weights with z/(5) 
even. D 

3.9.  (EQIAS). In this example, the pair (G,X) is the same as in example 3.8 
above; the subgroup L is different. 

• The subgroup L C G is isogenous to U(l, 5), so Lad is of type A5. The simple 
roots of L are ai, as, 0:4, as, ae- There are 20 compact roots among them; 
they are ±(xi — Xj) with 1 < i < j < 5. The normalizer of I in g is equal to [ 
itself. 

• The subspace N — iVg^)-1,1 = t-1,1 of g-1,1 is 5-dimensional, with weights 
\(xi-X2-Xz-X±-X<s), \(-Xi+X2-Xz-XAL-Xb), \ ( —^i - X2 +^3 " ^4 " ^5), 
\{—xi—X2—xz+x± — xs)i ^(—xi—X2—xz—x±+xr)). One sees immediately 
that the the weight space for \(xi -f X2 + 073 + ^4 + £5) is not contained in 
l-N. Hence 

• c = 0. 
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3.10.  (EjjDf). The other exceptional group to deal with is E7. 
• The Dynkin diagram is 

ai      0:3      a4      as      as      a? 
o o o o o o 

• G is adjoint of type E7. The root space is 

X] Zi'Xi\z7 + €8 = o 
^l<i<8 

with inner product induced by the standard Euclidean inner product.  The 
roots are 

±Xi ±Xj        1 < i < j < 6;     ±(£7 — xg) 

and 

±hxs-x7-x6+ Y^ (-ir^i) 
l<i<6 

with J2i<i<6 y^j) — ^ (moci 2). The simple roots are 

OLI — \{xi - X2 - X3 - £4 - £5 - xe - xj 4- x%) 
OLi = Xi 4- X2 
as - X2 - xi 
a^-xs- X2 
#5 = £4 - £3 
OLQ = £5 - #4 

The highest root is 

a = xg — £7 = 2ai 4- 2Q;2 + 3^3 + 4a4 + 3Qf5 + 2^6 + a7 . 

• The coweight fih corresponds to the only special vertex ar.   The compact 
subgroup Kad is of type EQ. It has 72 roots. They are 

hX8-X7-X6+ j2 (-ir{i)xi) 
l<i<5 

with Yli<i<3 v{^) = 0 (mod 2), and ±Xi ± Xj with 1 < i < j < 5. 
• The subgroup L C G is a reductive subgroup of the same rank as G. Its 

adjoint group jLad is of type Z^e, with simple roots 0^2,0:3,... , a7. The image 
of h is contained in L, giving rise to a hermitian symmetric space of type Df. 
We have Ng(V) = i. The roots of t are ibzi ± £?, 1 < i < j < 6; there are 60 
such roots. 

• The representation g-1,1 of K is irreducible of dimension 27. Its weights are 
Xg — X7, XQ ± Xi with 1 < i < 5 and 

i(a;8-a:7 + Z6+   ^ (-l)^^) 
l<i<5 
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with YIKKS "(i) — 1 (mod 2); each weight space dimension one. As a rep- 
resentation of the Lie algebra of the derived group of K, it is the fundamental 
representation of Lie(KdeT) corresponding to the vertex ai, a miniscule rep- 
resentation for EQ . 

• The subspace N = iVg^)-1,1 of g-1,1 has dimension 10.   Its weights are 
XQ ± Xi, 1 < i < 5. We have 

t-N + NCg-H 

since the sum does not contain the weight space for xg — £7. Hence 
• c = 0. 
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