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MULTIPLICITIES OF EQUIFOCAL HYPERSURFACES IN 
SYMMETRIC SPACES* 

TANG ZIZHOUt 

Abstract. Some necessary and sufficient conditions on the multiplicities for which there exist 
equifocal hypersurfaces in symmetric spaces of rank two, or in the Cayley projective plane, are 
obtained. 

1. Introduction. We will assume that N is a compact, rank-A; symmetric space 
of semi-simple type. Let i : M -> N be an immersion, and V(M) the normal bundle 
of M. The end point map rj : V(M) -> iV of M is the restriction of the exponential 
map exp to V(M). A normal vector v G VX(M) is called a multiplicity m focal normal 
and exp(v) is called a multiplicity m focal point of M with respect to M in N if v is a 
singular point of 77 and dimKer (drjv) is equal to m. The focal data, r(M), is defined 
to be the set of all pairs (v,m) such that v is a multiplicity m focal normal of M. 

A connected, compact, immersed submanifold M in a symmetric space N is 
called equifocal if (a) V(M) is globally flat and abelian, and (b) the focal data r(M) 
is invariant under normal parallel translation. For the details, the reader is referred 
to [TT], a fundamental and important paper in this field. The definition of weakly 
equifocal submanifold is also given in [TT]. 

When the ambient space iV is the space form Sn, Rn or Hn, equifocal and weakly 
equifocal hypersurfaces have been extensively studied. In fact, in these space forms, 
they are just the isoparametric and proper Dupin hypersurfaces respectively. 

Isoparametric hypersurfaces, i.e., hypersurfaces with constant principal curva- 
tures, are in some sense the simplest examples for the theory of hypersurfaces. The 
study of isoparametric hypersurfaces in Sn has a long history. Assume that M 
is an isoparametric hypersurface of 5n with g distinct constant principal curva- 
tures Xi > " - > Xg with multiplicities mi,... ,m5. E. Cartan [Ca] considered 
isoparametric hypersurfaces first, and solved completely the classification problem 
for g — 1,2 or 3. 

Using cohomological arguments, Miinzner [Mu] proved the following: 
(a) g must be 1, 2, 3, 4 or 6; 
(b) rrik — mi if k is odd, and nrik = m2 if A: is even; 
(c) 5n admits a disc bundles decomposition:  5n = Di U D2, where Dk is the 

normal disc bundle of the focal submanifold Mk, and Di Pi D2 = M. 
It was shown by Thorbergsson in [Thl] that proper Dupin hypersurfaces have the 

properties (a), (b), (c) above. 
Without loss of generality, we can assume that mi < 7712 throughout this paper. 
In the case g — 4 or g — 6, many significant results have been obtained. For 

example, the construction of the isoparametric hypersurfaces of Clifford types [FKM], 
the restrictions on the multiplicities rrik [Ab, Ta]. as well as the calculations of the 
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Brouwer degrees of the gradient maps of the isoparametric polynomials [PT]. Quite 
recently, by using delicate homotopy theory, Stolz [St] showed that there exists a 
proper Dupin hypersurface in 5n with g — 4 and the multiplicities (mi,7712) if and 
only if (mi,7712) = (2,2), (4,5) or 2<^mi~1) divides m + 1, where m = mi +1712 and 
0(x) = #{0 < s <x|5 = 0,l,2, or4mod8}. 

In [TT], Terng and Thorbergsson generalized results on isoparametric hypersur- 
faces in spheres to equifocal hypersurfaces in simply connected, compact symmetric 
space N. More precisely, they established the following: 

THEOREM ([TT]). Let M be an immersedj compact, equifocal hypersurface in a 
simply connected, compact, symmetric space N'.  Then the following hold: 

(a) There exist integers mi, 1712, an even number 2g, and 0 < 0 < l/2g (where I 
denotes the length of normal geodesies) such that the focal points on the normal circle 
Tx = exp(Vx(M)) are 

z(j)=exp((0+^)V(:r)), 

1 < j < 2g, and their multiplicities are mi if j is odd, and m2 if j is even; 
(b) Let r]tv : M -¥ N be the end point map, and Mt = r]tv(M) the set parallel to 

M at distance t. Then Mt is an equifocal hypersurface and rjtv maps M diffeomor- 
phically onto Mt if t G (-l/2g + Q,0); 

(c) Mi — Me and M2 — M_if2g+d are embedded submanifolds of codimension 
mi + 1, 7712 + 1 in N. The map rjev ' M -* Mi and ri(_i/2g+0)v : M —> M2 produce 
S™1 and S™2 bundles respectively; 

(d) N = Di U D2 and M = Di fl D2, where Di and D2 are diffeomorphic to the 
normal disc bundles of Mi and M2 respectively. 

When the ambient space N is a complex or quaternionic projective space, one 
can get a new isoparametric hypersurface in the Euclidean sphere by using the Hopf 
fibration. It was proved in [Wu] that g has to be 1, 2 or 3 if N = CPn or HP71. 

The case of iV = QP2, the Cayley projective plane, is more interesting since 
there one cannot use a Hopf fibration. A necessary and sufficient condition for the 
multiplicities of equifocal hypersurfaces in QP2 will be given in section 5. 

It is then left to consider equifocal hypersurfaces in symmetric spaces of rank 
more than one, and we will work mainly on rank two in this paper. 

Recall that any cohomogeneity one action on a symmetric space G/K is hyper- 
polar (cf. [HPTT]). Moreover, it is stated in [TT] that if if is a closed subgroup of 
G that acts hyperpolarly on G/K, then the principal i7-orbits are equifocal. 

In order to construct equifocal hypersurfaces, we have not only the method of 
cohomogeneity one action, but also the way of Riemannian submersion. Suppose that 
TT : ]V -» TV is a Riemannian submersion from a Riemannian manifold TV" to a simply 
connected, compact, symmetric space JV, and we are given an equifocal hypersurface 
M in N with multiplicities (7711,7712). Define 

Mk = 7r_1(MA;), Dk = Tr-^-Djfe), where Mk C N are the focal submanifolds of the 
equifocal hypersurface M. 

PROPOSITION 1.1.   There are two fibrations 

S^ c-> M -^ Mk 
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with TT o pk = pk o TT and a disc bundles decomposition: 

Furthermore, if N is a symmetric space then M is an equifocal hypersurface of N. 
Proof. Let v be a parallel normal field on M, and v the horizontal lift of v to M. 

since TT is a Riemannian submersion, v is a parallel normal field of M. Observing that 
the map / : 7r~1(p) -> TT

-1
 (q) for q = expA (tv(p)), given by sending x to expN(tv(x)), 

is a diffeomorphism (see 5.10 lemma in [TT]), it defines the maps pk : M —> Mk 
satisfying TT O pk — pk on. 

It is clear that the maps pk are all fibrations. 
When N is a symmetric space, we make use of transformal map. According to 

[Wa], a smooth real function / : N ->• R defined on a Riemannian manifold TV is called 
transnormal if there is a smooth function 0 such that ||d/||2 = 0(/). It is not difficult 
to see that in a symmetric space iV, the regular level set of a transnormal function 
corresponds to the equifocal hypersurface. Finally, we observe that the composition 
/ OTT : N -> i?is a transnormal function, since TT is a Riemannian submersion. These 
complete the proof of the proposition. D 

REMARK 1.2. In a sense, this proposition can be regarded as a generalization of 
Theorem 1.9 in [TT] which was used to construct inhomogeneous equifocal hypersur- 
faces in SO(n +1) by the Riemannian submersion: SO(n + l) -* SO(n + l)/SO(ri) = 
Sn. It should be interesting to investigate the properties of the equifocal hypersurfaces 
in SU(n) by the Riemannian submersion: 

SU(n) -> SU(n)/SU(n - 1) 2 S2""1. 

Note that (5C/(n),5C/(n — 1)) is not a symmetric pair. 
Thorbergsson in [Th2] established a remarkable equality involving #, mi, and m2, 

for an equifocal hypersurface M in a simply connected symmetric space iV. 
PROPOSITION ([Th2]). Leti denote the index 0/7^0,27r] as a critical point of the 

energy functional E in the path space ftpP and let v denote its nullity.  Then we have 

g{mi + 7712) = i + v. 

REMARK 1.3. For N = 5n, CPn, HPn, the equality of Thorbergsson will give 
well-known formulas g(mi +7712) = 2(n — 1) for 5n, g(mi + 777,2) = 2n for CPn and 
g(mi + 7772) = 4n -f- 2 for HPn. More interesting, it gives g(mi + 7712) = 22 for the 
Cayley projective plane QP2. 

Unfortunately, for the symmetric space of rank more than one, we don't know 
how to use this formula. 

Some necessary and sufficient conditions for the multiplicities of equifocal hy- 
persurfaces in symmetric spaces of rank two, or in the Cayley projective plane were 
obtained in this paper. However, we are not able to get any estimates of the number 
g, except in the Cayley projective plane. The problem for symmetric spaces of rank 
more than two is still open. In order to recognize the number #, it would be help- 
ful to recall the fact ([TT]) that the dihedral group IF with 2g elements acts on M 
freely. We don't know how to calculate the a-invariants a(M2n_1,x), introduced by 
Atiyah and Singer [AS]. Note that in most cases, the equifocal hypersurface is odd 
dimensional. 

REMARK 1.4. As mentioned in [TT], Lie sphere geometry of 5n (cf. [CC]) should 
be naturally extended to compact symmetric spaces. Several interesting questions in 
these directions were posed in [TT]. 
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2. In complex Grassmann spaces. Let M C iV be an equifocal hypersur- 
face with multiplicities (777,1,777,2) in a simply connected, compact, symmetric space 
iV(7774 < 7712); Mi,M2 the focal submanifolds. Let 

Zk-.S^^M^Mk    {k = 1,2) 

be the normal sphere bundle of Mk in iV, and Dk —> Mk the normal disc bundle 
associated to f*. According to [TT], there exists a disc bundles decomposition of N: 

D1UD2=N,    £>in£>2 = M,    Dk~Mk. 

As consequences, we have immediately the following two exact cohomology sequences 
(Z2 as the coefficients): the Meyey-Vietoris (M-V for short) sequence 

(2.0a) 

 > H^N-Zz) -> Hi(M1-Z2)eHi(M2;Z2) A Hi(M;Z2) A Hi+1(N;Z2) -+ •• • 

where f(x,y) = pjx - p2y for x G iJi(Mi;Z2) and y E H^M^Z^] and the Gysin 
sequence 

(2.0b) 

...ir-™*-i(Mfc;Z2) ^iP(Mfc;Z2)-^ir(M;Z2) A ^"^(M^Za)-> ••■ 

where ^(x) = z-e(A0 for x G Hi-rnk-1(Mk'1Z2), e(k) G Hmk+1(Mk;Z2) is the mod2 
Euler class of the bundle £*, i.e., the top Stiefel-Whitney characteristic class of the 
sphere bundle £*. 

If the dimension of A7" is even, we state 
PROPOSITION 2.1. Suppose N = N2n, then the following statements hold: 
(i) When Hn+1{N]Z2) £ 0 and Hn(N : Z2) 2 0, u;e /iave mi < n - 1; 

^t)  Ty/ien #n+1(iV; Z2) 2 0 and Hn(iV; Z2) = 0, 7i;e have mi < n. 
(The statements remain true for any coefficients.) 

Proof, (i) Suppose that mi > n — 1, then dimMa < dim Mi < n, in particular 
iJn(Mi;Z2) = Hn(M2;Z2) S 0. The M-V sequence 

 ► ff^^MjZa) ^ Hn{N;Z2) -> iYn(Mi;Z2) © Hn(M2;Z2) 

-> i7n(M; Z2) -> ^n+1 (JV; Z2) -> • • • 

together with the hypothesis imply that Hn(M; Z2) = 0. It follows from the Poincare 
duality theorem that 

Hn-l{M]Z2) s Hn(M)Z2) S 0. 

The M-V sequence, mentioned above, implies finally that Hn(N\Z2) = 0, a contra- 
diction to the assumption. 

(ii) Suppose that mi > n, then dim M2 < dim Mi < n — 1, in particular 

Hn-l(Mk;Z2) S Hn(Mk-Z2) S Hn+1{Mk',Z2) ^0     for ft = 1 or 2. 

The M-V sequence (2.0a) yields that 

iT^MjZz) = ifn(iV;Z2) S 0 
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and 

Hn(M]Z2) = Hn+1(N]Z2) ¥ 0, 

a contradiction to the Poincare duality theorem: Hn(M]Z2) = ifn_1(M;Z2). □ 
REMARK. The manifolds N = CP2m, HP2™, Gl,(C

p+m), Gp{W+rn) with even 
pm and QP2 satisfy the assumption (i) of Proposition 2.1; and the manifolds 

N =:CP2mJrl,    Gp(C
p+m) 

with odd pm satisfy the assumption (ii) of Proposition 2.1. 
Recall that a symmetric space G/K is called inner if rankG = rankK'([He]), 

that is if K contains a maximal torus of G. Inner symmetric spaces have always even 
dimensions. 

PROPOSITION 2.2. Let N = G/K be an inner symmetric space, then mi and m2 
are not all even. 

Proof. It is well known that an inner symmetric space has positive Euler number. 
More precisely, the Euler number x(G/K) is equal to the quotient oidW(G) by 
oidW(K) (see [BC]). Combining the well known equality 

X(D1\JD2)    +    x(DinD2)    =    x(Di)    +    x(Z?2) 
II II II II 

X(N) x(M) x(Mi) x(M2) 

with the fact that the Euler number of an odd dimensional manifold is always zero, 
we imply the conclusion. D 

We are now in a position to consider iV = G2 (Cn+2), the complex Grassmann 
manifold of real dimension An. M denotes an equifocal hypersurface with multiplicities 
.(mi,7712). 

Let us consider the complex Stiefel manifold 

N = V2(Cn+2) = U(n + 2)/U(n). 

K = U(2) acts on the Riemannian manifold iV, and the action is isometric, has only 
one orbit type. Then there exists a unique metric on 

N/K = U(n + 2)/(U(n) x £7(2)) - G2(Cn+2), 

and a Riemannian submersion: 

TT : N = V2(Cn+2) ->N = G2(Cn+2). 

Applying Proposition 1.1, we get a disc bundles decomposition: 

N = DxUfy,    M = Dinb2,    Dk^Mk    (A = 1,2). 

LEMMA 2.3. 
(i)  The inequality mi < 2n — 1 holds; 

(ii) mi and 7712 are not all even. 
Proof, (i) It is well known that the complex Grassmannian G2(Cn+2) has the 

Poincare polynomial (cf. [BT], p. 292) 

(l-t2) (1 - t2n+4) 
P(G2(Cl+2),t) =  (1_^2)(1_t4)(1_i2)...(1_i2n)- 
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Particularly #2n(G2(Cn+2);Z2) g 0, and H2n+1 (G2(Cn+2);Z2) = 0. Then the 
assertion (i) follows directly from Proposition 2.1. 

(ii) Note that the complex Grassmannians are all inner symmetric space. The 
conclusion follows immediately from Proposition 2.2. D 

Now let us restrict attention to the disc bundles decomposition of N. Let 

e{k)eHmk+1{Mk-Z2) 

be the mod 2 Euler class of the sphere bundle 

S™» c_> M -^ Mk. 

When mjt > 2n-f 1, we have rrik + 1 > 4n 4- 3 — rrik — dim Mjt, then 

e(A;)e#mfc+1(^;Z2)=0. 

LEMMA 2.4. There exist isomorphisms ffi(M;Z2) = H^Mn^) © H*^',^) 
for i ^ 0, 2n, 2n + 1, 2n + 27 2n 4- 3; 4n -f 3, and an exac^ cohomology sequence: 

0 —> H2n{Ml;Z2) 0 H2n(M2;Z2) —> H2n(M;Z2) —> 

Z2 -^> H2n+l(M1;Z2) © i72n+1(M2;Z2) —> i72n+1(M;Z2) —> 
0     —>    F2n+2(Mi;Z2)    ©    H2n+2{M2',Z2)    —>    H2n+2(M;Z2)    —> 

Z2    A    ff2n+3(Mi;Z2)    ©    H2n+3{M2;Z2)    —>    H2n+3(M;Z2)    —> 
0. 

Proof. It is sufficient to notice that the cohomology of the complex Stiefel manifold 
TV = T/2(Cn+2) is given by (cf. [Wh], p. 348) 

^*(y2(C^2);Z2)-| £2' for * = 0,2n + 1,2n + 3,4n + 4; 
otherwise. 

The results we want to prove follow immediately from the M-V sequence (2.0a). □ 
LEMMA 2.5.  The Euler class e(l) vanishes, and hence 

Hi(M;Z2)^ffi(Mi;Z2)effi"mi(Mi;Z2) 

/or every z. 
Proo/. It is evident to see from Lemma 2.4 that, the map 

pi :ffi(Mi;Z2)->fl'i(M;Z2) 

is injective for i < 2n. On the other hand, by Lemma 2.3, we have mi < 2n — 1. 
Thus, e(l) must be trivial and the map 

fa : ^(MijZa) -> fri+mi+1(Mi;Z2) 

in the Gysin sequence (2.0b) of the sphere bundle 5mi M- M -)• Mi vanishes for every 
i. D 

LEMMA 2.6. The Euler class e(2) vanishes, and hence iJ^M; Z2) = Hi{M2\Z2)® 
i7i-m2(M2;Z2) /or evert/ z. 

Proof. It is obvious to see that the Euler class e(2) has to be trivial if 7712 ^ 2n, 
2n + 2. Whenm2 = 2n4-2, then e(2) e ifm2+1(M2;Z2) = 0, since m2 + 1 > dimM2. 
So we are left to consider the case m2 = 2n. By Lemma 2.3, mi has to belong to 
{1,3,5,...,2n-l}. 
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(i) For mi = 1. We have dim Mi = 4n + 2, and dimM2 = 2n + 3. It follows 
from Lemma 2.4, 2.5, and the Gysin sequence of the sphere bundle 5m2 c-> M -> M2 
that: 

H^M-Zi)    *    Hl{M2]Z2)    S*    ff^MuZa)    ©    tf1^;^) 
H2{M-Z2)    *    iJ2(M2;Z2)    ^    tf2(Mi;Z2)    0    iJ2(M2;Z2) 

^    if2(Mi;Z2)    ©    ff^M^Za) 

which imply that iJ2(Mi;Z2) ^ 0. Thus 

i/2(M2; Z2) = if2(Mi; Z2) © iJ1^; Z2) s 0, 

and hence the Euler class 

e(2) G if2n+1(M2;Z2) S if2(M2;Z2) ^ 0. 

(ii) For mi > 3. We have dimMa = 2n 4- 3. Similarly, we have 

#2(M;Z2)^  #2(Mi;Z2)©  if2(M2;Z2) 
^2(M;Z2)^   ff2(Mi;Z2)e   tf2-mi(Mi; Z2) ^ ff^MuZa) 

which imply that #2(M2;Z2) ^ 0. D 

THEOREM 2.7. For N = G2(Cn+2); we Aave ettAer 
^   ^^ (mi + 7712)0? = 2n7 or 

("nV  ftf) (mi + m2) d = 2n + 2; 

where d = 1/4 J^dim Hl(Mi] Z2) zs an integer. Moreover ifn is odd, only (B) occurs. 
Proof. Given an equifocal hypersurface M in TV = G2(Cn+2). As already noted 

we have a disc bundles decomposition of 

N = V2{Cl+2). 

Let 

P(Af,t) = 53a.**,P{Mi,t) = 53^^"     and     P(M2,t) - 5ZCfc^ 

be the Poincare polynomials of 

M,    Mi,    M2, 

with a* = dimff^MjZa), 6^ ^dimiJ^M^Z^, ck = dimi^fc(M2;Z2) respectively. 
It follows from Lemma 2.5 and 2.6 that 

(2.1) P{M,t) = {l + tmi)Pi\IlJ.) 

and 

(2.2) P(M, t) = (1 + ^m2) P(M2,t). 

Since M is a closed manifold, satisfying the Poincare duality theorem, we claim: 

(2.3) P{M,t) = t*n+zP{M,t-1). 
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On the other hand, it follows from Lemma 2.4 that 

(2.4) a = bi + a    for 0 < i < 2n - 1, or 2n + 4 < i < 4n + 3. 

(2.5) 
Either a2n = &2n + C2n + 1, Cl2n+1 = &2n+l + C2n+1> 

Or a2n = b2n + C2m a>2n+l = ^2n+l + c2n+l — Ij 

either a2n4-2 = &2n+2 + C2n-f2 + 1, ^271+3 = &2n+3 + C2n+3 5 

Or a2n+2 = ^271+2 + C2n+2, 0-271+3 = &2n+3 + C2n+3 — 1- 

We have 

(1 + tm2)P(M,t) + (1 + tmi)P(M,t) 

= (l + tmi)(l + *ma)(P(M1,t) + P(M2,t)) (by(2.1),(2.2)) 

= (1 + tmi)(l + tm2)(P(M,t) + 1 - £4n+3 + F)    (by(2.4), (2.5)) 

where F = Y^ltniPi + Ci - ai)t\ 
It is equivalent to 

(2.6) P(M, t)(l - tmi+ma)) = (1 + tmi)(l + tm2)(l - *4n+3 + F). 

Moreover, by Lemma 2.4, we can deduce 

(2.7) F - t2n{-l - t2),t2n(-l + t3),t2n(t - t2) or t2n{t + *3). 

Applying (2.3), we have only two cases 

(2.8) F = t2n{-l + £3) or F = t2n(t - t2). 

(A) For F = t2n(-l + ^3), (2.6) becomes 

(2.9) P(M, t)(l - tmi+m2) = (1 + tmi)(l + tm2){l - t2n)(l + ^2n+3). 

As an immediate consequence, we see 

(2.10) P(M, 1) • (mi 4- ms) = 8 • 2n. 

Recall Lemma 2.3, which says that mi and m2 are not all even. If mi 4- m2 is odd, 
then (2.10) yields 

P(M,1) = 0 mod 16 

and P(Mi,l) = |P(M, 1) = 0mod8.   If mi and 7712 are all odd, we can use the 
following lemma to show that 

2n = 0 mod(mi + 7712) 

and then P(Mi, 1) = 0 mod 4. 
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(B) For F = t2n(t - i2), the proof is analogous. 
If n is odd, observing that the cohomology algebra H* (U(n+2)/U(n)', Z2) is generated 
by Un+i € H2n+l and un+2 € #2n+3, and 

sq2 un+1 = un+2    (cf. [Wh], p. 400) 

we can see clearly that the case (A) does not occur. The reason is that the relation 

^{sq2 un+i) = sq2 (0 (ii„+i)) 

yields that 0 = 0 implies ip — 0. D 
LEMMA 2.8. If mi, 7712 are all odd, and P(t) £ Z[£], stzc/i £/ia£ 

P(t)(l - tmi+m2) = (1 + tmi){l + im2)(l - t2n)(l + t2n+3) 

t/ien 2n = 0 mod (mi 4- 7712). 
Proof. Note that Z[£] is a Gauss ring, and there is a decomposition 

tm-i = l[Mt) 

where 

Since we can write 

Mt)=     n     (t-o- 
£: primitive d-th root of 1 

(i-^0(i-t2^)(i-^)ft-^+6) 

decomposing every item and noting that mi, 7712 and 2n -f 3 are all odd, we see that 
(mi -f 7712) divides 2n. D 

Furthermore by using the methods of Miinzner [Mu], we can obtain some restric- 
tions on the number d. 

THEOREM 2.9. For N = G2(Cn+2). 
(A) (mi -f m2)d = 2n. If m2 > mi + 3 > 6, then d = 1, 2 or 3. 
(B) (mi +m2)d = 2n + 2. If 1712 > mi + I > 2, then d - 1,2 or 3. 
In order to prove this theorem, we need some preliminaries. 
LEMMA 2.10. Le£ M C N be an equifocal hypersurface with multiplicities (mi, 

m2)> mi < m2, in a> simply connected symmetric space. If mi > 1, then M, Mi and 
Mi are all simply connected. 

Proof. For a fixed point p E N, let P(A\ .A/ x p) denote the space of Hl-paths 
7 : [0,1] -> iV such that (7(0),7(1)) E M x {p}. Let 

£ : P(iV, M x p) -> i? 

given by £(7) = /0 HT'WII
2
 dt be the energy functional. According to Theorem 1.6 

in [TT], if p is not a focal point of M then the map E is a perfect Morse function, 
and the index set of the critical points is 

{mi, 7712, mi +m2,...}, 
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thus E has no point of index one. We conclude that the space P(N, M x p) is simply 
connected. 

Now the fibration 

m^ P{N,M xp)-> M 

has an exact homotopy sequence 

TTi ft TV -> TTi P( A^, M X p) -> TTi M -> 7r0ft iV. 

Since TToftA^ = TTIA^ = 0, we have that TTIM = 0. 
Finally, considering the exact homotopy sequence of the sphere bundle 

5mfc <-> M -> Mk, 

we prove that TTIM^ = 0 for A: = 1 or 2 as required. D 
LEMMA 2.11. For N - G2(Cn+2), N = V2(Cn+2). Ifml > 1, t/icn M, Mi and 

M2 m A^ are a// orientable. 
Proof. By the preceding lemma, M is simply connected. Note that we have a 

decomposition 

N = SU{n + 2)/SU(n) -^ N 

= SU{n + 2)/SU(n) x S17(2) -^ iV = 5l7(n + 2)/S(U(n) x C/(2)) 

satisfying 712 o m = TT : N -> N, where TTI and 7r2 are orientable sphere bundles with 
fiber S3 and 51 respectively. Denoting M — 7r^"1(M), then we have an isomorphism 
of bundles 

TM 0 1 = Trj; TM © TT^ 

where f is the associated vector bundle of 7r2 : iV —> N. It follows that M is 
orientable, and hence M is orientable by the same reason. The conclusions are also 
true for Mk(k — 1,2) by an analogous argument. □ 

We recall the definition of type (*) by Miinzner [Mu]. 
DEFINITION 2.12. Let R = Z2 or Z, G = Yf*L0Gi be an associate graded 

it!-algebra. G is called to be type (*) if the following conditions are satisfied: 
(a) There exists a natural number g > 2, such that 

f  R, for i = 0,0; 
Gi = <   0, for i > g; 

{ G+ ®G-    foTl<i<g-l. 

where Gf = R for A; = ±1, 1 < i < g - 1. 
(b) G* = G0 + JXi1 Gf is a subalgebra of G. 
(c) There exists an /^-generator of Gf (resp. Gf), say ^i (yi resp.), such that 

G is a free G+-modul (G~-modul) with basis {l,2/i} ({l,a;i}, resp.). 
(d) For u G Gi, w e Gj, uw = ±it;u G Gj+y. 
The following theorem was used to prove that g G {1,2,3,4,6} for isoparametric 

hypersurfaces in spheres. 
THEOREM ([MU]). 

(1) If R = Z,G is of type (*), then g G {2,3,4,6}; 
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(2) IfR = Z2, G is of type (*), then g = 2r • s with s G {2,3,4}. 
Let us apply this theorem to an equifocal hypersurface M in G2(Cn+2) with 

multiplicities (mi,7712), mi < m2. 
Following Theorem 2.7 and Theorem 2.9, it is convenient to denote 

[i = mi+m2,    d= l/4P(Mi,l) € Z, 

then we have either (A) fid = 2n, or (B) fid = 2n + 2. ^From now on, we will restrict 
attention to case (B). By Lemma 2.11, M, Mi and M2 are all orientable, thus it 
enables us to make us of the Gysin sequences and the M-V sequences with coefficient 
Z. 

Recall that 

P(Mi,t) = (1 + f"2) ^ (1 + t2n+1) = (1 + im2)(l + t2n+1)(l + *" + ... + ^W-D) 

and similarly 

P(M2, i) = (1 + tmi)(l + t2n+l)(l + *" + ••• + t"^-1)). 

Since mi + ^{d — 1) = \id — m2 < 2n — 1, when * < 2n — 2, we have 

(2.11) 2r(M2;Z)s{ J'   othemite^1'^0011'0"7"^-15 

By the Gysin sequence of 5m2 M- M -* M2 (with coefficient Z), we see 

(2.12) if*(M; Z) ^ ff*(M2; Z) 0 if *-m2 (M2; Z)     for * < d/x. 

By using the Gysin sequence of 5mi M- M —> Mi, when * < 2n — 2 we have 

"to. (2.13) ^(M,^)^   r   ^ian2'e = 0Orl'0-i-d-1- 

LEMMA 2.13. W^e assume that 1712 > mi + 1 > 2 and m_i = m2, m_2 = mi. 
For x,y e if*(Mfc;Z), 0 < * < (d — \)fi + m-k, if deg(x • y) > (d - l)fi + m-k, then 
x ■ y — 0. 

Proof. For k = 2. If degx = ai/i,deg2/ = 0,2fi with ai,a2 < {d — 1). 
(1) If ai -f a2 < d — 1, then 

aifi + a2fi < {d — l)fi = 2n + 2 — fi < 2n — 1, 

and hence x • 2/ = 0. 
(2) If ai + 02 > d, then by defining 03 = (ai -f ^2) — d, we have 

d/i — 1 -f 03^ < aifi + a2fi < dfi — 1 + 03^ + mi, 

thus x -y — 0. For the other cases or k = 1, the proofs are similar and straightforward. 
D 

In fact, we can easily prove that for x,y G H*(M\ Z) with 0 < * < dfi, 
(1) if deg(x2/) > dfi, then x • y = 0 
(2) degfry)^-!. 
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Now, let R = Z. Define 

[ Pl {H^+tm-k {Mk; Z)),    for k = ±1, e = 0 or 1, 1 < 2j + e < 2d - 1; 
Gij+e = \ 0, for 2j + e > 2d - 1; 

[z, for2j + g = 0. 

and 

' Gij+i = H^+m+ (M; Z) © iF>+m- (M; Z),   for 0 < j < (d - 1); 
G2j =pj(H^(M1;Z)) e&(i^>(M2;Z)),     for 0 < i < (d - 1); 
Go = Z; G2d = Z. 

LEMMA 2.14. G^4" and G~ are iype (*) for R = Z. 
Proof. We prove the lemma for case (B), and for case (A) the proof is completely 

similar. By the previous lemma, (a), (b) and (d) of type (*) are clearly satisfied. 
Choose zi(2/1) a generator of #m2(Mi; Z) ^ Z (ifmi(M2; Z) = Z, resp.). We need to 
show that for x ^ 0 G ff^Mi; Z), 

#x-2/i^0e#i+m-(M;Z). 

It is only necessary to observe that 

Ai(pJa;-2/i) = a; • \i(yi) = x ■ 1 = x, 

where Ai originates in the Gysin sequence of Smi <->• M -> Mi, 

0 -> ^(Mi;Z) ^> Hj(M]Z) A ^-mi(Mi;Z) -> 0.    D 

We are now in a position to give a 
Proo/ 0/ Theorem 2.9. Applying the theorem of Miinzner, mentioned above, to 

Lemma 2.14, we have 2d € {2,3,4,6} and hence d G {1,2,3}, The proof is complete. 
D 

EXAMPLE 2.15. Now notice that 

G2(Cn+2) - SU(n + 2)/5(C/(2) x U{n)) 

and S(U(1) x C/(n + 1)) is a closed subgroup of G = SU(n + 2). Clearly the ac- 
tion of S(U(1) x U(n + 1)) on G2(Cn+2) is of cohomogeneity one. Thus we get an 
equifocal hypersurface in G2(Cn+2) with two focal submanifolds (the singular orbits 
of the action), one is the complex projective space CPn, and the other one is the com- 
plex Grassmann manifold G2(Cn+1). Therefore we have an equifocal hypersurface in 
G2(Cn+2) with multiplicities (mi, 1712) — (3,2n — 1). This example belongs to case 
(B) of Theorem 2.7 and d = 1. 

EXAMPLE 2.16. When n = 2m is even, Ki = Sp(m + 1) is a closed subgroup of 
G = SU(2m + 2). Let Id act on G/K2 = SU{2m + 2)/S(U{2) x [/(2m)). Clearly the 
action is of cohomogeneity one. Thus we get an equifocal hypersurface in G2(C2m+2) 
with two focal submanifolds Sp(m+1)/U(2) x Sp(m-1) and HP171. Therefore we have 
multiplicities (7711,7712) = (l,2n - 1). This example belongs to case (A) of Theorem 
2.7, and d = 1. 

PROBLEM. Find more equifocal hypersurfaces in complex Grassmannians. 
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3. In quaternionic and real Grassmannians. First suppose we start with an 
equifocal hypersurface M in N = G2{Hn+2), the quaternionic Grassmann manifold 
of rank two. There is a well-known fibration 

„ : * = V^) . Sp(„ + 2)1 Sp(„, - N = ftl^) . s^sR2) 

with fiber Sp(2). Using the lifts of TT, we get a decomposition of N: 

(3.1) iV = .DiU.D2,    M = D1nD2,    Dk = Mk 

and two fibrations S™* ^^ M -^> Mk (k = 1,2) with mod 2 Euler class 

e(fc)eifmfe+1(Mfc;Z2). 

An analogous statement of Lemma 2.3 is 
LEMMA 3.1. (i) The inequality mi < 4n — 1 holds; (ii) mi and m2 are not all 

even. 
Proof. 

(i) By [MT], it follows that 

#4n(G2(#n+2);Z2) £0     and     H4n+1(G2(Hn+2);Il2) = 0. 

Applying Proposition 2.1, we have mi < 4n — 1. 
(ii) Note that the quaternionic Grassmannians are inner symmetric space. The 

conclusion follows directly from Proposition 2.2. D 
LEMMA 3.2. There exist isomorphisms Hi(M;Z2) = Hi(M1;Z2) ® H^M^IT) 

for i ^ 0, 4n + 2, 4n + 3, 4n + 6, 4n + 7, 8n + 9, and an exact cohomology sequence: 

0 —»• tf4n+2(Mi,Z2) 0 #4n+2(M2;Z2) —> Hin+2(M 

Z2 A jy4n+3(M1;Z2) 0 #4n+3(M2;Z2) —»■ if4n+3(M 
0 —>• jy4"+6(Mi;Z2) 0 F4"+6(M2;Z2) —> H4n+6(M 

Z2 A Jff
4n+7(M1;Z2) e fr4n+7(M2;Z2) —>• Hin+7(M 

0 

52) 

52) 
^2) 

52) 

Proof. The proof is analogous to that of Lemma 2.4. It suffices to notice that the 
cohomology of the quaternionic Stiefel manifold TV — V2(Hn+2) is given by (cf. [Wh], 
p. 348) 

i7*(y2(^
+2);Z2)-{^2' for * = 0,4n + 3,4n + 7,8n + 10 

otherwise. 

D 
An analogous result of Lemma 2.5 states 
LEMMA 3.3.  The Euler class e(l) vanishes, and hence 

H\M- Z2) ¥ Hi(M1'iZ2) © Hl-mi (Mi; Z2)     /or every i. 

Proof. It follows from Lemma 3.1 (i) that mi + 1 < 4n. It is evident to see from 
the previous lemma that the map 

PI :ffi(Mi;Z2)->ffi(M;Z2) 



194 ZIZHOU TANG 

is inject!ve for i < 4n + 2. Thus we have e(l) =0 and hence the lemma. □ 
LEMMA 3.4.  The Euler class e(2) vanishes, and hence 

fP(M; Za) = ff^Ma; Za) © ^i~m2(Ma; Z2)     /or every i. 

Proof. Clearly the statement is true for ma ^ 4n + 2, An + 6. 
(i) If ma = 4n + 6, then 

e(2) G iJ4n+7(M2
8n+9-m2;Z2) = 0. 

(ii) If ma = 4n + 2.  By Lemma 3.1 (ii), we see that mi must be odd.  Since 
e(2) G if4n+3(M2;Z2) = #4(Ma;Za) by the Poincare duality theorem. However, 

H4(M; Za) = ^4(M2; Za) (by the Gysin Sequence) 
S ff4(Mi; Za) © i/4(Ma; Za) (by the M-V sequence) 
£ ff4(Mi;Z2) eff4-mi(Mi;Z2)        (by the Gysin sequence) 

These imply that ^(MajZa) £ ff4-mi(Afi;Z2). For mi > 5, e(2) G ff4(Ma;Z2) ^ 
if4-mi(Mi;Z2) = 0. For mi = 1,3, it is easy to see that ff4-mi(Mi;Z2) ^ 0. D 

THEOREM 3.5. For iV = Ga(#n+2), we /ia^e ettter 
(A) (mi -f ma) d = 4n + 2; or 
(B) (mi + ma) d = 4n + 6, 

w/iere d = l/4^dimJyi(Mi;Za) G Z. Moreover, if n is odd, only (B) occurs. 
Proof. By Lemma 3.2, 3.3 together with 3.4, we make use of Poincare polynomials 

to get 

P(M, t)(l - tm^m>) - (1 + *mi)(l + tm2)(l - t8n+9 + F) 

where F = -t4n+2 + t4n+7 or F = -t4n+3 + t4n+6. The proof of this theorem is 
analogous to that of Theorem 2.7, the details will be omitted. However, it is worth 
noting that the cohomology algebra H* (Sp (n + 2)/ Sp (n); Za) is generated (cf. [Wh], 
p. 400) by un+i G #4n+3 and un+2 G iJ4n+7 with a relation 

sq42 un+i = f   . )un+i+i     for i + (n + 1) < n -f 2. 

When n is odd, we have sq4 wn+i = un+a. □ 
Furthermore, we can show 
THEOREM 3.6. For N = G2(#n+2), 
^AJ (mi + ma) d = 4n + 2. // ma > mi + 5 > 10, then d = 1,2 or 3; 
^B) (mi -f- ma) d = 4n + 6. // ma > mi + 3 > 6, then d = 1,2 or 3. 
Proo/. Similar to that of Theorem 2.9. D 
EXAMPLE 3.7. Notice that Sp(l)xSp(n+l) is a closed subgroup of G = Sp(n+2). 

Clearly that action of Sp(l) x Sp(n + 1) on G2(i7n+2) = Sp(n + 2)/ Sp(2) x Sp(n) is 
of cohomogeneity one. Thus we get an equifocal hypersurface in Ga(#n+2) with two 
focal submanifolds Ga(i?n+1) and HP71 with multiplicities (mi,ma) = (7,4n - 1). 
This example belongs to case (B) of Theorem 3.5 and Theorem 3.6. 

PROBLEM. Find examples belonging to case (A) of Theorem 3.5. 
The rest of this section will be concerned with the study of multiplicities (mi, ma) 

of equifocal hypersurface in real oriented Grassmann manifold iV = Ga(i?n+2), which 
can be regarded as the complex quadric. 

First we need the following results (cf. [BH]). 
LEMMA 3.8. Let N = (^(#n+2). 
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(1) If n is odd, then 

(2) If n is even, then 

( Z, for * = 0,2,4,... ,n,... ,2n; 
H*(N]Z)= I Z0Z,   for* = n; 

10, otherwise. 

As an immediate consequence, we have 
LEMMA 3.9. 
(%) wii < n if n is odd; mi <n — 1 if n is even. 
(2) mi and m2 are not all even. 
Proof. 
(1) The statements follow from Proposition 2.1 together with the previous lemma. 
(2) Note that G2(i?n+2) is an inner symmetric space, thus the lemma follows 

from Proposition 2.2. D 
Now suppose we are given an equifocal hypersurface M in N. Recall that there 

is a well-known fibration: 

TT : N = V2(R
n+2) -> N = G2(Rn+2) 

from the Stiefel manifold. 
Using the lifts by the fibration TT, we get a decomposition of N = V2(Rn+2)1 

JV = Z)iUZ>2,    M = DiUD2,    Dk^Mk 

and two fibrations: 

Smk *-> M A Mk     for jfc = 1,2. 

An analogous statement of Lemma 2.4 is 
LEMMA 3.10.  There exist isomorphisms H^M;^) = H^M^^) 0 H*^',^) 

for i ^ 0, n — I, n, n + 1, 2n, and an exact sequence 

0 —►    Hn-1(Ml-1Z2)    0    i/n-1(^2;Z2)    —>    Hn-1(M;Z2)    —> 

Z2 -A      iJn(Mi;Z2)      0      Hn(M2'^2)      —+      Hn(M;Z2)      —* 

Z2 A    Hn+1{M1;Z2)    0    Hn+l{M2\l2)    —*    H^iM'^)    —> 
0     . 

Proo/.  The lemma follows from the M-V sequence. It suffices to give the coho- 
mology of the Stiefel manifold (cf. [Wh], p. 348) 

»•<«<**">*.>«{?■ i;:,^ ^2,    for * = 0, n, n 4- 1, 2n H- 1; 
n   yv2yri       )]XJ2) = ) Q 

U 
An analogous result of Lemma 2.5 states 
LEMMA 3.11.   The Euler class e(l) vanishes, and hence 

ir(M;Z2) S fri(M1;Z2) 0 ^"^(A'AjZz)     /or every i. 

Proo/. By Lemma 3.10, the statement is true for mi < n — 2. By Lemma 3.9, we 
are left to consider the case of mi = n or mi = n — 1. 
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(1) If mi = n, then e(l) G ^mi+1 (Mf; Z2) = 0. 
(2) If mi =n — l, then 

e(l) € frn(Mi;Z2) ^ ff^MijZa) 

by the Poincare duality theorem. By Lemma 3.10 and the Gysin sequence of S™2 «-> 
M -^ M2 we have 

ff1(M;Z2)Sflrl(Mi;Z2)©fr1(M2;Z2), 

ff1(^r;Z2)^ff1(M2;Z2). 

Consequently ff1(Mi;Z2) = 0, hence e(l) = 0. D 
LEMMA 3.12. If (mi,1122) ^ (l,n — 1), i/zen e(2) vanishes, and hence 

ir(M; Z2) ^ ^(^2; Z2) 9 if*""12 (M2; Z2)     /or ever?/ z. 

Proof. Case (1), m2 < n - 2. We have 7712 + 1 < n — 1, and the conclusion follows 
from Lemma 3.10 

Case (2), m2 > n. We have 

e(2)e#m2+1(^2;Z2)=0, 

since m2 + 1 > dim M2 = 2n — 7712. 
Case (3), 7712 = n — 1, and mi > 1. Combining Lemma 3.10 together with the 

Gysin sequence of 5'mi c-> M -> Mi, we obtain 

Hl{M;Z2) ¥ ^(MxjZa) © Hl(M2]Z2), 

ff1(M;Z2)Sff1(Mi;Z2). 

Consequently i^1(M2;Z2) = 0, and hence 

e(2) G Hn(M2]Z2) ^ H1^]^) = OH 

THEOREM 3.13. For A^ = G2CRn+2), i/ (mi,7712) / (l,n - 1), i/ien ^e have one 
of the following conditions: 

(Ai) (mi + 7712) d = (n — 1) wzY/i 2(i G Z, /or mi + m2 = 2 mod4 and n even; 
(A2) (mi + m2)d = n-l with d G Z, /or £Ae o^/ier cases; 

("fi) (mi + m2)2d = 2n w^/i 2d G Z. 
Where d= l/4^dimi7z(Mi;Z2). Moreover, if n is odd, any (B) occurs. 

Proof. The proof is similar to that of Theorem 2.7. Assuming that (7711,7712) ^ 
(l,n — 1), by Lemma 3.10-3.12, we have 

P(M, t) + P(AM) - P(M,t) = 1 - ^2n + F 

where F = — ^n~1 + tn+1 or F — 0. Finally we need to note that the cohomology 
algebra of V2(R

nJr2) is generated by yn G Hn and T/n+i G iln+1. Moreover if n is odd, 
then sq1 yn — yn+i (cf. [Wh], p.400), hence the case (A) does not occur. D 

EXAMPLE 3.14. Let SO(n + 1) act on G2(R
n+2) = SO(n + 2)/50(2) x SO(n). 

It is of cohomogeneity one, hence the jnincipal orbit is an equifocal hypersurface. In 
fact, the focal manifolds are 5n and G2(-Rn+1), thus (7711,7712) = (1,77 — 1). This 
example belongs to case (B) of Theorem 3.13 and d = 1. 

EXAMPLE 3.15. If n = 2m is even. Let SU(m + 1) act on G^(i?2m+2), it is of 
cohomogeneity one. The principal orbit is SU(m + l)/SO(2) x SU(m — 1), and two 
focal submanifolds are CPm, thus (7711,7712) = (n — l,n — 1). This example belongs 
to case (Ai) of Theorem 3.13, and 2d = 1. 
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4. In other symmetric spaces of rank two. This section will carry out an 
analogous study of the multiplicities of equifocal hypersurfaces in the left irreducible, 
compact, simply connected, symmetric space of rank two, which may be listed below: 

517(3),    SU{S)/SO{3),    Sp(2)^Spin(5), 

G2/50(4),    G2,    5t/(6)/Sp(3),    50(8)/t/(4), 

5O(10)/[/(5),    E6/F4,    Ee/{SO(2) • Spin(lO)) 

whose dimensions are 8,5,10,8,14,14,12,20,26,32 respectively Note that 

Sp(2)/tf(2) 

is isometric to G^i?5) which has been studied in the previous section. 
THEOREM 4.1. For N — SU(S), there exists an equifocal hypersurface in N with 

multiplicities (mi, 1712) if and only if (mi, 1712) G {(1,1), (1, 3), (2, 2), (4,4)}. 
Proof Recall that there is a well-known fibration: 

SU(2) *-> SU{3) -^ SU(S)/SU(2) = 55. 

Clearly we have isoparametric hypersurfaces in S5 (cf. [CR]) with (mi,m2) = (1,1), 
(1,3), (2,2) or (4,4). Therefore the first part of the theorem follows from Proposition 
1.1. 

Conversely, suppose now that M7 is an equifocal hypersurface in SU(3) with 
multiplicities (mi,7712). Recall that (cf. [Wh], p. 342) 

ir(sU(»);z1)«{»» ^:t'J-w' 
It follows immediately from Proposition 2.1 that mi < 4. 

For mi = 4. We have dim Mi = 3 > dimM2. Since m2 > mi = 4, Mi and 
M2 are simply connected, thus dimM2 > 2. It follows from the M-V sequence with 
integral coefficients that m2 = 4 and 

ir(Mfc;Z)^ j Z,   for * = 0,3; 
0,    otherwise. 

For mi = 3. We have dim Mi = 4, and dimM2 = 2,3 or 4. The M-V sequence 
will produce a contradiction. 

For mi = 2. Suppose that m2 > 3, then dim Mi = 5 > dimM2. It follows from 
the Gysin sequence that 

tf2(M;Z2)^#2(M2;Z2). 

Combining this with the M-V sequence, we get 

ff1(Afi;Z2)^0,    tf2(Mi;Z2) = 0, 

and hence H
3
(MI;1J2) — 0 by the Poincare duality theorem.   Applying the Gysin 

sequence of S2 c-> M —> Mi, we find 

#4(M;Z2) = 0,    tf5(M;Z2) S Z2. 
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Putting these results together with the M-V sequence, we obtain an exact sequence 

#4(M;Z2) S 0 -> tf5(;V;Z2) S Z2 
-> Hb{M1;Z2)^H5{M2]Z2) ¥ Z2 -^ H5{M'1Z2) S    Z2 

which is clearly impossible. 
For mi = 1. First suppose 777,2 > 4. Then dim Mi = 6, dimM2 < 3. By the 

Gysin sequence, we have isomorphisms 

fP(M; Z2) = ^(M2; Z2)     for t < 3. 

Thus by the M-V sequence and the Poincare duality theorem we have finally 

jnMfjzW?2' fo
+
r* = 0'3'6; v    1      '      [Q,      otherwise, 

which contradicts a well-known theorem by Adams [Ad]. 
It remains to consider mi = 1 and 777,2 = 2. Thus we have dim Mi = 6, and 

dimM2 = 5. The Gysin sequence of S2 *-* M -> M2 implies that if1(M;Z2) = 
Hl(M2\Z2). Thus by the M-V sequence, we have il^M^Zs) = 0. On the other 
hand, the M-V sequence follows that #6(M;Z2) = Z2, and hence Hl (M; Z2) = Z2 
by the Poincare duality theorem. These arguments yield that the Euler class e(l) 
must be trivial by analysing the Gysin sequence of 51 <-» M -» Mi. Consequently we 
have Hi(M')Z2) = H^MuZ?) 0 Hi-1(Mi;Z2) for every i. Applying again the M-V 
sequence, we will get a contradiction, and hence the theorem. D 

THEOREM 4.2. For N = SU(3)/SO(S), there exists an equifocal hypersurface in 
N with multiplicities (7711,7712) if and only if mi = 1712 = 1. 

Proof We consider the action of S(U(l) x U(2)) on N = SU(3)/SO(3), and will 
get an equifocal hypersurface in N with multiplicities (7711,7712) = (1, !)• 

Conversely suppose we are given an equifocal hypersurface M4 in TV with multi- 
plicities (7711,7712). By the fibration 

TT : 517(3) -> 5t/(3)/50(3), 

we get an equifocal hypersurface in 517(3) with the same multiplicities. By the pre- 
vious theorem, we have 

(m1,m2)e{(l,l)>(2,2),(4,4))(l,3)}. 

To complete the proof of the theorem, it is only necessary to exclude the late three 
cases. Let us recall the cohomology of TV = 5C/(3)/50(3) (cf. [MT], p. 150), 

H*(JV;Za)s(?2'    to* = 0,2,3,5; 
 v   '     '      [0,      otherwise. 

For (mi,7712) = (2,2). From the fibration 50(3) M» 517(3) -> iV, we see that 

7riiV = 0     and     T^TV £* 7ri50(3) S Z2. 

Thus the Hurwicz theorem implies that 

Hi (TV; Z) S 0     and ff2(JV; Z) S Z2. 
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By universal coefficient theorem and the Poincare duality theorem, we get 

H^N-.Z) £ H2(N]Z) £ 0,    #3(iV;Z) £ Z2. 

Now, since mum2 > 1, it follows that Mi = M2 = 52.   Let a G i^2(52;Z) be a 
generator, by the Gysin sequence 

0 -> ^2(52; Z) -^> i/2(M; Z) ^ ^0(52; Z) -► 0, 

we know that pj(a) is a generator of H2(M] Z) = Z © Z for A; = 1 or 2.  From the 
M-V sequence 

0 -► il2(52; Z) 0 H2{S2;Z) A iJ2(M; Z) -^ iJ3(Ar; Z) ^ Z2 -> 0, 
P1-P2 

since $ is injective, p*a ^ ip^a, ^^s yie^s that $ is an isomorphism, a contradiction. 
For (mi,7/12) = (4,4), Mi - M2 - {pi}, and M = S'4. There will be a contradic- 

tion in the M-V sequence. 
For (7711,7712) — (1,3), M2 = Sl. It follows from the Gysin sequence that 

for* = 0,1,3,4; nwft 1;="; 
There will be a contradiction in the M-V sequence. D 

THEOREM 4.3.  For N — Sp(2), there exist an equifocal hypersurface in N with 
multiplicities (7711,7712) if and only if 

(mi,m2) G {(1,1), (1,2), (1,5), (2,2), (2,4), (3,3), (6,6)}. 

Proof Recall that there is a well known fibration 

S3 £ Sp(l) -> Sp(2) -+ Sp(2)/Sp(l) = S7. 

We consider isoparametric hypersurfaces in 57 with g/2(mi + 7712) = 6. Clearly the 
following pairs are available (cf. [CR]): 

(/ = !,        (6,6);       0 = 2,        (1,5),        (2,4),        (3,3); 
g = 3,        (2,2);        g = 4,        (1,2);        g = 6        (1,1). 

In order to show the necessary condition, we recall the cohomology of Sp(2) 
(cf. [MT], p. 148), 

for * = 0,3,7,10; *•<!«»>;*,)«{£■ SL^£; 
Suppose mi > 7, then dimM2 < dim Mi < 2. The M-V sequence implies that 

#7(M;Z2)-#8(A/;Z2)=0, 

and the Poincare dualities 

H1{M]Z2) = H8(M:Z2) = 0,    ^2(M;Z2) ^H7{M',Z2) = 0 
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together with the M-V sequence imply that iir3(Sp(2);Z2) = 0, a contradiction. 
If 777,1 = 6, we prove 777,2 = 6. Otherwise 777,2 > 7, then dim Mi = 3, dimM2 < 2. 

The M-V sequence follows that 

#6(M;Z2) 3 Z2,    H7(M'1Z2) S 0, 

and hence #2(M; Z2) = 0, H3(M; Z2) = Z2, by the Poincare duality theorem. Again 
using the M-V sequence, we get an exact sequence 

tf2(M; Z2) ^ 0 -> H3{N] Z2) £ Z2 -»• 
ff3(Mi; Z2) © iJ3(M2; Z2) -> ^3(M; Z2) = Z2 -> if4(^; Z2) = 0, 

a contradiction to the fact that dimM2 < 2. 
Suppose 777,1 = 5, then dimM2 < dim Mi = 4. The M-V sequence implies that 

if5(M;Z2) =0. 

Consequently i?4(M; Z2) — 0 by the Poincare duality theorem. Again using the M-V 
sequence, we get 

tf4(iV;Z2) 9t0-> if4(Mi;Z2) ©^4(M2;Z2) -> H\M;Z2) = 0, 

and hence iJ4(Mi; Z2) = 0 which is impossible. 
Suppose mi = 4, then dimM2 < dim Mi = 5. The M-V sequence implies that 

#6(M; Z2) = Z2,    ^7(M; Z2) - ^8(M; Z2) = 0, 

and then 

ff1(Af;Z2) ^tf2(M;Z2)-0,    H3(M;Z2) S Z2. 

Again using the M-V sequence, we find that 

if1 (M2; Z2) S if2(M2; Z2) s 0, i/3(M2; Z2) s Z2 © Z2, 

a contradiction to the fact that dimM2 < 5. 
If mi = 3, we claim that ra2 = 3. Assume ra2 > 4. By using the M-V sequence, 

we have 

iJ6(M; Z2) = Z2 0 Z2,    i77(M; Z2) = HS(M; Z2) S 0 

and hence 

Hl(M; Z2) S ^(M; Z2) ^ 0,    ^3(M; Z2) s Z2 © Z2. 

It follows from the isomorphisms 

iJ^M; Z2) S ^(^2; Z2)     for i < 3 

(the Gysin sequence) and the M-V sequence that 

which contradicts a well known theorem by Adams [Ad]. 
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If mi = 2, we need to prove that 777,2 = 2 or 4. First suppose that 777,2 = 3. The 
M-V sequence, the Gysin sequence and the Poincare duality theorem imply that 

^(AfxsZaJs/j2'    to* = 0>7; v    L)    l)      \0,      otherwise, 

and hence 

2r(M;Z2)sJ?2'   «f* = 0.2.7,9; v J      [ 0,      otherwise, 

a contradiction to the M-V sequence.   It remains to show that the case mi = 2, 
777,2 > 5 does not occur. Otherwise, we have the isomorphisms 

iT(M; Z2) = ffi(Af2; Z2) 0 ff*""12(M2; Z2)     for every i 

by the Gysin sequence. It follows from the M-V sequence that 

JJ3(Afi;Z2)SZ2,    ff4(Afi;Z2)^0, 

a contradiction to the Poincare duality theorem. 
Now we assert that m\ = 1 implies that 7772 G {1,2,5}. Suppose that mi = 1 and 

777,2 > 6, then we have the isomorphisms 

Hi(M-Z2) ^ Hi(M2',Z2) eiJi"m2(M2;Z2)      for every i. 

It follows from the M-V sequence that 

H3(M1;Z2) ¥ Z2,    H5(M1;Z2) ¥ 0, 

a contradiction to dim Mi = 8. 
Now suppose that mi = 1 and 777,2 = 3. It follows directly from the M-V se- 

quence that the Euler classes both e(l) and e(2) vanish. Then combining the Gysin 
isomorphisms with the M-V sequences will produce a contradiction. 

Finally suppose that mi = 1 and 7722 = 4. There is an analogous argument to get 
a contradiction, we omit the details. The proof of the theorem is now complete. D 

THEOREM 4.4. For N — G2/SO(A), suppose that there exists an equifocal hyper- 
surface in N with multiplicities (7711,7712), then (7711,7712) = (1,1) or (2,3). 

The proof will be broken up into several steps. First recalling that there is a 
fibration 

TT : N = G2/SU(2) -+N = G2/SO{4) 

and we have 
LEMMA 4.5. 

H*(N-Z ) = iZ2'   ^or* = 0'5'6>11'' 
^    '   2^      (^ 0,       otherwise. 

Moreover sq17/5 =2/6; where 7/5 G H5 and ye E H6 are generators respectively. 
Proof. From the fibration 

S5 s SU{3)/SU{2) -> G2/SU(2) -> G2/5^(3) ^ 56, 
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we deduce that TT^TV = 0 for 1 < j < 4. ^From another fibration: 

51/(2) ^ 53 -> G2 -> G2/SU{2) 

we obtain that TTsiV = Z2, here we use the fact that 

^5^2 — ^462 — 0 

(cf. [MT], p. 360). 
Thus we conclude that the mod2 cohomology algebra H*{N\rL2) is generated 

by 7/5 G #5 and ys e H6. It remains to show that sq1 y5 = ye. Recall that 
(cf. [MT], p. 420) 

ir(G2;Z2) **Z2[x2]/(x$)®A(x5)     with £5 =sq2X3. 

By using the Gysin sequence of the fibration 

53 ^ G2 JL+ G2/SU(2), 

we obtain that 

TT* sq1 y5 = sq1 7r*y5 = sq1 £5 = sq1 sq2 x3 = sq3 £3 = xj = 7r*yQ, 

hence sq12/5 = ye, since TT* : Hl(N : Z2) -> H'l{G2\r^2) are isomorphic for z = 5 and 
i = 6. D 

Suppose now we are given an equifocal hypersurface M in N — G2/SO(4) with 
multiplicities (mi,7712). Since iV is inner, it follows that mi and 7712 are not all even. 

LEMMA 4.6. For N = G2/SO(4), (mi 4- 7712) divides 10. 
Proo/. By the fibration 

TT : N = G2/SU{2) ->N = G2/50(4), 

we get a disc bundles decomposition of iV. 
ASSERTION. There exist isomorphisms 

iT(M; Z2) = H^Mk'M) © #i"mfc (Mjfe; Z2) 

for every i and A: = 1 or 2. 
When rrik > 4, then m^ + 1 > 7 — m^, thus 

e(ib) = 7r*e(k) G n*Hmk+l{Ml-™*-^ = 0. 

When m^ < 4, the assertion follows from the M-V sequence of the decomposition 
ofN. 

Since N has the same mod 2 cohomology with that of V^-R7), an analogous study 
as Theorem 3.13 will lead to the lemma we wanted. □ 

Proof of Theorem 4-4- By the previous lemma, it suffices to show that the cases 
(mi,7712) = (3,7), (5,5) and (1,4) do not occur. 

Suppose that (mi,7712) = (3,7), then M2 = {pt} and M = S7. Recall that 
(cf. [BH], p. 529) 

/r(G2/SO(4);Z2) =Z2[u2,u3]/u3
2 =u\,uzu\ =0, 

where degw; = i. Clearly the M-V sequence will produce a contradiction. 
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Suppose (mi,7712) = (5,5), then it follows easily that Mi = M2 = S2, and hence 
that x(Gf2/S'0(4)) = 4. However, since G2 has type (3,11) and 50(4) has type (3,3), 
thus the Euler number of ^2/50(4) is equal to 

X{G2/S0(4)) = \W(G2)\/\W{SO(4))\ = 12/4 = 3, 

contradicting the result x(Gr2/5'0(4)) = 4. 
Suppose (mi, 7722) = (1,4), then dim Mi = 6, dimM2 = 3. By using the M-V 

sequence and the Gysin sequence we deduce that Hl(Mi]Z2) — 0, consequently Mi 
is orientable, x(Mi) is even, thus 

x(G2/50(4))=x(M1) + x(M2) 

is even, a contradiction. The proof of Theorem 4.4 is complete. D 
EXAMPLE 4.7. G2 is the automophism group of the Cayley algebra. Using the 

arguments by [Mi], we embed SU(3) and 50(4) into G2 as subgroups so that 

51/(3) U 50(4) = 50(3). 

Thus let 5C/(3) act on 02/50(4), we get an equifocal hypersurface in G2/50(4) with 
multiplicities (7711,7722) = (2,3). In fact, we have CP2 and 5Lr(3)/50(3) as the focal 
submanifolds. For details, see [Mi]. 

THEOREM 4.8. For N = G2, suppose that there exists an equifocal hypersurface 
in N with multiplicities (7711,7712), then (7711,7712) 

G {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (5,5)}. 

The proof will be based on several lemmas. 
LEMMA 4.9. For N - G2, we have mi < 5. 
Proof Step I, we claim mi < 7. Recall that (cf. [MT], p. 40) 

H*(G2]Z2)*Z2[x3]/(xi)®A(xb) 

where degXj = i. It follows from Proposition 2.1 that rai < 7. 
Step II, we claim mi ^ 7. Suppose that mi = 7, then it follows from the M-V 

sequence and the Poincare duality theorem that 

H*(M'Z)S*( Z2'    f0r * = 0'3'5'6'7'8'10'13; 

^    '   2)     \ 0,      otherwise. 

As a consequence, it follows from the Gysin sequence that H5 (Mi Z2) = Z2, and hence 
H1(Mi)Z2) = Z2 by the Poincare duality theorem. On the other hand, applying 
Lemma 2.10, we see that Mi is simply connected, a contradiction. 

Step III, we claim mi ^ 6. Suppose that mi = 6. then Mi and M2 are all simply 
connected, thus H1(Mfz')Z2) — 0 for k = 1 or 2. It follows from the M-V sequence 
that 

H7(M; Z2) ^ Z2 © H7(Mi;Z2) 0 #7(Af2; Z2) 

^Z2®Z2eH7(M2;Z2) 

and an onto homomorphism 

H\Mi-Z2)®H\M2\Z2) -> H6{M]Z2) = H7(M;Z2) -> 0. 
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SinceiJ6(Mi;Z2) = H1(M1]Z2) - 0, and H6{M2]Z2) is isomorphic to Z2 for m2 = 7, 
isomorphic to 0 for other 777,2. We get a contradiction, and hence the proof. D 

LEMMA 4.10. For N = G2, the hypothesis mi — 5 implies that 7712 = 5. 
Proof. It follows from the Gysin sequence that 

#9(M;Z2) ^Hn{M]Z2) ^Hl2{M]Z2) =0 
iJ10(M;Z2) £ tf13(M;Z2) ^ Z2, 

hence 

H1(M;Z2) ^ #2(M;Z2) S i74(M;Z2) = 0, 
iJ3(M;Z2) ^Z2 

by the Poincare duality theorem. By using the Gysin sequence we have 

flri(Mjb;Z2) = Hi(M;Z2)     for i < 4,Jfe = 1 or 2. 

In particular, e(l) G #6(Mi;Z2) ^ H2(M1;Z2) = 0, hence 

#6(M;Z2) =iJ7(M;Z2) = 0, . 
if8(M;Z2)^Z2©Z2. 

Again using the M-V sequence, we have an exact sequence 

0 -» Z2 -> Z2 0 H8(M2; Z2) -> i78(M; Z2) = Z2 0 Z2 ->• Z2 -)► 0, 

which implies that H8(M2]Z2) = Z2, hence 7712 = 5. D 
LEMMA 4.11. For TV = G2, we have mi ^ 4. 
Proof. Step I, we claim that mi = 4 implies 7712 = 4. Suppose that 777,1 = 4 and 

m2 > 5. The M-V sequence gives that 

if11(M;Z2) = iJ12(M;Z2)^0, 
iJ10(M; Z2) £ tf 13(M; Z2) S Z2. 

By using the Poincare duality theorem and the Gysin sequences, we obtain 

tfHMfc;Z2)=tf2(Mfc;Z2)-0, 
H3{Mk;Z2) S Z2     for fc = 1 or 2. 

On the other hand, the Gysin sequence implies that 

^4(M;Z2)^if4(M2;Z2), 

thus by using the M-V sequence, we obtain 

ff4(Mi;Z2)2 0,    iJ5(Afi;Z2)S0, 

and hence e(l) € i75(Mi;Z2) = 0. Using again the Gysin sequence, we have 

tf8(M; Z2) S 0,    #9(M; Z2) = Z2. 

There will be a contradiction in the M-V sequence 

#8(M;Z2)->    Z2->Z2 0  tf9(M2;Z2)->    iJ9(M;Z2)^0. 

II II II 
0 0 z2 
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Step II, we claim that the case (mi,7772) = (4,4) does not occur. Suppose mi = 
7712 = 4, then Mi and M2 are all simply connected. Note that the integral cohomology 
of G2 is given by 

rZ,     for * = 0,3,11,14; 
ir(G2;Z)= i Z2,    for * = 6,9; 

10,      otherwise. 

Here we used the fibration S3 ^ G2 -► ^(i?7) (cf. [Wh], p. 694). It follows from the 
M-V sequence that 

Hu(M;Z) ^ iJ12(M;Z) S 0, 
H10{M;Z) * Z,    H9{M',Z) * Z© Z, 

and thus 

then 

F1(M;Z)^iJ2(M;Z)^01 

iJ3(M; Z) =* Z,    ^(M; Z) S Z 0 Z, 

iJ1(M;Z)^^2(M;Z)^0, 
F3(Af; Z) £ Z,    #4(M; Z) =* Z © Z. 

Hence the Gysin sequence implies that 

H'iM^Z) S* H2(Mk;Z) * 0,     tf3(Mfc;Z) ^ Z. 

Since H8{Mk;Z) ^ Hl{Mk]Z) ^ 0, the M-V sequence implies that iJ8(M;Z) ^ Z2, 
thus if5(M; Z) ^ Z2. Therefore we get #5(M; Z) ^ 0. 

The M-V sequence will give 

(4.1) 
#5(M; Z)    -> i76(iV; Z) ->    iJ6(Mi; Z) 0 i76(M2; Z) 

II II II 
0 Z2 #3(Mi;Z)0tf3(M2;Z) 

and 

(4.2) 0 -> if4(Mi; Z) 0 if4(M2; Z) -> if4(M; Z) ^ Z 0 Z. 

Since 

Jf4(Mfc;Z)^Ext(ii3(Mfc;Z),Z)0Hom(fi4(A/,;Z)Z), 

we can easily find that (4.1) contradicts (4.2). D 
LEMMA 4.12. For N = G2, we /iai>e mi ^ 3. 
Proof. Step I, we claim that the case (mi,m2) = (3,3) does not occur. It is easy 

to prove the assertion by using the M-V, Gysin sequences with coefficients in Z. Note 
that the integral coefficient cohomology of G2 was given before. 

Step II, we claim that the case (mi,m2) = (3.4) does not occur. Suppose that 
(mi,m2) = (3,4), then Mk are simply connected, we can use the exact cohomology 
sequences with integral coefficients. It follows from the M-V sequence, that the Euler 
classes both e(l) and e(2) vanish. It is easily seen that if2(Mi;Z) = 0 and hence 
H8(M; Z) = 0, thus there will be a contradiction in the M-V sequence: 

0 £ if 8(Af; Z) -> if 9(Ar; Z) ^ Z2 -> if 9(Mi; Z) 0 if 9(M2; Z) ^ Z. 
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Step III, we claim that mi = 3 implies that 777,2 < 4. Suppose that 7712 > 5, then 
we can deduce without difficulty that 

Hl (M2; Z) = H2{M2; Z) = #5(M2; Z) S iI7(M2; Z) ^ 0 
#3(M2;Z)^Z©Z, 

consequently 777,2 G {5, 7}. We can check every case to exclude it. D 
We are now in a position to give a 
Proof of Theorem 4-8. Putting Lemma 4.9-4.12 together, it suffices to show that: 

mi = 1    implies that     777-2 < 4; 
777,1 = 2    implies that     777,2 — 2 or 3. 

We prove the most difficult case (777-1,777,2) = (2,5) does not occur, and leave the other 
cases to the reader. Suppose that (mi,7712) = (2,5), first we assert that the Euler 
class e(l) with coefficient Z is trivial. Since by the M-V sequence and the Gysin 
isomorphism that H2(M2', Z) = H2(M; Z2), we have 

(4.3) 0 -> Z A H3(Mi;Z) 0 H3(M2]Z) -> #3(M;Z) -> 0. 

Note that the Gysin sequence implies that ple(l) = 0, thus e(l) = 0(/c) for some 
k G Z.   On the other hand, e(l) is the Euler class of an odd dimensional vector 
bundle, thus 2e(l) = 0, and hence fc = 0, so e(l) = 0. 

Therefore we have 

iJ3(M; Z) S ff3(Mi; Z) © i73(M2; Z), 
i?2(M2;Z)^iJ2(Mi;Z)eZ. 

Combining these results with (4.3), we get 

rank#3(M2;Z) = l,    ranktf2(M2;Z) > 1, 

hence x(^2) > 0, a contradiction to the equality 

X(M1)   +x(M2)=   x(M)   +  xiGi) 

II II !l 
0 0 0. 

The proof is complete. D 
EXAMPLE 4.13. By the fibration SU(3) <->• G2 -»■ G2/SU(3) *i 56, we can obtain 

three equifocal hypersurfaces in G2 with 

(m1,m2)e{(l)4)>(2)3),(5)5)}. 

In fact, if we let 517(3) x SU(3) act on G2, we can get also an equifocal hypersurface 
in G2 with mi = 7772 = 5. 

THEOREM 4.14. For iV = 5/7(6)/ Sp(3), we Aave mi = 777,2 = 8 or (mi + 7712) 
divides 8. 

First we need the following 
LEMMA 4.15. H*(N

14
;IJ2) - A(x5,x9) where xi e H1, and sq4x5 = xg. 

Proof. By ([MT], p. 149), the mod2 cohomology of 5/7(6)/ Sp(3) is given by 

jr(iV;Z2)sjJ2'    for* =-0,5,9,14; 
otherwise. 
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Consider the fibration 

7r:5[/(6)->5[/(6)/Sp(3). 

Note that (cf. [Wh]) 

H*(SU(6)]Z2) = A(u2,U3,U4,u5lue) 

where Ui G H\ and sq4 U3 — 115, 7r*x^ = U3, TT^XQ = u$, we conclude that sq4 X5 = xg. 
□ 

LEMMA 4.16. For N = 5J7(6)/Sp(3), i/mi ^ 4, m2 / 4, ^/ien we /mue mi = 
mi — 8 or (mi 4- 7712) divides 8. 

Proof. Assume that mi 7^ 4, m2 ^ 4. Then it follows from the M-V sequence 
that the Euler classes e(l) and e(2) are both trivial, thus the Poincare polynomials 
satisfy the relation 

P(Af, t)(l - ri+m2) = (1 + ^mi)(l + im*)(l - tu + F) 

where F is easily proved to be t5 - t8 by using the previous lemma. Consequently 

(4.4) P(iV/,*)(1 - tmi+m2) = (1 + tmi)(l + tm2)(l - ts)(l + t5). 

In particular, /3(M) • (mi 4- 7712) — 64, where P(M) denotes the mod 2 Betti number. 
Note that 1 < mi < m2 < 13. If mi +m2 = 16, it follows from (4.4) that mi = 8 

or ni'z — 8, so mi — 7712 = 8. If mi -fm2 < 16, then the relation /?(M) • (mi +7712) = 64 
implies that (mi 4- 7712) divides 8. D 

Proof of Theorem 4-H- By the previous lemma, it suffices to consider the cases 
mi =4 and 7712 =4. We claim that 777,^=4 implies m_fc=4. For example, suppose 
r/ii = 4, 7712 > 4. Then e(2) = 0. By using the Gysin sequences and the M-V 
sequence, we have 

O-+Z9-* #5(Mi;Z2)   © i/5(M2;Z2)-4i^5(M;Z2)-4 0 

II 
0 

and H5(M;Z2) = #5(M2;Z2) © if5"m2(M2; Z2), which are clearly impossible. D 
LEMMA 4.17.   There exist isometric homeomorphisms 

SU(2n - I)/ Sp(77 - 1) S SU(2n)/ Sp(n), 

SO(2n - l)/U(n - 1) S SO(2n)/U{n). 

Proof. Consider the embedding 

St/(2n - 1) c4 5i7(2n) 

given by 

iW=iO     1 

It is clear to verify that the map TT O i : SU(2n — 1) —>• SU(2n) -> SU(2n)/ Sp(n) is 
onto. Now SU(2n — 1) acts transitively on SU(2n)/ Sp(n) and the isotropy group at 
e is just Sp(n — 1), hence 

5/7(271 - 1)/ Sp(n - 1) s SU(2n)l Sp(n). 
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The proof of the other one is analogous. D 
EXAMPLE 4.18.  By the previous lemma, we see that 5?7(6)/Sp(3) is isometric 

to SU(5)/ Sp(2), and we have a fibration 

5f/(5)/Sp(2) -> SU(5)/SU(4) - S9. 

Applying Proposition 1.1, we can get several equifocal hypersurfaces in 

Ar = 5t/(6)/Sp(3). 

Now in S9, we have f (mi +1712) — 8. Clearly the following pairs are available (cf. [CR]) 

9 = 1,    (mi,7712)    =    (8,8); 
p = 2,    {mum2)    =    (1,7), (2,6), (3,5), (4,4); 
(/ = 4,    (mi,ma)    =    (1,3), (2,2). 

THEOREM 4.19.   For N — 50(8)/f/(4), suppose that there exists an equifocal 
hypersurface in N with multiplicities (mi,ma), then we have 

(mum2) e {(1,1), (1,2), (1,3), (1,4), (2,3), (3,3), (5,5)}. 

First we need the following 
LEMMA 4.20. 

rZa, for * = 0,2,4,8,10,12; 
H*{N12-Z2) = < ^2 0^2,    /or* = 6; 

10, otherwise. 

and x(N) = 8. 
Proo/. The first part is given by [MT]. Note that SO{2n - 1)/U(n - 1) is the 

total space of a fibration over S2n~2 with fiber SO(2n — 2)/U(n — 1). By Lemma 
4.17, it follows that 

x{SO(2n)/U(n)) = x{SO{2n - 1)/U{n - 1)) = 2 • x{SO(2n - 2)/U(n - 1)) 

Hence x{SO(2n)/U(n)) = 2n-1 by induction. In particular, x{SO($)/U(4)) = 8. D 
In fact, the integral cohomology of SO(2n)/U(n) is given in [MT]. 
LEMMA 4.21. 
(1) mi and 1712 are not all even; 
(2) mi < 5. 
The proof is immediate and we omit it. 
Proof of Theorem 4.19. The proof will be divided into several steps. 
Step I, we claim that mi = 5 implies 7712 = 5. Suppose that mi = 5 and m2 > 6, 

then #5(M;Z2) = ^^2^2) by the Gysin sequence. Checking the M-V sequence, 
we find a contradiction in the following exact sequence: 

0->    #6(M;Z2)    ->    ff6(Mi;Z2)    0    H6(M2',Z2)    -4... 

II II II 
Z20Z2 Z2 0 

Step II, we claim that mi ^ 4. Suppose mi = 4. By Lemma 4.21, we have 
m2 6 {5, 7,9,11}. Applying Lemma 4.20, it follows that x(M2) = 8 hence 7712 = 5 or 
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7. If m2 = 5, it follows from the M-V sequence and the Gysin sequence (Z coefficient) 
that 

firl(Af2;Z)sfl'3(M2;Z)S0,    rank#2(M2;Z) = 1, 

thus x(-^2) = 4, a contradiction.   If 7712 = 7, a similar argument will lead to a 
contradiction. 

Step III, we claim that mi = 3 implies 777,2 = 3. Suppose mi = 3, then 3 < 7712 < 
11. We prove the most difficult case (7711,7712) = (3,5) does not occur. In this case, it 
follows from the Gysin and the M-V sequences that 

*-<"•:***{%■   ZS?™ 
Choose x G H3(M2'-) Z2) as a generator, then x2 € H6 is a generator by the Poincare 
duality theorem. However, by the Adem relation 

x2 = sq3 x = sq1 sq2 x = sq^O) = 0, 

a contradiction. 
Step IV, we claim that mi = 2 implies m2 = 3, and mi = 1 implies 7712 < 4. The 

proofs are not difficult, and will be omitted. 
The proof is complete. D 
EXAMPLE 4.22. By Lemma 4.17, S,0(8)/[/(4) is isometric to SO(7)/U(S) which 

fibers over 56. Applying Proposition 1.1, we can get several equifocal hypersurfaces 
in TV = 50(8)/l7(4). Now in S6, we have f (mi 4- 7712) = 5. Clearly the following 
pairs are available. 

0 = 1,    mi = 7712 = 5    ; 
g = 2,    (77*1,7712) = (1,4), (2,3). 

THEOREM 4.23. For N = SO(10)/?7(5), suppose that there exists an equifocal 
hypersurface in N with multiplicities (mi,7722), then mi = 777,2 = 7 or mi < 5. 

Proof. The proof is similar to that of the previous theorem. We need to recall 
that (cf. [MT], p. 153) 

rZ2, for * = 0,2,4,16,18,20; 
H* (5O(10)/C/(5); Z2) - < Z2 0 Z2,    for * = 6,8,10,12,14; 

10, otherwise. 

and x(N) = 16. D 
EXAMPLE 4.24. By using the fibration 

SO(10)/U(5) = 50(9)717(4) -> 58, 

we obtain several equifocal hypersurfaces in N with multiplicities (7711,7712) = (7,7) 
or mi + 7712 = 7 (mi = 1,2,3). 

The remainder of this section will be concerned with the following 
THEOREM 4.25.   For N = EQ/F^, suppose that there exists an equifocal hyper- 

surface in N with multiplicities (mi,7712), then mi = m2 = 16 or (mi -f 7712) divides 
16. 
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Proof. We recall that (cf. [MT], p. 435) 

H*(Ee/F4]Z2) = A{xg}xi7) with xn = sq8£9. 

The proof of the theorem is similar to that of Theorem 4.14, which will be omitted. D 
EXAMPLE 4.26. According to [Co], let D^ x T1 act on EQ/F^, we get an equifocal 

hypersurface in EQ/F^ with multiplicities (mi,7x12) — (1,15), and a focal submanifold 
is Sl x 59 of dimension 10. 

CONJECTURE 4.27. The symmetric space EQ/F^ fibers over S17 with fiber S9. 
REMARK 4.28. According to [Co], let F4 act on EQ/D^ X T1, we get an equifo- 

cal hypersurface in EQ/D^ X T1 with multiplicities (mi,7712) = (1,15), and a focal 
submanifold is QP2 = F4/Spin(9) of dimension 16. However, for the restrictions on 
rrik of an equifocal hypersurface in EQ/DS x T1, it is not so easy to get a satisfactory 
result. We recall only that (cf. [Is]) 

H*(E6/Spm(lO)-Tl;Z2) = ZaM/ft9 = w2t, w3 = w2tA + wts), 

which is much more complicated. 

5. In Cayley projective plane. After having worked on the symmetric spaces 
of rank two, we turn to the case of Cayley projective space QP2 in this section. 

THEOREM 5.1. For N — QP2, there exists an equifocal hypersurface in N with 
multiplicities (mi,ma), if and only if (mi,ma) = (7,15), g = 1; or (mi,ma) = (4,7), 
9 = 2. 

Recall again that Thorbergsson gave in [Th2] an equality for N = QP2, 

£(mi,ma) = 22. 

As a consequence, g G {1,2,11}. If g = 1, then mi 4- ma = 22. Since mi < ma < 15, 
we get that mi > 7. On the other hand, by Proposition 2.1, we see that mi < 7, the 
reason is that (cf. [BH]) 

Hence we may conclude the following 
LEMMA 5.2. For N = QP2, if g = 1 then (mi,m2) = (7,15). D 
When g = 2, the formula 2 (mi + ma) = 22 yields that mi 4- ma = 11, thus the 

pair (mi,ma) has to belong to the set 

{(1,10), (2,9), (3,8), (4,7), (5,6)}. 

LEMMA 5.3. For N = QP2, if g = 2, then mi = 4 or 5. 
Proof Suppose that mi < 4, then 8 < ma < 10. It follows from the dimensional 

reason that the Euler class e(2) vanishes, thus by the M-V sequence 

Hi(Ml]Z2)=0     for0<z<6. 

Since dim Ma = 15 - ma < 7, #8(M2; Za) = 0. Furthermore 

tf8(Mi;Z2) = #15-mi-8(Mi;Z2) = H7-m'{M1;Z2) S 0 
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by the Poincare duality. Hence the M-V sequence gives that 

 ► tf7(M;Z2) -+ Z2 -> H8(MuZ2)®H8(M2-Z2) 

-> H8(M] Z2) = H7(M- Z2) -> 0. 

It is easy to see a contradiction, since H8(Mk] Z2) = 0 for A: = 1 or 2. □ 
LEMMA 5.4. For TV = QP2, if g = 2 then mi ^ 5. 
The proof is similar and straightforward. 
LEMMA 5.5. For N - QP2, g has to be 1 or 2. 
Proof. Suppose that g = 11, then mi = m2 = 1. It follows from the Gysin 

sequence and the M-V sequences that e(k) — 0 and 

Hi(Mk',Z2) =Z2     for i = 0,1,... ,6,    fc = 1 or 2. 

We investigate the value of </> given by the M-V sequence 

0->ff7(Mi;Z2)  0   H7(M2',12)^   F7(M;Z2) 

Ai/8(Ar;Z2)    ^  fr8(Afi;Z2)e  H8{M2'iZ2)^H8(M-Z2)^0 

II 
z2. 

Case I, 0 ^ 0. We have 

tf8(M;Z2)    S^7(Afi;Z2)e   H8{M2]Z2) 
i/7(M;Z2)    ^H7{Mi;Z2)®   H7(M2;Z2)   0 Z2. 

It is easily seen that 

#7(M; Z2) = Z2    and    if8(M; Z2) = 0, 

a contradiction to the Poincare duality theorem. 
Case II, 0 = 0. We have 

^8(M;Z2)eZ2^flr8(M1;Z2)©^8(M2;Z2), 
H7(M;Z2) = H7(Mi;Z2) 0 ^7(M2;Z2). 

It is easily seen that 

if6(M2;Z2)^Z2    and    i^8(M2; Z2) = Z2 0 Z2, 

a contradiction to the Poincare duality theorem. D 
Proof of Theorem 5.1. The necessary condition can be proved by putting Lemma 

5.2-5.5 together. In order to show the converse, we have to construct two equifocal 
hypersurfaces in QP2. Recall that Spin(9) C F4 is a symmetric subgroup and 

(Sp(3)xSp(l))/Z2cF4 

is another symmetric subgroup. The Cayley projective plane QP2 is just the sym- 
metric space F4/Spin(9). Letting Spin(9) act on F4/Spin(9), we get an equifocal 
hypersurface with multiplicities (mi,m2) = (7,15). More precisely, 

Mi ^ Spin(9)/ Spin(8) = S8,    M2 ^ Spin(9)/ Spin(9) = {pt} 
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and M ^ Spin(9)/Spin(7) ^ 515. Letting (Sp(3) x Sp(l)/Z2 act on F4/Spin(9)) 

we get an equifocal hypersurface with multiplicities (mi,7712) = (4,7); moreover, 
Mi ^Sn andM2^#P2. 

The proof is complete. D 
REMARK 5.6. Dr. Fang [Fa] got some results similar to our theorem, but under 

a very strong hypothesis that two focal submanifolds are all orientable. 
PROPOSITION 5.7. Let M C QP2 be an equifocal hypersurface with multiplicities 

(7711,7712). 

(I) If g = 2, then Mi is homeomorphic to S11 ; 
(II) If g = 1} then M is homeomorphic to 515 and Mi is homeomorphic to Ss. 
Proof (I) Suppose that g — 2, then (mi,7712) = (4,7) by Theorem 5.1. It follows 

from Lemma 2.10 that Mk is simply connected for k — 1 or 2. We can make use of 
the M-V sequence and the Gysin sequences to get 

^(MxjZ)-^'   *** = 0,ii; 
otherwise. 

By using the Hurwicz isomorphism theorem and a theorem of Whitehead, we may 
show that Mi has the same homotopy type as the sphere 511. It follows immediately 
from the generalized Poincare conjecture proved by Smale [Sm] that Mi is homeo- 
morphic to 511. 

The proof of (II) is analogous. □ 
CONJECTURE 5.8. Every equifocal hypersurface in QP2 is homogeneous. 
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