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ISOMETRIES OF DIRECT SUMS OF SEQUENCE SPACES*

CHI-KWONG LIt AND BEATA RANDRIANANTOANINA?

Abstract. We study isometries of direct sums (also called 1-unconditional sums) of complex
and real sequence spaces. We show that if X,Y are arbitrary complex symmetric sequence spaces
then all surjective isometries of X(Y) preserve the direct sum structure i.e. for every isometry

T:X(Y) on_t)o X(Y) there exists a permutation = of {1,...,dim X} C IN and surjective isometries

{S;}j<dim x of Y so that
T((yj)j<dim X) = (Sj¥n(j))j<dim X -

Further we show that if X, Y are finite dimensional real symmetric sequence spaces then all isometries
of X(Y') also have the above form except when X = E’; and Y can be decomposed as an £,-direct
sum of two nonzero subspaces for some 1 < p < oo. All other possible isometries in the exceptional
case are also characterized.

As a corollary we obtain that if X is a complex or finite dimensional real symmetric sequence
space then X (X) is symmetric if and only if X = £, for some p, 1 <p < oo.

We also present characterizations of surjective isometries in more complicated spaces with direct
sum structure.

1. Introduction. Let Xo, {X;}icr with I C IN be sequence spaces (finite or
infinite dimensional) over € or IR with absolute norms N; for i € {0} U I, (i.e., with
1-unconditional bases) such that dim Xy = card (I). Define an absolute norm on the
cartesian product of {X;};er by

N((z:)ier) = No((Ni(x:))ier) for all (zi)ier € ierX.

The space of sequences (z;)ier € ;1 X; such that N((z;)icr) < oo is denoted by
Xo((X3)ier) (or, with the slight abuse of notation, Xo(X;, ..., X)) and is called the
Xo direct sum (X 1-unconditional sum) of spaces (X;)ier. If X; =Y for alli € I,
the notation Xo(Y) is used. Since Ny, {N;}ier are absolute norms, the norm N on
Xo((Xi)ier) is also absolute. The purpose of this paper is to study the geometry and
isometries of Xo((X;)ier)-

The study of direct sums of normed spaces arises naturally in many areas of math-
ematics. In particular, they have been a source of examples and counter-examples in
geometric theory of Banach spaces (see e.g. [Day, DuV, LT]).

To understand the geometry of a normed vector space, it is useful to know the
structure of its isometries. In fact, many authors have studied the isometries of di-
rect sum of Banach spaces. For example, Fleming, Goldstein, Jamison [FGJ] studied
isometries of 1-unconditional sums of Euclidean spaces (see also Fleming and Jami-
son [FJ1, FJ2]) in the complex case and Rosenthal [Ros] obtained the result for the
real case, Greim [Gr] studied surjective isometries of ¢, sums of Banach spaces (see
also [KL]), Fleming and Jamison [FJ3] studied isometries of complex co—sums and
E—sums, where F is “sufficiently ¢, like”, say, E is a “nice” Orlicz space (see [FJ3]
for precise definitions). It turns out that all the results in these papers show that a
surjective isometry always preserves the direct sum structure of the space. There is
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also a number of papers that address this problem in non-atomic function spaces. For
the detailed discussion of the literature we refer the readers to the survey [FJ4].

In the very interesting paper of Schneider and Turner [ST], the authors determine
the structure of isometries for an absolute norm N on C", which is the space of com-
plex column vectors with n entries and will be viewed as an n-dimensional sequence
space in our discussion. In particular, it was shown (cf. [ST, (2.3) and (7.7)]) that if
the absolute norm is normalized so that N(e;) = 1 for all standard unit vectors for
1 <4 < n, then C" can be decomposed into a direct sum of ¥; = span {v : v € E;} for
i=1,...,k, where E; U---UEy = {ey,...,en}, the standard basis of C", and there
exists an absolute norm Np on C* such that

(a) each (Y;, N) is just an €5 space, i.e., the Euclidean space, and

(b) N(z1,...,zr) = No(N(z1),...,N(zk)) foreach z = (z1,...,2%) €Y1 X -+ - X

Y. = C™
Furthermore, an isometry for N must be of the form

(1) (z1,-.,z6) = (1Z21), - -+ UkZTa(r))

for some unitary U;, 1 < i < k, and a permutation 7 of the set {1,...,k} such that
No(zl, ey Zk) = No(Zﬂ.(l), ceey Zﬂ.(k)).

This result was later extended to complex infinite dimensional spaces by Kalton
and Wood [KaW, Theorem 6.1].

By the above result of [ST, KaW], one sees that there is an intrinsic cross prod-
uct structure on every complex sequence space with an absolute norm, and such a
structure is useful in characterizing isometries. However, the direct sum decompo-
sition in [ST, KaW] can only identify 2 components. If such components do not
exist, then every summand (or summand space) X; will be one dimensional, and the
decomposition will not be very interesting. Of course, one can still get the very useful
conclusion that every isometry for the norm must be a signed permutation operator,
i.e., an operator of the form (1) with all ¥; being 1-dimensional vector spaces (scalars).
Nevertheless, the theorem in [ST] and [KaW] seems inadequate to explain the various
isometry results on direct sums of Banach spaces. For example, the results in [ST]
and [KaW] cannot even describe the isometries of £,(¢,) (e.g., see [KL]).

It is also worth mentioning that the results of [ST] and [KaW] do not extend to
real sequence spaces and the description of isometries of real spaces is much more
difficult. The known results include: Gordon and Loewy [GL] — isometries in spaces
with A-bases, Greim [Gr] - isometries in £, sums of absolute spaces, Rosenthal [Ros] —
isometries in absolute sums of Euclidean spaces. All these results are highly nontrivial
and technical.

In this paper, we propose a new way to decompose a complex or real sequence
space with an absolute norm into a direct sum of simpler spaces, which are not nec-
essarily Euclidean. Using this decomposition, we obtain a characterization of the
isometries of complex sequence spaces that covers all the known isometry results on
direct sum spaces (Corollary 3.4 and 3.5) — in particular we describe the isometries
of X(Y), where X,Y are arbitrary complex symmetric spaces. Compared to results
in [ST, KaW] our characterization gives more detailed information on which permu-
tations w of {1,...,k} are admissible in (1). :

We also apply this decomposition in the real spaces and we obtain a unified
characterization of isometries of a wide class of real spaces. In particular this class
includes all spaces with direct sum structure whose isometries have been described in
the literature (as mentioned above).
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Our paper is organized as follows. In Section 2, we show a way to decompose
(complex or real) sequence spaces with an absolute norm into a direct sum of simpler
spaces, which could possibly be further presented as direct sum of subsequent simpler
spaces. Thus we obtain a good technical method of describing a “reduced” direct sum
structure.

In Section 3, we prove that in a complex sequence space with an absolute norm,
every surjective isometry necessarily preserves the intrinsic direct sum structure de-
scribed in Theorem 2.4. A number of corollaries covering various existing isometry
results on complex direct sum spaces (including X (Y), where X,Y are symmetric)
are also presented.

In section 4, we study isometries of real spaces with direct sum structure. In
particular, we show that our characterization can be applied to all real spaces whose
isometry group is contained in the group of signed permutations. This includes for
example spaces with A-bases [GL] and spaces which are p-convex with constant 1 for
2<p<oo [Rl].

However the situation in real spaces is more complicated since there are many
natural spaces with direct sum structure which have isometries other than the signed
permutation operators i.e., isometries do not always preserve disjointedness of vectors
(see the examples in Section 4). Moreover there exist real spaces with explicit direct
sum structure which is not preserved by some isometries (see Examples 4 and 5 in
Section 4). We feel that such pathology should be rare, but since every finite group of
linear operators on IR™ which contains —I can be realized as the group of isometries
of some sequence space (see [GL]), we will not attempt here to characterize them
completely.

We prove that if X, Y are symmetric finite dimensional sequence spaces, i.e.,
spaces with symmetric norms, then all isometries of X (Y) preserve the direct sum
structure except when X = ¢, and Y can be decomposed as an £,-direct sum of
two nonzero subspaces. All other possible isometries in the exceptional case are also
characterized. It is worth noting that even in this special type of direct sum spaces,
the results in the complex case and the real case are quite different when dimY = 2
or 4 (cf. Corollary 3.5 and Theorem 4.1).

As a corollary we obtain that if X is a real or complex symmetric sequence space
then X (X) is symmetric if and only if X = ¢, for some p, 1 < p < oo (Corollary 3.6
and 4.2).

For simplicity of notation, we shall always assume that we have a normalized
absolute norm, i.e., all standard unit vectors have norm 1.

Throughout we follow standard notations as can be found for example in [LT],
except that we use symbol £ instead of ¢y to denote the space of sequences which
converge to zero (with the usual sup norm). In the finite dimensional case ¢£, = ck

and we will not study the infinite dimensional space of bounded sequences.

2. Intrinsic direct sum structure. We begin with the definition of fibers
which is modelled on the structure of the space X ((Y;)ies), where each of the Y; is a
“fiber space”.

DEFINITION 2.1. Let X be a sequence space with a normalized absolute norm
N, and let {ej}jes, J C IN be the corresponding 1-unconditional basis. A non-
empty proper subset S of J is called a fiber if for all finitely nonzero sequences
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{as}SES: {als}sés - ]Fy

N (Z ) =N (z a;es)

seS seS

implies that for all finitely nonzero sequences {b;}icy\s C IF,

N(Z ases + Z biei) = N(Z ales + Z b,-e,-) .

€S igS €S i¢S
Moreover, the corresponding fiber space is defined by

Xs =span{es;:s € S}

Here we mention a few examples of fibers.

1. Clearly, in any X, if S is a singleton then S is a fiber.

It follows from the classical Bohnenblust characterization of L,—spaces that if X is
a symmetric space not equal to £, for some 1 < p < oo then singletons are maximal
fibers in X.

2. In ¢, 1 < p < o0, every non-empty proper subset S of IN is a fiber.

3. Let 1 < p < oo. Let Z’; be the k-dimensional ¢, space, 1 < k < oo, and let
Zf,(Y), where Y has no nontrivial £,—summands (i.e. Y cannot be written as a direct
sum of {Y;}, such that Y = £,((Y;),)). Then fiber spaces of Zf,(Y) are of the form
Wy x - x Wy where W; equal {0} or Y for all i < k, or W; = {0} for all ¢ except
exactly one, say 1o, and Wj, is a fiber space in Y.

4. In the above example, if the space Ef, is replaced by a different symmetric
space X, as shown below, we do not need any assumptions on Y (we even allow
Y = X). We will see that Wy x --- x Wy is a fiber space in X(Y) if and only if
W; = {0} for all ¢ except exactly one, say o, and Wj, is a fiber space in Y.

We want to analyze fibers on X which are maximal with respect to inclusion.
Notice that maximal fibers do not always exist. For example we consider a space Xp 4
with the norm of finitely supported elements defined inductively by:

N(zie1) = |z1]

n n—1 q 1/q
N (Eziel) = ((N (Z m,-)) +|z,,|4> if n>21is odd
=1 i=1
n—1 p 1/p
= ((N (Z ziei>> +|$n|p> if n>21is even.
i=1

where 1 < p,q < 0o and p # ¢. Then it is easy to see that all fibers in X, ; are of the
form {1,...,k} for some k € IN and thus there are no maximal fibers.

In our considerations we will restrict ourselves to spaces X which do contain
maximal fibers.

We start with the following observation:

PROPOSITION 2.2. Let X be a k-dimensional sequence space with a normalized
absolute norm N. Suppose there exist two mazimal fibers S,T such that SNT # §.
Then SUT = {]., cee ,k} and X = ep(XT\S,XTns,Xs\T).
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Proof. Suppose S and T are maximal fibers such that i € SNT # . Since S is
a fiber for every finitely nonzero sequence {as}sesur C FF,

(2) N( > ases) =N (N(Zases)% + > ases>.

sESUT SsES seT\S
Moreover,
N( Z ages + Z biei)
seESUT 1¢SUT
=N N(Z ases) € + Z ases + z bie; since S is a fiber
sES s€ET\S i¢SuT
=N|N N(Z ases) €i, + Z ases | e, + Z bie; since T is a fiber
s€S s€T\S ig SuT
=N (N( Z ases)eio + Z: b¢€¢> . by (2)
sESUT i¢gSUT

Therefore S U T is a fiber, and by maximality of S, SUT = J. Since S and T are
maximal, S\T # @ and T\ S # 0. Let sop € S\T and to € T'\ S. Using consecutively
the fact that T and S are fibers, we get for all scalars 1, zo:

3) N(zies, + z2ei,) = N(z1850 + T2€8,) = N(T104, + T2€8,)
Next, since S is a fiber and using (3) we get

]\7(:1:1630 + x5, + :Egeto) = N(N(zleso + 1:261'0)630 + 1:36t0)
(4) = N(N(z1es, + To€4,)es, + ZT3€i,)

Similarly, since T is a fiber and by (3)

N(z1€5 + Ta€iy + T3€1,) = N(T1655 + N (22645 + T3€44)E45)
(5) = N(z1es, + N(z265, + T3€i,)€45)

Now let f : IR? — R be defined by f(z1,z2) = N(z1es, + z2€i,). Then (4) and (5)
will take the form:

f(f(z1,22),23) = f(z1, f(22,73)) -
By a theorem of Bohnenblust [Bo], there exists p with 1 < p < oo such that

_ [zl +]zaP)/P ifp < oo
flar,z2) = {max(|$1|a |z21) ifp=o0.

Therefore for all scalars z1,z2,z3
(6) N(z1es, + Taeiy + T3es,) = £p(T1,T2,23) .

By the fact that S and T are fibers and by (6), for any finitely nonzero sequence
{zs}r_,, we have:

M(Saee) = (9( 5 sefen X ne)

seT s€SNT SET\S
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=N N( Z mses)eSO+N( Z zses>et0

seSNT SeET\S

(N(SGS;;T%ES),N(S;\SM)) |

Similarly, since SUT = J:

k
N(Z mses> =N N(Z zses) ey, + Z esTs
s=1 seT sES\T
=N N<Z mses> et + N( Z eszs> eso)
seT seS\T
=4 N(Z zses> , N( Z eszs>
seT seS\T
=/, N(Z zses>,N( Z xses>,N(Z es$s> .
s€T\S s€TNS seS\T

Since finitely supported elements are dense in X, thus X = £,(X7\5, X1ns, Xs\7). O

The main theorem of this section says that maximal fibers determine the di-
rect sum structure of a sequence space X. First we need a definition of a special
2-dimensional real space different form Zf,, which can be decomposed into ¢, sum of
its nonzero subspaces (see [LaW]):

DEFINITION 2.3. Let 1 < p < 00, p # 2. Let E,(2) denote the space R* with the
following norm:

1/p
z+ylP  Jz—ylf
el = (252 )

If p = o define:

(@, Yl g = max(|z +yl, |z —y]) = lI(z,y)llex.-

Observe that E,(2) is isometric to £5 through the isometry T : E,(2) — £
defined by T'(z,y) = 2"?(z + y,z — ).

THEOREM 2.4. Let X be a sequence space over a scalar field IF = IR or C
with a normalized absolute norm N, and let {e;}jes, 2 < k = card (J) < oo be the
corresponding 1-unconditional basis. Suppose that X # E’; for any 1 < p < o0 and
that X has mazimal fibers. Then there ezist m, 2 <m < oo, asetd CS; CJ and a
partition Sa,...,Sm of J\ S1 such that X is a direct sum of X; = span{es : s € S;},
1 < i < m, and ezactly one of the following holds:

(i) For each 1 <i<m, S; is a mazimal fiber and X = Xo((X;)i<m) where the
norm Ng on Xq s defined by

No((ai)icm) = N (Z aies.)
=1
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for some s; € S;. In this case mazimal fibers of Xg ezist and are singletons.
(ii) For each 2 < i < m, J\ S; is a mazimal fiber and there exists p with
1 <p < oo such that X = 0,(Xq,...,Xn), where
(a) X1 =240 (possibly dim X; = 0),
(b) some of the X;’s equal to E,(2) if F =R and p # 2,
(c) and the rest of the X;’s are such that dim X; > 2 and X; is not an £, sum of
two nonzero subspaces.
Proof. Note first that if {S;}1<i<m are maximal fibersin X and F C {1 : 1<
i <m} is a fiber in Xy then Sp = {J;cr Si is a fiber in X.
Indeed, select for each ¢ < m, s; € S;, sp € U=, {s:} and let {as}ses,, {a} }segF
C IF be finitely nonzero sequences with

N(Z ases) =N<Z a'ses).

SESF SESF

Then for all finitely nonzero sequences {b;}icn\s, C IF,

N( Z ases+ Z biei>

SESF i€J\SF

(ZN( Z ases> es; + ZN( Z bses>esi>

i€F SESFNS; igF  Nie(J\SF)NS;

( (ZN( > ases)esi)esF+ZN( > bses)esl)

i€EF SESFNS; i¢F 1€(J\SF)NS;

%N(N(Zases)esp-{-ZN( > bses>es‘.>

SESF igF i€(J\SF)NS;

G5 B ()

SESF igF  Nie(J\Sp)NS:

(Zaes+ z bel),

SESF i€J\SF

where equality (1) holds because all S; are fibers and our elements are finitely sup-
ported, (2) holds since F is a fiber in Xp, (3) uses again the fact that S;’s are fibers
in X, (4) was our assumption and (5) is the final effect of applying again (4), (3), (2)
and (1).

Thus, by maximality of S;’s, only sigletons can be fibers in Xj.

Suppose next that (i) does not hold, i.e. that it is not possible to form a partition
of J consisting of maximal fibers. Then there must exist two nondisjoint maximal
fibers. Thus, by Proposition 2.2, there exists p, 1 < p < oo and spaces Y7, Y5, Y5 so
that X = Z,,(Yl,Yg,Yg,) and Y; = span {e; : s € A;}, for some partmon {A}2, of J.
Among all the decompositions of the space X into £, sum, let R; U---U R, (s < 00)
be a maximal partition of J so that X = €p((Z1-)i55) with Z; = span {er T € R} If
X is real and p # 2, then for each 1 <7 < s we have one of the three possibilities (cf.
[LaW]):

(a) R;is a singleton.

(b) R; has two elements and Z; = E,(2).
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(c) R; has at least two elements and Z; cannot be decomposed as an {p-direct
sum of two nonzero subspaces.
If X is complex or if p = 2 only (a) and (c) can happen (cf. [BL]).
Let S; be the union of the R; which are singletons if they exist, and rename the
other R; as S; if necessary. We see that condition (ii) holds. O

Some remarks are in order in connection with Theorem 2.4.

1. In both cases (i) and (ii) we present X as a direct sum of summand subspaces
X1,...,Xm (m < 00). Notice that (X;);<m are uniquely determined by X, up to
a permutation, and that each of the spaces X; may be further decomposable into
summands (we do not consider summands of X;’s as summands of X, sometimes we
will call them second generation summands of X).

2. Evidently, if X has an explicit direct sum structure i.e. if X =Y ((Y3)i<m),
where X (and, equivalently, Y) has maximal fibers, then Theorem 2.4 can be used
to regroup the summands of X so that condition (i) or (ii) of Theorem 2.4 holds. If
no regrouping is necessary, we say that X has reduced direct sum structure. Some
examples of spaces with the explicit reduced direct sum structure include

type (i): X(£p), X(X), X(Y), X(Y,4,), X(Y(£,)), X(Y(Z)), where X,Y, Z are
symmetric spaces not equal to any £,

type (i): €p(£q), e%(ep’eq)» £p(Ep(2)), eg(ép,éq,Ep(z),éq(er)), where p # q # 7,
etc.

3. Isometries of complex sequence spaces. Before further analysis of isome-
tries of X we need to introduce another definition. As before, we denote by {e;};cs
the 1-unconditional basis of X. After [ST] (cf. also [KaW]) we define an equivalence
relation ~ on the indices J. We say that s ~ t if N(3_,c;aies) = N(3,c; biei)
whenever {2(as,a:) = €2(bs, b)) and a; = b; for all © # s,t.

Schneider and Turner showed that ~ is indeed an equivalence relation and that
equivalence classes of ~ are isometrically isomorphic to #; (with appropriate dimen-
sion) [ST, Lemma 2.3]. If X is isometric to ¢; then relation ~ has only one equivalence
class equal to the whole set J. Otherwise equivalence classes of ~ are fibers in X,
and hence they are contained in maximal fibers of X. We will call equivalence classes
of ~ maximal £5-fibers. Notice that every subset of a maximal £2-fiber is also a fiber;
we will call it a (non-maximal) £,-fiber.

The results in [ST] and [KaW] state that every isometry of X preserves maximal
¢5-fibers. This fact has very important consequences for us. Namely we have:

THEOREM 3.1. Let X be a compler sequence space with 1-unconditional basis
{ej}jes, JCIN, X # £y, and let X = Xo(X1,...,Xm), m < oo, where Xi1,...,Xnm
are summands as described in Theorem 2.4. Then T is a surjective isometry of X if

and only if there exists a permutation m of {1,...,m} such that the norm Ny on Xo
satisfies No(21,-..,2m) = No(2x(1),- - -, 2r(m)) and there ezists a family of surjective
isometries Sj : Xp(j) — X; such that

(7) T(zlv (RN ,.’l/'m) = (Slxﬂ’(l) P asmzn(m))

for all (z1,...,2m) € Xo(X1,..., Xm) =X.

Proof. For the proof of Theorem 3.1 we will need two lemmas. We start with
introducing some notation.

We will use M to denote the collection of all maximal fibers in X and M, =
{Jx}ren, A € N the collection of all maximal ¢5-fibers in X. By [KaW, Theorem 6.1]
there exists a permutation ¢ of A such that for all A € A

(8) supp (T'(span {e; : s € Jr})) = Jo(n)-
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Let U be the class of subsets of J which can be presented as unions of maximal
£y-fibers. Define amap T : U — U by

T(‘l) = supp (T'(span{es : s € A})) = U Jo(n)
AEAA

where A = U)\EI\A Jy €U, As C A. In this notation we have:

LEMMA 3.2. T(M NU) = MNU.

LEMMA 3.3. M C U, unless X has the form described in Theorem 2.4(i1) with
p=2and Sy #0; in this case MNU = {J \ Si}i>2.

Before proving the lemmas we show that they indeed imply the conclusion of
Theorem 3.1. We have the following cases:
Case 1. If X has the form described in Theorem 2.4(i) then M = {S;}i<m, and by
Lemma 3.3 M C Y. By Lemma 3.2, f(A/l) = M. Thus there exists a permutation

7 of {1,...,m} so that T(S,r(i)) =S;. Hence T ‘ is an isometry of X ;) onto X;
<A (i)
and T has form (7).

Case 2. If X has the form described in Theorem 2.4(ii) then M = {J \ Si}2<i<m U

{J\ {s}}ses,. If S; = 0 then, by Lemma 3.3, M C U and the proof is the same as in

Case 1. Thus we will assume that S; # 0.

Case 2(a). If p # 2 then, by Lemma 3.3, M C U and by Lemma 3.2, T(M) =M.
Since p # 2, {s} € M, for every s € S;. Thus, by [KaW, Theorem 6.1], T({s}) €

My and card (f({s})) = 1. By Lemma 3.2, T(J \ {s}) =J\ T({s}) € M, so, since

for all 7 > 2 card (S;) > 2, there exists s' € Sy so that T(J \ {s}) = J \ {s'}. Hence

T({J\ Sita<i<m) = {J \ Si}o<i<m-

and there exists a permutation 7 of {1, ..., m} so that 7(1) = 1 and T(J\Sn(i)) = J\S;

for ¢ > 2. Thus for all ¢ we have f(S,,(i)) =S;and T N is an isometry of X, (;
Am(i)
onto X; i.e. T has form (7).

Case 2(b). If p = 2 then S; € M; and, by Lemma 3.3, MNU = {J\ Si}i>2. By
Lemma 3.2, T(M NU) = MNU so there exists a permutation 7 of {1,...,m} so that
7(1) =1 and f(J\S,,(i)) =J\S; fori>2.

On the other hand S; € Ma, so by [KaW, Theorem 6.1}, T(S1) € M, and since
S1 = Na<icm(J \ Si), we have

T(S)= () TU\S)= (] (J\S) =S

2<i<m 2<i<m

Thus for all ¢ > 1 we have T(Sﬁ(i)) = S; and the theorem follows same as in the
previous cases. d

Proof of Lemma 3.2. Let S € M NU, then S° € U and f(S), f(SC) are disjoint.

Now let a,a’ € X be such that suppa Usuppa’ C T(S) and N(a) = N(d'),
and let b € X with suppb C T(S¢). Then suppT~!(a) UsuppT~1(a’) C S and
supp T~*(b) C S¢. Thus, since S is a fiber, we have

N(a+b) = N(T ) +T7(b)) = N(T™'(a') + T7'(b)) = N(a’ +1) .
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Therefore T(S) is a fiber in X and (T~ )(T(S)) =5.

___Assume now that T(S) ¢ M, say T(S) is a subﬁber of a proper fiber S; then
(T- 1)(5'1) is a proper fiber in X which contains (T 1)(T(S)) S which contradicts
the maximality of S. Thus T(MNU) C MNU. Also (T‘ YMNU) C MNU. Hence
TMAU)y=MnU. O

Proof of Lemma 3.3. Assume that M ¢ U. Then there exists S € M and
F € My sothat FNS # 0 and FNS® # 0. Let V be a maximal fiber such that
F CcV. Then VNS # @ and by Proposition 2.2 there exists p, 1 < p < 00 so
that X = £,(Xv\s, Xvns, Xs\v). But FN(V\S) #0and FN(VNS) #0. Let
i€ FN(V\S)and k € FN(VNS). Then for all a;,a; € C:

N(ase; + arer) = (lai|? + Iaklp)l/”
but ¢,k € F and F € M; so:
N(aze; + axer) = (|laif® + Jax|?)'/2.

Thus p = 2.

Let X = £(X1,...,Xm) (m < oo0) be the decomposition of X described in
Theorem 2.4(ii). Assume that there exist ' € M3 and 2 < i,k < m, ¢ # k , with
FNS;#0and FNS, #0, say ji € FNSy.

Note that if FN.S; = S; then X; @card(s) (card (S;) > 2) contrary to the
assumption that X; cannot be decomposed into £ sum of nonzero subspaces. Thus
FNSE+#0. Let ¢ € X;, then

N(Z)=N< > ome+ Yy zﬂj)

JEFNS; jeEF<NS;

ZI—)—N N Z zje; | e, + Z Tje;
JEFNS; JEF°NS;

2 2\ 2
z-—-2—-)- N Z Tje; + N Z zje; ,
JEFNS; JEFeNS;

where (1) holds since F' is a fiber, and (2) holds since ji ¢ S; and X = €2( Xy, ..., Xn).
Thus X; is the ¢ sum of Xpns, and X Fns; again contradicting our assumption
of nondecomposability of X;.
Thus {J \ Si}i_>_2 CU and M # {J\Si}izz only if S; # 0. n|
We would like to make some remarks:
1. Notice that (7) is very similar to (1). Theorem 3.1 refines the results of
[ST, KaW] by determining precisely which permutations of standard basis vectors
generate isometries and which do not (see also Corollary 3.5).
2. Lemma 3.3 is also valid in real sequence spaces with maximal fibers. The
proof does not change.
3. If the isometry group of X is contained in the group of signed permutations
then X has no nontrivial £, —fibers and (8) is trivially satisfied. Thus Lemma. 3.2 and
Theorem 3.1 will follow.
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4. Theorem 3.1 is valid in those real spaces with maximal fibers for which Lem-
mas 3.2, 3.3 and formula (8) hold. In particular, by the discussion in the preceding
paragraphs, Theorem 3.1 is valid for any real sequence space with maximal fibers,
whose isometry group is contained in the group of signed permutations.

Theorem 3.1 provides a complete description of surjective isometries of complex
sequence spaces with maximal fibers. Below we present some immediate corollar-
ies about the form of isometries of spaces with explicit cross product structure (cf.
Remark 3 after Theorem 2.4).

COROLLARY 3.4. Let X = Z(Xy,....X) be the space with explicit reduced direct
sum structure. Suppose that X or, equivalently, Z has mazimal fibers. Then every
surjective isometry of X onto itself has form (7).

COROLLARY 3.5. Suppose X,Y are complex symmetric sequence spaces not both
equal to £, with the same p. Let {eij}f;"l’v‘f:’cilmy be the standard basis vectors of X (V)
(i.e. Nxy)(X;;aijei;) = Nx(Z,(Ny(X; aijel )el)). Then T : X(Y) — X(Y)
is a surjective isometry if and only if there exist a family of numbers \;; € C with
|Aij| = 1 and permutations m of {1,...,dim X'} and m of {1,...,dimY} such that

Teij = Aijen, (iyma(j)

for alli,j.

COROLLARY 3.6. (c¢f. [BVG]) If X is a complex symmetric sequence space then
X(X) is symmetric if and only if X = £, for some p, 1 < p < oo.

Notice that if summands X, X,,..., X, have maximal fibers and can be further
decomposed into simpler second generation summands (as mentioned in Remark 1
after Theorem 2.4), then one can again use Theorem 3.1 to conclude that the isome-

tries Si,...,Sm have form (7). In particular, one can inductively describe isometries
of spaces of the form X;(Xa(...(X,,)...)), where X;,X5,..., X,, are complex sym-
metric sequence spaces such that for any ¢ = 1,...,m — 1, X; and X;;; are not

simultaneously equal to ¢, with the same p. We leave the exact statement to the
interested reader.

It is interesting to note that the group of isometries of X (Xa(...(Xm)...)) does
not depend on entire isometry groups of Xi,..., X,,_1, but only on intersection of
these groups with the group of signed permutation operators and the isometry group
of X,,.

4. Isometries of real sequence spaces. The description of isometries of real
sequence spaces is more complicated than in the complex case. The main difference is
in classification of spaces whose group of isometries is contained in the group of signed
permutations. In the complex case Schneider, Turner [ST] and Kalton, Wood [KaW]
showed that the group of isometries is contained in the group of signed permutations
if and only if the space does not have nontrivial ¢o—fibers. In the real case similar
classification is not valid. In fact, we have the following examples of spaces which do
not contain any copies of £, and which allow non-disjointedness preserving isometries,
i.e., isometries that are not signed permutation operators.

1. Let p # 2 and let E,(2) be the space defined in Definition 2.3. Then E,(2) is
isometric to £2 through the isometry T : E,(2) — €3, T(z,y) =27"P(z +y,z — y).
Let X = Y(ff,, E,) for any 2-dimensional real symmetric space Y, andlet S : X — X
be an isometry defined by S(vi,vs) = (Twa, T~ v;) where vy € £, vo € E,. Then S
is a non-disjointedness preserving isometry of X.
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2. Let X be any 2-dimensional real symmetric space, X # £3. Put

1
Iz, y)llex = m”—xll($+y,$ -yllx -

Consider Z =Y (X, Ex), where Y is any 2-dimensional real symmetric space. Then,
similarly to Example 1, there exists a non-disjointedness preserving isometry of Z.

3. Spaces in Example 2 can be generalized to higher dimensions by taking any
spaces X1, X2 which are isometric through a non-disjointedness preserving isometry
(spaces like that can be constructed e.g. by taking direct products of X and Ex, cf.
also [R1, Theorem 4]). Then let Z = Y (X;, X>) for any symmetric space Y.

The above examples show isometries which are not signed permutations but which
nevertheless “preserve the direct sum structure”, i.e., have canonical form (7). One
would hope that this is always true, however the following examples show the contrary.

4. Consider £,(€3, E,(2)) = (R* x R?, N) with
N(z1,22,73,91,2) = £p(€p(T1, 72, 23), Ep(y1,92)) }-

As described in Example 1, £2 is isometric with E,(2) via the isometry T'. Thus one
can define isometry S on Z,,(Z?,, E,(2)) by

S(z1,22,T3,91,¥2) = (T(y1,¥2), 23, T (21, 2)) .

Clearly S does not have form (7).
Surprisingly, a similar pathology is possible even in spaces of the form X (Y),

where X, Y are symmetric.
5. Consider the space £2(E,(2)) = £,(Ep(2), E5(2)). Then we have
N(z1,2,91,92)
= £p(Ep(z1, 22), Ep(y1,92))
= 6,(27VPL (21 + 22,71 — 32), 27 VPL, (Y1 + Y2, y1 — ¥2))
=277 (zy + 33,21 — To, Y1 + Y2, Y1 — Y2)

= 27YPL, (0 (21 + 22, Y1 + Y2), Lp(T1 — T2, 41 — ¥2))
=Y, (Ep (2“1(:1:1 +T2+y1+ Y2, T+ T2 Y1 — yz)),
E, (2‘1(z1 — Ty Y1 — Y2, T — T2 — Y +y2))>
= N(Q‘l(zl + 2o+ Y1 +Y2,T1 + T2 — Y1 — Y2,
T1—Z2+Y1—Y2,T1 T2~ Y1 +y2)>

Thus the linear map defined by

271(1,1,1,1) 5(0,1,0,0) = 271(1,1,-1,-1)
271(1,-1,1,-1) $(0,0,0,1) =271(1,-1,-1,1)

5(1,0,0,0)
5(0,0,1,0)
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is an isometry, and clearly S does not preserve disjointedness of vectors. This isometry
in the case when p = oo, i.e. X = 2 (¢3), and p = 1, i.e. X = £3(£2,) is described
in [KL, Theorem 3.1(b)]. Notice that E,(2) can be decomposed as an £,-direct sum
of two nonzero subspaces. Thus this example is consistent with [Gr, Proposition 2],
which says that if E is an £,—sum of two nonzero subspaces then there exists an
isometry of £,(E) which is not of the form (9). It is interesting that this is, in fact,
the only possible example as shown in Theorem 4.1 below.

It becomes of interest to characterize spaces with direct sum structure, which is
preserved under action of all isometries.

First we list classes of spaces whose isometry group is contained in the group of
signed permutations:

(1) spaces with A-bases ([GL]).

(1a) In particular for spaces of the form Z(X;, Xs, ..., Xx) where k < 00, dim X; €
IN \ {2,4} and X, is a symmetric space not equal to £y, 1 = 1,...,k, Z is
arbitrary.

(2) spaces which are p-convex with constant 1 for 2 < p < oo ([R1]).

(2a) spaces which are strictly monotone, smooth at every basis vector and g¢-
concave with constant 1 for 1 < ¢ < 2 ([R1]).

Thus if a space X belongs to one of the above classes and has maximal fibers
then Theorem 3.1 can be applied to conclude that indeed the direct sum structure
is preserved by all isometries. Further Rosenthal [Ros| (cf. also [R2]) showed that
Theorem 3.1 holds in real spaces of the form:

(3) Z(X1,...,Xx) where k < 0o, dimX; > 2 and X; = £ forall ¢t = 1,...,k,

Z # .

Below we study the group of isometries of spaces of the form X(Y) where X,Y
are finite-dimensional symmetric spaces with dimY" > 2. This class of spaces has a
sizable intersection with classes (1a) and (3), but we do allow dimY to be 2 or 4,
which are excluded by (1a). Thus we allow the situation when the isometry group is
not contained in the group of signed permutations. Our proof is somewhat technical
but it is more elementary than the one in [GL]. It is possible that our different
approach may lead to some insight to the general problem. So we present the entire
proof including the previously proven cases.

THEOREM 4.1. Suppose X and Y are finite dimensional symmetric spaces such
that dim X = n and dimY = m, and not both Ny and N are £, (with the same p).
Then U is an isometry for N on X(Y) if and only if

(1) T is of the form

(9) W1, ¥n) = (S1¥zq): - - - SkYr(n)

for some isometries S; of Y and some permutation = of {1,...,n}, or
(ii) X =£€5,Y = Ep(2) for somep, 1<p<coc, p#2, and

(10) ¥ permutes the matrices in the set {=(el % eg’)(e;-()t :1<j <n},

Y

where e , eX denote column basis vectors in Y and X, respectively.

Notice that, clearly, if Ny = Ny = £, then X(Y') = £7'"™ and the isometry group
is well known.

COROLLARY 4.2. (c¢f. [BVG]) If X is a real symmetric sequence space with
dim X = n then X(X) is symmetric if and only if X = £, for some p, 1 < p < 0.
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The choices of S; in Theorem 4.1 (i) are very restrictive. If No = {5, the S;
is orthogonal (on Y); otherwise, S; a signed permutation operator on Y unless for
m =4 orm = 2. When m = 4, there are a few more possibilities for S;. One may,
for example, see [Ro] (see also [DLR, Br]) for more details. This exceptional case will
be treated separately in our proof. When m = 2, S; must be chosen from a dihedral
group.

In the following discussion, we shall identify X (Y') with the space R™*" of m xn
real matrices, and identify the linear operator ¥ on X (Y') with its matrix represen-
tation relative to the standard basis

{611,621,---,€m1,~~,61m€2m---,emn}-

We shall also use the following notations in our discussion.

O(m): the orthogonal group on R™.

O(mmn): the orthogonal group on R™*™.
P(m): the group of m x m permutation matrices.

GP(m): the group of m x m signed permutation matrices.

GP(mn): the group of linear operators on IR™*™ that permute and change the
signs of the entries of A € R™*™.

P ® Q: the tensor product of the matrices P and @ given by (P;;Q).

e{™: the n x n matrix with one at the (i,7) position and zero elsewhere.

ij
E’()ZJ): the mn X mn matrix eg}) ® @;Zn)'

We shall also use the concept of the Wreath product of two groups of linear opera-
tors. For simplicity, we consider the special case when G is a group of linear operators
(identified as matrices) acting on R™. The Wreath product of G and P(n), denoted
by G * P(n), is the group of linear operators on IR™*" of the form

[wi] -+ [yn] = [Ur(y1)] - - |Un(yn)]V

for some Uy,...,U, € G and V € P(n).

With this definition, Theorem 4.1 implies that the isometry group of N is the
Wreath product of the isometry group of No and P(n) if m # 2. In particular,
isometries will always preserve the direct sum structure of X (V).

It is also interesting to note that in our proof, we actually determine all possible
closed overgroups G of H = GP(m) * GP(n) in O(mn). In particular, if G is infinite
then G = O(m) * GP(n) or O(mn); if G is finite then G is one of the following:

(a) GP(m)* GP(n): the Wreath product of GP(m) and GP(n),

(b) GP(mn): the group of signed permutations on R™*",

(c) Aan: the Weyl group of As,, type realized as the group of orthogonal operators

on R**™ that permute the set {+(e} £e})(ef)":1<j<n}ifm =2,

(d) Dy x GP(n): the Wreath product of the dihedral group D; and GP(n) if

m =2,

(e) Fy and the normalizer of Fy: the Weyl group of Fy, if m =n = 2.

In (e), there are two possible realizations of Fy, namely, an overgroup of GP(4) (e.g.,

see [DLR]) or the group generated by H and L; mentioned in the proof of Lemma
4.8. However, only the first realization can be an isometry group of X(Y).

Our proof of Theorem 4.1 uses the basic ideas in [DLR] (cf. also [Br]) and some
intricate arguments. It would be nice to have a shorter conceptual proof. We begin
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our proof with the following corollary of Auerbach’s Theorem (see e.g. [Ro, Theo-
rem IX.5.1], [KL, Theorem 2.3]).

LEMMA 4.3. Let G be the isometry group of N. Then G < O(mn), i.e., G is a
subgroup of O(mn).

We first deal with the case when the isometry group of N is infinite.

LEMMA 4.4. If the isometry group G' of N is infinite, then either G = O(mn) or
G is the Wreath product O(m) * P(n).

Proof. By Lemma 4.3, G is a subgroup of O(mn). Since G is closed and O(mn)
is a compact Lie group, G is also a compact Lie group. It is well-known that the
Lie algebra of O(mn) is o(mn), the algebra of all skew-symmetric mn x mn matrices
over real under the Lie product [4,B] = AB — BA. Suppose g is the Lie algebra
of G. Then g is a subalgebra of o(mn). Furthermore, by definition of N, we have
H := GP(m)*GP(n) < G and H acts on G by conjugation, and so g is a H-module
under the action (P, A) — P'AP for any P € H and A € g. We shall show that there
atre only two subalgebras of o(mn) which are H-modules, and the two Lie groups
corresponding to the subalgebras are O(mn) and O(m) * P(n).

For any A € g we write A = (A)) in n x n block form such that each block
Al ¢ R™ ™ If there exists i < j such that A # 0, we claim that g = o(mn).
First, note that there is P € P(n) such that the (1,2) entry of P*Z P is the (7, ;) entry
of Z for any Z € R™*". Then P®1I,, € H and hence (P®I,,)! A(P®I,,) € g will have
nonzero (1, 2) block. So, we may assume (3, j) = (1,2). Now suppose the (p, q) entry of
A(2) is nonzero. Then D; = Iy, —E,(,i,l) € H and hence A, = A— D,AD; € g. Note
that only the pth row and pth column of A; are nonzero. Now Dy = I, — E,(,ff) €H
and hence A2 = A; — D2A, D, € g. Since A is a nonzero multiple of E,(,}Iz) - Eﬁl),
it follows that Q‘(E,%Z) - Eé?,l))Q € gforall Q € H. As a result, g contains
Eﬁij) - Egi) foralll1 <i < j<nandl < s,r <m. In particular, it contains

the Lie product [ESQ) - Eﬁl),Egl) - EéiQ)] = Egl) - Eéil). It then follows that
Qt(Egl) - Eéil))Q € g forall Q € H. As a result, g also contains E\) — E{& for
alll<i<nand1<r<s<m. So, g contains a basis of o(mn) and we conclude
that G = O(mn).

Next, suppose all A = (A(¥)) € g satisfy A®) = 0if i # j. Then we can show
that g contains Eﬁf) —Egii) foralll1 <i<nandl<r <s<m,byarguments similar
to the preceding case. Taking the exponential map for the elements of g, we see that
G contains the Wreath product O(m) * {I,}. Since G also contains GP(m) * GP(n),
we conclude that O(m) * P(n) = O(m) x GP(n) < G. In particular, Ny = £5. By the
results in [Ros] (see also [R1]), we conclude that G = O(m) * GP(n). O

Next we consider the case when the isometry group of N is finite. We use the
approach in [DLR], namely, determining all the finite overgroups of GP(m) * GP(n)
in O(mn). We begin with the following lemma, which explains why one needs to
exclude the cases when n = 2,4 in [GL].

LEMMA 4.5. Suppose dimY # 4,2. If G is the isometry group of N and G is
finite, then G < GP(mn).

Proof. For each ¥ € G, we write ¥ = (¥(¥) in n x n block form such that
¢) ¢ R™*™ for all (i,5). Since G < O(mn), ¥ € G implies ¥* € G as well.

We use the technique in [DLR] to show that for any ¥ € G (in its matrix repre-
sentation) the entries of ¥ can only be 0,1 or —1. Suppose this is not true. Let

g =min{a > 0:ais an entry of ¥ for some ¥ € G}.
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Since G < O(mn) by Lemma 4.3, we have 0 < p < 1. Denote by H = GP(m)*GP(n)
as in the proof of Lemma 4.4. Let ® € G have one of its entries equal to . Then
there exist P,Q € H such that the (1,1) entry of P®Q equal p. Thus we may assume
that the (1,1) entry of & = (&) equals y. We consider several cases.

First, suppose n is odd. By the arguments in the proof of Theorem 2.4 in [DLR],
there exists S € GP(m) such that (®11))tS®(11) has a positive (1,1) entry equal to
n < U. :

Indeed, let P = (PU9) € H be such that PO = §, pEk2k+1) — [ and
PRE+L2k) — T for 1 < k < (n—1)/2, and P = 0 for all other (i,j). Then
®'P® € G has (1,1) entry equal to n = p? < p, which contradicts the definition of p.

Next, suppose n is even. If m is even, we can again obtain S € GP(m) such that
(®(11)tS®(11) has a positive (1,1) entry equal to < p. Let P = (P()) € H be such
that PV = G, P() = Z;”/f(eg’;‘)l by eg%] ) fori=2,...,n, and P("®) =0 for
other (r,s). Then ®'P® € G has (1,1) entry equal to n < g, Wthh contradicts the
definition of .

Finally, suppose n is even and m is odd. Note that there exists P € H such that
the first column of P® is nonnegative. So, we may assume that ® has nonnegative
column. Furthermore, we may assume that <I>§211) attains the minimum among all
entries in the first columns of ®1) for j = 2,...,n. Then either

o x(21) _

(i) ;7 =0, 0or

() 0 < (2(1")? < { S Ti (@)} /{(n = Dm} < 1/{(n = m}.

If (i) holds, let S € GP(m) such that (®(11)tS®(1) has a positive (1,1) entry

equal ton < p. Let P = (P(¥)) € H be such that P(11) = §, p(22) = Z;"z/f( g’;ﬁl 9~

esT) 1), PRE"120) = [ and P@&2=1) = _I for k=2,...,n/2. Then ®'P® € G
has (1,1) entry equal to n < u, which contradicts the deﬁmtlon of p.

If (ii) holds and (m,n) # (3,2), then 0 < &3 < 1/2. Let P = (P(¥) € H be
such that P12 = I, P@D) = 2¢™ _ 1 p(k-1 20 _ = I, and P2k:26=1) — _ T for
k=2,...,n/2. Then ®'P® € G has (1, 1) entry equal to 2&{}V &2V <« c1>§111) = U,
which contradlcts the definition of u.

If (ii) holds and (m,n) = (3,2), let the first column of ® be v = (a;,as, as, b1, ba,
b3)t. By our assumption, u = a; < b; < by < bs. Since v is a unit vector, we have
a; < 1/2. We claim that a; = 1/2 and hence by = by = b3 = 1/2. Assume that
a; < 1/2. We consider two cases.

Case 1. Suppose a; > 1/4. Note that by > 1/2. Otherwise, one can find R € H
such that the (1,1) entry of ® R® equals 2a;b; < a;, which is a contradiction. Let
P=P &P, e Hwith P, = —e{¥ — ¢ +¢{) and P, = &3 — ) + 3. Then
®!P® has (1,1) entry equal to the positive number b? — a? < (b? + b2 + bz)/3 -al<
(vtv—4a?)/3 = (1-4a?)/3 < a; = p, because the roots of the equation 42 +3t—-1=0
are —1 and 1/4.

Case 2. Suppose a; < 1/4. Let P=I; —2e§61). Then ¥ = ®*P® has (1,1) entry equal
to 1 — 2a?. Let u = (c1,ce,c3,d1,d2,d3) be the first column of ¥. We may assume
that u is a nonnegative vector. Since u is a unit vector, there are other nonzero entries
besides c;. In particular, we may assume that ¢ + d2 > 0, otherwise multiply ¥ by
a suitable P € H. Let Q = e§3’ - eg) + 6(3) Then Q& Q € H and the (1,1) entry of
THQ @ Q)Y equals ¢ +d} <ulu—cf = 4a1(1 —a})<4a?<a =p.

In both cases, we get the desired contradiction. So, we have v = (1,0,0,1,1,1)/2.
But then if we define @ as in Case 2, the (1,1) entry of ®'(Q & Q)® will be 1/4 <



ISOMETRIES OF DIRECT SUMS OF SEQUENCE SPACES 173

1/2 = a; = p, which contradicts the definition of p.

Combining the about analysis, we get the conclusion. O

LEMMA 4.6. Let G be the isometry group of N and suppose that G is infinite or
G < GP(mn). Then every isometry in G has form (9), i.e. Theorem 4.1(i) holds.

Proof. If G is infinite, then by Lemma 4.4 either G = O(mn) or G = O(m)* P(n).
In the former case, clearly, we have Ny = Ny = ¢5. In the latter case, we have
N, = {5 # N;. The conclusion of Theorem 4.1(%) holds.

Suppose G < GP(mn). The result follows from Remark 4 before Corollary 3.4. O

Next we turn to the exceptional case when dimY =m = 4.

LEMMA 4.7. Suppose dimY = 4. The conclusion of Theorem 4.1(z) holds (i.e.
isometries have form (9)).

Proof. Let G be the isometry group of N. By Lemma 4.6 it remains to consider
the case when G is finite and is not a subgroup of GP(mn).

For that, define u as in the proof of Lemma 4.5, and let & € G have (1, 1) entry
equal to u and a nonnegative first column. We divide the proof into three assertions.
The matrix

Q=cff +eiy) —eb) —efy
will be used frequently in our arguments.

Assertion 1. The first column of ® equals v = (1,1,1,1,0,0,...,)"/2. In particular,
n=1/2.

Suppose the first column of ® equals v = (vy,vs,...)" with 0 < vy < v3 < vy.
Then vy # 0. Otherwise, we may let P = (egi) - 643)) ® (In-1 ® Q) € H, where
Q is defined as above, so that the (1,1) entry of ®P® equals v? < v; = u, which
contradicts minimality of u.

Thus, we may assume that v; < vy < vz < v4.

To prove that v is of the asserted form it is enough to show that v; = 1/2, since
viy = 1.

Since v? < (v 4 02 +v? +v2)/4 = vlv/4 = 1/4, we see that v; < 1/2. One can
show that v; < 1/2 is impossible as in the last part (Case 2) of the proof of Lemma
4.5 (see also the first proof of Theorem 3.2 in [DLR]).

Assertion 2. A column of ¥ € G must be of the form elx ® (Pu) for some 1 < ¢ < n,
P e GP(4) and u = (1,0,0,0)%,(1,1,1,1)t/2, or (1,1,0,0)t/v/2.

Let v be the kth column of ¥ € G. Multiplying ¥ by a suitable R € H, we
may assume that ¥ = 1 and the (1,1) entry of ¥ is nonzero. We need to show that
v = ef ® (Pz). If v is not of this form, then (see the first proof of Theorem 3.2
in [DLR)) there exists S € GP(4) such that the (1,1) entry of (Z(1))tST1D equals
n<1/2. Let R=S® (In-1 ® Q) € H, where Q is defined as above. Then the (1,1)
entry of W!R¥ € G equals n < 1/2, which is a contradiction.

Assertion 3. Suppose ¥ = (¥(¥)) € G is in n x n block form with ¥() ¢ R***
for each (i,7). Then each nonzero ¥(¥) must be of the form P, PAR or PBR, with
P,R € GP(4), where

A=(I—(1,1,1,1)/(1,1,1,1)/2) and B=%{(i _11)@(} _11)}



174 CHI-KWONG LI AND BEATA RANDRIANANTOANINA

Consider a nonzero ¥(*). Multiplying ¥ by a suitable R € H, we may assume
that (¢,7) = (1,1), the first column of ¥ is nonnegative, and the (1,1) entry o of ¥
has the smallest magnitude among all nonzero entries in ¥, We consider 3 cases.
Case 1. Suppose a = 1/2. Then the first column of ¥ equals (1,1,1,1,0,...)*/2. Since
P! € G as well, we see that the first columns of ¥* are of the form e ® P(1,1,1,1)%/2
for some P € GP(4) by Assertion 2. Thus ¥(11) = PAR for some P,R € GP(4).

Note that it follows from Assertion 1 and the above arguments that ®(11) is of
the form PAR for some P,R € GP(4).

Case 2. Suppose a = 1/v/2. By Assertion 2, we may assume that the first column of
¥ = (1,1,0,0)t/+/2. Since ¥t € G as well, we may assume the first row of w(11)
equals (1,1,0,0)/+/2. Since the first two column of ¥ are orthogonal, the second
column of ¥(11) equals (1, —1,0,0)t/+/2. By Assertion 2 and the knowledge about the
first two columns of ¥, one easily sees that the (1,1) and (2,1) entries of ¥!® € G
are 1/4/2 and 0. By Assertion 2 again, one of the (3,1) and (4, 1) entries is 0, and the
other has magnitude 1/v/2. It follows that the third and the four columns of ¥ have
the same form. Thus ¥(!1) = PBR for some P,R € GP(4).

Case 3. Suppose a = 1. Then the first column of ®¥ € G equals (1,1,1,1,0,...)t/2.
By the result in Case 1, the first four columns of ®¥ are of the form e ® P(1,1,1,1)/2
for some P € GP(4). Thus ¥(;;) € GP(4).

We are now ready to complete the proof of the lemma. Let A be the group
generated by GP(4) and A, and let B be the group generated by GP(4) and B. It is
known (e.g., see [DLR, Theorem 3.2]) that A is a normal subgroup of B, and they are
the only other possible isometry groups of a symmetric norm on R* besides O(4) and
GP(4). By Assertion 3, one easily concludes that if G is not infinite and G is not a
subgroup of GP(mn), then G must be of the form G2 * P(n), where G, = GP(4), A
or B. In each case, G is clearly the isometry group of Ny. O

Finally, we deal with the exceptional case when dimY = m = 2 in the next two
lemmas.

LEMMA 4.8. Suppose dimY = 2. Then the isometry group of N has form (9) or
(10).

Proof. Let G be the isometry group of N. By Lemma 4.6, we only need to
consider the case when G is finite and not a subgroup of GP(mn). Define u as in the
proof of Lemma 4.5. Then 0 < p < 1. Let ® € G have (1,1) entry equal to 1 and a
nonnegative first column v = (vy,...,v2,). Similarly as in Lemma 4.7, we divide the
proof into several assertions.

Assertion 1. The vector v cannot have more than four nonzero entries.
If the assertion is not true, then
2n 1/2
n=min{v; : 2 <j < 2n,v; >0} < (va)/(k— ) <1/2,
j=2

where k is the number of nonzero entries of v. Let H = GP(2)*GP(n). If v, =, we
can find P € H such that the first column of P® equals (ve,v1,v4, —V3, V6, —Us, - - -,
Von, —V2n-1)". If vo > 1 = v; for some j > 2, we may assume that j = 3 after
multiplying ® by a suitable ) € H on the left. Then we can find P € H such that
the first column of P® equals (vs, —v4, V1,2, V6, —Us, . . ., V2,)¢. In both cases, ®*P®
has (1, 1) entry equal to 2un < p, which contradicts minimality of p.

Assertion 2. We have vy > 1/2.
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If v =0, we can find P € H such that the first column of P® equals
(v1,v2,v4, —V3, V6, —Ts, - - -, V2n, _U2n—1)t

so that the (1,1) entry of ®¢P® is u> < . which is a contradiction. If 0 < vy < 1/2,
we can find P € H such that the first column of P® equals (ve,v1,v4, —v3, Vg, —Vs, - - - ,
Van, —U2n—1)% so that ® P® has (1,1) entry equal to 2vepu < p, which is a contradic-
tion.

Assertion 3. The vector v cannot have exactly 3 nonzero entries.

If the assertion is not true, we may assume without loss of generality that v; =0
for j = 4,...,2n(by replacing ® with P® for some P € H, if necessary).

If n > 3, let R € H be such that the first column of R® equals (0,0, vy, vs, v3,
0,...)t, then the (1,1) entry of ®R® equals pvs < u, which is a contradiction.

If n = 2, let S € H be such that the first column of S® equals (—v;,vs,v3,0)%.
Then one can find R € H such that the first column of ¥ = R®*S® € G is nonnegative
and equals (1—2u2,7,s,t) with s > t. Furthermore, suppose 7 = v +v3s — u(1—2u?)
is the (1,1) entry of ¥!S® € G. Since

(vor +v3s)? < (3 +v2)(r? +5%) and P47 +t24+(1-2u%)% =1 =0 +0] +03,
we have

n < {(v3 +v3)(r? + )P — p(1 - 24%)
(11) < {1 -vH)(1 = (1 =2 - p(d - 24°) =,

and = p if and only if (r,s,t) is a multiple of (v, vs,0).

Note that v3 > 1/2. Indeed, otherwise, one can find P € H such that the first
column of P® equals (v3,0,v1,v2)t so that ® P® has (1,1) entry equal to 2vsu < u,
which is a contradiction.

If s =0, then t =0 and r> = 1 — (1 — 2u?)? = 4p*(1 — u?). Then (r,s,t) is not
a multiple of (vy,v3,0) and we have g > 1 = vor — (1 — 2u?) > r/2 — p(1 — 2p?) =
p/1 — p2 — p(1 —2u2) > 0, since p < 1/4/3, which contradicts minimality of p.

If » = 0, then (r,s,t) is not a multiple of (vq,vs,0), and hence u > 7. If n =
vgs — p(l — 2u?) # 0, then we can find P € H such that the (1,1) entry of ¥¢!P®
equals || < u, which is a contradiction. Similarly, if vst — (1 — 2u?) # 0, we have a
contradiction. Suppose t? = s? = 2u%(1—p?). Then v2 = (1-2u2)?/(2(1—p?)). Since
v3 — u? >0, we have 6u* — 6u2 +1 > 0. Thus p? < 1/2—1/v12 or u? > 1/2+V12.
Since p? < (v} +v3 +v3)/3 = 1/3, we have > < 1/2—1/v/12 < 1/4. Now, if u < 1/4
or1/4 < p < 1/2, one can derive a contradiction as in the last part of the proof of
Lemma 4.5 (see also the first proof of Theorem 3.2 in [DLR]).

If r,s # 0, then r, s > u. Since vg,v3 > 1/2, we have

n > p(va +vg) — p(l—24%) > p— p(l - 2u%) > 0.

If (r, s,t) is not a multiple of (vq, v3,0), then, by (11), u > n > 0, which is a contradic-
tion. Thus (r, s,t) is a multiple of (vs,v3,0) and ¢t = 0. We can find P € H such that
the (1,1) entry of ¥*P® equals § = |var — u(1 — 2u%)| < p, which is a contradiction
if d >0. If § =0, one can let (r,s) = ¢(vq,v3) and solve the equations:

vy +vi =1-p

P45t = A0l od) = 1- (1-24%)% = 4 (1 - ),
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0 = vor — u(1 — 2u?) = cv? — p(1 — 2u?)

to conclude that v2 = 1/2 — u? and v2 = 1/2. Since, by Assertion 2, vy > u, we have

p < 1/2 and since 2u? + 1/2 < v} + v2 +v% = 1 we conclude that p = 1/2 = v,.
Now, we may assume that the first row of ® is v*. Otherwise replace by ®R for

some R € H. One readily sees that P®(Q equals L; or L, for some P,Q € H, where

1 1 v2 o0 1 1 V2 0

.l 1 -1 0 V2 .l 11 =20
L1—2 \/§ 0 _1 _1 a.nd L2—2 \/5 _‘\/-2- 0 0
0 v2 -1 1 0 0 0 1

It is routine to check that (H, L) = (H, L) consists of matrices of the form P, PL;Q
or PL,@Q with P, € H. By the previous discussion, this group is contained in G.
We shall show that this is impossible. Suppose (H, L1) = (H, L2) < G. Then

Nz(@}/ + e%/) = N(eu - 621) = N(Lg(eu - 621))
= N(\/§612) = \/§N2(ef() = \/2_

Thus

Ni(ae¥ +bex) = N(aey; + beia)
= N(27"2a(e11 — en) + beaa)
= N(L2(2_1/2a(611 —e91) + beaz))
= N(aei2 + begs) = Nz(ae}’ + be%’)

for any a,b € R. Furthermore,

No(aef +bed) = N(aer; + bear)

N(
N(La(e11 + bear))
= N(
= N(

(a+b)(e11 + e21)/2 + (a — be12/V2)
(a+b)er1 + (a — b)era) /\/_

= Ni((a + b)ef + (a —b)eX)/V2
Ny((a + b)ef +(a—b)‘32 )/ V2

for any a,b € R. Thus A = 2-1/2 (i _11> is an isometry for Ny, and T = A@ I, is

an isometry for N. Note that the first column of IT" is neither of the form P(1,0,...)*
nor P(1/2,1/2,1/4/2,0,...)t with P € H. We can find R € H such that the (1,1)
entry of 'L, is positive and less than 1/2, which is a contradiction with the fact that
w=1/2.

Assertion 4. Suppose the first column of ® has exactly 4 nonzero entries. Then the
first column of P® equals (1,1,1,1,0,...)t/2 for some P € H, and every ¥ € G has
form (10).

Suppose v has exactly 4 nonzero entries. One can show that all of them equal
1/2 by arguments similar to those in the proof of Lemma 4.7 (cf. Assertion 1). By
Assertion 2, we have v; = v = 1/2. Since pp = 1/2, by Assertion 2, foreach 1 < 5 < n,
vgj-1 and vy; are either both zero or both nonzero. Thus P® has first column equal

o(1,1,1,1,0,...)t/2 for some P € H as asserted.
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Since (P®)' € G and the first four entries in the first row of (P®)* equal 1/2 = p,
the second column w of P® is of the form (£1,+1,+1,+1,0,...)t/2 by Assertion 2.
We claim that w = +(1,1,-1,-1,0,...)t/2. If it is not true, we may assume that
w=(1,-1,1,-1,0,...)t/2. Otherwise interchange the third and fourth rows of P&,
and multiply the second column of P® by —1 if necessary. It follows that

Na((a,b)t) = N(ae1s + bea1) = N(P®(ae1, + besy))
=N(a+ b)(ell + 812) + (a — b)(621 + 622))/2
= N2((a +ba-— b)t)Nl(]-a 1)/2

It follows that A = k (} 1 > is an isometry for Ny for k = Ny((1,1)t)/v/2. Since

-1
an isometry for N, must be orthogonal (e.g., see [DLR]), ¥ = 1/v/2. But then
U =A® I, 2 € G and the first column of I' = ¥ P® has 3 nonzero entries, and there
exists Q € H such that ['*Q® has a positive nonzero entry less than 1/2 = p, which
is impossible.

Now for any ¥ € G, the columns of ¥ must be of the form Q(1,1,1,1,0,...)t/v2,
Q(1,1,0,...)t/v/2, or Q(1,0,...)¢ for some Q € H. Otherwise, one can find R,S € H
such that R¥*S® has positive (1,1) entry less than 1/2 = u. Now if ¥ has a column of

the form Q(1,1,0,...)t/v/2, then one can show that 271/2 ( 1 is an isometry for

1 -1
N», and get a contradiction as in the preceding paragraph. Furthermore, if the (25 —
1)th (respectively, (25)th) column of ¥ is of the form Q(1,1,1,1,0,...)t/2, then the
(27)th (respectively, (25 — 1)th column must be of the form +Q(1,1,-1,-1,0,...)¢/2
by arguments similar to those in the analysis of the second column of ®. It follows
that every ¥ € G permutes the matrices in the set {£(e} +eJ)(ef)":1<j <n} as
asserted.

Assertion 5. Suppose v has exactly 2 nonzero entries. The conclusion of Theorem
4.1(¢) holds.

By Assertion 2, if v has exactly two nonzero entries, then we may assume that
(v1,v2) = (sint,cost) for some t € (0,7/4). Now, it is easy to see the columns of
¥ € G must be of the form P(a,b,0,...)" with a® + > = 1. Otherwise, one can
find R, S € H such that the (1,1) entry of R¥'S® is positive and is less than sin¢.
Moreover, if the (25 — 1)th (respectively, the (2j)th) column of ¥ is of the form
P(a,b,0,...)t with ab # 0, then by the fact that ¥ € G one can conclude that the
(27)th (respectively, the (25 — 1)th) column must be of the form +P(b,—a,0,...)t.
Thus PY P! is a direct sum of a signed permutation matrix A and a number of 2 x 2
orthogonal matrices B;. Furthermore, we may assume that A is a direct sum of
matrices in GP(2). Otherwise, I' = A ® I} € G will satisfy the hypothesis of Lemma
2.4, and hence both N; and N; equal £, for some p > 1. Thus P¥P* must be a direct
sum of isometries for Y for some P € H, and the conclusion follows. O

LEMMA 4.9. If isometries of X (Y) have form (10), then X = £} and Y = E,(2)
for somep, 1<p<oo, p#2.

Proof. Suppose m = 2. The elements in Y will be written as (y1,y2), and the
elements in X (Y) will be written as

(11, %21,Z12,222, -+ -, T1ns T2n).

If isometries of X (Y) have form (10) but condition (i) of Theorem 4.3 does not hold,
then the isometry group G of X (Y) must be Ag, as mentioned before Lemma 4.3.
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Therefore, the linear map T : X(Y) — X(Y) defined by

T(x11,T21,%12,%22,- -+, T1n, T2n)
= <2_1($11 + To1 + T12 + T22), 271 (Z11 + T21 — T12 — T22),
27Yz11 — To1 + T12 — 222), 27 (T11 — Ta1 — T12 + Ta2), T13,T23, - - - >331n>332n))
is an isometry of X (Y). Assume that 13 = 2335 = ... = 21, = T2 =0, then
N(z11,T21, 12, £22,0,0,...,0,0) = Ny (Na(z11, T21) ey + Na(z12, T22)€3 ).
In particular, when z;; = 221 = a and z12 = z22 = b we get
N(a,a,b,b,0,...,0) = Ny (aN2(1,1)ef +bNa(1,1)ex) = Na(1,1) N (ae + be3).
Since T is an isometry

N(a,a,b,b,0,...,0) = N(T(a,a,b,b,0,...,0))
=N(a+b,a—50,...,0) = N (Na(a+b,a — be)

= Ny(a +b,a —b).

Thus
1

X Xy _ -
(12) Ni(aer +bey) = A 1)Nz(a +b,a—0b)
for all a,b € IR. Also

1 1

(13) Na(e,d) = Nap(L,1)N1 (5 (c + d)er’ + 5(c = d)e3)

for all ¢,d € R. Further, since T is an isometry, we get
N(SE11,$21,$12,1522, 0,0, .. ‘:O: 0) = N(T(m117m21az12yx2270707‘ .. 70a0))

It follows that

N, <N2(ﬂ311,$21)6f{ + N2(9312,3322)€é{)

=N [Nz (2—1(%1 + To1 + T12 + T22), 27 H(z11 + T21 — T12 — 5622)) eX

(14) +N2 (2—1(1)11 — T21 + T12 — 3322), 2_1(1:11 — T12 — T21 + .'L‘zz) eg{jl
Put

T11 +T21 =Y T11 — T21 = Y2

Ti2 +T22 = U3 T12 — T22 = Y4.

Then by (13) and (14) we get
27 Ny (1L, 1)V, <N1 (yier +y2e3 el + Ni(yser + y4€§)€§{)

15 =27 ML )M, (Nl(ylef‘ T yse)eX + Ny(yaek +yaed)el )
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Define f(a,b) = N;(aef + beX). Then (15) becomes:
F(f(y1,92), f(y3,94)) = F(f(y1,93), f(y2,94))
for all y1,y2,¥3,y4 € IR. When y4 = 0 we have
F(f(y1,92),93) = F(F(y1,92), £(0,93)) = f(f(1,0), f(y2,¥3)) = F(y1, f(y2,93))-

By a theorem of Bohnenblust [Bo]

f(a,b) = max(|al,[]) or  f(a,b) = (laf” + [b[")"/?
for some p, 1 < p < oo. Hence
(16) Ni(aef + beyX) = £,(a,b)

for some p, 1 <p < oco. By (13) we see that Y = E,(2).
To see that X = £7, let k < n be the maximal number such that

17 Ni(aref + ...+ aref) = £y(as,-- -, ax)

for all ay,...,ax € R. If kK = n there is nothing to prove. If k < n let (al)fill c R*!

be arbitrary and set z1; = z9; = a; forl =1,...,k+1,and 1, = 29, =0 for l > k+1.
Then

N(alyaly .. "ak+1;ak+1y0’ oo 70)
= Ni(aNa(L, 1)efl + -+ + arraNa(1, 1)egys)
(18) = NQ(]., 1)N1 (0118{( +---+ ak+1ef+1)

Since T is an isometry we get

N(al,al,...,ak+1,ak+1,0,...,0)
= N(T(a1,a1,--.,0k+1,0k+1,0,...,0))
=N((0,1 +a2;a1 —a2,0’0’a3’a37'":ak+lvak+1>0,---70))

= N1 (Ny(ay + az,a1 — ag)ef + azNa(1,1)eX + -+ + ary1 No(1, l)efﬂ)
= N1(N2(1,1)8(a1, az)ef +azNa(1,1)ef + - + ags1N2(1, 1)ef,,)

by (12) and (16)
= No(1,1)N1(€y(a1, az)ef +azes + -+ + axy1€iy,)
= No(1,1)¢,(4p(a1,a2),a3,...,0k+1) by (17) and symmetry of X
= Ny(1,1)¢p(a1,a2,a3, - .. ,ak41)-

Hence, by (18)
Nl(alef{ +...+ ak+1ekx+1) = £p(a1,. .. ,ak+1),

which contradicts maximality of k. Thus (X, N1) = £7.
Finally, we conclude that p # 2. Indeed, if p = 2 then E,(2) = ¢% and then
X(Y) = £5(£3) = £2™ whose isometry group is not of the form (10). O



180

(BL]
(Bo]

(Br]
(BVG]

(Day]
[DLR]
[DuV]
[FGJ]
(FI1]
(FJ2)
(FJI3]

[F4)

[KaW]
[KL]
(Law]
(LT
(R1]
(R2]
[Ro]

[Ros]
(ST]

CHI-KWONG LI AND BEATA RANDRIANANTOANINA

REFERENCES

S. J. BERNAU AND H. E. LACEY, Bicontractive projections and reordering of Lp-spaces,
Pacific J. Math., 69 (1977), 291-302.

F. BOHNENBLUST, aziomatic characterization of Lp-spaces, Duke Math. J., 6 (1940), 627-
640.

M. SH. BRAVERMAN, Isometries of rearrangement-invariant spaces, preprint.

A. V. BuknvaLov, A. I. VEKSLER, AND V. A. GEILER. Normed lattices, Itogi Nauki i Tech-
niki, Seriya Mat. Analiz, 18 (1980), 125-184.

M. M. DAY, Reflezive Banach spaces not isomorphic to uniformly convez spaces, Bull. Amer.
Math. Soc., 47 (1941), 313-317.

D.Z. Dokovic, C.K. L1 AND L. RODMAN, Isometries for symmetric gauge functions, Linear
and Multilinear Algebra, 30 (1991), 81-92.

D. vaN DuLsT AND V. DE VALK, (K K)—Properties, normal structure and fized points of
nonezpansive mappings in Orlicz sequence spaces, Canad. J. Math., 38 (1986), 728-750.

R. J. FLEMING, J. GOLDSTEIN, AND J. E. JAMISON, One parameter groups of isometries on
certain Banach spaces. Pacific J. Math., 64 (1976), 145-151.

R. J. FLEMING AND J. E. JAMISON, Hermitian and adjoint abelian operators on certain
Banach spaces, Proc. Edinburgh Math. Soc., 52 (1974), 67-84.

R. J. FLEMING AND J. E. JAMISON, Isometries of certain Banach spaces, J. London Math.
Soc., 9 (1974), 121-127.

R. J. FLEMING AND J. E. JAMISON, Hermitian operators and isometries on sums of Banach
spaces, Proc. Edinburgh Math. Soc., 32 (1989), 169-191.

R. J. FLEMING AND J. E. JAMISON, Isometries of Banach spaces — a survey, In: Analysis,
geometry and groups: a Riemann legacy volume, Hadronic Press Collect. Orig. Artic.,
Hadronic Press, Palm Harbor, FL, (1993) 52-123.

Y. GORDON AND R. LOEWY, Uniqueness of (A) bases and isometries of Banach spaces,
Math. Ann., 241 (1979), 159-180.

P. GREIM, Isometries and LP-structure of separably valued Bochner LP-spaces, In J. M.
Belley, J. Dubois, and P. Morales, editors, Measure Theory and Its Applications. Proc.
Conf. Sherbrooke 1982. Lecture Notes in Math. 1033, pages 209-218. Springer, Berlin-
Heidelberg-New York, 1983.

N. J. KALTON AND G. V. Woo0D, Orthonormal systems in Banach spaces and their applica-
tions, Math. Proc. Camb. Phil. Soc., 79 (1976), 493-510.

A.-L. S. Kraus AND C. K. L1, Isometries for the vector (p,q) norm and the induced (p,q)
norm, Linear and Multilinear Algebra, 38 (1995), 315-332.

H. E. LACEY AND P. WOJTASZCZYK, Banach lattice structures on separable Ly-spaces, Proc.
Amer. Math. Soc., 54 (1976), 83-89.

J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach spaces, Vol. 1, Sequence spaces,
Springer—Verlag, Berlin-Heidelberg-New York, 1978.

B. RANDRIANANTOANINA, Contractive projections and isometries in sequence spaces, Rocky
Mountain J. Math., to appear.

B. RANDRIANANTOANINA, Isometries in Hilbert space valued function spaces, J. Australian
Math. Soc. Ser. A, 61 (1996), 150-161.

S. RoLEwICZ, Metric Linear Spaces, Monografie Mathematyczne, Warsaw, 1972.

H. P. ROSENTHAL, Functional Hilbertian sums, Pacific J. Math., 124 (1986), 417-467.

H. SCHNEIDER AND R.E.L. TURNER, Matrices Hermitian for an absolute norm, Linear and
Multilinear Algebra, 1 (1973), 9-31.



