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ISOMETRIES OF DIRECT SUMS OF SEQUENCE SPACES* 

CHI-KWONG Lit  AND BEATA RANDRIANANTOANINA* 

Abstract. We study isometries of direct sums (also called 1-unconditional sums) of complex 
and real sequence spaces. We show that if X. Y are arbitrary complex symmetric sequence spaces 
then all surjective isometries of X(Y) preserve the direct sum structure i.e.   for every isometry 

T : X(Y) —y X(Y) there exists a permutation - of {1,... ,dimX} C IN and surjective isometries 
{Sj}j<dimX of Y so that 

T((yj)j<dimX) = {Sjyn(j))j<dimX- 

Further we show that if X, Y are finite dimensional real symmetric sequence spaces then all isometries 
of X(Y) also have the above form except when A' = & and Y can be decomposed as an £p-direct 
sum of two nonzero subspaces for some 1 < p < oo. All other possible isometries in the exceptional 
case are also characterized. 

As a corollary we obtain that if AT is a complex or finite dimensional real symmetric sequence 
space then X(X) is symmetric if and only if X = £p for some p, 1 < p < oo. 

We also present characterizations of surjective isometries in more complicated spaces with direct 
sum structure. 

1. Introduction. Let XQ, {Xi}iej with / C IN be sequence spaces (finite or 
infinite dimensional) over C or 1R with absolute norms Ni for i G {0} U /, (i.e., with 
1-unconditional bases) such that dimXo = card(/). Define an absolute norm on the 
cartesian product of {Xi}iej by 

N((xi)i€l) = No((Ni(xi))i£l)     for all    {xi)ieI E HieiXi. 

The space of sequences (x^)^/ G U^iXi such that N((xi)iei) < oo is denoted by 
Xo((Xi)iei) (or, with the slight abuse of notation, Xo(Xi,..., Xk)) and is called the 
XQ direct sum (XQ 1-unconditional sum) of spaces (Xi)iej. If Xi = Y for all i G /, 
the notation Xo(Y) is used. Since A^o, {Ni}iei are absolute norms, the norm N on 
Xo((Xi)i£i) is also absolute. The purpose of this paper is to study the geometry and 
isometries of Xo((Xi)iej). 

The study of direct sums of normed spaces arises naturally in many areas of math- 
ematics. In particular, they have been a source of examples and counter-examples in 
geometric theory of Banach spaces (see e.g. [Day, DuV, LT]). 

To understand the geometry of a normed vector space, it is useful to know the 
structure of its isometries. In fact, many authors have studied the isometries of di- 
rect sum of Banach spaces. For example, Fleming, Goldstein, Jamison [FGJ] studied 
isometries of 1-unconditional sums of Euclidean spaces (see also Fleming and Jami- 
son [FJ1, FJ2]) in the complex case and Rosenthal [Ros] obtained the result for the 
real case, Greim [Gr] studied surjective isometries of lp sums of Banach spaces (see 
also [KL]), Fleming and Jamison [FJ3] studied isometries of complex CQ—sums and 
E-sums, where E is "sufficiently £p like", say, E is a "nice" Orlicz space (see [FJ3] 
for precise definitions). It turns out that all the results in these papers show that a 
surjective isometry always preserves the direct sum structure of the space. There is 
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also a number of papers that address this problem in non-atomic function spaces. For 
the detailed discussion of the literature we refer the readers to the survey [FJ4]. 

In the very interesting paper of Schneider and Turner [ST], the authors determine 
the structure of isometrics for an absolute norm iV on Cn, which is the space of com- 
plex column vectors with n entries and will be viewed as an n-dimensional sequence 
space in our discussion. In particular, it was shown (cf. [ST, (2.3) and (7.7)]) that if 
the absolute norm is normalized so that Nfe) = 1 for all standard unit vectors for 
1 < i < n, then (Dn can be decomposed into a direct sum of Yi — span {v : v G Ei} for 
i = 1,..., k, where Ei U • • • U Ef* = {ei,..., en}, the standard basis of Cn, and there 
exists an absolute norm iVo on C   such that 

(a) each (1^, N) is just an £2 space, i.e., the Euclidean space, and 
(b) N(xi,...,xk) = No(N(xl),...,N(xk)) for each x = (xu ... ,xk) € Yi x • • • x ■ 

Yk = <Dn. 
Furthermore, an isometry for N must be of the form 

(1) (xu...,xk) H-> (UiXn(1),...,UkXn(k)) 

for some unitary Ui, 1 < i < k, and a permutation TT of the set {!,...,&} such that 
Noizi^.^Zk) - iVo^i),...,^^)). 

This result was later extended to complex infinite dimensional spaces by Kalton 
and Wood [KaW, Theorem 6.1]. 

By the above result of [ST, KaW], one sees that there is an intrinsic cross prod- 
uct structure on every complex sequence space with an absolute norm, and such a 
structure is useful in characterizing isometrics. However, the direct sum decompo- 
sition in [ST, KaW] can only identify ^2 components. If such components do not 
exist, then every summand (or summand space) Xi will be one dimensional, and the 
decomposition will not be very interesting. Of course, one can still get the very useful 
conclusion that every isometry for the norm must be a signed permutation operator, 
i.e., an operator of the form (1) with all Yi being 1-dimensional vector spaces (scalars). 
Nevertheless, the theorem in [ST] and [KaW] seems inadequate to explain the various 
isometry results on direct sums of Banach spaces. For example, the results in [ST] 
and [KaW] cannot even describe the isometrics of lv(tq) (e.g., see [KL]). 

It is also worth mentioning that the results of [ST] and [KaW] do not extend to 
real sequence spaces and the description of isometrics of real spaces is much more 
difficult. The known results include: Gordon and Loewy [GL] - isometrics in spaces 
with A-bases, Greim [Gr] - isometrics in lv sums of absolute spaces, Rosenthal [Ros] - 
isometrics in absolute sums of Euclidean spaces. All these results are highly nontrivial 
and technical. 

In this paper, we propose a new way to decompose a complex or real sequence 
space with an absolute norm into a direct sum of simpler spaces, which are not nec- 
essarily Euclidean. Using this decomposition, we obtain a characterization of the 
isometrics of complex sequence spaces that covers all the known isometry results on 
direct sum spaces (Corollary 3.4 and 3.5) - in particular we describe the isometrics 
of X(y), where X,Y are arbitrary complex symmetric spaces. Compared to results 
in [ST, KaW] our characterization gives more detailed information on which permu- 
tations TT of {1,..., A:} are admissible in (1). 

We also apply this decomposition in the real spaces and we obtain a unified 
characterization of isometries of a wide class of real spaces. In particular this class 
includes all spaces with direct sum structure whose isometries have been described in 
the literature (as mentioned above). 
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Our paper is organized as follows. In Section 2, we show a way to decompose 
(complex or real) sequence spaces with an absolute norm into a direct sum of simpler 
spaces, which could possibly be further presented as direct sum of subsequent simpler 
spaces. Thus we obtain a good technical method of describing a "reduced" direct sum 
structure. 

In Section 3, we prove that in a complex sequence space with an absolute norm, 
every surjective isometry necessarily preserves the intrinsic direct sum structure de- 
scribed in Theorem 2.4. A number of corollaries covering various existing isometry 
results on complex direct sum spaces (including X(Y), where X,Y are symmetric) 
are also presented. 

In section 4, we study isometrics of real spaces with direct sum structure. In 
particular, we show that our characterization can be applied to all real spaces whose 
isometry group is contained in the group of signed permutations. This includes for 
example spaces with A-bases [GL] and spaces which are p-convex with constant 1 for 
2 <p< oo [Rl]. 

However the situation in real spaces is more complicated since there are many 
natural spaces with direct sum structure which have isometrics other than the signed 
permutation operators i.e., isometries do not always preserve disjointedness of vectors 
(see the examples in Section 4). Moreover there exist real spaces with explicit direct 
sum structure which is not preserved by some isometries (see Examples 4 and 5 in 
Section 4). We feel that such pathology should be rare, but since every finite group of 
linear operators on lRn which contains — / can be realized as the group of isometries 
of some sequence space (see [GL]), we will not attempt here to characterize them 
completely. 

We prove that if X, Y are symmetric finite dimensional sequence spaces, i.e., 
spaces with symmetric norms, then all isometries of X(Y) preserve the direct sum 
structure except when X = £p and Y can be decomposed as an £p-direct sum of 
two nonzero subspaces. All other possible isometries in the exceptional case are also 
characterized. It is worth noting that even in this special type of direct sum spaces, 
the results in the complex case and the real case are quite different when dim Y — 2 
or 4 (cf. Corollary 3.5 and Theorem 4.1). 

As a corollary we obtain that if X is a real or complex symmetric sequence space 
then X{X) is symmetric if and only if X — £p for some p, 1 < p < oo (Corollary 3.6 
and 4.2). 

For simplicity of notation, we shall always assume that we have a normalized 
absolute norm, i.e., all standard unit vectors have norm 1. 

Throughout we follow standard notations as can be found for example in [LT], 
except that we use symbol l^ instead of Co to denote the space of sequences which 
converge to zero (with the usual sup norm). In the finite dimensional case ^ = CQ 

and we will not study the infinite dimensional space of bounded sequences. 

2. Intrinsic direct sum structure. We begin with the definition of fibers 
which is modelled on the structure of the space A'((Y*)*£/), where each of the Yi is a 
"fiber space". 

DEFINITION 2.1. Let X be a sequence space with a normalized absolute norm 
N, and let {ej}j£j, J C IN be the corresponding 1-unconditional basis. A non- 
empty proper subset S of J is called a fiber if for all finitely nonzero sequences 
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vsG5 / xse5 

implies that for all finitely nonzero sequences {bi}i£j\s C F; 

^s€5 its        ' \zS i^S ' 

Moreover, the corresponding fiber space is defined by 

Xs = span {es : s € S}. 

Here we mention a few examples of fibers. 
1. Clearly, in any X, if 5 is a singleton then 5 is a fiber. 

It follows from the classical Bohnenblust characterization of Lp—spaces that if X is 
a symmetric space not equal to £p for some 1 < p < oo then singletons are maximal 
fibers in X. 

2. In £p, 1 < p < oo, every non-empty proper subset 5 of IN is a fiber. 
3. Let 1 < p < oo. Let £* be the fc-dimensional £p space, 1 < k < oo, and let 

£p{Y), where Y has no nontrivial £p—summands (i.e. Y cannot be written as a direct 
sum of {Yr}r such that Y = £p((Yr)r)). Then fiber spaces of £p(Y) are of the form 
Wi x • • - x Wk where Wi equal {0} or Y for all i < k, or Wi = {0} for all i except 
exactly one, say io, and Wi0 is a fiber space in Y. 

4. In the above example, if the space £p is replaced by a different symmetric 
space X, as shown below, we do not need any assumptions on Y (we even allow 
Y = X). We will see that Wi x • • • x Wk is a fiber space in X(Y) if and only if 
Wi = {0} for all i except exactly one, say io, and WiQ is a fiber space in Y. 

We want to analyze fibers on X which are maximal with respect to inclusion. 
Notice that maximal fibers do not always exist. For example we consider a space Xp)q 

with the norm of finitely supported elements defined inductively by: 

iV(a;iei) = |xi| 

iV Ij2xlei J = ( (NI ^XiBi) ]   +\xn\q\ if  n>2  is     odd 
u=i 

if  n > 2  is     even. 

where 1 < p, q < oo and p ^ q. Then it is easy to see that all fibers in Xpiq are of the 
form {1,..., A:} for some k G IN and thus there are no maximal fibers. 

In our considerations we will restrict ourselves to spaces X which do contain 
maximal fibers. 

We start with the following observation: 
PROPOSITION 2.2. Let X be a k-dimensional sequence space with a normalized 

absolute norm N. Suppose there exist two maximal fibers 5, T such that S fl T ^ 0. 
Then S U T = {1,..., k} and X = £p(XT\s, Xms, XS\T). 
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Proof. Suppose 5 and T are maximal fibers such that IQ G 5 n T ^ 0. Since S is 
a fiber for every finitely nonzero sequence {a-JsesuT C F, 

(2) 

Moreover, 

N\   ]C   a5es j ^iV    AM ^asesjei0 +   ^  as 
SJGSUT       / \    SGS       ^ seT\s 

^s€5UT i£SuT ' 

= N [ Nw2ases)ei° +    Yl   ases+    ^2    biCi] 
\     ^sES ' s€T\S i<£SuT        J 

= N IN    ivf ^asesJei0 +   ^   ase5    ei0 +   J^  ^e* 
\       \      ^s€5 / seT\S J i<tSuT        J 

= N(N(  ^   ase5Jeio-f   ^   Mi)   . 
\      SG5UT ^ i^5uT / 

since 5 is a fiber 

since T is a fiber 

by (2) 

Therefore 5 U T is a fiber, and by maximality of 5, 5 U T = J. Since 5 and T are 
maximal, 5 \ T ^ 0 and T \ 5 ^ 0. Let 5o G 5 \ T and ^ E T \ 5. Using consecutively 
the fact that T and 5 are fibers, we get for all scalars xi,:^: 

(3) ^(xie^ + X2eiQ) = iV(a;ieS0 + X2eio) = iV(a;ieio + X2eto) 

Next, since 5 is a fiber and using (3) we get 

iV(:rieS0 + X2ei0 + x3et0) = N(N(xieSo + X2ei0)eSo + xsetj 
(4) 

Similarly, since T is a fiber and by (3) 

7V(N(a;ieS0 + X2ei0)eSo + x3ei0) 

N{x1eSo + a;2eio 4- X3eto) = A^(xieSo 4- N(x2ei0 + a:3e<0)ei0) 
(5) = iV(xie50 4- N(x2eSo 4- X3ei0)eio) 

Now let / : B2 —)► IR be defined by f{xuX2) = A^(xieSo 4- X2eio). Then (4) and (5) 
will take the form: 

f{f(xuX2)Jx3) = f(x1J(x2Jx3)) . 

By a theorem of Bohnenblust [Bo], there exists p with 1 < p < oo such that 

f(xi,X2) -{ 
(Mp + |z2|p)1/p    ifp<oo 
max(|a;i|, |x2|)        if p = oo . 

Therefore for all scalars xi)X2)x3 

(6) N(xies0 + X2ei0 + x3et0) = £p(xi,X2,x3) . 

By the fact that 5 and T are fibers and by (6), for any finitely nonzero sequence 
{xs}s=1, we have: 

wfe**6*) =NIN( Y,   xses)< + E XcCc 

seT\s 



162 CHI-KWONG LI AND BEATA RANDRIANANTOANINA 

= N IN(  ^   xses)eS0+N( J^  ^es)eto 

\    \esnT        ' \eT\s        '      ) 

= ep\N( S x'e')>N( Y.Xses)   - 

Similarly, since S UT = J: 

N(^x8es) =N lN\J£x8e8)et0+   ^  esxs\ 
^s=l ' \      \eT ' s6S\T J 

= N\N[Ylx*es)et°+N\ Y, e'x')e'o) 

\      ^s£T ' ^SeS\T ' J 

= £P \N( Y,  xse8\N( Y   z5esYjv(  J]  esxsj      . 
\    \eT\s        '       \eTns        '        \es\T        ' J 

Since finitely supported elements are dense in X, thus X = £p(XT\s^Tns^s\T)' D 

The main theorem of this section says that maximal fibers determine the di- 
rect sum structure of a sequence space X. First we need a definition of a special 
2-dimensional real space different form l^, which can be decomposed into £p sum of 
its nonzero subspaces (see [LaW]): 

DEFINITION 2.3. Let 1 < p < oo, p ^ 2. Let Ep{2) denote the space 1R2 with the 
following norm: 

2 2 

If p = oo define: 

ll(^2/)IUoo =max(|a: + 2/|,|a;-2/|) = ||(z,2/)|k. 

Observe that Ep(2) is isometric to £% through the isometry T : Ep(2) —> £2
p 

defined by T(x,y) — 2~1lv(x + y,x — y). 
THEOREM 2.4. Let X be a sequence space over a scalar field F = R or C 

with a normalized absolute norm N, and let {ej}jej, 2 < k = card(J) < oo be the 
corresponding 1-unconditional basis. Suppose that X ^ £p for any 1 < p < oo and 
that X has maximal fibers. Then there exist m, 2 < m < oo, a set 0 C 5i C J and a 
partition 52,..., 5m of J \ Si such that X is a direct sum of Xi = span {es : 5 E Si}, 
1 < i < m, and exactly one of the following holds: 

(i) For each 1 < i < m, Si is a maximal fiber and X — Xo((X;)j<m) where the 
norm NQ on XQ is defined by 

No((ai)i<m) = A^ I Yf
aie*i ) 
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for some Si G Si. In this case maximal fibers of XQ exist and are singletons. 
(ii) For each 2 < i < m, J \ Si is a maximal fiber and there exists p with 

1 < p < oo such that X = £p(Xi,..., Xm), where 

(a) X1 = i^d{Sl) (possibly dimXi = 0), 
(b) some of the Xi 's equal to Ep(2) if F = IR and p ^ 2, 
(c) and the rest of the Xi ;s are such that dim Xi > 2 and Xi is not an £p sum of 

two nonzero subspaces. 
Proof. Note first that if {5i}i<i<m are maximal fibers in X and F C {i : 1 < 

i < m} is a fiber in XQ then Sp = UieF *% is a fiber in X. 
Indeed, select for each i < m, Si € Si, sp € Uilii5^} and let {as}sGsF, {a,

5}5€5F 

C F be finitely nonzero sequences with 

5E5F S65F 

Then for all finitely nonzero sequences {&i}iej\sF C F, 

N( ^2ases+   Yl   biei) 
\?€SF ieJ\sF        ' 

^-ivfArf^ ases)eSF + 53iv(      ^       6ses)eSi) 

v ;     v    V
S€5F       

/ i^F     \e{J\sF)nSi       /     ^^ 

V   ;        VSG5F i€J\5F / 

where equality (1) holds because all Si are fibers and our elements are finitely sup- 
ported, (2) holds since F is a fiber in XQ, (3) uses again the fact that S^s are fibers 
in X, (4) was our assumption and (5) is the final effect of applying again (4), (3), (2) 
and (1). 

Thus, by maximality of Si's, only sigletons can be fibers in XQ. 

Suppose next that (i) does not hold, i.e. that it is not possible to form a partition 
of J consisting of maximal fibers. Then there must exist two nondisjoint maximal 
fibers. Thus, by Proposition 2.2, there exists p, 1 < p < oo and spaces Yi, Y2, Y3 so 
that X = £p(Yi,Y2,Ys) and YJ = span{es : s € Ai}, for some partition {Ai}^ of J. 
Among all the decompositions of the space X into £p sum, let RiU • - -U Rs (s < 00) 
be a maximal partition of J so that X = £p{(Zi)i<s) with Zi = span{er : r G Ri}. If 
X is real and p ^ 2, then for each 1 < i < s we have one of the three possibilities (cf. 
[LaW]): 

(a) Ri is a singleton. 
(b) Ri has two elements and Zi = Ep(2). 
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(c) Ri has at least two elements and Zi cannot be decomposed as an £p-direct 
sum of two nonzero subspaces. 

If X is complex or if p = 2 only (a) and (c) can happen (cf. [BL]). 
Let 5i be the union of the Ri which are singletons if they exist, and rename the 

other Ri as Sj if necessary. We see that condition (ii) holds. D 
Some remarks are in order in connection with Theorem 2.4. 

1. In both cases (i) and (ii) we present X as a direct sum of summand subspaces 
Xi,...,Xm (m < oo). Notice that (Xi);<m are uniquely determined by X, up to 
a permutation, and that each of the spaces Xi may be further decomposable into 
summands (we do not consider summands of X;'s as summands of X, sometimes we 
will call them second generation summands of X). 

2. Evidently, if X has an explicit direct sum structure i.e. if X = Y((Yi)i<m), 
where X (and, equivalently, y) has maximal fibers, then Theorem 2.4 can be used 
to regroup the summands of X so that condition (i) or (ii) of Theorem 2.4 holds. If 
no regrouping is necessary, we say that X has reduced direct sum structure. Some 
examples of spaces with the explicit reduced direct sum structure include 

type (i): X(£p), X(X), X(Y), X(Y,lp), X(Y(lp)), X{Y(Z)), where X,Y,Z are 
symmetric spaces not equal to any £r, 
type (ii): ep(£q), Pp(lM, Zv(Ep{2)), £4

p(£p,eq,Ep(2),£q(£r)), where p^q^r, 
etc. 

3. Isometries of complex sequence spaces. Before further analysis of isome- 
trics of X we need to introduce another definition. As before, we denote by {e>j}j£j 
the 1-unconditional basis of X. After [ST] (cf. also [KaW]) we define an equivalence 
relation ~ on the indices J. We say that 5 ~ t if N(^2,ej aiCi) = N(J2jej biCi) 
whenever ^(^s,Q>t) — ^(bs, h) and a; = bi for all i ^ 5, t. 

Schneider and Turner showed that ~ is indeed an equivalence relation and that 
equivalence classes of ~ are isometrically isomorphic to £2 (with appropriate dimen- 
sion) [ST, Lemma 2.3]. If X is isometric to £2 then relation ~ has only one equivalence 
class equal to the whole set J. Otherwise equivalence classes of ~ are fibers in X, 
and hence they are contained in maximal fibers of X. We will call equivalence classes 
of ~ maximal ^-fibers. Notice that every subset of a maximal ^2-fiber is also a fiber; 
we will call it a (non-maximal) £2-fiber. 

The results in [ST] and [KaW] state that every isometry of X preserves maximal 
^2-fibers. This fact has very important consequences for us. Namely we have: 

THEOREM 3.1. Let X be a complex sequence space with 1-unconditional basis 
{ej}jeJ> ^ Q JN; X ^ £2, and let X = Xo(Xi1... ,Xm); m < 00, where Xi,... ,Xm 

are summands as described in Theorem 2.4- Then T is a surjective isometry of X if 
and only if there exists a permutation TT of {1,... ,ra} such that the norm No on XQ 

satisfies NQ(ZI, ..., zm) = ^0(^(1), • • •, ^(m)) and there exists a family of surjective 
isometries Sj : Xn^ —> Xj such that 

(7) r(a:i,...,xm) = (Six^iy, ...jSmX^)) 

for all (xi,...,xm) 6 Xo(Xi,... ,Xm) = X. 
Proof For the proof of Theorem 3.1 we will need two lemmas. We start with 

introducing some notation. 
We will use M to denote the collection of all maximal fibers in X and M2 = 

{^A}AGA) A C IN the collection of all maximal ^-fibers in X. By [KaW, Theorem 6.1] 
there exists a permutation a of A such that for all A G A 

(8) supp (T(span{es : s G J\})) = J^A). 
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Let U be the class of subsets of J which can be presented as unions of maximal 
^2-fibers. Define a map T : U —> U by 

f(,4)=supp(T(span{es:5GA}))=   [J   Ja{x) 

\€AA 

where A = UXeA   J\ £ U, A^ C A. In this notation we have: 

LEMMA 3.2. f(M nU) = M nU. 
LEMMA 3.3. M C U, unless X has the form described in Theorem 2.4(H) with 

p = 2 and Si ^ 0; in this case M HU — {J \ Si}i>2. 
Before proving the lemmas we show that they indeed imply the conclusion of 

Theorem 3.1. We have the following cases: 

Case 1. If X has the form described in Theorem 2.4(i) then M — {5i}i<m, and by 
Lemma 3.3 M C U. By Lemma 3.2, T(M) — M. Thus there exists a permutation 

TT of {1,..., m] so that T(S7r^) — Si. Hence T is an isometry of X^^) onto Xi 
X^i (i) 

and T has form (7). 

Case 2. If X has the form described in Theorem 2.4(ii) then M = {J \ Si}2<i<m U 
{J \ {s^s^Si- If 5i = 0 then, by Lemma 3.3, M C U and the proof is the same as in 
Case 1. Thus we will assume that Si ^ 0. 

Case 2(a). If p / 2 then, by Lemma 3.3, M C U and by Lemma 3.2, T(M) = M. 

Since p / 2^{s} e M2 for every s G 5i. Thus, by [KaW, Theorem 6.1], f({s}) E 
M2 and card (T{{s})) = 1. By Lemma 3.2, T(J \ {s})j= J \ T({s}) e M, so, since 
for all i > 2 card (Si) > 2, there exists s' G 5i so that T(J \ {s}) = J\ {s'}. Hence 

T({J \ S;}2<i<m) — {J \ Si}2<i<m- 

and there exists a permutation TT of {1,..., m} so that 7r(l) = 1 and T(J\Sn(i)) = J\Si 

for i > 2.  Thus for all i we have r(5^(i)) = Si and T is an isometry of Xn^ 

onto Ar
? i.e. T has form (7). 

Case 2(b). If p = 2 then Si € M2 and, by Lemma 3.3, M fl W = {J \ Si}i>2. By 
Lemma 3.2, T(.M OZY) = A1DU so there exists a permutation TT of {1,..., m} so that 
7r(l) = 1 and f (J \ S7r(z)) = J \ Si for i > 2. 

On the other hand Si € .M2, so by [KaW, Theorem 6.1], r(Si) G M2, and since 
5i = n2<i<m(J\50i we have 

f(Sl)=    f|   f(J\5i)=    f|   (J\Si)-Si. 
2<i<m 2<2<m 

Thus for all i > 1 we have T(S^(i)) = Sj and the theorem follows same as in the 
previous cases. D 

Proof of Lemma 3.2. Let S G M nU, then Sc G U andjf (S), f (Sc) are disjoint. 
Now let a,a' G X be such that suppaUsuppa' C T(S) and N(a) = ^(a'), 

and let b G X with suppfc C f(Sc). Then suppT"1^) UsuppT-^a7) C S and 
suppT-1(6) C Sc. Thus, since S is a fiber, we have 

N(a + b) = N{T-l{a) + r"1^)) - NiT'^a') + T"1^)) = iV(a' + b) . 
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Therefore T(S) is a fiber in X and (jr-1)(T(5)) = S. 
Assume now that T(S) g M, say T(S) is a subfiber of a proper fiber Si then 

(^"^(Si) is a proper fiber in X which contains (T~l)(T(S)) = S which contradicts 

the maximality of S. Thus f{MnU) C MnU. Also (T^^MdU) C MnU. Hence 
f{Mnu) = Mnu.      D 

Proof of Lemma 3.3. Assume that M <jL U. Then there exists S 6 M and 
F € A*2 so that F D S ^ 0 and F O Sc ^ 0. Let F be a maximal fiber such that 
F C K. Then 7 0 5^0 and by Proposition 2.2 there exists p, 1 < p < oo so 
that X = 4(^5, ^n5, ^5\v). But F 0 {V \ S) £ 0 and F D {V n S) ^ 0. Let 
z 6 -F O (V \ S) and k € F n (7 H S). Then for all a,-, a^ € C: 

iV(a^ + ajfeejfe) = (1^^ + \ak\p)l/p, 

but i.k e F and F G A/2 so: 

TVfee,- + akek) = (la^2 + l^)2)172. 

Thus 77 = 2. 
Let A^ = h(Xi,..., Xm) (m < 00) be the decomposition of X described in 

Theorem 2.4(ii). Assume that there exist F 6 Af2 and 2<i,k<m, i^k, with 
FH ^ 7^ 0 and Fn S^ 0, say j* 6 Ffl S^. 

Note that if F n Si = 5, then AT* = ^ard^^ (card(S2) > 2) contrary to the 
assumption that AT* cannot be decomposed into £2 sum of nonzero subspaces. Thus 
FDSf ^0. Let xEXi, then 

N(x) = N I    ^T   ^ey -f    ^    ^-ey 
KjeFnSi jeF^nSi 

(1) 
TV   A^ 7CJ 

jeFcnSi 
J^J 

7^1 N\   E x^ 
jeFnSi (2) 

i€j +*   E J^J 
{j€FcnSi 

2\   2 

/ 

where (1) holds since F is a fiber, and (2) holds since jk & Si and A" = ^(A*!,... ,Xm). 
Thus Xi is the £2 sum of XpnSi and Xpns? again contradicting our assumption 

of nondecomposability of Xi. 
Thus {J \ Si}i>2 CU &ndM^{J\ SJ2>2 only if Si £ 0.        D 

We would like to make some remarks: 
1. Notice that (7) is very similar to (1). Theorem 3.1 refines the results of 

[ST, KaW] by determining precisely which permutations of standard basis vectors 
generate isometries and which do not (see also Corollary 3.5). 

2. Lemma 3.3 is also valid in real sequence spaces with maximal fibers. The 
proof does not change. 

3. If the isometry group of X is contained in the group of signed permutations 
then X has no nontrivial £2— fibers and (8) is trivially satisfied. Thus Lemma 3.2 and 
Theorem 3.1 will follow. 
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4. Theorem 3.1 is valid in those real spaces with maximal fibers for which Lem- 
mas 3.2, 3.3 and formula (8) hold. In particular, by the discussion in the preceding 
paragraphs, Theorem 3.1 is valid for any real sequence space with maximal fibers, 
whose isometry group is contained in the group of signed permutations. 

Theorem 3.1 provides a complete description of surjective isometrics of complex 
sequence spaces with maximal fibers. Below we present some immediate corollar- 
ies about the form of isometrics of spaces with explicit cross product structure (cf. 
Remark 3 after Theorem 2.4). 

COROLLARY 3.4. Let X — Z(Xi*.... -Ym) be the space with explicit reduced direct 
sum structure. Suppose that X or, equivalently, Z has maximal fibers. Then every 
surjective isometry of X onto itself has form (7). 

COROLLARY 3.5. Suppose X,Y are complex symmetric sequence spaces not both 
equal to £p with the same p. Let {eij}}™^!™ be the standard basis vectors of X(Y) 

(i.e. Nx^iEijaijeij) = ^(^^(^^6^)). Then T : X(Y) —► X(Y) 
is a surjective isometry if and only if there exist a family of numbers Xij £ (D with 
\Xij\ = 1 and permutations TTI of {1,..., dimX} and -Ki of {1,..., diml"} such that 

1 eij = Kje-iixW^ti) 

for all i,j. 
COROLLARY 3.6. (cf. [BVG]^ If X is a complex symmetric sequence space then 

X(X) is symmetric if and only if X = £p for some p, 1 < p < oo. 
Notice that if summands Xi, X2,..., Xm have maximal fibers and can be further 

decomposed into simpler second generation summands (as mentioned in Remark 1 
after Theorem 2.4), then one can again use Theorem 3.1 to conclude that the isome- 
trics Si,..., Sm have form (7). In particular, one can inductively describe isometries 
of spaces of the form Xi(X2{. • • {Xm) ...)), where Xi,X2,..., Xm are complex sym- 
metric sequence spaces such that for any i = 1,... ,ra — 1, Xi and Xi+i are not 
simultaneously equal to £p with the same p. We leave the exact statement to the 
interested reader. 

It is interesting to note that the group of isometries of Xi(X2{. ■ • {Xm)...)) does 
not depend on entire isometry groups of Xi,... ,Xm_i, but only on intersection of 
these groups with the group of signed permutation operators and the isometry group 
of Xm. 

4. Isometries of real sequence spaces. The description of isometries of real 
sequence spaces is more complicated than in the complex case. The main difference is 
in classification of spaces whose group of isometries is contained in the group of signed 
permutations. In the complex case Schneider, Turner [ST] and Kalton, Wood [KaW] 
showed that the group of isometries is contained in the group of signed permutations 
if and only if the space does not have nontrivial ^-fibers. In the real case similar 
classification is not valid. In fact, we have the following examples of spaces which do 
not contain any copies of £2 and which allow non-disjointedness preserving isometries, 
i.e., isometries that are not signed permutation operators. 

1. Let p 7^ 2 and let Ep(2) be the space defined in Definition 2.3. Then Ep(2) is 
isometric to £p through the isometry T : Ep(2) —> £2

p, T(x,y) = 2~1/p(x + y,x - y). 
Let X — Y(£p, Ep) for any 2-dimensional real symmetric space Y, and let S : X —> X 
be an isometry defined by S^i,^) = (Tv2,T~lvi) where vi G £p, V2 G Ep. Then S 
is a non-disjointedness preserving isometry of X. 
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2. Let X be any 2-dimensional real symmetric space, X ^ 0,2- Put 

ll(z>y)bx = nn mi  \\(x + y>x-y)\\x . 
IIU.iJIIx 

Consider Z = y(X, Sx), where F is any 2-dimensional real symmetric space. Then, 
similarly to Example 1, there exists a non-disjointedness preserving isometry of Z. 

3. Spaces in Example 2 can be generalized to higher dimensions by taking any 
spaces Xi,X2 which are isometric through a non-disjointedness preserving isometry 
(spaces like that can be constructed e.g. by taking direct products of X and Ex, cf. 
also [Rl, Theorem 4]). Then let Z = Y(Xi,X2) for any symmetric space Y. 

The above examples show isometries which are not signed permutations but which 
nevertheless "preserve the direct sum structure", i.e., have canonical form (7). One 
would hope that this is always true, however the following examples show the contrary. 

4. Consider £p(£3
pl Ep{2)) = (R3 x lR2,iV) with 

N(xi,X2,X3,yi,y2) = £p{lp{xi,X2,x3)1Ep{y1,y2))}. 

As described in Example 1, ££ is isometric with Ep(2) via the isometry T. Thus one 
can define isometry 5 on ^(i^Ep^)) by 

S(xi,X2,X3,y1,y2) = (T(yi,y2),X3,T~1(xl,X2)) . 

Clearly 5 does not have form (7). 

Surprisingly, a similar pathology is possible even in spaces of the form -X'(y), 
where X, Y are symmetric. 

5. Consider the space £2
p(Ep(2)) = ep(Ep(2),Ep(2)). Then we have 

N(xi,x2,yi)y2) 

= £p(Ep(xi,X2),Ep(yi,y2)) 

= £p(2-
1/%(a:1 + X2, xl - ara), 2-1/np(y1 +2/2,2/1- 2/2)) 

= 2-l/p£p(xi ■\-X2,xx -0:2,2/1 +2/2,2/1 -2/2) 

= 2-llv£p{£p{xx +32,2/1 +2/2),^p(a:i -32,2/1 -2/2)) 

= £pf Ep[ 2-
1
(XY +32 + 2/1 +2/2,3i +32-2/1-2/2)], 

Epf 2"1(xi -32+2/1 -2/2,3i -32-2/1 +2/2) 

= TVf 2-1(x1 +32+2/1 +2/2,3i +32-2/1 -2/2, 

31 - 32 + 2/1 - 2/2, 31 - 32 - 2/1 + 2/2) 

Thus the linear map defined by 

5(1,0,0,0) = 2-1(l,l,l,l) 5(0,1,0,0) = 2-1(l,l,-1,-1) 
5(0,0,1,0) = 2-1(l, -1,1, -1)        5(0,0,0,1) = 2-1(l, -1, -1,1) 
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is an isometry, and clearly S does not preserve disjointedness of vectors. This isometry 
in the case when p = oo, i.e. X = ^(^i), and p = 1, i.e. X = ^i(^) is described 
in [KL, Theorem 3.1(b)]. Notice that Ep(2) can be decomposed as an ^-direct sum 
of two nonzero subspaces. Thus this example is consistent with [Gr, Proposition 2], 
which says that if E is an £p—sum of two nonzero subspaces then there exists an 
isometry of £p{E) which is not of the form (9). It is interesting that this is, in fact, 
the only possible example as shown in Theorem 4.1 below. 

It becomes of interest to characterize spaces with direct sum structure, which is 
preserved under action of all isometrics. 

First we list classes of spaces whose isometry group is contained in the group of 
signed permutations: 

(1) spaces with A-bases ([GL]). 
(la) In particular for spaces of the form Z(Xi, X2,..., Xk) where k < 00, dim Xi G 

IN \ {2,4} and Xi is a symmetric space not equal to £2, i = 1,..., k, Z is 
arbitrary. 

(2) spaces which are p-convex with constant 1 for 2 < p < 00 ([Rl]). 
(2a) spaces which are strictly monotone, smooth at every basis vector and q- 

concave with constant 1 for 1 < q < 2 ([Rl]). 
Thus if a space X belongs to one of the above classes and has maximal fibers 

then Theorem 3.1 can be applied to conclude that indeed the direct sum structure 
is preserved by all isometrics.  Further Rosenthal [Ros] (cf.   also [R2]) showed that 
Theorem 3.1 holds in real spaces of the form: 

(3) Z(Xi,..., Xk) where k < 00, dimXf > 2 and Xi = £2 for alii = 1,..., fc, 
Z^£2. 

Below we study the group of isometrics of spaces of the form X(Y) where X,Y 
are finite-dimensional symmetric spaces with dimF > 2. This class of spaces has a 
sizable intersection with classes (la) and (3), but we do allow dimF to be 2 or 4, 
which are excluded by (la). Thus we allow the situation when the isometry group is 
not contained in the group of signed permutations. Our proof is somewhat technical 
but it is more elementary than the one in [GL]. It is possible that our different 
approach may lead to some insight to the general problem. So we present the entire 
proof including the previously proven cases. 

THEOREM 4.1.  Suppose X and Y are finite dimensional symmetric spaces such 
that dimX = n and dimF = m, and not both A'I and N2 are £p {with the same p). 
Then ^ is an isometry for N on X(Y) if and only if 

(i)  \I/ is of the form 

(9) (2/l,...,2/n) >-» (S,l2/;r(i)J....Sjfci/7r(n)) 

for some isometrics Si ofY and some permutation TT of {1,... ,n}; or 
(ii) X = £p, Y = Ep(2) for some p,   1 < p < cc,   p ^ 2, and 

(10) ^   permutes  the  matrices  in  the  set   {±{e\ ± e^)(e*)* : 1 < j < n}, 

where ej, ef denote column basis vectors in Y and X, respectively. 

Notice that, clearly, if Ni — N2 — £p then X(Y) = £™Tl and the isometry group 
is well known. 

COROLLARY 4.2. (cf. [BVG]) If X is a real symmetric sequence space with 
dimX = n then X(X) is symmetric if and only if X = £p for some p, 1 < p < 00. 
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The choices of Si in Theorem 4.1 (i) are very restrictive. If A^ = ^2, the Si 
is orthogonal (on Y"); otherwise, Si a signed permutation operator on Y unless for 
m = 4 or m = 2. When m = 4, there are a few more possibilities for S*. One may, 
for example, see [Ro] (see also [DLR, Br]) for more details. This exceptional case will 
be treated separately in our proof. When m — 2, S* must be chosen from a dihedral 
group. 

In the following discussion, we shall identify X{Y) with the space lRrn><n of m x n 
real matrices, and identify the linear operator \I> on X{Y) with its matrix represen- 
tation relative to the standard basis 

i^llj ^21 ■> • • • j Cml > • • • > ^In? ^2n3 • • • > ^mnj- 

We shall also use the following notations in our discussion. 
0(m): the orthogonal group on IRm. 
O(ran): the orthogonal group on IRmxn. 
P(m): the group of m x m permutation matrices. 
GP(m): the group of m x m signed permutation matrices. 
GP{mn): the group of linear operators on IRmxn that permute and change the 

signs of the entries of A € IRmxn. 
P (g> Q\ the tensor product of the matrices P and Q given by (PijQ). 

e\j: the n x n matrix with one at the (i,j) position and zero elsewhere. 

Epqi the mn x mn matrix e\j   ® e^. 
We shall also use the concept of the Wreath product of two groups of linear opera- 

tors. For simplicity, we consider the special case when G is a group of linear operators 
(identified as matrices) acting on lRm. The Wreath product of G and P(n), denoted 
by G * P(n), is the group of linear operators on IRmxn of the form 

\yi\-"\Vn]->[Ui(yi)\---\Un{yn)]V 

for some Ui,..., Un G G and V G P{n). 
With this definition, Theorem 4.1 implies that the isometry group of TV is the 

Wreath product of the isometry group of A^2 and P(n) if m ^ 2. In particular, 
isometrics will always preserve the direct sum structure of X(Y). 

It is also interesting to note that in our proof, we actually determine all possible 
closed overgroups G of H = GP(m) * GP(n) in 0(mn). In particular, if G is infinite 
then G = 0(m) * GP(n) or 0(mn)\ if G is finite then G is one of the following: 

(a) GP(m) * GP(n): the Wreath product of GP{m) and GP(n), 
(b) GP(mn): the group of signed permutations on IRmxn, 
(c) A2n - the Weyl group of A2n type realized as the group of orthogonal operators 

on IR2xm that permute the set {±(ef ± e|r)(e^)* : 1 < j < n} if m = 2, 
(d) Dh * GP(n):  the Wreath product of the dihedral group Dh and GP(n) if 

m = 2, 
(e) F4 and the normalizer of F4: the Weyl group of F4, if m = n — 2. 

In (e), there are two possible realizations of i7^, namely, an overgroup of GP(4) (e.g., 
see [DLR]) or the group generated by H and Li mentioned in the proof of Lemma 
4.8. However, only the first realization can be an isometry group of X(Y). 

Our proof of Theorem 4.1 uses the basic ideas in [DLR] (cf. also [Br]) and some 
intricate arguments. It would be nice to have a shorter conceptual proof. We begin 
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our proof with the following corollary of Auerbach's Theorem (see e.g. [Ro, Theo- 
rem IX.5.1], [KL, Theorem 2.3]). 

LEMMA 4.3. Let G be the isometry group of N. Then G < 0(rnn), i.e., G is a 
subgroup ofO(mn). 

We first deal with the case when the isometry group of N is infinite. 
LEMMA 4.4. If the isometry group G of N is infinite, then either G = 0(mn) or 

G is the Wreath product 0(m) * P{n). 
Proof By Lemma 4.3, G is a subgroup of O(ran). Since G is closed and 0(mn) 

is a compact Lie group, G is also a compact Lie group. It is well-known that the 
Lie algebra of 0(mn) is o(ran), the algebra of all skew-symmetric mn x mn matrices 
over real under the Lie product [.4, B] = AB — BA. Suppose g is the Lie algebra 
of G. Then g is a subalgebra of o(rnn). Furthermore, by definition of N', we have 
H :— GP(m) * GP(n) < G and H acts on G by conjugation, and so g is a iJ-module 
under the action (P, A) H->- PtAP for any P £ H and A G g. We shall show that there 
afe only two subalgebras of o(ran) which are i7-modules, and the two Lie groups 
corresponding to the subalgebras are 0{mn) and 0{m) * P{n). 

For any A G g we write A = (A^) in n x n block form such that each block 
AM) £ IRmxm. If there exists i < j such that A^ ^ 0, we claim that g = o(mn). 
First, note that there is P £ P(n) such that the (1,2) entry of PtZP is the (i,j) entry 
of Z for any Z £ IRnxn. Then P®Im £ H and hence (P<g> Jm)*A(P® Jm) £ g will have 
nonzero (1,2) block. So, we may assume (i,j) = (1,2). Now suppose the (p, q) entry of 
A(12) is nonzero. Then Di - Imn-E^ £ H and hence Ai = A-DiADi £ g. Note 

(22) that only the pth row and pth column of Ai are nonzero. Now D2 = Imn — Epp    € H 
(12) (11) 

and hence A2 = Ai — D2A1D2 £ g. Since A2 is a nonzero multiple of Epq ' — E\p , 
it follows that Qt(Epq ' — E\v ')Q £ g for all Q £ H. As a result, g contains 

ErJ^ - Esr for all 1 < i < j < n and 1 < s,r < m. In particular, it contains 
the Lie product [JE£

2)
 - E^.E^ - JS^2)] - E^ - E^. It then follows that 

Q^E^ - E^Q £ g for all Q £ H. As a result, g also contains E^f - E^ for 
all 1 < i < n and l<r<s<ra. So,g contains a basis of o(mn) and we conclude 
that G = 0(mn). 

Next, suppose all A = (A^) £ g satisfy A^ — 0 if i ^ j. Then we can show 
that g contains Ers — Esr for all 1 < i < n and l<r<s<m, by arguments similar 
to the preceding case. Taking the exponential map for the elements of g, we see that 
G contains the Wreath product 0(m) * {In}- Since G also contains GP(ra) * GP(n), 
we conclude that 0(m) * P{n) = 0(m) * GP(n) < G. In particular, A^ — £2- By the 
results in [Ros] (see also [Rl]), we conclude that G = O(m) * GP(n). D 

Next we consider the case when the isometry group of iV is finite. We use the 
approach in [DLR], namely, determining all the finite overgroups of GP(ra) * GP(n) 
in 0(mn). We begin with the following lemma, which explains why one needs to 
exclude the cases when n = 2,4 in [GL]. 

LEMMA 4.5. Suppose dimy 7^ 4,2. If G is the isometry group of N and G is 
finite, then G < GP(mn). 

Proof. For each \I> £ G, we write \I> = (\I>(l-7)) in n x n block form such that 
$(ii) G jR/nx™ for all ^-y Since G < o(mn^ $ e G implies $* £ G as well. 

We use the technique in [DLR] to show that for any ^ £ G (in its matrix repre- 
sentation) the entries of \P can only be 0,1 or -1. Suppose this is not true. Let 

pi = min{a > 0 : a is an entry of ^ for some ^ £ G}. 
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Since G < 0(mn) by Lemma 4.3, we have 0 < /i < 1. Denote by H = GP(m)*GP(n) 
as in the proof of Lemma 4.4. Let $ G G have one of its entries equal to //. Then 
there exist P, Q G H such that the (1,1) entry of P$Q equal fi. Thus we may assume 
that the (1,1) entry of $ = ($to')) equals //. We consider several cases. 

First, suppose n is odd. By the arguments in the proof of Theorem 2.4 in [DLR], 
there exists 5 G GP(m) such that ($(11))i5$^11^ has a positive (1,1) entry equal to 

Indeed, let P - (pto>) G ff be such that P^11) = 5, p(2MM-i) = /m anci 
p(2A+il2*) =: _/m for 1 < A: < (n - l)/2, and p(^) = 0 for all other (z, j). Then 
$ip$ G G has (1,1) entry equal to 77 = /i2 < /1, which contradicts the definition of /i. 

Next, suppose n is even. If m is even, we can again obtain 5 G GP(ra) such that 
($(ii))*5$(ii) has a positive (1,1) entry equal to 77 < //. Let P = (pW)) G ff be such 

that P(11) = 5, P(«)' = E^i2(47-1,2,- " 4Si-i) for i = 2,..., n, and p(") = 0 for 
other (r, s). Then $£P$ G G has (1,1) entry equal to rj < JJL, which contradicts the 
definition of fi. 

Finally, suppose n is even and m is odd. Note that there exists P G H such that 
the first column of P$ is nonnegative. So, we may assume that $ has nonnegative 

(21) column.   Furthermore, we may assume that ^n    attains the minimum among all 
entries in the first columns of ^^ for j = 2,..., n. Then either 

(i) *<?» = 0, or 

(ii) 0 < (*i2
1
1))2 < {ZU Efei^i0)2} /{(^ " 1M < l/{(n - l)m}. 

If (i) holds, let 5 G GP(m) such that (^C11))^*^1) has a positive (1,1) entry 

equal to 77 < fi. Let P - (pW)) G H be such that P^11) = 5, P^22) = Yl^ll^liaj " 

4Si+i)» P^"1'2^ - /m and p(2*.2*-i) = _/m for fc = 2,... ,n/2. Then $'P$ G G 
has (1,1) entry equal to 77 < /1, which contradicts the definition of //. 

If (ii) holds and (m,n) ^ (3,2), then 0 < S^1* < 1/2. Let P = (pW)) G H be 
such that P^12) = Im, P^21) = 2e^) - JTO, p(2*-i.2*) = /m and p(2fcf2*-i) = _7m for 

k = 2,... ,n/2. Then $*P$ G G has (1,1) entry equal to 2${1
1
1)^ < ^ = /*, 

which contradicts the definition of //. 
If (ii) holds and (m, n) = (3,2), let the first column of $ be v = (01,02, as, 61,62, 

63y. By our assumption, fi = ai < bi < 62 < 63. Since v is a unit vector, we have 
ai < 1/2. We claim that ai = 1/2 and hence 61 = 62 = 63 = 1/2. Assume that 
ai < 1/2. We consider two cases. 
Case 1. Suppose ai > 1/4. Note that bi > 1/2. Otherwise, one can find R G H 
such that the (1,1) entry of &]%$ equals 2aibi < ai, which is a contradiction. Let 
P = p1 e p2 G iJ with Pi = -eff - e^ + e^ and P2 = eff - e^ + e^. Then 
^^P^ has (1,1) entry equal to the positive number 62 — a2 < (62 + 62 4- &2)/3 - a2 < 
(i;^ —4af)/3 = (l-4ai)/3 < ai = /x, because the roots of the equation 4£2+3£ —1 = 0 
are -1 and 1/4. 

Case 2. Suppose m < 1/4. Let P = J6 -2eJi). Then * = ^^P^ has (1,1) entry equal 
to 1 — 2a2. Let u — (ci,02,03,^,^2,^3) be the first column of \I/. We may assume 
that u is a nonnegative vector. Since u is a unit vector, there are other nonzero entries 
besides ci. In particular, we may assume that c2 + c^ > 0, otherwise multiply ^ by 

a suitable P G P\ Let Q = e^ - e^ + e^. Then Q 0 Q G jff and the (1,1) entry of 
¥*(<2 © 0)* equals C3 + dg < u*w - c? = 4ai(l - a?) < 4ai < ai = /i. 
In both cases, we get the desired contradiction. So, we have v = (1,0,0,1,1, l)t/2. 
But then if we define Q as in Case 2, the (1,1) entry of $£(<2 © Q)$ will be 1/4 < 
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1/2 = ai = /i, which contradicts the definition of /i. 
Combining the about analysis, we get the conclusion. D 
LEMMA 4.6. Let G be the isometry group of N and suppose that G is infinite or 

G < GP(mn).  Then every isometry in G has form (9), i.e.  Theorem 4-l{i>) holds. 
Proof. If G is infinite, then by Lemma 4.4 either G — 0(mn) or G — 0(m)*P(n). 

In the former case, clearly, we have Ni = N2 = £2- In the latter case, we have 
Ar2 - l2 jL Ni. The conclusion of Theorem 4.1(i) holds. 

Suppose G < GP(mn). The result follows from Remark 4 before Corollary 3.4. D 

Next we turn to the exceptional case when dim Y = m = 4. 
LEMMA 4.7. Suppose dimY = 4. The conclusion of Theorem ^.i(i) holds (i.e. 

isometries have form (9)). 
Proof Let G be the isometry group of Ar. By Lemma 4.6 it remains to consider 

the case when G is finite and is not a subgroup of GP(mn). 
For that, define /x as in the proof of Lemma 4.5, and let $ G G have (1,1) entry 

equal to fi and a nonnegative first column. We divide the proof into three assertions. 
The matrix 

O - e{4) 4- e(4) - e(4) - e(4) 

will be used frequently in our arguments. 

Assertion 1. The first column of $ equals v = (1,1,1,1,0,0,..., )t/2. In particular, 
/i = l/2. 

Suppose the first column of $ equals v = (VI,U2J • • •)* with 0 < V2 < ^3 < V4. 
Then ^2 7^ 0. Otherwise, we may let P = (e^ - e^) © (Jn_i 0 Q) G iJ, where 
Q is defined as above, so that the (1,1) entry of $£P<I> equals vf < vi = /i, which 
contradicts minimality of fi. 

Thus, we may assume that vi < V2 < V3 < V4- 
To prove that v is of the asserted form it is enough to show that vi = 1/2, since 

vtv = 1. 
Since vf < (vf + vj + vj + vD/A — vtv/4: = 1/4, we see that vi < 1/2. One can 

show that vi < 1/2 is impossible as in the last part (Case 2) of the proof of Lemma 
4.5 (see also the first proof of Theorem 3.2 in [DLR]). 

Assertion 2. A column of ^ G G must be of the form e* (8) (Pu) for some 1 < i < n, 
P G GP(4) and u = (1,0,0,0)*, (1,1,1,1)72, or (1,1,0,0)V>/2. 

Let i> be the kth column of ^ G G. Multiplying ^ by a suitable R G H, we 
may assume that fc = 1 and the (1,1) entry of ^ is nonzero. We need to show that 
v = e^ <g) (Px). If v is not of this form, then (see the first proof of Theorem 3.2 
in [DLR]) there exists 5 G GP(4) such that the (1,1) entry of (^t11))^^11) equals 
7] < 1/2. Let R = S © (Jn_i 0 Q) G if, where Q is defined as above. Then the (1,1) 
entry of ^tR^ G G equals 7? < 1/2, which is a contradiction. 

Assertion 3. Suppose $ = (^ij)) G G is in n x n block form with #(^ G lR4x4 

for each (i, j). Then each nonzero \I>^) must be of the form P, PAP or PER, with 
P,PGGP(4), where 

A = (/4-(l,l,l,l)<(LLLl)/2)     and     * = ij(j    -l) 0 (l    -l)}' 
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Consider a nonzero i&M. Multiplying ^ by a suitable R € Hy we may assume 
that (i,j) = (1,1), the first column of ^ is nonnegative, and the (1,1) entry a of ^ 
has the smallest magnitude among all nonzero entries in ^^n\ We consider 3 cases. 
Case 1. Suppose a = 1/2. Then the first column of ^ equals (1,1,1,1,0,.. .)t/2. Since 
V* e G as well, we see that the first columns of & are of the form ef <8)P(1,1,1,1)72 
for some P G GP(4) by Assertion 2. Thus tf*11) = PAi? for some P,i? 6 GP(4). 

Note that it follows from Assertion 1 and the above arguments that $(n) is of 
the form PAR for some P, R e GP(4). 
Case 2. Suppose a = l/\/2. By Assertion 2, we may assume that the first column of 
^(11) = (1,1,0,0)7^2. Since ** e G as well, we may assume the first row of \I>(11) 

equals (1, l,0,0)/\/2. Since the first two column of ^ are orthogonal, the second 
column of ^t11) equals (1, -1,0,0)7\/2- By Assertion 2 and the knowledge about the 
first two columns of \I/, one easily sees that the (1,1) and (2,1) entries of ^^ G G 
are l/\/2 and 0. By Assertion 2 again, one of the (3,1) and (4,1) entries is 0, and the 
other has magnitude 1/V2. It follows that the third and the four columns of \I> have 
the same form. Thus S^11) = PER for some P,R e GP(4). 
Case 3. Suppose a = 1. Then the first column of <1>\I> G G equals (1,1,1,1,0,.. .)t/2. 
By the result in Case 1, the first four columns of <i>\I> are of the form ef:(8)P(l, 1,1, l)/2 
for some P G GP(4). Thus #(11) G GP(4). 

We are now ready to complete the proof of the lemma. Let A be the group 
generated by GP(4) and A, and let B be the group generated by GP(4) and B. It is 
known (e.g., see [DLR, Theorem 3.2]) that A is a normal subgroup of B, and they are 
the only other possible isometry groups of a symmetric norm on R4 besides 0(4) and 
GP(4). By Assertion 3, one easily concludes that if G is not infinite and G is not a 
subgroup of GP(mn), then G must be of the form G2 * Pfa), where G2 = GP(4),^4 
or B. In each case, G2 is clearly the isometry group of N2. □ 

Finally, we deal with the exceptional case when dim Y = m = 2 in the next two 
lemmas. 

LEMMA 4.8. Suppose dimF = 2. Then the isometry group of N has form (9) or 
(10). 

Proof. Let G be the isometry group of iV. By Lemma 4.6, we only need to 
consider the case when G is finite and not a subgroup of GP(mn). Define /i as in the 
proof of Lemma 4.5. Then 0 < ji < 1. Let $ G G have (1,1) entry equal to fi and a 
nonnegative first column v — (ui,... ,V2n)t• Similarly as in Lemma 4.7, we divide the 
proof into several assertions. 

Assertion 1. The vector v cannot have more than four nonzero entries. 
If the assertion is not true, then 

{\ 1/2 

E^JA*-1)?     <1/2, 

where k is the number of nonzero entries of v. Let H — GP(2) * GP(n). If V2 = rj, we 
can find P G H such that the first column of P$ equals (^2,^1,^4, — V3, VQ, -^5,..., 
^2n> — V2n-i)t' If v2 > V = Vj for some j > 2, we may assume that j = 3 after 
multiplying $ by a suitable Q G H on the left. Then we can find P G H such that 
the first column of P<3> equals (^3, —V4,vi, ^2,^6, — ^5, • • • ,^2n)*- In both cases, $£P$ 
has (1,1) entry equal to 2fjl'rj < fi, which contradicts minimality of ji. 

Assertion 2. We have V2 > 1/2. 
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If V2 = 0, we can find P G H such that the first column of P$ equals 

(Vi, V2, V4, -V3,V6, -Vo, . . . , V2n, -Vln-lY 

so that the (1,1) entry of <I>*P<I> is fj? < /i, which is a contradiction. If 0 < V2 < 1/2, 
we can find P G H such that the first column of P$ equals (i^, vi, v*, —V^,VQ, — v^,..., 
V2n, -V2n-i)t so that ^PQ has (1,1) entry equal to 2^2/1 < //, which is a contradic- 
tion. 

Assertion 3. The vector v cannot have exactly 3 nonzero entries. 
If the assertion is not true, we may assume without loss of generality that Vj = 0 

for j = 4,..., 2n(by replacing $ with P$ for some P 6 H, if necessary). 
If n > 3, let R G H be such that the first column of R<& equals (0,0,^1,^2,^3, 

0,.. .)*, then the (1,1) entry of ^RQ equals fivs < /i, which is a contradiction. 
If n = 2, let 5 G H be such that the first column of S$ equals (—vi,V2,V3,0)t- 

Then one can find R G H such that the first column of $ = R&S^ G G is nonnegative 
and equals (1 — 2/i2,r, s,^) with 5 > i. Furthermore, suppose ry = ^r + t'ss —/x(l —2/i2) 
is the (1,1) entry of $£5$ G G. Since 

(^r + v3s)2 < {vl + v|)(r2 H-52)     and     r2 + s2 -ft2 + (1 - 2/i2)2 = 1 = v? + T;| +v|, 

we have 

r?<{(^ + t;32)(r2 + S
2)}1/2-/i(l-2M2) 

(11) < {(1 - v?)(l - (1 - 2M2)2)}1/2 - Ml - 2M2) = M, 

and 77 = /i if and only if (r, 5, t) is a multiple of (i>2,f3,0). 
Note that ^3 > 1/2. Indeed, otherwise, one can find P G H such that the first 

column of P$ equals (1*3,0,ui,i;2)* so that ^PQ has (1,1) entry equal to 2^3// < /x, 
which is a contradiction. 

If 5 = 0, then t = 0 and r2 = 1 - (1 - 2/i2)2 = 4^2(1 - /i2). Then (r, 5, *) is not 
a multiple of (^2,^3,0) and we have fi > 77 = t^r — /i(l — 2/i2) > r/2 — /i(l — 2/x2) = 
/i^l — A*2 — ^(1 — 2/i2) > 0, since // < 1/V3, which contradicts minimality of /x. 

If r = 0, then (r, s,t) is not a multiple of (^2, ^3,0), and hence fi > 77. If 77 — 
^s - /i(l - 2^2) ^ 0, then we can find P € H such that the (1,1) entry of ^P$ 
equals \rj\ < /Li, which is a contradiction. Similarly, if v^t - /x(l - 2/i2) 7^ 0, we have a 
contradiction. Suppose*2 = s2 = 2/x2(l-/x2). Then v% = {l-2fi2)2/(2(l-ii2)). Since 
vl - H2 > 0, we have 6/x4 - 6/i2 4-1 > 0. Thus fi2 < 1/2 - l/\/l2 or /i2 > 1/2 + y/tt. 
Since /x2 < (v2 H-1;2 + 7;2)/3 = 1/3, we have /x2 < 1/2 - 1/712 < 1/4. Now, if /x < 1/4 
or 1/4 < /x < 1/2, one can derive a contradiction as in the last part of the proof of 
Lemma 4.5 (see also the first proof of Theorem 3.2 in [DLR]). 

If r, 5 ^ 0, then r, s > fi. Since ^2,^3 > 1/2, we have 

77 > fi(v2 + v3) - /x(l - 2/x2) > /x - /z(l - 2/x2) > 0. 

If (r, 5, t) is not a multiple of (^2, ^3, 0), then, by (11), fi > 77 > 0, which is a contradic- 
tion. Thus (r, 5, i) is a multiple of (^2, ^3,0) and t = 0. We can find P G H such that 
the (1,1) entry of ^fP$ equals S = \v2r - /i(l - 2fj2)\ < /x, which is a contradiction 
if J > 0. If 5 = 0, one can let (r, 5) = c^, V3) and solve the equations: 

2 2-i 0 

^2 + ^3 = 1 - V 

r + 5
2 = C

2
(L'; + T;

2
) = 1 - (1 - 2/x2)2 = 4/x2(l - /x2), 
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0 = V2r - /i(l - 2/i2) = cvZ - //(I - 2^2) 

to conclude that Vg = 1/2 — /J,
2
 and f2 = 1/2. Since, by Assertion 2, V2 > //, we have 

JJ, < 1/2 and since 2/z2 -f 1/2 < v2 + v2 + v2 = 1 we conclude that /z = 1/2 = i>2. 
Now, we may assume that the first row of $ is v*. Otherwise replace $ by <f>R for 

some Re H. One readily sees that P$<5 equals Li or L2 for some P,Q e H, where 

In =2" 

1 1     \/2     0 \ 
1 -1     0     V2 
/2 0     -1    -1 
0 V2    -1      1 / 

and     Lo = 2" 

1 1 V2     0 
1 1 -V^   0 
/2 -V2 0      0 
0 0 0       1 

It is routine to check that (H, Zq) = (H, L2) consists of matrices of the form P, PLiQ 
or PL2Q with P,Q € H. By the previous discussion, this group is contained in G. 
We shall show that this is impossible. Suppose (H,Li) = (H,L2) < G. Then 

iV2(ef + el) = iV(cii - e21) = ^(^(en - e21)) 
= iV(v^ei2) = >/2N2(e?) = y/2. 

Thus 

Ni(ae? + 6ef) = iV(aeii + 6612) 
= iV(2-1/2a(eii-C2i)+6e22) 
-iV(L2(2-1/2a(e11-e2i) + 6e22)) 
= A^(aei2 + 6622) = ^(aej" + 6e^) 

for any a, 6 G K. Furthermore, 

iV2(aef + be^) = ^(aen + 6e2i) 
= iV(£2(Cll+6C2l)) 
- 7V((a + b)(en + e21)/2 + (a - b)e12/V2) 
= N((a + 6)eii + (a - b)ei2)/V2 
= Nxda + 6)ef + (a - b)e^)/V2 
= N2((a + 6)ef + (a - b)e^)/V2 

for any a, 6 6 H. Thus ^4 = 2~1/2 I       _   J is an isometry for A^, and F = A © I2 is 

an isometry for iV. Note that the first column of F is neither of the form P(l, 0,.. .)* 
nor P(l/2,1/2, l/y/2,0,.. .)* with P G H. We can find P G H such that the (1,1) 
entry of rL2 is positive and less than 1/2, which is a contradiction with the fact that 
H = 1/2. 

Assertion 4. Suppose the first column of $ has exactly 4 nonzero entries. Then the 
first column of P$ equals (1,1,1,1,0,.. .)t/2 for some P G H, and every $ G G has 
form (10). 

Suppose v has exactly 4 nonzero entries. One can show that all of them equal 
1/2 by arguments similar to those in the proof of Lemma 4.7 (cf. Assertion 1). By 
Assertion 2, we have vi = V2 = 1/2. Since fi = 1/2, by Assertion 2, for each 1 < j < n, 
V2j-i and V2j are either both zero or both nonzero. Thus P$ has first column equal 
to (1,1,1,1,0,.. .)t/2 for some P G H as asserted. 
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Since (P$)4 G G and the first four entries in the first row of (P$)£ equal 1/2 = //, 
the second column w of P§ is of the form (±1, ±1, ±1, ±1,0,.. .)*/2 by Assertion 2. 
We claim that w = ±(1,1, -1, —1,0,.. -Y/Z. If it is not true, we may assume that 
w = (1, -1,1, -1,0,.. .)t/2. Otherwise interchange the third and fourth rows of P$, 
and multiply the second column of P$ by -1 if necessary. It follows that 

JV2((a, 6)*) - Niaen + be2l) = JV(P$(aeii + be21)) 
= N(a + 6)(eii + e12) + (a - 6)(e21 + e22))/2 
= N2((a + b,a-b)t)N1(l,l)/2. 

It follows that A = k ( ) is an isometry for A^2 for A; = Ni((l, l)1)/^. Since 

an isometry for A^2 must be orthogonal (e.g., see [DLR]), k = l/y/2. But then 
^ = A0 72n-2 G G and the first column of T = ^P^ has 3 nonzero entries, and there 
exists Q G H such that ^QQ has a positive nonzero entry less than 1/2 = /i, which 
is impossible. 

Now for any ^ G G, the columns of ^ must be of the form Q(l, 1,1,1,0,.. -Y/V^, 
(3(1,1,0,.. .)V>/2, or Q(l, 0,.. .)* for some Q G H. Otherwise, one can find R, S G H 
such that R'$!tS$ has positive (1,1) entry less than 1/2 = /J,. Now if ^ has a column of 

the form Q(l, 1,0,.. .Y/y/2, then one can show that 2_1/2 f J is an isometry for 

A^2, and get a contradiction as in the preceding paragraph. Furthermore, if the (2j — 
l)th (respectively, (2j)th) column of ^ is of the form Q(l, 1,1,1,0,.. .)*/2, then the 
(2j)th (respectively, (2j — l)th column must be of the form ±Q(1,1, — 1, — 1,0,.. .)t/2 
by arguments similar to those in the analysis of the second column of $. It follows 
that every ^ G G permutes the matrices in the set {=t(ef ± £%)(£?Y : I ^ j ^ n} as 

asserted. 

Assertion 5. Suppose v has exactly 2 nonzero entries. The conclusion of Theorem 
4.1(i) holds. 

By Assertion 2, if v has exactly two nonzero entries, then we may assume that 
(vi,v2) = (sint,cost) for some t G (0,7r/4). Now, it is easy to see the columns of 
^ € G must be of the form P(a, 6,0,.. .)* with a2 + b2 = 1. Otherwise, one can 
find R,SeH such that the (1,1) entry of i?\I>*5$ is positive and is less than s'mt. 
Moreover, if the (2j — l)th (respectively, the (2j)th) column of ^ is of the form 
P(a, 6,0,.. .)* with ab ^ 0, then by the fact that ^ G G one can conclude that the 
(2j)th (respectively, the (2j — l)th) column must be of the form ±P(6, —a, 0,.. .)*. 
Thus P^P* is a direct sum of a signed permutation matrix A and a number of 2 x 2 
orthogonal matrices Pj. Furthermore, we may assume that A is a direct sum of 
matrices in GP(2). Otherwise, F = A 0 h G G will satisfy the hypothesis of Lemma 
2.4, and hence both iVi and N2 equal £p for some p > 1. Thus P^P1 must be a direct 
sum of isometries for F for some P G if, and the conclusion follows. D 

LEMMA 4.9. If isometries of X(Y) have form (10), then X = ££ and V = £p(2) 
/or some p,    1 < p < oo,   p ^ 2. 

Proof. Suppose m = 2. The elements in Y will be written as {yi,y2), and the 
elements in X(Y) will be written as 

(^11,^21,^12,^22, •• • ,^ln,^2n)- 

If isometries of X(y) have form (10) but condition (i) of Theorem 4.3 does not hold, 
then the isometry group G of X{Y) must be A2n as mentioned before Lemma 4.3. 
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Therefore, the linear map T : X(Y) —> X(Y) defined by 

T(Xii, X21 ,Xi2,X22,'--, Xi„, £2n) 

=   f 2-1(xii +X21 +X12 +X22),'Z-l(xii +X21 -X12 -X22), 

^~l{xii -X21 +£12 -^22),2-1(a;ii -X21 -X12 +X22),£l3,Z23,--.)Zln5£2n) ) 

is an isometry of X(y). Assume that xis = 0:23 = ... = xin = X2n — 0? then 

N(xii, X21, £12,2:22,0,0,..., 0,0) = Nx{N2(xn, X2i)ef + ^(x^, X22)e^). 

In particular, when xu = X21 = a and X12 = £22 = b we get 

iV(a, a, 6, 6,0,..., 0) = A^aA^l, l)ef + 6^(1, l)e^) = A^l, l)iVi(aef + 6e^). 

Since T is an isometry 

N(a, a, 6,6,0,..., 0) = iV(T(a, a, 6,6,0,..., 0)) 

= A^a -f- 6, a - 6,0,..., 0) = iVi (iV2 (a + 6, a - &)ef) 

= N2{a + b,a-b). 

Thus 

(12) M(acf + 6e2
x) - —L^fa + 6, a - 6) 

for all a, & G IR. Also 

(13) iV2(Cjd)=iV2(l,l)JVi(^(c + d)ef + i(c-d)ef) 

for all c, d G K. Further, since T is an isometry, we get 

N(xn, X21,^12,£22,0,0,..., 0,0) = N(T(xii,X21,x^,^22,0,0,..., 0,0)). 

It follows that 

Ni(N2(x11,X2i)e?+N2(x12,X22)e? 

= Ni N2I 2"1(a;ii + X21 + xu + X22),2~1(xii + X21 - X12 -Z22)]ef 

(14) +iV2f 2"1(a:ii - X21 + Z12 - 2;22),2~1(a;ii - a;i2 -£21 +£22)^ 

Put 

^ii + X21 = 2/1 arn - X21 = 2/2 
^12 + £22 = 2/3 £12 - X22 = 2/4- 

Then by (13) and (14) we get 

2-17V2(l, 1)iVi (NX(2/1 ef + 2/2e^)ef + Md/scf + y^)eA 

(15) = 2-1iV2(l, l)iVi (Ni(yie? + yze$)e? + iV^^ef + y4e^)ef) 
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Define /(a,b) - Ni(ae? + be£). Then (15) becomes: 

/(/(</!> 2/2),/(2/3, 2/4)) = /(/(2/1,2/3),/(2/2,Ste)) 

for all 2/1,2/2 5 2/3 ? 2/4 ^ 1R» When 2/4 = 0 we have 

/(/(2/i)2/2),2/3) = /(/(2/i,2/2),/(0,2/3)) = /(/(2/iJ0),/(2/2,2/3)) = /(2/iJ/(2/2,2/3)). 

By a theorem of Bohnenblust [Bo] 

/(a, 6) = max(|a|, |6|)     or     /(a, 6) = (|a|p + l&l')1/* 

for some p,   1 < p < 00. Hence 

(16) iV^aef +6c^)=^(a,6) 

for some p,   1 < p < 00. By (13) we see that Y — Ep(2). 
To see that X = i™, let A: < n be the maximal number such that 

(17) A/i(aief + ... + ake$) = lp{au..., a*) 

for all ai,..., dk E IR. If A: = n there is nothing to prove. If k < n let (a*)^1 C ]Rfc+1 

be arbitrary and set xu = X21 = ai for / = 1,..., & +1, and xu = X2/ = 0 for / > A:-f 1. 
Then 

N(ai, ai,..., a^+i, afc+1,0,..., 0) 

- N1(a1N2{li l)ef + • • • + a,+1iV2(l, l)ef+1) 

(18) - iV2(l, l)JVi(aicf + • • ■ + afc+ief+1) 

Since T is an isometry we get 

iV(ai, ai,..., ak+i, a^+i, 0,..., 0) 

= N(T(ai, ai,..., a^+i, a^+i, 0,..., 0)) 

= iV((ai +a2,ai - 02,0,0,03,03, ••• ,0^+1,^+1,0,.. .,0)) 

= N1(N2{a1 + 02,01 - 02)ef + 03^2(1, l)cf + • • • + ^+1^(1, l)ef+1) 

= ^(^(l, 1)^(0!, a2)ef + a3iV2(l, l)ef + • • • + afc+i^l, l)ef+1) 

by (12) and (16) 

- JV2(1, l)iVi(£p(oi,o2)ef + 036^ + • • • + a^+ief+1) 

= iV2(l,l)^p(^(ai,a2),a3,...,OA;+i) by (17) and symmetry of X 

= iV2(l,lKp(ai,a2,03,...,afc+i). 

Hence, by (18) 

Ni(aiei  H-... + 0^+16^+1) = £p(ai,... ,0^+1), 

which contradicts maximality of A;. Thus (X,Ni) = £*. 
Finally, we conclude that p ^ 2. Indeed, if p = 2 then £Jp(2) = £2 and then 

X(y) = ^2(^2) - ^2n whose isometry group is not of the form (10). D 
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