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UNFOLDINGS AND GLOBAL BOUNDS ON THE NUMBER OF 
COLLISIONS FOR GENERALIZED SEMI-DISPERSING BILLIARDS* 

D. BURAGOt, S. FERLEGERt, AND A. KONONENKO* 

Abstract. We generalize a global uniform bound on the number of collisions from flat to non- 
positively curved non-degenerate semi-dispersing billiard systems, and discuss a related problem of 
gluing a non-positively curved space without boundary out of finitely many copies of a billiard table. 

1. Preliminaries. The purpose of this paper is twofold. First, we generalize 
global estimates on the number of collisions from [B-F-K-l] to arbitrary simply- 
connected manifolds of non-positive curvature. For instance, this generalization gives 
global estimates on the number of collisions for a system of hard balls colliding elasti- 
cally in a hyperbolic space. This generalization involves a new geometric idea, which 
exploits the fact that the condition "curvature is bounded from above by K=0" can 
be verified locally for simply-connected Alexandrov spaces (although this fails for 
bounds K other than zero). This idea was motivated by another problem: given a 
semi-dispersing billiard table, can one glue together finitely many copies of this ta- 
ble in such a way that each wall participates in exactly one gluing and the resulting 
boundary-less space has the same curvature bound? Unfortunately, our attempts to 
describe such gluing have so far failed even for fc-dimensional regular simplex. More- 
over, it is unlikely that such gluing always exists, and the problem of finding geometric 
obstructions for its existence seems to be quite intriguing. We will explain, however, 
how this construction can be carried out in several simple cases. 

To explain the connection between the two problems discussed above, we present 
the following model argument, which served as the starting point for our research. 
Consider a billiard system in a planar polygon P with curved walls. Assume that 
the walls are concave but all angles between them are non-zero. We want to show 
that there exists a number iV such that every trajectory of length 1 experiences no 
more than iV collisions. (Note that our goal is to demonstrate our method rather 
than to prove this simple statement, which can be proved by a ten-line elementary 
argument.) Using finitely many copies of P and gluing them along the corresponding 
sides, one can obtain a (singular) surface 5 with the following property: total angle 
at each vertex is at least 27r (see Section 6). This implies that locally this surface is 
an Alexandrov space of non-positive curvature and, therefore, every geodesic of it is 
the shortest curve in its homotopy class. Notice that billiard trajectories in P can be 
naturally developed as geodesies in S. The space S is paved by (finitely many) copies 
of P, and each side of these copies is also a shortest curve in 5. Denote by K the 
number of edges on S and by r the injectivity radius of 5, and consider a segment 
of a trajectory which is shorter than r/2 which is, therefore, a shortest curve. This 
implies that this segment can not intersect the same edge twice, otherwise we would 
have two shortest curves of length less than r/2 and with the same endpoints. Taking 
into account that a collision of a billiard trajectory in P corresponds to an intersection 
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of its development in 5 with an edge, we conclude that the total number of collisions 
is less than N = —. r 

We prepare now to deal with the general case, and start with the definitions. Let 
M be an arbitrary m-dimensional Riemannian manifold without boundary. Consider 
a collection of n geodesically convex subsets (walls) Bi C M, i = 1,... ,n, (the letter 
n will be reserved for the number of bodies Bi throughout the paper) in M, such 
that their boundaries are C1 submanifolds of codimension one. Let B be one of the 
connected components of M\(|J"=1 Int(Bi)), where Int(Bi) denotes the interior of the 
set Bi. The set B G M will be called a billiard table. A semi-dispersing billiard flow 
{Tt}<£L_00 acts on a certain subset TB of full Liouville measure of the unit tangent 
bundle to B. To be more precise, TB consists of such points (x,v) G TM, x G B, 
v G TXM, with the vector v directed "strictly inside of B," and the orbit of (x^v) 
defined for all t G (—oo, oo) (see, for example, [Bu] for the rigorous definitions and 
extensive references). The projections of the orbits of that flow to B are called the 
billiard trajectories. The particle moves inside the set B with unit speed along a 
geodesic until it reaches one of the sets Bi (collision) where it reflects according to 
the law "angle of incidence equals angle of reflection." We exclude those trajectories 
which experience a collision with more than one wall simultaneously. Nevertheless, all 
the results in this paper (as well as in [B-F-K-l]) remain valid if one introduces any 
law for the outcome of such collision which agrees with the energy conservation law 
and the conservation of the projection of the momentum onto the intersection of the 
walls participating in the collision. (It is relevant to mention here that, due to local 
uniform estimates on the number of collisions, one can see that there are only finitely 
many outcomes which can be obtained as limits of actual billiard trajectories.) 

A very natural example of such a billiard system is a system of iV balls (of non-zero 
radii) moving freely in a boundary-less manifold and colliding elastically. A position of 
the centers of these balls is described by a point in the configuration space which is the 
TV-th Cartesian power of the manifold. (Note that we included in this configuration 
space "forbidden" positions when some of the balls intersect.) The "walls" are formed 
by the set of positions where two balls intersect or touch each other (therefore, there 
are N(N —1)/2 walls), and the Riemannian metric is given by the total kinetic energy 
of the system. The systematic study of such billiards (where the underlying manifold 
was usually supposed to be a torus or Euclidean space) was initiated by Ya. Sinai 
and continued by many mathematicians. 

In [B-F-K-l] and [B-F-K-2] we established a connection between semi-dispersing 
billiards and Alexandrov spaces. (For background information on singular Rieman- 
nian geometry of non-positive curvature see [Ba], [Gr] and [Re].) Namely, with every 
billiard trajectory T we associate certain singular space Mr, such that T naturally 
corresponds to a geodesic in Mr- Moreover, the curvature of the space Mr is bounded 
from above (in the sense of Alexandrov) by the maximal sectional curvature of M. 
This allows us to apply the results and techniques of singular geometry to certain 
billiards problems. 

In particular, we obtained a complete solution (see Theorem 1 below) to the 
problem of the existence of local uniform estimates on the number of collisions for 
(non-degenerate) semi-dispersing billiards. This problem was first posed by Sinai, 
who also gave a solution [Si] for billiards in polyhedral angles. 

We introduce the following non-degeneracy condition 

DEFINITION 1.1.   A billiard B is non-degenerate in a subset U C M (with 
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constant C > 0), if for every I C {1,... ,n} and for every y G (^n^OVrijei JBj), 

dist{y,C{jeiBj) 

maxkeidist(y,Bk) 
<C, 

whenever Cljei ^j 25 non-empty. 
A billiard B is called non-degenerate at a point x £ B with constant C if it 

is non-degenerate in a neighborhood of x with the same constant, and locally non- 
degenerate with constant C if it is non-degenerate at every point with constant C. 

We will say that B is non-degenerate if there exist 5 > 0 and C > 0 such that 
B is non-degenerate, with constant C, in any 5-ball. 

Roughly speaking, the condition means that if a point is d-close to all the walls 
from I then it is Cd-close to their intersection. 

The definition above is formulated in such a way that its geometric meaning may 
remain obscure. This definition, however, is not only the most convenient for our 
applications, but also enables us to verify it for the hard sphere gas model described 
above. To acquire some geometric insight, we give several equivalent reformulations 
of the non-degeneracy condition (which will never be used or appear further in this 
paper). 

DEFINITION 1.2. A billiard table B is non-degenerate if there exists a positive 
number r such that, at every point, the unit tangent cone to B (which is a subset of 
an (m — 1)-dimensional sphere) contains a ball of radius r. 

For flat M this is equivalent to Sinai's "cones condition:" every point of B is a 
vertex of a round cone of radius r which entirely belongs to B in some neighborhood 
of its vertex. 

Another equivalent reformulation is: 
DEFINITION 1.3. Let Bt be the complement in M to the union of t-neighborhoods 

of walls. (That is, its boundary is a t-equidistant inward deformation of the boundary 
of B.) A billiard table B is non-degenerate if -^dis^B.Bt) is finite att = 0, where 
dist means the Hausdorff distance between sets. 

For compact billiard tables, these definitions can also be reformulated in the 
following way: the operations of taking tangent cone and intersection commute for any 
collection of the complements to the walls Bi. For non-compact tables, however, this 
definition guarantees local non-degeneracy only, while the constant C may deteriorate 
and have no positive lower bound. 

In [B-F-K-l] we proved the following 
THEOREM 1. Let a semi-dispersing billiard B with n walls be non-degenerate with 

constant C at a point x. Then, there exists a neighborhood Ux of x such that every 
billiard trajectory entering Ux leaves it after making no more than 

P(C,n) = (16(C + 2))2(n- i) 

collisions with the walls. 
Remark: Note that while P(C, n) does not depend on the curvature of M, the 

size of Ux does depend on it. 
An important fact is that for billiards in R* our estimates are global, that is, if 

all the walls have a non-empty intersection, the total number of collisions (in infinite 
time) is bounded by a constant P(C). (Non-emptiness of the intersection of the walls 
rules out a situation in which a particle bounces between two walls for infinitely long.) 
This allows us to give a complete solution to the problem of finding a uniform estimate 
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on the number of collisions that may occur in a hard ball system in empty Euclidean 
space. 

However, while a local version of the estimate on the number of collisions in 
a semi-dispersing billiard was proven for arbitrary manifolds, its global analog was 
established only in E . Indeed, the crucial step in the argument was based on some 
distance comparison lemma for triangles, which is true for all triangles in Euclidean 
space but only for sufficiently small Riemannian triangles. 

In this paper we develop an alternative approach to the problem of finding global 
estimates, which ideologically is strongly motivated by our attempts to construct 
"universal unfolding" spaces for billiards (see below). 

In Section 5 we prove the following 
THEOREM 2. If M is a simply connected manifold of non-positive sectional cur- 

vature, PlILi Bi ^s non-empty, and B is locally non-degenerate with constant C, then 
every billiard trajectory in B has no more than 

i<:(C,n) = (200(C + 2))2n2 

collisions in the infinite period of time (—oo, oo). 
We immediately have the following 
COROLLARY 1.1. The maximal number of collisions that may occur in a system of 

N hard elastic balls (of arbitrary masses and radii) moving freely in a simply connected 
Riemannian space M of non-positive sectional curvature never exceeds 

2iV4 

where mmax and mmin are, respectively, the maximal and the minimal masses in the 
system. 

The proof of Corollary 1.1 consists of representing the hard ball system as a 
certain billiard in (M)N and verifying that that billiard is non-degenerate in the 
whole (M)N. The detailed argument is presented in [B-F-K-3]. 

In this paper we also discuss a problem of constructing an Alexandrov space of 
non-positive curvature which may serve as a "universal unfolding" space, helping to 
analyze the dynamics of a given semi-dispersing billiards system on a Riemannian 
manifold of non-positive curvature. This space would be a multi-dimensional analog 
of the two-dimensional surface constructed from copies of a billiard table as described 
in our model argument at the very beginning of the paper. The key feature of this 
construction is the existence of a natural correspondence between the trajectories of 
the billiards system and their developments as geodesies in the global model space. 
We also require that the number of copies of a billiard table used to construct the 
universal unfolding space be finite. Note that, in both this paper and [B-F-K-l], we 
use Alexandrov spaces in which these developments only exist for the class of trajec- 
tories with the prescribed sequence of collisions. Thus, the problem is to construct a 
"universal" space where every trajectory can be developed. 

This paper is organized as follows. In the next section, we give a sketch of the 
argument in the proof of a local estimate on the number of collisions, emphasizing 
the geometric nature of the proof and stressing the point where the global version 
fails. We also outline our main idea of how to overcome this problem. In Sections 3 
and 4 we discuss the problem of constructing universal unfolding spaces and present 
the construction of the universal unfolding space for billiards with only two walls. In 
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Section 5, a simple modification of the construction of universal unfolding spaces for 
billiard tables with two walls proves Theorem 2, our main theorem. Universal unfold- 
ing spaces for billiards on compact non-positively curved surfaces are constructed in 
Section 6. 

2. Sketch of the argument. Our exposition in this section has a non-rigorous 
character. Our goal is to simplify the understanding of what follows and to make this 
paper more self-contained. 

We outline the main steps of the argument from [B-F-K-l], pointing out how we 
later modify the argument to make it work in the global case. We omit all combina- 
torial details and deal only with the geometric part of the argument. For simplicity, 
we assume that M is a non-positively curved manifold. Recall that we intend to 
prove that trajectories entirely contained in a sufficiently small neighborhood never 
experience "too many" collisions. 

The first step is to prove that the length of a piece of a trajectory T with endpoints 
x and y, visiting a sequence of walls B^, j — 1,2,..., k, with non-empty intersection 

r\JjZl Bij = Q is no less than the sum of distances dist(x,z) -h dist(y,z), for every 
zeQ. 

We consider a sequence of copies Mj, j = 0,1,..., fc, of manifold M, and glue 
Mj and Mj+i together along Bij+1, where Bij+1 is the wall with which our trajectory 
has experienced its j-th collision. Since all B^ are convex, by applying Reshetnyak's 
theorem several times, we conclude that the resulting space MT also has non-positive 
curvature. 

An important remark: It might seem more natural to glue along the boundaries 
of B^ rather than along the whole B^. For instance, one would do so thinking of 
this gluing as "reflecting in a mirror" or by analogy with the usual development of 
a polygonal billiard. However, gluing along the boundaries will not give us a space 
with the appropriate curvature bound in any dimension higher than 2. 

Note that, the space MT, in addition to several copies of billiard table B, contains 
other redundant parts. For example, if we study a billiard in a curved triangle with 
concave walls, B^s are not the boundary curves. Instead, we choose as B^s some 
convex ovals bounded by extensions of these walls. (One may think of a billiard in a 
compact component of the complement to three discs.) In this case, these additional 
parts look like "fins" attached to our space (we borrow the term "fin" from Alexander 
and Bishop). 

Our trajectory T can be naturally developed in the space MT as a geodesic, and, 
therefore, it is the distance minimizer between its endpoints x and y (since MT is a 
space of non-positive curvature). The path xzy (recall that z belongs to the common 
intersection of all walls which participate in the gluings producing MT) can also be 
lifted into MT with the same endpoints x and y. Hence, it is longer than T, which 
proves the first step. 

Now we continue our local argument, proceeding with the second step. Reasoning 
by contradiction and using induction and combinatorics, one can reduce the problem 
to the situation where all Bi have a non-empty intersection Q = f]Bi and, given 
any number N, one can find a (piece of a) trajectory which contains at least iV 
non-overlapping segments with the following properties: 

1. Each segment has both endpoints in the same Bi. Let us denote these end- 
points by x and y. 

2. There is a point z between x and y in the trajectory, such that one can find 
a point z G Q such that C • dist(z,Bi) > dist(z,Bi). 
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The second condition ensures that Bi is the wall which satisfies the inequality 
(for z) from Definition 1.1 (the non-degeneracy condition). 

A standard elementary geometric argument shows that there is a constant S, 
such that S • (dist(xz) -f dist(yz) — dist(xy)) > dist(xz) + dist(yz) — dist{xy). This 
constant 5 depends only on C when M is a Euclidean space, and on the geometry 
of the neighborhood in question for general M. This is precisely the ingredient of 
the proof which fails in the global case. Indeed, imagine that triangle xyz has a 
long side dist(xy) = L and a short altitude h that falls in the middle of the side 
xy, and suppose that the triangle xyz belongs to a submanifold of zero curvature. 
Then the excess (dist(xz) + dist(yz) — dist(xy)) is approximately h2/L. However, if 
the triangle xzy belongs to a submanifold of curvature -1, we can approximate its 
excess dist(xz) -f dist(yz) — dist(xy) only as 2hJ which leaves no chances of finding 
the uniform constant S. 

Now we can finish the local argument. We are leading to a contradiction of 
the statement obtained in the first step. That is, provided the number of segments 
described above is sufficiently large, we will shorten our trajectory in the class of 
curves with the same endpoints and also make it visit Q. Indeed, if the number of 
such segments is greater than 5 + 1, we choose one of them with the smallest excess 
d = dist(xz) + dist(yz) — dist(xy) in the triangle xyz and replace this segment with 
two shortest curves, xz and zy. We increased the length of our trajectory by no 
more than Sd. For all the others segments, we replace them with the shortest curves 
connecting their endpoints. In each case we gain at least d (which, by construction, 
is the smallest excess), and the number of such segments is at least 5 + 1. Therefore, 
our new curve visits Q and is shorter than T, which contradicts the conclusion in the 
first step. 

Notice that the same "length shortening" argument can be repeated for any 
geodesic in Mr which visits the interiors of sufficiently many copies of the billiard 
table B. More generally, geodesies in TM, being projected to M, can be regarded as 
trajectories of a billiard system when some walls may "become transparent for the 
particle." In other words, such a trajectory may collide with a wall, or may just go 
through it. 

We now introduce an overly simplistic version of the main idea for handling the 
global case. We can try to modify MT in the following way: instead of attaching 
the last copy of M, we can attach the first one, "closing up" the space Mr- If we 
could show that this new space also has non-positive curvature, we would immediately 
have a contradiction: in this space, a development of T must be the shortest between 
its endpoints, but since the endpoints belong to the same copy of M, they can be 
connected by a shortest curve inside of this copy. This last gluing, however, means 
an identification in our space, and we certainly can not apply Reshetnyak's theorem 
to it. 

We recall that a space has non-positive curvature iff, for every triangle, its angles 
are no bigger than the corresponding angles of the comparison triangle in the Eu- 
clidean plane. Since non-positiveness of curvature is a local property, it is sufficient 
to verify the angle comparison condition for small triangles only. However, using the 
correspondence between geodesies and billiard trajectories, one can conclude (reason- 
ing exactly as in the proof of the local estimates on the number of collisions, presented 
in [B-F-K-l] and sketched below) that each side of a small triangle can not intersect 
interiors of too many copies of the billiard table B. Assume that the sequence of 
collisions that determines the gluing of Mr is sufficiently long. Then, for every small 
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triangle for which we want to verify the angle comparison property, most of the copies 
of B are irrelevant. In particular, we can undo one of the gluings without changing 
the small triangle, and find ourselves in a situation in which we "have broken the 
cycle of copies" and may now apply Reshetnjak's theorem. 

3. "Universal unfolding" spaces. By universal unfolding space we mean a 
space M which results from gluing together (along the sets Bi, i = 1,... ,n) a finite 
number of copies of M so that 

1. Every copy is glued with exactly n other copies along each of the bodies Bi, 
i — 1,..., n. More precisely, for every copy Mj 
(a) there are n distinct copies Mj, i = 1,... ,n, such that Mj f] Mj = £?;; 
(b) if for some copy M*, Mj f] Mk = Bi then Mk - Mj; 
(c) for any M^, Mk f) Mj C B^ for some i G {1,..., n}; 

2. M has curvature bounded by the maximal sectional curvature of M (we 
always assume that M has non-positive curvature, so M must have non- 
positive curvature as well). 

The space M will then become a universal unfolding space for trajectories of 
the billiard flow. Namely, we will no longer have to construct a space MT for each 
trajectory T like we did in [B-F-K-l]: for each copy Mk of M in M every trajectory 
will have a unique lift to a geodesic in M that starts in M^. Moreover, we will be able 
to view the geodesic flow on M as a finite cover of the billiard flow on M. • 

Due to the non-uniqueness of extensions for geodesies in singular spaces, the use 
of the term "geodesic flow on M" requires some clarification. The extension is not 
unique at the points where the geodesic g1 that belongs to some copy M\ of M in M 
encounters another copy M2. At such points g1 may be continued in Mi or in M2. Let 
us call the continuation in M2 the regular continuation. Let us call a geodesic in 
M regular if it never crosses more then two copies of M at a time, and whenever it 
encounters a new copy of M it continues in a regular way (that is, changes the copy). 
Let us call a tangent vector v at a point x G M regular if the corresponding geodesic 
is regular, and x belongs to B - the union of the images of B under the canonical 
embeddings. Then, we can correctly define a geodesic flow on the set of all regular 
vectors, which is a full measure subset of the unit tangent bundle to B. 

Denote by TT : M —> M the natural projection from M onto M that maps each 
copy Mk isometrically on M. Then the derivative Dir of TT (defined almost everywhere 
on the tangent bundle to M) projects the geodesic flow on M onto the billiard flow 
in B. Thus, once M is constructed, virtually any problem about the billiard flow on 
M may be restated as a problem about the geodesic flow on M. In particular, the 
ergodicity of the billiard flow is equivalent to the ergodicity of the geodesic flow. 

It is easy to show that M can be constructed only if B is non-degenerate. 
We will show how to construct a universal unfolding space for a billiard with only 

two walls and for arbitrary non-degenerate semi-dispersing billiards on surfaces of 
non-positive curvature. Unfortunately, the problem of how to determine if universal 
unfolding spaces exist for a given billiard table remains open. 

4. Billiards with two walls. In this section we will present a construction of 
M for billiards with two walls. There is also an alternative construction presented at 
the end of this section. The advantage of the alternative construction is that it does 
not use the local estimates and also has a nice Corollary 4.1. The reason we chose 
to explain in detail the constructionebased on local estimates is that its modification 
leads to the proof of Theorem 2 (see Section 5) . 
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Let K be an even number. Consider K copies Mi, M2,..., MK of M. For L > K 
let ML - M/, where 1 < / < K and / = L{modK). Let us glue Mi, i - 1,2,... ,K, 
with Mj+i by the body .Bi if z is even, and by B2 if 2 is odd. The result of the gluing 
is a simply connected space M. Notice that by construction, for each z, there is a 
canonical isometric embedding Ei : M —> M, which is an isometry between M and 
Mi and maps the subsets Bi, B2 in M into corresponding subsets Bi, B2 in Mi. 

Now, we will prove that, if K is large enough, then M has non-positive curvature 
in the sense of Alexandrov. 

Proof. Using the methods of [B-F-K-l], it is easy to prove that there exists a 
number P such that for any y E M there exists a neighborhood Uy such that every 
geodesic in Uy is contained in a union of at most P copies of M. 

Let K > 3P. Then, every geodesic triangle A in Uy is contained in a union Mu 
of at most 3P copies of M. Let M^,..., Mifc, 1 < ik+i = ii < 12 < • • • < U < K, 
be these copies. Then, since k < K, there exists j such that 2j+i ^ ij -f l(modi;ir). 
Without loss of generality we may assume that j = k. 

It is easy to see that if ij+i — ij -f 1 then Mij+1 f] Mij is equal to one of the 
bodies of Bi, B2, but if ij+i =fi ij + l(modif) then Mij+1 f]Mf. is equal to Bi f]B2. 
Thus, Mu is the result of the following gluing of k copies Mi1,..., Mifc : M^. is glued 
with Mij+1 by either Bi, or B2 or Bi f] B2, for i — 1, 2,..., k — 1. (There is no need to 
glue together Mifc and M^, since they are already glued along Bi 0^2, as a result 
of the previous k — 1 gluings!) Applying Reshetnyak's theorem [Re] A: — 1 times, we 
see that Mu is a singular space of non-positive curvature. Since Mu has non-positive 
curvature, A has non-positive defect. Note that the angles of A as a triangle in Mu 
are correctly defined and not smaller than the angles of A in the whole space. (Indeed, 
removing a subset can not decrease distances between points on the walls of triangles 
which participate in the definition of angles.) Thus, M has non-positive curvature in 
the neighborhood Uy of y. 

Since, M is a simply connected space with locally non-positive curvature, due to 
Alexandrov's theorem [Re], it has non-positive curvature globally as well. D 

Thus, M can serve as a universal unfolding space for the billiard in the outside of 
Bi IJ B2. In particular, we proved Theorem 2 for n — 2. (For any trajectory the num- 
ber of collisions can not be bigger than the number of copies of M used to construct 
M.) 

Alternative construction. Let a be the smallest angle between the tangent planes 
to dBi and <9Z?2 over all the points of dBif)dB2- Construct M as before, with 
K = K(a) > ^L. Now the fact that M has non-positive curvature can be verified just 
by looking at the tangent cones of its points and showing that they are all CAT(1). 
Also, note that there is an involutive isometry / of M such that /(Mi) = MK, 

/(M2) = MK-I, /(M3) = MK-2, • • •, I{MKj2) = M/c/2+1. Now, we immediately see 
that no geodesic corresponding to a billiard trajectory can intersect more than half 
of the number of the copies of M in M. Therefore, we have the following 

COROLLARY 4.1. For a billiard outside of two bodies Bi and B2 on a simply 
connected manifold of non-positive curvature, the maximal number of collisions for 
any trajectory in the infinite period of time (—00,00) is not greater than [^], where 
a is the smallest angle between the tangent planes to dB\ and <9i?2 over all the points 
ofdBlf)dB2. 

5. Proof of Theorem 2. Let M be a space formed by several copies Mi, 
M2,...,Mp of M which are glued together in-a circular order along some of the 
sets Bi, i = 1,..., n. To be more precise, M is such that 
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1. for i = 1,... ,p - 1, Mi is glued to M^+i; 
2. Mp is glued to Mi; 
3. each of the gluings is along one of the sets Bi, i = 1,..., n. 

We will refer to the gluing of Mj and Mj+i as the j-th gluing, and we will say 
that it is of type i if the gluing is along the body Bi, i = 1,..., n. 

Let S = Mj{1)[jMJi2)[j'"[jMj{k), 1 < j(l) < j(2) < ••• < j{k) < p, be some 
subset of M formed by several of the sets Mi, M2,... ,MV. We will say that the 
collection Mj^), Mj^o), • • • ^Mj(k) is disconnected if there exists 1 < m < A: such 
that all n possible types of gluings appear among the gluings with numbers between 
j(m) and j(m + 1) — 1 (in the circular order), where we assume that j(k + 1) = j(l). 
Then we immediately have the following 

LEMMA 5.1. If the collection Mj(i), Mj(2),..., M^^ 25 disconnected then S = 
Mj(i) U Mj(2) U • • • U Mj(jfe) Z5 a space 0/ non-positive curvature. 

Proof. Without loss of generality we may assume that m, from the definition of 
disconnectedness, is equal to k. Then, exactly as in the construction of the universal 
unfolding space for billiards with two walls, we see that 5 is a result of gluing Mj^ 
to M^z+i), for / = 1,..., k — 1, along the intersection of all bodies Bi, i = 1,..., n, 
that correspond to the gluings with numbers from j(l) to j(l + 1) - 1. (After we have 
performed these k — 1 gluings, there is no need to glue together Mj^ and M^i) since, 
as a result of the previous gluings the set HiLi &* 'ls already a subset of Mj^ f] M^i).) 
Thus, applying Reshetnyak's theorem [Re] A; — 1 times, we see that 5 is a space of 
non-positive curvature. □ 

Now we will prove Theorem 2 by induction on n. 
Theorem 2 is trivially true for n = 1. Assume that it is proved for n — 1 bodies. 

Let us prove it for n bodies. We will show that 

(1) K(C, n) < (3P(C, n) + 1)(K(C, n - 1) + 2). 

Let T(xo,xi,... ,XL,XL+I) be a billiard trajectory with starting point XQ, end 
point XL+I, and consecutive points of collisions xi,... ,XL. Assume that 

L > (3P(C,n) + l)(K(C,n - 1) + 2). 

Let us glue together L copies Mi,..., ML of M in a circular order, so that 
1. for j = 1,... ,L — 1, Mj is glued to Mj+i along that body Bi for which 

Xj  tz  -O i, 

2. ML is glued to Mi along that body Bi for which XL £ Bi. 
Denote the result of the gluings by M(T). 

We will show that M(T) has non-positive curvature. This will immediately lead 
to a contradiction, since there will be two different geodesies connecting XQ G MI 

and XL+I € Mi: the geodesic in M(T) corresponding to the trajectory T, and the 
geodesic in Mi connecting XQ and XL+I- 

Let y € M(T). Then there exists a neighborhood Uy oiy such that every geodesic 
triangle A in Uy is contained in a union 5 of at most 3P(C, n) copies of M. Since we 
assume Theorem 2 to be true for n — 1 bodies, we see that among any K{C, n — 1) +1 
consecutive collisions of the trajectory T, there must be at least one collision with 
each body P^, i — 1,..., n. Therefore, any collection of no more than 3P(C, n) copies 
of M in M(T) is disconnected. Thus, by Lemma 5.1, S has non-positive curvature. 
Hence, as in the construction of M in Section 4 we conclude that A has non-positive 
defect, and M(T) has non-positive curvature at Uy. 



150 D. BURAGO, S. FERLEGER AND A. KONONENKO 

Since, M(T) is a simply connected space with locally non-positive curvature, due 
to Alexandrov's theorem [Re], it has non-positive curvature globally as well. 

To get explicit estimates for K(C, n) we use equation (1) and the estimate P(C, n) 
- (16(C + 2))2(n-1) from Theorem 1 to get 

K(C,n) < 12P(C,n)K{C,n-l) < (12P(C,n))n < (200(C + 2))2n2. 

Theorem 2 is proven. 

6. Universal unfolding spaces for semi-dispersing billiards on surfaces 
of non-positive curvature. If M is a surface of non-positive curvature we may 
assume without a loss of generality that for any i, j, k G {1,..., n}, i ^ j, j / fc, A: ^ i 
the intersection Bi f] Bj f] Bk is empty. (That is, intersections of more than two walls 
are empty.) 

Let a = min^j a{Bi, Bj). Let K = K(a) be as in Section 4. 
Let F be a finite group with n generators ji, i = 1,..., n, such that if a relation of 

the form 7*1 ... 7^ = e, im ^ im+i, Z £ N, ra = 1,..., (Z — 1) holds, then necessarily 
\ki\ + ... + \kt\ > K. An explicit example of such a group can be found in [S]. 

Consider |r| copies of M, and denote them as Mg, g £ F. Consider another |r| 
copies of M, and denote them as M9, g £ F. 

Now, let us glue together these 2|r| copies of M by performing the following 
operations: if gi = r)ig2) then we glue together Mgl and M92 along the body Bi. 
Denote by M the result of all these gluings. 

We claim that, locally, M has non-positive curvature in the sense of Alexandrov. 
Proof. Let x £ M. Then we have to consider the following three possibilities. 
1.2/ = 7r(x) does not belong to any of the bodies Bi, i = 1,..., n. Then, clearly, 

a small neighborhood of x in M is isometric to a small neighborhood of y in 
M and, thus, M has non-positive curvature at x. 

2. y = 7r(x) belongs to only one of the bodies Bi, i = 1,..., n. Assume it is Bi. 
Then a small neighborhood of x in M is isometric to a small neighborhood of 
the image of y under the canonical maps of M into M2, where M2 is the result 
of gluing together two copies of M along the set Bi. Since by Reshetnyak's 
theorem, M2 has non-positive curvature, we see that M also has non-positive 
curvature at x. 

3. y = 7r(x) belongs to the intersection of two of the bodies Bi, i = 1,... ,n. 
Let these be Bi and B2. Then x belongs to 2K' copies Mgp, Mgq, p, q £ 
{1,... K1}, of M in M, and it is clear that we can rearrange the indices p and 
q so that 
(a) MgPi is glued to M9^ along Bi, for alH = 1,..., K'; 
(b) M9^ is glued to Mgpi i along B2, for allz = 1,..., K' (as in Section 4 

we assume that M0 = Ma   ). 

The two conditions above imply that gVi — 7i<fo and gqi = 72~1<7pi+1, for 
all i — 1,... ,K'. Thus, we see that the word (7i7^"1)jR'   is a relation in F. 
Therefore, by the construction of M, 2K' > K(a). Thus, using exactly the 
same argument as in Section 4 we see that M has non-positive curvature at 
x. 

The three cases considered above exhaust all the possibilities, since we assumed 
that all the intersections of more than two bodies Bi are empty.  Thus, we proved 
that M has non-positive curvature in the sense of Alexandrov. D 
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Concluding this section we would like to mention again that, for billiards on 
surfaces, there is an alternative construction of a universal unfolding space described 
at the beginning of this paper. At first glance it may seem that 5 is a much more 
natural object than M, because the geodesic flow on 5 is a finite cover of the billiard 
flow, and also the geodesic flow is defined on a full measure subset of the whole tangent 
bundle to S (whereas for M we have to consider a part of the flow "trapped in B"). 
Furthermore, the proof of the fact that S has non-positive curvature is much easier 
than the proof that M has non-positive curvature. 

However, this simplified construction of 5 has one serious flaw: it does not allow a 
generalization to any higher dimension. If we glue together two copies of a more-than- 
two-dimensional semi-dispersing billiard table by their isometric co-dimension one 
"walls", we may expect to get a space of non-positive curvature only if the "walls" 
are flat. Thus, while the construction of a higher-dimensional generalization of M 
seems to be a difficult problem, the construction of 5 cannot be generalized at all. 

7. The problem about simplexes. Finally, we would like to state an open 
problem, closely related to the problem of constructing the universal unfolding spaces 
for semi-dispersing billiards, but which is formulated in purely geometric terms. We 
feel that, by itself, it is an intriguing problem. 

Let S be some n dimensional simplex (or, more generally, a polyhedron) in En, 
n > 2 (the problem is obviously easy for n = 2). Is it possible to glue a compact space 
of non-positive curvature without a boundary by using a finite number of isometric 
copies of 5? (By gluing we mean that two copies may be glued together along their 
isometric faces.) 

Clearly this problem is a particular case of the universal unfolding space problem, 
i.e., the solution to this problem- may serve as a universal unfolding space for the 
billiard inside of 5. 

In a forthcoming paper [B-F-Kl-K] we plan to present a result which, in particular, 
will yield a positive answer to this question in dimension three. Contrary to what 
could be anticipated, the construction is not at all elementary. In fact, it is essentially 
based on Thurston's Theory of hyperbolic structures on 3—dimensional manifolds. 

A closely related question is: When is it possible to glue a manifold of non-positive 
curvature and without boundary by using a finite number of isometric copies of 5? In 
[B-F-Kl-K] we plan to give the necessary and sufficient conditions in dimension three. 
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