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CONNECTING ORBITS FOR NONLINEAR PARABOLIC 
EQUATIONS* 

NIKOLAI NADIRASHVILlt 

1. Introduction.  We consider the scalar reaction diffusion equation 

ut = f{x,u,ux,uxx) (1) 

with x <E S1 = E/27rZ, / G C00 and 

C-1 < fuxx <C, (2) 

where C is a positive constant. Let u be a bounded solution of (1) in C1 (51 x (0, oo)). 
Then as it follows from [1] and [2], the u;-limit set UJ(U) of the trajectory u contains 
a solution of (1) which is periodic in t. If all periodic solutions of (1) are hyperbolic, 
then any bounded solution of equation (1) tends to a periodic solution (which can be 
in particular a steady state), as t —> +oo. So it is interesting to study the connecting 
orbits between periodic solutions of (1). Let L be a periodic hyperbolic orbit of (1). 
We denote by WS(L) and WU(L) the stable and unstable manifolds of L respectively. 
For details of the definition and for general properties of stable and unstable manifolds 
of periodic solutions, refer to [3], [4], [5]. We denote by M(L) — dimWu(L) the Morse 
index of L. 

Let L,L' be periodic hyperbolic orbits of (1). If there exists a solution u of (1) 
which is defined for alH € E and such that a(u) — L and UJ{U) = L', then we say that 
u connects L and L', and we write in this case L —> L'. 

THEOREM 1. Let L,L' be periodic hyperbolic orbits of equation (1) and L —> L1. 
Then N(L) > M(L/).   // L distinguishes from an equilibrium point then M(L) > 
M(L'). 

COROLLARY. Let L be a periodic hyperbolic orbit of (1) different from an equilib- 
rium point.  Then L has no homoclinical trajectory. 

REMARK. The detailed analysis of the connecting orbits for equation (1) with 
the Dirichlet boundary conditions was done in [6], [7], [8]. 

The main difference between the Dirichlet boundary condition and the periodic 
boundary condition for equations (1) and (2) is that in the case of the Dirichlet 
boundary condition equations (1) and (2) admit no limit cycles. 

2. Some properties of linear parabolic equations and proof of the main 
result. 

Let us consider a linear parabolic equation 

Pu=—- a^ x)fr^ + h(t*x)fc+ c(*> x)u = 0 (3) 

withiG E, x € S1, a,6,c€ C00, ||a||cfc , ||6||cfc , \\c\\ck < M(k), C"1 < a < C, C > 0. 
For / E C(Sl), we denote by Nf the number of changes in sign of the function / on 
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S1. So, if / is a smooth function with simple zeros then #/(-1)(0) = Nf, and Nf is 
an even number. 

Let v{t,x) e C(V), V = E x 51, denote 

NV(to) = NVfax), \\V\\ (to) = ||^(to,x)||c(51) , 

Ui = {ueCoo(V),Pu = 0  in  V,Nu{t) = 2i} U {0} , 

z = 0,l,2,...   . 

THEOREM 2. For any i the set Ui is a linear space, dimUo = 1, dimUi — 2, 
i = 1,2,... . Ifi < j, ui e Ui, UJ e Uj, \\ui\\(0) = |K ||(0) then for t>0 

lltiillW^cJe-MMW, (4) 

for t < 0, 

M (*) < c;.e-ci'|M W ■ (5) 

/fere Cj,c^ are positive constants. If u,v is a basis in Ui, i = 1, 2,... , £/ien tte /eve/ 
curves u — 0 separates the level curves v — 0. Lei u be a solution of the problem (3), 
then Nu(t) < i for all t G M i/ and on/y 2/^6 ?7o ® • * • © Ui. 

The proof of Theorem 2 is based on the following lemmas. 
LEMMA 1. ([9]). Let fn be a sequence of bounded functions on [0,1), continuous 

from the right, fn ^ 0, and Nfn < k. Then exists a real valued sequence am and 
subsequence fnrn such that, the sequence 

Qmjnm 

is convergent, in the sense of distributions, to distribution f ^ 0 of order < k. 
As a consequence of Lemma 1 we have 
LEMMA 2. Let fn e C(51); Nfn < k for all n = 1,2,... . Then there exists 

a subsequence Ui and real numbers ai such that as i —>• 00, aifni converges in the 
topology of the space of distributions V to a non-zero distribution of order less than 
k. 

LEMMA 3. ([10]). Let u be a solution of (3), t G [0,1]. Then Nu(t) is a non- 
increasing function on [0,1]. 

LEMMA 4. ([11]). Let u be a solution of (3), t G (0,1). Then for each t G (0,1), 
Nu(t) < 00. 

LEMMA 5. ([11]). Let u be a solution of (3), t G (0,1), Nu(i) = i. Then for each 
to G (0,1) the function u(to,x) has exactly i zeros on S1, and each zero of u(to,x) on 
S1 is simple. 

LEMMA 6. Let u be a solution of (3), t>{), Nu(t) = k, 0 < r < T.  Then 

IM|(r)/|H|(r)<c, 

where C = C(Jfc,r,r,M(Jfe)) > 0. 
Proof. We assume the contrary, namely, that there exists a sequence of parabolic 

equations of the type (3) 
Pm = 0 in S1 x (0,00) , 

Nui(t) < k, and 
IM(T)/IMI(T)-+OO 
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as i -> oo. From Lemma 2 it follows that choosing convergent subsequences P^jU^ 
we obtain an equation 

Pu = 0 in S1 x (0, oo) 

such that u ^ 0 on S1 x (0,T), u(T, •) = 0 on Sl. This contradicts the theorem on 
the uniqueness of the solution of the inverse problem for parabolic equations [12]. 

LEMMA 7. Let u be a solution of (3), t > 0, Nu(t) = A;. Denote by ai(£),..., 
ak(t) the zeros of the function u(t, •) on S1. Then there exists a constant ft = 
(3(k,M(k)) > 0 such that 

inf     (ai+i{t) - ai(t)) > 0 . 
l<i<Jfc-l 

Proof. We assume the contrary, namely, that there exists a sequence of parabolic 
equations of the type (3), 

PjUj =0m S1 x (0,oo) , 

Nuj(t) = fc, j = 1,2,..., and real numbers tj > 1 such that for some i 

as j -> oo, where a[,..., a3
k are zeros of the function uy. Without loss of generality, we 

may assume that all tj — 1, and the coefficients of Pj converge in Ck to the coefficients 
of P, asj -» oo; |K||(1) = 1, j = 1, 2,... . 

From Lemma 5 it follows that there is a subsequence Ujrn which is convergent to 
the solution of the equation 

Pu = 0 in S1 x (0,1) . 

From Lemmas 3 and 5, it follows that Nu(t) < k - 1 for t > 1, and there is a to > 1 
such that all zeros of the function u(to,-) are simple. As ^m(^or) -* ^(^o,*) m Cl 

then there is such un that Nun(t) < k — 1. 
LEMMA 8. Let u,v be solutions of (3), t > 0, iVw(t) = i, Nu(t) = j, i < j, 

IHI(i) = IHI(i). 
Proof. Let us assume that for some T > 1 \\v\\ (T)/ ||ii|| (T) is sufficiently large. 

Then by Lemmas 5, 6, 7 for the sufficiently small e > 0, N(u 4- ^^)(1) = *, N(u + 
ev)(T) — j. As i < j then our assumption contradicts Lemma 2. 

LEMMA 9. Let u,v be solutions of (3), t > 0, Nu(t) = i, Nv(t) = j, i < j, 
\\u\\ (1) = ||v|| (1).  Then there exists T > 1, T = T(j, M(j)), such that 

|H|(T)/|H|(T)>2. 

Proof. Let us assume the opposite. Then from Lemma 8 it follows that there is 
a sequence tk -> oo, ||u|| (tk)/ \\v\\ (tk) -* s > 0 as k -> oo. Further, we may assume 
that the following sequences are convergent in C1(Sl): 

u(tk,x) 

INK**)     *' 
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as k -> oo. Since Ntp = z, iV^ = j, then for any e > 0 there is an a £ E such that the 
distance between a pair of zeros of the function ip + a^ is less than £. So the same is 
true for the function u(tk,x) 4- a5v(tfc,a:) for sufficiently large A:. The last statement 
contradicts Lemma 7. 

LEMMA 10. For all T > 0, i = 1,2,... there exists a two-dimensional space 
U(T, i) of solutions of the problem (2) in Sl x (-T, T) such that ifue U(T, i), u^O, 
then Nu(t) = 2i, t G (0,T). If u,v is a basis in U(T,i), then the level curves u = 0 
separates the level curves v = 0. 

Proof 1. We define parabolic operators P0, 9 G [0,1] on S1 x (-T,3T) by 

d d2 d 

a,t r)-h(t^) for xG(-r,T], 
11 '   j " \ -a(3T - t, x)    for x G (T, 3T) , 

h u T)-fKt,x) for a;G(-r,T], 
0! ^, x; - | _6(3r _ jj,,.) _ ^a(3T - te)    for z G (T, 3T) , 

{ 
c(t,x) for xG (-T,r] , 
c(3T - *, x) - ^b(3T -t,x)- ^a(3r - *, x)    for x G (T, 3T) , Cl(*,^)  =  <      ,o^_,      ,_    d 

Let us consider the problem 

Po = 
d 

dt 
92 

dx2 ' 

Pe 

em 

= (1 - 0)Po + OPL . 

Peu = 0 
u{0,x) = ■9(x) 

in 51 x (-T; ,37), 
(6) 

operator L<> : 9{x) ->■ u(3r,a :).  For any 9 G [0,1], L» is a 
selfadjoint operator in L2(51). 

2. Let g be an eigenfunction of Le, u be a solution of (6). Then Nu(—T) = 
Nu(3T), and hence by Lemma 5 the zeros of the function ^(to,a;), to G [—T, 3T] are 
simple. 

3. Denote by A? > A^ > A^ > • • • the eigenvalues of L9, 9 G [0,1], Then A? = 1, 
A^ = A3 = e~4T, A4 = A5 = e_16T,.... The eigenfunctions of L0 are: 1, sinnx, cosnx, 
n = 1,2,... . Since the eigenvalues An and their eigenvector subspaces are continuously 
dependent on the parameter 9 then from 2 it follows that for any i = 1,2,... and 
9 G [0,1] the operator L9 has exactly two linear independent eigenfunctions ip0, ip9 

(or two-dimensional subspace if A^ = ^21+1) suc^1 ^at Ntp9 = Nip9 = i. 
4. Let u,v,w be solutions of (6) with ^ = (pd,ip9, h = cup9 -f bip9 ^ 0, a, b G E. 

We prove that the function iz; has simple zeros. Denote L(p9 = atp9, Lip9 = fii/j9. If 
a — (3, the statement follows from Assertion 2. 

If a ^ /?, we assume the contrary. Then by Lemma 5 Nu(—T) > Nu(3T). Since 

(L0)*(/i) = aW+/^6^ , 

A: E Z, then for sufficiently large A: 

N[(L9)k(h)] = N[{L9)-k(h)] - i . 
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This contradicts the inequality Nw(-T) > Nw(3T). 
5. From 4 it follows that Nw(t) =i,te [-T,3T] and that (u6)2 4- (v9)2 > 0 on 

S1 x [—T,3r]. Hence we may consider u1, v1 as a basis in U(T,i). 

Proof of Theorem 2. Let U(T,i) be defined as in Lemma 10. By Lemma 6 we 
can choose sequences a^, Tk £ M, Tk -> +oo as k -> oo such that U(Tk,i) -> Ui ^ 0 
in V as k -> oo. If it G [/"i then by Lemmas 5 and 6, iVu(t) = 2z, t E R, 2 = 1,2,.... 
The inequalities (4) and (5) follow from Lemma 9. 

Let u be a solution of (2), t E E, and Nu{t) = i. We prove that u E /7i. Assume 
the contrary, namely, that u,Ui,Vi are linear independent, where Ui,Vi E Ui. Then 
there is a linear combination w = au + 6iii + c^i such that ^(0,0) = ^^(0,0) = 0. 
By Lemma 5 Nw{-\) > Nw(l). If Nw(l) < i then by Lemma 9, |M| (t), ||ixi|| (*), 
H^ll (t) = o(||i(;|| (t)) as t ->> +oo, which is impossible. If Nw(l) > i then iVit;(—1) > i 

and |M|(t), ||^i||(t), IbilK*) = 0{w{^)) as t ->« -oo, which is also impossible. So, 
u € Ui. Equality dim Uo = 1 is evident. If u E [To © • • • 0 t/i, the inequality Nu(t) < i 
follows from (5). 

Let u be a solution of (3), t E E, Nu(t) < i. First we prove that u E C/oS- * -©t^-t-i. 
Let us assume the contrary. Then there is v E UQ 0 • • • 0 t/i+i such that iV(Tx + v)(0) > 
z + l. By Lemma 9 ||tz|| (t), \\v\\ (t) = o(||u +1;|| (t)) as t -¥ -oo which is impossible. 
So, u = av + /Jiu, with v E Uo 0 • • • 0 Ui, w E f/i+i. If /J ^ 0, then from inequality (5) 
it follows that for sufficiently large T > 0, Nu(-T) = 2 + 1. Hence u E Uo 0 • • • 0 Ui, 
and so Theorem 2 is proved. 

If in Theorem 2 we consider Dirichlet or Neumann boundary conditions the sit- 
uation becomes more simple. Let us consider the problem 

f Pu = 0 in E x [0,1] , m 

\u(t,0) =iz(*,l) = 0. l j 

Let us denote by V* the set of solutions of (7) such that for v E Vi, iVi>(£) = i. 
THEOREM 3. For any 2 £/ie 5e^ Vi 2s a one-dimensional linear space. If 2 < j, 

^ E Vi, VJ E Fj; ll^iH (0) = WVJW (0), tficn/or t > 0 

and for t < 0 

INI W < c-e-^ INI (*) , 
K;/iere Cj,c^ > 0. 

Evidently it is possible to prove Theorem 3 by the same reasoning as in the proof 
of Theorem 2. We don't need Theorem 3 for the following, but it is interesting to 
compare both cases. 

Proof of Theorem 1. Let u be a connecting orbit between L and L1. Let us 
consider the function 

Then vrit, x) converges to the exponential growing solution of the variational equation 
on L as T —> —00 and vrit, x) converges to the exponentially decreasing solution of the 
variational equation on L' as T —>• +00. By Lemma 3, k — N^(—oo) > N^(+oo) = 
m. So by Theorem 2 

dimjy»(L) > 2k,dimWu(L') < 2m . (8) 
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Let us assume now that L is the orbit of the periodic solution w of (1) and dw/dt ^ 0. 
Then by Theorem 2, ;V|f > jfc. Thus dim WU(L) > 2k +1 and hence M(L) > M(L'). 

Theorem 1 is proved. 

[1 

[2: 

[3. 

[4 

[5: 

[«: 

[9 

[10; 

[11 

112' 

REFERENCES 

B. FIEDLER, J. MALLET-PARET, A Poincare-Bendixson theorem for scalar reaction diffusion 
equations, Arch. Rat. Mech. Anal. 107 (1989), 325-345. 

N.S. NADIRASHVILI,  On the dynamics of nonlinear parabolic equations, Dokl.   Acad.   Nauk 
USSR 309 N6 (1989); English transl. in Soviet Math. Dokl. 40 (1990), N3, 636-639. 

M. HIRSH, C. PUGH, M. SHUB, Invariant manifolds, Lecture Notes in Math., Springer-Verlag 
583 (1977). 

D. HENRY, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, 
Springer-Verlag 840 (1981). 

A.V. BABIN, M.L VISHIK, Attractors of partial differential evolution equations and estimates 
of their dimension, Uspekhi Mat. Nauk 38 N4 (1983), 133-187; English transl. in Russian 
Math. Surveys 38:4 (1983). 

P. BRUNOVSKY, B. FIEDLER, Number of zeros on invariant manifolds in reaction-diffusion 
equations, Nonlinear Analysis 10 (1986), 179-193. 

P. BRUNOVSKY, B. FIEDLER, Heteroclinic connections of stationary solutions of scalar reaction- 
diffusion equations, Banach Center Publications, Warsaw 19 (1987). 

P. BRUNOVSKY, B. FIEDLER, Connecting orbits in scalar reaction diffusion equations II. The 
complete solution, J. Diff. Eq. 81 (1989), 106-135. 

N.S. NADIRASHVILI, Metric properties of eigenfunctions of the Laplace operator on mani-folds, 
Ann. Inst. Fourier (Grenoble) 41 (1991), 259-265. 

K.  NICKEL,   Gestaltaussagen iiber Losungen parabolischer Differentialgleichungen, J. reine 
angew. Math. 211 (1962), 78-94. 

S. ANGENENT, The zero set of a solution of a parabolic equation, J. reine angew.  Math.  390 
(1988), 79-96. 

J.L. LIONS, B. MALGRANGE, Sur Vunicite retrograde dans les problemes mixes parabolique, 
Math. Scand. 8 (1960), 277-286. 


