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K-THEORY FOR TRIANGULATED CATEGORIES II: THE 
SUBTLETY OF THE THEORY AND POTENTIAL PITFALLS* 

AMNON NEEMANt 

0. Introduction. This is the third instalment of a series, and it is perhaps best 
to briefly review the contents of the others. Given a triangulated category T, it is 
possible to attach to it a if-theory space. This space has a delooping. Despite the 
best efforts of several friends, the author perversely insists on calling this delooping 

The key theorem of this series of articles is that this definition 

passes some test of being sensible. We remind the reader: 

Strong Theorem 1.7.1. Let T be a small triangulated category with a t-structure. 
Assume T has at least one model Let A be the heart of the t-structure. Let Tb be 
the bounded part of T. In particular, if the t-structure is non-degenerate, Tb — T. 
With the simplicial set 

defined appropriately, the natural map 

induces a homotopy equivalence. 

The reader will remember that the problem of appropriately defining the simplicial 
set 
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is delicate; the introduction to K-theory for triangulated categories I offers a more 
detailed discussion of this point. In any case, for the bounded derived category of 
an abelian category A, this allows us to recover, from the derived category Db(A), 
Quillen's usual if-theory of A. 

In this article we will analyse why the proof must, of its nature, be somewhat 
difficult. Precisely, by slightly modifying the statements, one gets patently false re- 
sults. And it is interesting to notice just how much of the proof goes through in this 
altered framework. The real purpose of this article is to warn the unwary beginner of 
the pitfalls in the theory. The article is only really of interest to the expert seeking to 
improve the results. There is much room for improvement, so it is to be hoped that 
someone will work on it. 

This article is most certainly not independent of the others in the series. In the 
introduction to K-theory for triangulated categories 7,1 divided up the readers of any 
piece of mathematics into three broad groups, listed in order of probable size: 
Group 1: The people who want a rough idea of the contents of the article, and at 

the very most a sketch of the proofs in an easy special case. 
Group 2: The people who want to check the result, because they might consider 

using it in their own work. 
Group 3: The people reading the article because they might work on the problem 

themselves. 
The first two parts of this series, K-theory for triangulated categories /, were intended 
for a Group 1 audience. The parts that will follow, K-theory for triangulated categories 
III, are primarily for Group 2. The present part is mostly for the benefit of Group 3. 
Don't say you have not been warned. 

In K-theory for triangulated categories /, we introduce the definitions and notation 
(this takes us more than 80 pages), and then we give the simplest proof of the simplest 
version of our theorem: the if-theory of an abelian category is a retract of the K- 
theory of its derived category. All the readers of subsequent articles are assumed to 
be familiar with the notation. So you should have read at least the first 80 pages of 
K-theory for triangulated categories /if you read beyond this word. In fact, it is highly 
advisable to have skimmed through the rest of K-theory for triangulated categories 
I. There is a little more notation introduced in the last two sections, but even more 
relevant is that there is a relatively gentle introduction to the way the proofs work, 
and the type of simplicial sets one constructs. 

The first section of K-theory for triangulated categories III, Section III.l, is also 
recommended reading before one begins with the current article. There are two types 
of homotopy that I know, for the simplicial sets that come up in triangulated K- 
theory. The first type is the trivial homotopies. These are the triangulated analogues 
of contractions to an initial or a terminal object. The second type of homotopy is the 
non-trivial homotopies. And one of the key features of this theory is that there is 
really only one of the non-trivial homotopies. 

The first problem one should address is why the various homotopies that come up 
in the proof are well defined. In other words, in K-theory for triangulated categories 
I the author tried to convince the reader that there are very few homotopies in this 
theory. The approach of the proof is to apply the few, overworked homotopies that 
there are, to a wide assortment of simplicial sets. If one is ingenious enough about it, 
one ends up with a proof of an interesting theorem. 

In Sections 1 and III.l, the author shows how this can be made very precise. 
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Aside from the "trivial" homotopies of contraction and truncation, there is only one 
non-trivial homotopy. Precisely, all the non-trivial homotopies we have seen can be 
deduced from a blueprint homotopy, by deletion and subdivision. 

Section III.l, being written for a Group 2 audience, takes the optimistic view and 
focuses on the one "non-trivial" homotopy. The reason is that it turns out to be easy 
to give a very satisfactory account of it, and explain in some generality why it always 
does what it should. 

Section 1, which is intended for you, the Group 3 reader, takes a more pessimistic 
view. It focuses instead on the one "trivial" homotopy that requires care. This is the 
^-structure truncation. Although seemingly very innocuous, it is treacherous because 
it frequently depends on a choice of differentials. 

Both Section 1 and Section III.l introduce a little notation, although most of the 
notation has already been encountered in K-theory for triangulated categories 1. There 
is a great deal of overlap in the material the two sections treat. Before going on to 
Section 2, it would be best if the reader read at least one, preferably both of Sections 
1 and III.l. These sections are quite soft. Of the two, Section 1 has more philosophy 
and motivation, and is peppered with examples of where prototype arguments can go 
wrong. 

So far, I have told the reader that Sections 1 and III.l offer a technical discussion 
of the homotopies that come up in the argument, and whether they are well-defined. 
Hardly sounds like exciting reading. Even if we are willing to concede that perhaps 
such a discussion should appear somewhere. What are the exciting results to be found 
in this article? 

To describe them, we need first to review some of the material covered in K- 
theory for triangulated categories 1. Let A be an abelian category, and let Grb(A) 
be the category of bounded, Z-graded objects in A. In a way that closely parallels 
triangulated if-theory, it is possible to define simplicial sets 

In K-theory for triangulated categories I we proved Theorem 1.4.8, which says 

Theorem 1.4.8. The natural inclusion 

A 

induces a homotopy equivalence. 

But as we pointed out in K-theory for triangulated categories /, much of the argument 

works also for the simplicial set .  In Section 2 we analyse this 
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very precisely. The simplicial set 

we prove: 

is ridiculous. But nevertheless 

Summary of the results in Section 2. yls in K-theory for triangulated categories 
I, let Gr[m)n](^l) stand for the full subcategory ofGrb(A) whose objects are supported 
on the interval [m,n] C Z. /n particular, Gr[Q^(A) are the graded objects living in 
degrees 0 and 1. We have that a delooping of the inclusion of the K-theory of A into 
the K-theory of Grb(A) factors as 

0 

Let Fi be the homotopy fiber of <j>.  With this notation, we prove that 
0.0.1.   11;(0) is injective.   That is, the map 6 induces an injection on homotopy 

groups. 
0.0.2. More precisely, the group 

n. 

is an extension of its subgroup 

( 

Hi 

We prove that it is a countably infinite sequence of extensions by Ili-i(Fi). 
Even more precisely, for any m < n, the inclusions 

i 
GV[m,n](*4) 

I 
Gr[min+i\(A) 

T 
Gr[m^{A) 

} 
Gr[m-l,n](<A) 

all induce injections on homotopy groups, and the groups 

( 
and        Hi 
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are both extensions of the subgroup Hi byEi-iiFi). 

This means that, if the map </> is not injective, that is there is a kernel to the map 

/I l\ / 
Hi I —* Hi 

then this kernel is a quotient module oflli(Fi), and hence occurs infinitely often in 

( 

Hi. +1 

Although we do not know that the K-theory of A is isomorphic to the K-theory of 
Grb(A), we know that the latter is at least as big as the former; it contains, up to 
passing to the associated graded of suitable (infinite) filtrations, all of the former. 

We remind the reader just how absurd the definition of really 

was: see also Construction 1.4.6. One begins quite reasonably. A simplex is a diagram 

XpQ    y    - - •     h   Xpq 

X{ 00 X{ Oq 

where for 0 < i < i' < p,  0 < j < j' < q, the sequence 

Xij —y Xi'j © Xij> —y Xiiji 

is exact in the middle. Far less reasonable is the next condition, which says that the 
cokernel of the map X^j 0 Xij> —> Xi'j' agrees with the suspension of the kernel 
of X^ —> Xi>j 0 Xiji only up to passing to the associated graded of some (finite) 
filtration. But this is the simplicial set for which we will prove, as we have just 
summarised, that in some sense it contains all the information encoded in Quillen's 
if-theory of A. 

This section is intended as a warning to the unwary of the many pitfalls in this 
theory. An innocuous change of simplicial sets can destroy the K-theory, leaving many 
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of the arguments intact. Somewhere in the proof must be some subtle argument that 
fails for the perturbed simplicial set. 

In K-theory for triangulated categories III, we prove Theorem 1.7.1 in its strongest 
form. We recall again 

Theorem 1.7.1, strong version. Let T be a triangulated category with a non- 
degenerate t-structure. Assume T has at least one model. Let A be the heart. Then 
the inclusion 

A 

induces a homotopy equivalence. 

For the special case of the derived category of an abelian category A, with its usual 
structure, this reduces to: 

Theorem 1.7.1, weak case.  Let T = Db(A) be the derived category of an abelian 
category A. Then the inclusion 

A 

induces a homotopy equivalence. 

In Section 3 we will prove the weak case. In K-theory for triangulated categories 
III we will prove a better theorem, namely the strong case of Theorem 1.7.1. This 
immediately raises the question of why we bother giving the proof of the special case 
at all. 

The reason is that the proof given here, although not much simpler than the more 
general argument of K-theory for triangulated categories III, is nevertheless closer to 
the simple idea that motivated both arguments. In this article, we give not only the 
proof, but also an indication of where it came from. We explain the simple argument 
the author initially had, but where the author could not fill in all the gaps in the 
proofs. Then we explain why the argument that actually works is just a bastardised 
version of the simple idea. And finally, we reason that a proof that is too close to the 
original simple idea is suspect, because it would fail to distinguish the construction 
with the differentials from the one without. I think this could be quite valuable to a 
Group 3 reader, although probably to no one else. One comment I would like to add 
is that, in the author's opinion, if there is a simpler proof of Theorem 1.7.1, it will 
be closer to the argument of Section 3 than to anything in K-theory for triangulated 
categories III. 
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1. Postmortem of the Proof of Theorem 1.4.8. As the reader may have 
noticed by now, there are very few homotopies in this article. There are a number of 
trivial ones; for instance, the contraction to an initial or terminal object. Other than 
these, there is really only one extra, slightly non-trivial homotopy. What we will do 
in this section is develop a general formalism for referring to the homotopies we have 
already seen, and then we will go in detail over several of the arguments of Sections 
1.7 and 1.8 to show why the homotopies there really are examples of the prototypes 
developed here. 

The simplicial sets in the article are complicated arrays of rectangles, lines and 
triangles, with connecting arrows between them. For example, 

i   i 

—► 

 > 

 y 

 ► 

 y 

 y 

T     1    I 

Inside the triangles we generally insert zeros. Inside the rectangles, we insert some 
thick subcategory of the category T, together with a description of restrictions on 
the vertical and horizontal morphisms. The lines behave like very thin rectangles; 
they admit either a vertical or a horizontal arrow, but not both. Sometimes we are 
lazy, and allow ourselves to insert a zero in a rectangle; this means the restrictions on 
what objects and morphisms occur in the rectangle are the ones forced by its location. 

?? 
In this section, we want to be very general. We will write 7^ ' to indicate that the 
thick subcategory 7i is unspecified, and the horizontal and vertical arrows are left 
undecided. 

When the data in one of the rectangles or triangles is held fixed, it is denoted by 
a Roman capital letter. Thus the simplicial set 
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7* Y 

l                      l i   I 

r- 
 V 

 y 

X 

has only three simplicial structures, since the X's and Y's are held fixed- We have not 
yet seen simplicial sets as elaborate as this one; for this reason let me stop a second 
to write down a typical simplex. The simplex sprL is given by a diagram 

ALo v    ••• 

Aoo ► 

-±ALP 

-►A Op 

YNQ  >- 

Yoo  ► 

t 

->• YNQ 

-> 1c Qq 

-+CNO ► -+CNr 

-+Coo * -+Co 

BmO >" -yBmv > XmO  >" 

■JB, Op" Xoo 

■+Xrr 

->•  Xoq 

As always, the notation is that the fixed data has a thick black box around it. The 
reason we have highlighted the top boxes is to stress that they are unconnected. The 
number L of rows in one is different from the number iV of rows in the other. There 
are no arrows joining the boxes. Because we fixed X and Y, the integers q, m and iV 
are fixed. The remaining three simplicial structures arise by varying p,  r and L. 

In general, the arrows connecting the boxes may be restricted too. For now, we 
ignore the possibility. 

What homotopies occur in the article? There are the trivial ones; contraction to 
the initial or terminal object. So in the trisimplicial set above, there is a homotopy 
which we denote 



K-THEORY FOR TRIANGULATED CATEGORIES II 

7* Y 

 y 

 y 

YE TS- 

T                   i i   I 

r- 
—y 

 y 

X 

This homotopy is nothing other than the contraction to the initial object in the one 
rectangle that looks interesting. But unlike most of the contractions we have seen 
so far, here there are some other simplicial structures. Precisely, we have simplicial 
structures corresponding to the integers p, L and r. Our homotopy affects only the 
integer r. Such homotopies, which will frequently occur in subsequent sections, are 
realised by first realising the r structure to get a homotopy of the bisimplicial maps 
of bisimplicial spaces, and then gluing these. 

This section is meant to be somewhat independent of the earlier ones, so at the 
risk of boring some readers let me write down a typical simplex in the homotopy 

TS Y 

 y 

 y 

YE r- 

■?.■< 

 y 

 y 

X 

The homotopy must associate to the simplex svrL an ordered set of r + 1 simplices. 
The ith of these is the picture 
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ALO 

BQO 

And the reason for the notation is that we want to think of the east face of Y, denoted 
YE , as migrating across the rectangle. 

Similarly, the contraction to the initial object in 

is henceforth denoted 

T   i 
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since this time the north face of X is migrating. The null map which is at the end of 
the homotopy will be referred to by the symbol 

t   i 

And since nothing is migrating anymore, we will leave out the arrow. 

There are, of course, slight variants of this. For instance, if X lies in 770"^]    and 

7^ • = 7j'1~j   , then XN cannot be thought of as the initial object. An n-simplex sn 

is given oy a diagram 

/ 
Y, nO 

Fr 00 

■+  Yn. 
\ 

■+   Ir Or 

/ 

There is, of course, a candidate contraction to the "initial object." The morphisms 
Xij —> Yi'j' all factor canonically through X^0 (because YVJ' is in T-1). Thus we 
can have a homotopy whose cells are 
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^nO     * 

fiO 

■+  Yn. 

">     Yir 

(n-i+1) 

terms 

x%—+ 

Am0 ^ 

-> x>0 

-+ x>0 yi
*mr 

XmO       ^  >      * * * ^ >   ^n 

XQO   -as-*   •••   -=£-► X, Or 

times 

and this homotopy would naturally go under the name 
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1       I 

The reader should therefore note that, although our notation is similar in spirit to 
Quillen's, there are differences of detail. Our notation tells us not only that we are 
contracting to the initial object. It also tells us the shape of this initial object. 
The notation attempts to capture in a brief picture the key features of the homotopy; 
Quillen's notation is more geared towards specifying the homotopies by certain formal 
properties. 

The problem with this homotopy is that it need not be a contraction. This 
is a point about which we very cavalierly skipped in the K-theory for triangulated 
categories I. One reason I felt entitled to be so cavalier is that this subtle point does 
not affect Gr. In K-theory for triangulated categories I we had been studying mostly 
the properties of Gr, and the proof of Theorem 1.4.8. 

The homotopy (which is perfectly well-defined) connects the identity map with 
the map sending the simplex sn to 
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V->0    V Am0 * 

Y>0    v 

-> X>0 

-> X, >o 

(n+l) 

times 

XmO      3= >     ' ' ' 31 >   Xn 

Xnn    ~^^     •'•     -^-^   X Or 

And the precise difficulty is that the differential, which is, of course, well defined in 
terms of 

J'no    * -+  Yn. 

Ym —y ->  Y, Or 

Xmo      1. >     • • • X >   Xn 

^00       X )     • • •        I >    Xor 
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depends on the Y's. Given an 

one can (maybe) complete to a simplex 

^mO ^     ' ' ' *  -^mr 

Am0 * 

XmO       I > 

Xoo  -s-*- 

"^  ^mr 

(n+1) 

times 

-EE-+ X^ 

-2-K   X Or 

but the differential is not unique. The choice of differentials is, of course, implicit in 
the choice of differentials Yrn -» EXoo- Thus the homotopy 

i   i 
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is not a contraction. It contracts each component of 

to a point, but in fact the simplicial set 

i   T 

is discrete. 
REMARK 1.1. This point is so important that the author feels he should explain 

it in detail, although the reader can undoubtedly provide the detail unaided. 
Suppose we are given a map / : W —> Z in T-0. Suppose that g : A >—yW is 

an inclusion of an object A E 7[o,o] into W. Suppose furthermore that / o g = 0. Then 
of course / factors as W —> ~ —> Z. But in fact the factorisation is unique. The 
reason is that the ambiguity comes as follows. We have a triangle 

W 
W 
A 

XA 

to which we can apply the cohomological functor Hom(- 
sequence we deduce that the ambiguity in the map ^ 

lZ). From the long exact 
—> Z must come from a 

map EA —> Z. But EA is in T<0, whereas Z is by hypothesis an object of T-0. 
Therefore, by 1.6.0.2, the only map EA —> Z is the zero map. Hence the uniqueness 
of the factorisation. 

However, in the above we were attempting to factor the given map Xmr —> EXQQ 

through some X^, —t TJXQQ. And the problem is precisely that even if XQQ is an 
object of T-0, the object EXQO will tend not to be. 

The fact that these maps are differentials does not help, but it also does not 
hinder. If the truncation of the differential is given by some extra structure on the 
simplex, the structure will usually also guarantee that the truncation is a differential 
of the obvious truncated triangle. 

The reader should ponder this point carefully now. If T = Gr(A)i then in fact 
the coherent differential exists and is unique. In the reasoning of Remark 1.1, this is 
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because the map ^ —> T,A always vanishes in Gr. Therefore in Sections 1.7 and L8 
we were quite cavalier about this homotopy, and its various cousins. See, for example, 
Lemma 1.8.1, the proof that /i is a homotopy equivalence. In the case where T is 
a triangulated category, there are two ways to get around the difficulty: One can 
postulate that a differential X^]. -> T.XQQ is given as part of the simplicial data (we 
will have occasion to do this in Section 3). Alternatively, one can try to avoid trouble 
by working only with large simplicial sets. For example, in 

the homotopy 

i   t 

i ' i 

I     ! 

I     T 

does give a contraction, as the notation might suggest. The point is that, because we 
are already given a factorisation of the differential Xmr -> EXQO through an object 
in T-1, (choose any one in the top rectangle,) the factorisation of Xmr —> EXQO as 
Xmr -> X^l -> EXoo is unique and unambiguous. 

To illustrate what might be a practical application, consider the simplicial set 
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A >—*■ 

1       t 

where A is a fixed object of 7[o,o]> injecting into all the objects above it. A simplex is 
therefore a diagram 

Yno   > *•   ' * *   > ►  Ynr 

YQQ   > y   •"   > »-  For 

^mO    >• 

-^00     ► 

■^Xn 

-^ X Or 

together with monos A >—yYij for all i and y, so that all the maps in the F-rectangle 
are A-maps (except the differentials, of course). There is a simplicial map 

i   i 

which forgets the inclusion from A. One could imagine a homotopy, starting with the 
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map </>. The homotopy would be denoted something like 

19 

and its cells should be 
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yno/A > ►   •••   > y Ynr/A 

Yio/A  > ►   •••   > y  Yir/A 

Yio     > *   •"   > )►     Yir 

Yon   >—)• ••• >—»•   yc Or 

Xmo     >   - - -    >   XJJ 

XQO     ►   • • •    y    Xor 

And, as the reader undoubtedly guessed, the problem is the non-uniqueness of the 
differentials Ynr/A -> EXoo- However, this problem disappears completely in the 
simplicial set 
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A 

Here the homotopy 

T     T 

is well-defined.   An example of this, albeit with an extra twist, may be found in 
Lemma 1.7.6. 

Let 
Another very trivial homotopy is the addition (= direct sum) of a constant object. 
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A 

! 

r. % 
T. 

?7 r. 

T:7' r. • 

be the obvious simplicial set, whose simplices are simplices in 

Lr--r T   i L 

J 
 )- 

 y 

r- 

but where, in addition, every object outside the two highlighted boxes comes equipped 
with a mapping to the object A G 06(T), and all the morphisms (excepting the 
differentials) are A-maps. If the reader wishes he can, as the notation suggests, simply 
think of a map to A being given from the top right hand corner of the indicated square, 
and the face maps induce composition. 

Then there is a homotopy, which we will denote 

A 

\ 

r? 
—y 

 V 

Tt-®A r- 

^ 

 y 

 y 

r:- 

which simply adds A to every object in the right hand square. 
We have now discussed the three trivial homotopies which arise: ^-structure trun- 

cations, contractions to initial and terminal objects, and direct sums. It is time to 
turn our attention to the non-trivial homotopy. 
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The one non-trivial homotopy assumes that we have, in some part of our simplicial 
set, the diagram 

T     1 

J 
 y 

 ► 

X 

A simplex is then a diagram 

ZnO    ► ■+ Zn 

Zoo    *■ 

Yoo    ► 

■*  Z, Or 

imO y     ' ' ' *"    -^mr * 

"^    ^Or      > 

Xmo >- 

XQO   ► 

■> xn 

-+   Xn 

Since the X's are fixed, it makes sense to write a homotopy taking the above simplex 
to simplices of the type 
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ZnO ► -+Zni  )-^niexNVV ► ->Znr©^A^VV 

^00  ^       ' ' '        * Z0i     >'ZOi®XNW >" -+z0r@xNW 

^mO * -+Yr7li    ►l'mi©*mO »- 

-+ Yoi  * ym,exoo y Yoo > 

Our notation for this homotopy is 

7* 
?? 

in       i 
^ 

rj 

As before, XNW is intended to indicate the North-West corner of X, i.e. Xmo. The 
end result of this homotopy is a simplicial map we denote 

?? 
7^ ' 0 XNW 

t       i 
T.' 

We remind the reader that the arrow indicating the direction of the homotopy has 
disappeared from the top square, but not in the bottom left hand corner. The curved 
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arrow that remains in the notation is intended to remind us that what fills this square 
is made up of Xw as well as the line at the top. The reader saw the homotopy, in 
precisely this form, in Lemma 1.8.7. 

As always, it does no harm if we concatenate some additions to our simplicial sets. 
To treat a suitably general case, the reader might care to show that the homotopy on 
the simplicial set 

r- Z ^ 

r:- ^ rl? 

/             0 
-. 

" " 

^ > X 

which in our notation would be abbreviated 
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makes sense in the obvious way, with all but the middle column of cells unaltered 
by the homotopy. Checking this amounts to establishing that certain rectangles are 
Mayer-Vietoris. The only non-trivial ones are those where one of the columns lies in 
the action region of the homotopy. This gives a finite list of possible squares to check, 
most of which are trivial. There is a detailed discussion of this in Section III.l. The 
reader is also referred to Remark 1.5.3. 

It is, of course, possible to adorn the simplicial set even more, gluing yet more 
pieces that come nowhere near the homotopy. The reader can amuse himself by 
considering 

r. h 
T* ' ® XNW T/- 

I     T T 

r- 

'\            "t*   1"                        T 

* 
^ 

7* 

 y 

 y 

# 

It is completely clear that no terms from the two rectangles on the right, or from 
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the center rectangle, can be part of a candidate M — V square anywhere near the 
homotopy. Thus, the adornment is harmless. 

I solemnly promise that in this article, when we apply the homotopy, it will be to 
a (possibly subdivided) small part of the prototype diagram I just made the reader 
check. Deleting part of the diagram can only prevent difficulties; there are fewer 
M - V squares to check. Subdividing is harmless. Since the homotopy is well defined 
on the prototype, it must be well defined on any part (at least in the sense that all 
the squares claimed to be M — V really are). 

Of course, it goes without saying that the author will feel free to apply the trans- 
pose and duals of the homotopy. 

The prototype application of the homotopy above is the following. 

PROTOTYPE QUASIFIBRATION 1.2. The map. 

^ 

7* 

 > 

 > 
J 

is a quasifibration. (Example: Lemma 1.8.7.) 

Prototype proof. We need to study the fiber, denoted 

 y 

7* 
 ► 

X 

Apply first the homotopy 

to establish that the identity on 
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 y 

7* 
 )■ 

X 

is homotopic to 

7^ * 0 XNW 

V 

Now apply the homotopy 

7* 

7^ ' 0 XNW 

T 

to show that the identity on 

^ 

 y 

 Y 

X 
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is in fact homotopic also to 

r- 

Of course, this map factors as 

r- 

^ 

 >- 

 ► 

In other words, xfjofiis homotopic to the identity. Clearly, (j)oip is just the translation 
in the iJ-space structure of 

by the 0-cell 

Xjy W 

If we are lucky, this will be homotopic to the identity (for instance, if the iiT-space is 
connected). If d is a face map on 

then the composite 
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V' 

T;? 

—y 

—► 

X 

* / 

r- 
 V 

 y 

dx I   t 
T] 

is translation in the iJ-space structure with respect to the zero cell 

0 

Xij 

for some (z,j) which depend on d. 

God willing, this is also invertible, and thus 0, ijj and d must all be homotopy 
equivalences. Hence the quasifibration assertion. □ 

The proof of Lemma 1.8.7 is an example that works. It is perhaps a good idea to 
give an example that fails. 

CAUTIONARY EXAMPLE 1.3. 

Perhaps a good illustration of the troubles that may arise is given by the discussion 
in the Motivation of Section 1.8. Following our prototype quasifibration, we would 
expect to show that 
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T  ► 

 >- 

 ± 

T  ► 
'[O.n] 

should be a quasifibration. Let us now follow the prototype proof. The first homotopy 
is 

iji 
q-   > 

iji 

and there is absolutely nothing fishy about it. But, the second homotopy is 

and there is plenty wrong with this homotopy; the trouble spot is highlighted with 
our trusty warning circles. In general, given an object Z in 7yo,n] > the projection 

Z © XNW —> Z is not -£->•, i.e. is not an isomorphism on iJ0. It will only be an 
HQ -isomorphism in the lucky event that ^(A^vu-O — 0- 

This homotopy fails to be defined not because something asserted to be a triangle 
fails to be. It fails to be a homotopy becuse the candidate cells have wandered 
outside the simplicial set; their objects and morphisms do not satisfy the restriction 
hypotheses (cf Caution 1.5.4). 

The first homotopy showed that the fiber 
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is homotopy equivalent to 

XNW 

If T = Gr(.A), it is not difficult to show that this is in turn homotopy equivalent to 

Y<1 

the point being that XNW = ^NW ® -^NW^ 
anc^ we can homotope away the map to 

Xj^jy; as was pointed out above, the problem with the second homotopy disappears 
if we assume the vanishing of the zerot/l cohomology. And iJ0(X^^) = 0. 

But to prove Hi a quasifibration, we would have to show (among other things) 
that the projection: 

Y<1 

induces a homotopy equivalence. 
Of course, once we know the entire proof of Theorem 1.4.8, we also know that the 

right hand side is contractible, and hence by comparing the fake iJ-space structure 
on the left hand side with the action, as in the proof of Lemma 1.7.11, we can deduce 
the contractibility of the left hand side. But by the time we know Theorem 1.4.8 
we hardly care whether Hi is a quasifibration. And as I said in the Motivation to 
the proof of Section 1.8, I can prove directly that III is a quasifibration only in the 
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special case where T = Gr(A) and the construction is the one without differentials. 
Furthermore, the proof is dreadful. What is more, in Cautionary Example 1.5 we will 
make the case that the proof has to be dreadful. 

The quasifibration of Prototype 1.2 is extremely stable under small perturbations. 
For instance, it can be varied to give: 

PROTOTYPE QUASIFIBRATION 1.4. The projection 

1     T    T     T 

induces a quasifibration. 

Proof. Once again, apply the homotopies 

z- 

T. -ex. NW 

and 
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% 
h 

7^ ' ®XNW 

I   n   IT 
T v 

We leave it to the reader to compute the cells of these homotopies and show that they 
are well defined. We have not yet had occasion to use them in this article, but we 
will. 

Thus the identity on 

/  > —V  y 

/ —► 

0 

—v 

j 
 ► 

X 

is homotopic to the map 

0 

 y 

 y 

^ 

■f" 

 >- 
TJ 

which factors as 
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/ 0 

 >• 

 > 
* 

" 

V Y 

 y 

 > 

0 

—v 

—> 

z? 

 y 

 y 

X 

And, just as in Prototype Quasifibration 1.2, </) o ip is translation in the i7-space 
structure with respect to the zero-cell 

0 

.    T 
XNW 

while for any face map 9, cfrodoip is translation in the iJ-space structure with respect 
to 

0 

Xij 

God willing, these are both invertible, and hence d is a homotopy equivalence.        □ 

Once again, let us study the analogue of Cautionary Example 1.3. 

CAUTIONARY EXAMPLE 1.5.   If we try to apply the above to the projection 
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/ 

 y 

 >- 

0 

 y 

 > 
T\zA ' 

 y 

 y 

T  ► 
'[Cn] 

we would like to deduce that it is a quasifibration. Once again, we run into difficulties, 
essentially the same as in Cautionary Example 1.3. But now we wish to reason that 
the difficulties are genuine, not just a result of a faulty approach to the problem. 

Suppose there were some simple, direct way to show that both Hi of Cautionary 
Example 1.3 and II2 of Cautionary Example 1.5 are quasifibrations. Since Hi and 112 
are essentially the same map, the fibers would then be homotopy equivalent. Thus 

a 

would be a homotopy equivalence. 
But this would have serious consequences. As we will see in Lemma 3.9, the 

map a is null homotopic. Thus we will have proved Theorem 1.4.8. If Hi and 112 
are quasifibrations, and the fibers are homotopy equivalent by a null homotopic map, 
then the fibers are contractible and Theorem 1.4.8 is a formal consequence. 

Now recall the construction without differentials. Let us suppose this construction 
is for the birds (an eminently plausible hypothesis). Then Theorem 1.4.8 is probably 
false for it. Thus either Hi or 112 is not a quasifibration. The writer happens to know 
that Hi is, and therefore 112 probably is not. This means that any proof that, for the 
construction with differentials, 112 is a quasifibration, will have to be subtle—it must 
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distinguish Constructions 1.4.6 and 1.4.7. 

37 

CAUTION 1.6. As was already pointed out in Caution 1.5.4, the homotopies of 
this article have a way of wandering outside their simplicial set. I know no general 
condition which guarantees that they will be well defined. On this point the reader 
would be ill advised to trust the author. It is very easy to make mistakes. 

There is one special case of the prototype homotopy that deserves special mention. 
Consider the simplicial set 

 y 

r- 
—y 

X 

The homotopy 

takes a simplex 
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o   —►   •••    ► Z( Or 

^nO *     ' ' '      *    Ynr     ► 

YQQ    y   - • -    y  Yor    ► 

Xno  >   • - -    >■ Xn 

XQO   y -> Xi Os 

To simplices of the type 
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0      ► Zjr 

0       >Zjj®XNW > -+Zjr®XNW 

0 —> > ZQJ     >-zOj®XNW >■ -+z0r®xNW 

YnO * 

Yoo ► 

Yni    ^ynJexn0  y 

> YQJ —y ynj®xoo * 

-). Ynr®Xn0 ■ \XnO >• 

-> Ynr(SXoQ \Xoo * 

>Xn 

■^^Os 

and the point I want to make is that this homotopy manages to combine the two 
homotopies of Prototype Quasifibration 1.2 into one. The horizontal and vertical 
parts of Prototype Quasifibration 1.2 can be seen in the single cell featured above. 
Precisely, in the highlighted rectangle 
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0    —► jjr 

0      Y
Z

3J®
X

NW Y     • • •      ^iT-eXjvw 

0    y   •••     ► ZQJ  >ZOJ®XNW y   •••    yz0r®xNW 

^nO  ^    '' *     * Ynj  ► Ynj®xnO y    • • •     y Ynr®xn0 

YQQ y   - • •    y YQJ —y ^^oo y   • • •    y >wexoo 

we recognize our first (horizontal) homotopy, and in 
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^nO  ► 

^oo ► 

0   y   ■ • •    >- Zoj 

lnj 

Yr Oj 

0    —► 

¥jj®XNW >• 

the second, (vertical) homotopy. 

Thus, the map 

TJ 

-jpjr®XNW 

jz0j®xN\Y h      • ' •        ^O^-^Arw 

>^nieXT1o )-       •'•         yYnr®Xn0 H^nQ *       •"         ^Xn 

+ Ynj®X0Q y      ...       >Ynr®XQo >. P^oo *   '''    ► X\ 0s\ 
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factors through 

AMNON NEEMAN 

I     T 

and is independent of X^w- This is a fact we have often used. See Theorem 1.5.1 and 
Lemma 1.8.3. 

We leave to the reader the formulation of the transpose and duals of all our 
constructions. 

Only two homotopies, which have already come up in this series of articles, are 
not immediately covered by the prototypes we have discussed in the section so far. 
The homotopy in Lemma 1.8.8 is spurious, as I already mentioned there. It wants 
to be a truncation, but it is a fake; such phenomena do arise in Gr(^l). The other 
questionable homotopy is the one we denoted 

T     t 

NW 

Although the homotopy is not explicitly on our list, it is a cross between the prototype 
homotopy and the truncation. Since we will have the occasion to use this homotopy 
again, we should reflect on it a little. 

One is certainly allowed to compose homotopies, and to take diagonals in product 
homotopies. We leave it to the reader to amuse himself by showing how this homotopy 
can be recovered from our basic building blocks. If the reader does not find such things 
amusing, he can find a fairly detailed account in the proof of Lemma III.1.2. 

But like all homotopies involving the truncation, it should be viewed with extreme 
suspicion. As was said in the beginning of the section, these homotopies often fail to 
contract. When we first studied the above hommotopy, in the proof of Lemma 1.7.6, 
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we said that it takes the identity to the map 

43 

NW 

So far we have said nothing; this is a notational tautology. But our next statement 
was that this map factors through 

This is a non-trivial statement, and the reader should now learn to beware of these. 
It amounts to the assertion that certain differentials are uniquely determined by X, 
S and 

Since we have already given a discussion of the problems that arise from the trunca- 
tion, we leave this point to the reader to ponder over. Without the S the statement 
would definitely be false; exactly as with the previous example of a truncation, the 
space 
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would not even be connected. 

i   i 

2. A Discussion of Construction 1.4.6. Motivation. In this section, we 
will discuss in some detail what can be deduced about Construction 1.4.6. Because 
the results in Section 1.8 nearly all held for both the dumb Construction 1.4.6 and 
the intelligent Construction 1.4.7, it is curious to see just how much of Theorem 1.4.8 
remains valid for the "Construction without Differentials." 

There is a commutative diagram whose rows are fibrations 

Fn 

(t>n 

Fn+l 
Un+l 

With the notable exception of Lemma 1.8.10, everything in Section 1.8 is valid for 
both constructions. In particular, (j)n is a homotopy equivalence. Furthermore, in this 
section we will show that a:n+i o 0n is null homotopic. 

This is really all we know, but it is enough to deduce a surprising amount about 
the simplicial set 

In particular, this simplicial set decidedly is not a if (11,1). It has interesting higher 
homotopy which is related to the higher if-theory of A. 

There are nevertheless formal reasons to suspect that the homotopy groups of 
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give a bad K-theory. Suppose we iterate the construction in the sense of Waldhausen, 

i 
to define a spectrum of iterated Grr0~^r^,s. This makes sense; I leave the definition 
to the reader. In particular, this spectrum-valued If-theory satisfies an additivity 
theorem. The additivity theorem says the following. Suppose A and B are two 
abelian categories, and F', F, and F" are functors Grb(A) -» Grb(B). Suppose there 
is an "exact" sequence of natural transformations 

0 =» F' A F 4> F" =» 0. 

That is, for every object X in Grb(A), there is a sequence 

0 _> F'{X) ^-4 F{X) ^ F"{X) -> 0 

which is exact in Grb(B) in the bizarre sense of Definition 1.4.3. We remind the reader 
that this means exactness in the middle, but for fcer^) and coker(ipx) it means only 
that Eker^) ^ coker(ipx), where " ~ " denotes that the two are equivalent up 
to finite filtrations. There is a finite filtration of Eker(0x) and a finite filtration of 
coker^x), so that the associated graded objects are isomorphic. 

Then the additivity theorem asserts that K{F) = K(F') 4- K(F"), where K is 
the functor obtained from iterating Construction 1.4.6. 

In particular, let k be a field and let k be its separable closure. Let A = B 
be the category of finite-dimensional vector spaces over k. Choose some element 
cr E Gal(k/k), an automorphism of A:. Define F', F, and F" : A —> B as follows: 

(1) F' = E-1 is the desuspension; 
(2) F = 0; 
(3) F" = a is induced by a : k -> k. 

Then clearly there is a short exact sequence 

0 => F7 => F => F77 => 0 

and we deduce 

0 = K(F) = .^(F7) + Jf (F") = K^-1) + K(a). 

It follows that K(cr) = -if (E-1) is independent of cr G Gal(k/k). In particular, 
if(cr) = if(1) = 1, so the Galois group acts trivially on K(Grb(A)). 

This means that K(Grb(A)), the iterated version of Construction 1.4.6, is really 
very far removed from K(A). It is well known that Ki(k) — k*, with the natural 
(non-trivial) Galois action. 

Section 2 is mostly intended to serve as a warning of potential pitfalls in the 
theory. 
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End of Motivation 

In Section 1.8 we proved Theorem 1.4.8. This means that we know the homotopy 
type of Construction 1.4.7. However, all but the last step of the proof was equally 
valid for Construction 1.4.6. In this section we will analyze the consequences that 
follow. 

We begin by recalling that, in Lemma 1.7.15, we proved that the homotopy fiber 

T.      i 
of the inclusion Grr-^J*     '->•     Gr.^T^ is the simplicial set 

Gr 
I 
[0,n] 

In Lemma 1.8.8 we proved, modulo the earlier steps, that the natural map 

[0,n+l] 

is a homotopy equivalence for all n > 1. The reader can check that the inclusion 
map above is the natural map of the fibers; thus in the diagram where the row are 
fibrations and the inclusions are obvious: 

ttn+l 
■ n+l 

we have proved that (f)n is a homotopy equivalence. 

What turns out to be quite easy to show is 

LEMMA 2.1. In the above diagram, if n = 1, then the composite 

FIJL^F2^L 

is null homotopic. 

Proof. For this proof, it is convenient to use the model of Fi given in Lemma 1.8.7. 
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Fx    = 

Gr\hl] 

Then the composite map 0:2 o ^ is given bj- 

H H 

Gr[oV 

tr 
GrliT 

r                r 

<*iu? 

Grfi,n 

where tr stands for the truncation map.   The key point in the proof is that the 
following diagram commutes up to sign 

In other words, suspension induces the map —1, at least on Gr^^T^". 

Let us accept this fact temporarily, and show how to complete the proof of the 
lemma. It suffices then to show that the composite 

ifi H s-1 

GW 
r                t 

^[ilT 

Gr[M] 

is null homotopic; but this map is homotopic to 
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Gr[l,l] 

and 9 is clearly null homotopic. 

Gr [2,2] 

Now we must return to the proof of the fact that, on Grr^T*, the map E is 
homotopic to —1. We need to show that the composite 

~\      / 

x 
1 x E"1 

is null homotopic.   What makes this easy is the fact that Gr^"^ is just Quillen's 
Q-construction for the abelian category A. Let 1 be the category 

! = .-►. 

Then Hom(l,A) is an abelian category, and it is well known that the projection 
Hom(l,A) —> A2, which forgets the morphism, induces a homotopy equivalence on 
the Q-constructions. 

There are two functors A -> Hom(l, A) 

(1) Fi is the functor Fi(a) = a -» a; 

(2) F2 is the functor i^a) = a -> a. 
Because the composites 

A=$Hom(l,A)-+A2 

are equal, it follows that Fi and F2 are homotopic. Now observe that there is a map 

:Hom(l,A) -> Gr(A) 
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where 

H< a -U b) = | 
ker(f)    in dimension 1 

coker(f)    in dimension 2 

and this is clearly a functor of bicategories; it induces a map on Q-construction. Now 
Fi ~ F2 implies cf) o Fi ~ (j) o F2, but 0 o F2 = 0 while (/> o Fi = 1 -f S""1, the map we 
are studying. □ 

COROLLARY 2.2.  The space Fi is also the homotopy fiber of the map 

Proof.    Recall that Fi was defined to be the homotopy fiber of the map 

and that our key lemma, Lemma 1.8.8, shows that this is homotopy equivalent to the 
fiber of 

In the proof of Lemma 2.1, we showed that the diagram 

commutes up to sign.  On the other hand, E is an isomorphism. It follows that the 
fibers of the two maps 
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are, up to an isomorphism, the same. The fiber of/? is, up to suspension, the space Fi. 
Hence Fi is also the homotopy fiber of a. By the dual of Lemma 1.8.8, the homotopy 
fiber of a agrees with the homotopy fiber of the map 

COROLLARY 2.3.  The composite 

is null homotopic, for n > 2. 

Proof. In the commutative diagram 

D 

Fi 

Fn 
an 

the top row vanishes, by Lemma 2.1.  But then the commutativity implies the van- 
ishing of 
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Fn 

COROLLARY 2.4.   The map Fn —> 

n > 2. 
Proof. By Corollary 2.3, the composite 

Qfr, 

D 

is null homotopic whenever 

vanishes. By Lemma 1.8.8, the map Fi —>> Fn is a homotopy equivalence. Hence 

Fn 

must be the null map. □ 
COROLLARY 2.5.   Given integers m' < m < n < n'. then the inclusion 

! ! 
^r\rn~nt      ""^      ^r[m^~nl  induces an injective map on homotopy groups, provided 
n > m + 1. 
Proof. Applying Corollary 2.4 to the long exact sequences of the fibration 

an 
Fn 

we have the result for 2 < n = n', m — 1, m' = 0.   But the general case follows 
immediately from this case and its dual. □ 

Thus, at the level of homotopy groups, the image of A = Grm    in 
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T I 
(Grb)       h is simply its image in Grr^T*. Beyond that, the inclusions induce injec- 
tions. But we can do even better than that. 

PROPOSITION 2.6.  The image of the map 

Hi    Gr 
i \ 
[0,0] 

(   i ^ 
-^Hi (Grb) [0,0] 

V / 

is precisely the kernel of 1 4- S acting on Ili(Grb), where E is the suspension auto- 
morphism. 

Proof. Recall Lemma 1.8.8; it proves that in the.diagram of fibrations 

^n+l 
ttn+l 

the map (f)n is a homotopy equivalence. However, there is another natural diagram to 
consider: 
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Fn 

Gn 

V 

^n+l 
Otn+1 

"-1 

Now I/J o E  1 is concretely given as the natural composite 

t     *=- 
Gr 

1    * 
[l.n+l] Gr [0,n4-l] 

and this composite factors through 

G^l.n-rl] 

because any map in Gr[1>n+1] is mono, when viewed as a morphism in Gr[o,n+i]- (Note 
that here we do not need the trick of replacing kernels by cokernels, as in the proof 
of Lemma 1.8.10). This simplicial set that the map factors through is contractible. 
Therefore i}) o E_1 is null homotopic. Hence (p -f ib o E-1 is a homotopy equivalence, 
because </> is. 

We deduce a map of fibrations 
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Fn 

cp + ip oY,' 1 + E -i 1 + E- 

^n+l 
ttn+l 

GWi] 
r 

^[O.n+l] 

act sequence in ] 

0 

diagram and the long ex 
columns: 

lomotopy in yields a 

0 

with exact rows and 

1 1 
0 

0    - -> 

1 
MGrlltn]) 

I 
nt(Gr[ijn+1]) 

1 
—►     ^(GHO,,,]) 

—»•    ni(Gr[0tn+1]) 

—> 

—> 

1 

I 
Ui^Fn+i) 

0 
All the vertical maps are 1 + E 1. The fact that the map in the bottom left hand 
corner is injective is Corollary 2.5. The fact the vertical map on the right is an 
isomorphism is the computation at the beginning of this proof. 

Now an easy diagram chase establishes that Ki —> K2 is surjective. For n — 1, 
Ki — n^Gr^xj); therefore, for any n, Ker(l + E-1) is the image of Hi(Grn^]). The 
formula 1 + E — E(l + E~1) establishes the proposition; 1 + E and 1 + E-1 differ by 
an automorphism, hence have the same kernel. □ 

Conclusions. 
2.6.1. The image of the inclusion A = Gr[o}o] —> Grb, at the level of homotopy 

groups, is the kernel of 1 + E. 
2.6.2. The homotopy groups of Grb are quite large; Ili(Grb) is an extension 

of ni(GV[o,i]) by infinitely many copies of Ili-i(Fi). Thus, if there is a kernel to 
n^GVjco]) -> ni(Gr[o,i]), then ni+i(Gr6) will contain many copies of that kernel. In 
particular, Grb(A) is most definitely not a if (11,1) (at least not for a general A). 

PROBLEM 2.7. Does the inclusion A -+ Grb(A) induce a monomorphism in 
homotopy? 

PROBLEM 2.8.   Does 1 + E vanish on Gr6(.4)? 
REMARK 2.9. If 1 + E vanishes, then A ->> Grb(A) is a homotopy equivalence. 

This is because the surjective map 

Ker(l + E) = ImiUiiGr^o])) —► ^(Gr6) 

factors through nt(Gr[o,n]) for all n > 1. It follows that ILi(Gr[0tn](A)) -> ni(Gr6(^l)) 
is surjective, but we also know from Corollary 2.5 that it must be injective. Hence it 
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is an isomorphism.  Thus II^Grp),!]) — n^Gr^])* hence F2 is contractible, and so 
are all the Fn's. 

3. Second Proof of Theorem 1.4.8, and a Proof of Theorem 1.7.1 (spe- 
cial case). Motivation. Section 3 will concern itself with the proof of Theorem 1.7.1. 
As in the previous sections, the actual proof comes about as a badly tortured version 
of a fairly simple idea. We remind the reader that in Section 1.7 we found a model 
for the homotopy fiber of 

namely the simplicial set 

[Technically, I just lied; but it certainly suffices to prove the contractibility of 

T[0,n} 

And morally, although we could not quite prove 

1     T 

1     1 

a quasifibration, it very nearly is. Anyway, white lies are permitted in the Motivation.] 

In Section 1.8, where we used this to prove Theorem 1.4.8, it turned out to be 
useful to consider another model for this homotopy fiber, the simplicial set 
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T     1 
TM 

The idea that this should be a model for the homotopy fiber comes from the obser- 
vation that 

1 ► 
V"] 

—► 

 >• 
^O.n]   * 

is probably a quasifibration. Although the writer has been unable to prove directly 
that it is, by a fairly round-about argument one can establish the existence of a 
homotopy equivalence 

!     1 

This means that the fiber over zero is the homotopy fiber. Not surprisingly, the identi- 
fication of the fiber over 0 with the homotopy fiber is very natural in n. Theorem 1.4.8 
was almost an immediate consequence. 

The idea of this section is to repeat the argument with the kernels chosen.  In 
other words, we look at the simplicial set 

which I often prefer to denote 
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—y 

 y 

T  >• 
'[O-n] 

"                 ". 
 ► 

 1 
'[O.n] 

 )- 

 y 

Thus, a square box with a zero inside means just that the author has been too lazy to 
write in what objects of T are permitted, and what morphisms can occur; the reader 
can work this out from the rest of the diagram. 

It seems not implausible that the map 

should be a quasifibration. 

But then there is a commutative diagram where the columns are fibrations 
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/o 
->- i i 

—y 
),n] 

t   t t     jt 

/o 0 
-> 

-> ^C 
 ^ 

),n] 

-> 

^.n]    ' ^ 
—>■ 

y. / / 

\ 
/x -► \ 
t/1 X t t > 

/ -> ->• 
\ / -y 

^n]    ) /O 
/ \ 

It would immediately follow that 0 is a homotopy equivalence.   But it is trivial to 
show (see Lemma 3.9) that 0 is null homotopic. 

As I have said before, this is the idea of the proof, but sadly I have not been able 
to turn this into a rigorous argument. Instead, we proceed quite indirectly to show 
that there are homotopy equivalences 
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(3-1) /      0 

 V 

 V 

H 

 >• 
\A 

(3.2) 

^l.n] 

The maps 3.1 and 3.2 are natural enough so that the composite 

is just the map 0 above. Thus, by an indirect argument we prove that 0 is a homotopy 
equivalence, and then Lemma 3.9 establishes the contractibility of all these simplicial 
sets, and hence Theorem 1.7.1. 

Once again, the proof is reminiscent of a space shuttle mission. The space shuttle 
takes off from Cape Canaveral, goes many times around the earth, and then comes to 
land not so far from the take-off point. I sincerely hope someone succeeds in finding 
a simpler proof. 

End of Motivation 

IMPORTANT NOTATION 3.1. . When ,ve write the simplicial set 

we will, as in Section 1.8, mean the bisimplicial set whose (p, g)-simplices are diagrams 
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Xn 

together with a coherent differential X. 

X[ 

pq 

Oq 

EXoo- Now note that X Oq ^Xn 

EXoo must be zero, and because H0(Xoq)   —> H0(Xpq) is an isomorphism, d : 

Xpq —> EXQO must factor through Xpq —> X>q
0 —> T.XQQ.   But the reader can 

easily see that dl is not unique. 
We will sometimes want to assume that a choice of d' is as part of the structure 

of a simplex. We will denote this simplicial set 

>0 

A simplex in this simplicial set is a diagram 

Xpo   >•   • • • 

H 

X, pq 

XQO 

H 

-+   Xoq 

together with compatible differentials X^j, —> T^Xij for all i < i', j < j'. Not only 
that, but we further assume that everything which should be a triangle actually is, in 
particular, the sequence 

^>o Xij —> Xij> © Xifj      > X^j zlXi' 

is a triangle. 
It may help the reader to observe that, in the simplicial set 
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the differential X>0 —> SXoo can be chosen canonically. A simplex is a diagram 

Xpo 

H 

Xnr) Rpo —>   - • -   —*    0 

X{ oo Xi Oq 

In particular, the differential X 
<o composite X-0  —> X 

EXQO factors through Rpo, and because the 
Rpo is zero, and both Xpq and Rpo are in T-0, the map 

pq 

pq Rpo factors uniquely through X>®.   Thus for the map X^® —> SXQO we X_ 
simply choose the composite X>® - 

In other words, the projection 
R. 

PQ 

pO EX, 00- 

factors through 

>0 

Thus the simplicial set just described is fairly natural, being intermediate between 
two fairly natural simplicial sets. 

REMARK 3.2.     The reason we have waited until this section to make this def- 
inition is that it does not affect the Gr constructions.  Precisely, the simplicial sets 

>0 

and are equal. The differentials are unique. 

As promised, in this section we will prove the contractibility of 

77, [0,n] 
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and, modulo Section 1.7, this will provide a second proof of Theorem 1.4.8, and a 
proof of Theorem 1.7.1 in the special case where T = Db(A) and the ^-structure is 
the canonical one. 

Strategy Session 

We want to prove, just as in Section 1.8, that the simplicial set 

T[0,n] 

is homotopy equivalent to 

but this time the proof is rather more elaborate than it had been in Section 1.7. We 
begin by considering a pentasimplicial set with two projections: 
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>0      

T[^n\ 

Tu 

% 

H H 

[0,n] r\l,n] 

63 

>0 

With some pain, we will prove that /i is a homotopy equivalence; the pain derives 
from the fact that some of the boxes have factorizations of differentials through the 
truncations, while others do not. Having gone through some unpleasantness over this 
point, we will have a relatively easy time showing that /2 is a quasifibration. After 
all, that is just Prototype Quasifibration 1.2. 

Having come this far, we will then relatively easily show that the fiber of fa can 
be identified with our favorite simplicial set 
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In other words, all this work will have got us precisely as far as Lemma 1.8.1 did, back 
when we were working with good old Gr. After that, we will follow the argument of 
Section 1.8, which beyond Lemma 1.8.1 begins working for T as well as for Gr, all 
the way through Lemma 1.8.7. Then we will have proved that there is a homotopy 
equivalence 

and after that it will be time for another strategic interlude. 

End of Strategic Planning. 

IMPORTANT NOTATION 3.3. . The simplicial set 
>0 

T[oZ\ 

T[ort' 

H H 

>—y 

T[0,n] 

r[l,n] 

i   i 

needs some explanation. Following the notation introduced in Important Notation 3.1, 
we have a clear idea that on the left hand side of the simplicial set, we would expect 
to be given a factorisation of the differential through a truncation. But how is this 
to be compatible with the other differentials in the diagram? Is there a compatibility 
requirement? 

A simplex in 
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>0 
65 

T[oZi T[0,n 

H W 

% [0,n] 

1_ 
r[l,n] 

is a diagram 
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ZsQ    > ►     '••     > *    Zsr    ) V   Wso   > »    •"    > »   W8t 

Yr pr 

Aw    ^ 

X, pO 

* W W HI 

^00    > >     ••"     > ►    ^Or    ^—»-   Woo   > »-     *••     > »   Wot 

-^    0 

X, pq 

^00     > ^     ••'     > >•    lib: ■^ x* oo -> X( Og 

together with some differentials. In particular, we have a differential Z>0 —> T.YQ oo, 
and some other less exotic differentials that do not involve truncations. What com- 
patibilities should we impose, especially on the exotic, truncated differentials? 

There is a differential Y>0 EYoo , which is "exotic." There is a straight 
differential Xpo —> EYoo- Because Xpo is an object of 7[ijn] , the map Ypr —> XPQ 

factors canonically as Ypr —> Y>0 —> XPQ. The composite Y>0 —> XPQ —> Eloo 
should clearly be assumed equal to the "exotic" differential. 

Less clear is what hypothesis to place on the compatibility of the "exotic" differ- 
• EZQO with the straight differentials Wsj —>■ EZoo- What we assume 

is the following.   Choose integers 0 < i < i' < 5, and 0 < j < t.  There is a map 

Zi'q 0 Wij —> Wi'j. This map factors uniquely through 

ential Z>0 
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^^^W^^- 
Then what is the composite 

Zi'q © Wij 
Witj _> EZio? 

H0(Zifq) 

There is, of course, another way to go. We have a projection 

Zj'g 0 Wjj     Zjfg © Wjj _       >0        TTTX) 

And not amazingly, we would expect the differential above to agree with the composite 

Zj'g © Wjj       >0        >0   n   7>o   d   7 

£[0(2.,   ) > ^i'q  ® ^^i ^ ^^'9 ^ Zi0  ' 

where 11 is the projection and d is the exotic differential. 
We assume that these are equal. 
REMARK 3.4.    The point of this last assumption is the following. At some time 

in the very near future we will want to consider the homotopy 

>0 

^(M 

% [0,n] 

/z<1 
SE 

iji 
-T-   > »■ 
'[Cn] 

Vn] 

0 

/ 

There is nothing wrong with the homotopy, ever; but unless we are careful, the end 
map 
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>0 

Tu [0,n] 

iz« SE 

% [0,n] 

H H 

I   I 

T[oM 

will not factor through the product 

v 

v^ 

T^) 
t_ 

T[l,n] 

The requirement on the compatibility of the differentials at the top exactly guarantees 
that the differential 

Zsq 6 WQJ 
7<1 

is the natural map; it is the composite 

EZ< oo 

Zsq 0 V^ot Zgg 0 P^ot     n   7>o   d   y7 
7<1 ^ 7<1  ffiw<i s9        ^ ^^ 

LEMMA 3.5. /n the diagram 

oo- 
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>0 
69 

V^ % [0,n] 

H H 

^o,^ 

>0 

the map fx is a homotopy equivalence. 

Proof, fi can be factored as the composite 
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>0 

>0 

V^i" % [0,n] 

H H 

% [0,n] T{l,n) 

Tu [0,n] Tu [0,n] 

H H 

I     T 

91 

93 

>0 

We want to prove that each of pi, #2 and #3 is a homotopy equivalence. The difficult 
step is #3, so we will treat it last. 

3.5.1. gi is a homotopy equivalence. 

Proof. It suffices to prove the contractibility of the Segal fiber 
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>0 
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H H 

Y 

W 

77. [l,n] 

and the idea is to use the homotopy 

>0 

>—> 

H H 

Y 

W 

y>0 

77- [l.n] 

which is certainly well-defined. But it is also a contracting homotopy. It clearly is 
a homotopy. The fact that it contracts follows because the simplicial set contains a 
choice of differentials Y^ —> SYsjy , and by hypothesis this is compatible with the 
differentials out of the bottom right box. □ 

3.5.2. <72 induces a homotopy equivalence. 

Proof. Once again, it suffices to prove the Segal fiber 
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>0 

>—>■ 

w 

H H 

^O.n] 

contractible. But this follows immediately from the contracting homotopy 
>0 

>—y 

)—► 

W 

H H 

Zs 

% [0,n] 

D 

The subtle point is therefore to prove that ^3 induces a homotopy equivalence. 

3.5.3.   The map gs induces a homotopy equivalence. 

Proof. We wish to show that the projection 
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>0 

73 

77, [0,n] 

! »■ 

Tu [0,n] 

T     1 

induces a homotopy equivalence. We will break it into two lemmas, showing in turn 
that the projections 

>0 

both induce homotopy equivalences. Note of course that Hi is well-defined, because 
the choice of kernels implicitly carries with it the choice of differentials from the 
truncation. 

3.5.3.1.    Proof that Hi is a homotopy equivalence. We need to prove that 
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the map 

AMNON NEEMAN 

>0 

induces a homotopy equivalence. 

Proof. We will instead consider the more complicated diagram 
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>0   
75 

f     I     f     "f 

tiff 

1     1 

>o >o 

I     I     f     I 
f 

^O.n] 
f 

77, [0,n] 

| H il H 

*   M   f 

ifi      iji     iji      H 
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The fact that a induces a homotopy equivalence is essentially trivial. The Segal fiber 
is the simplicial set 

>0 

%< [0,n] 

H H 

5 

H H 

% [O.n] 

*    \ 

^0,n 

!     1 

and it is contracted by the homotopy 
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>0 

T,, [0,n] 

*        * 

Ss 

% [0,n] 

^O.n 

TN 

*        * 

*        * 

Ts 

?;, [0,n] 

I        1 

The fact that (3 induces a homotopy equivalence is a little more subtle.  The Segal 
fiber is the simplicial set 
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>0   

*   I 

*   * 

*   * 

and the point of the proof is that the homotopy 
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>0 

f ^ if if 

77, 
* 
[O.n] 

T,, [0,n] 

> >■ 

I 
^O.n] 

/J4
<1 
NW 

T     T 

shows that, up to homotopy, the identity on the simplicial set 
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>0 

factors through the simplicial set 

C 

% [0,n] % [0,n] 

B 

I     1 

^<1 

and this last simplicial set is contracted by the contraction to the initial object A^y. 
This completes the proof of Lemma 3.5.3.1. O 

3.5.3.2.   Proof that 112 is a homotopy equivalence. We need to prove that 
the map 
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induces a homotopy equivalence. 

Proof. Observe first that the natural map 

>—y 

induces a homotopy equivalence. The fiber is 

—y 

%, [0,n] 

I        t 

T     T 

and is contracted by the homotopy 
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% [0,n] 
iW 

\    \ 

Thus, we are reduced to showing that the natural map 

i   t 

induces a homotopy equivalence. The proof now becomes very similar to the argument 
we have just seen in Lemma 3.5.3.1. We look at the diagram 
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*       * 

i   i 



84 AMNON NEEMAN 

The fact that a induces a homotopy equivalence is again essentially trivial. The Segal 
fiber is the simplicial set 

T[0,n 

H H 

r  i 

and it is contracted by the homotopy 
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Tu [0,n] 

TN 

H H 

T 

The fact that /? induces a homotopy equivalence is again a little more subtle.  The 
Segal fiber is the simplicial set 
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H              H 

 ± 

H 

/    0 
 Y 

q- > W 

H $ 

B 

W   y / 

and the point of the proof is that the homotopy 

*      f 

%, [0,n] 

^O.n] 

/B<i Any 

1     ! 
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shows that, up to homotopy, the identity on the simplicial set 

87 

factors through the simplicial set 

i   * 

nNW 

and this last simplicial set is contracted by the contraction to the initial object B^w 
This completes the proof of Lemma 3.5.3.2, and hence also the proof of (3.5.3).      □ 

The proof of Lemma 3.5 has been long and tortuous enough, I am sure we have all 
had time to forget the point of the exercise. It is therefore time for another gathering 
of the general staff, to recall our battle strategy. 

Strategic Reminder. We have been studying the diagram 
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>0 

TM 

Hi W 

^o,^" 

T{0,n 

T   i 

T_ 
T[hn) 

>0 

and the point of the somewhat elaborate antics we have just performed was to show 
that fi induces a homotopy equivalence (Lemma 3.5). The next lemma shows that 
/2 is a quasifibration, and the two lemmas following will identify the homotopy fiber 
of /2 with the simplicial set 
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By Section 1.7 we know that the contractibility of this simplicial set suffices to prove 
Theorem 1.7.1. 

End of Strategic Reminder. 

LEMMA 3.6.  The map f2: 

>0 

77, 0,n] 77, [0,n] 

H H 

% [0,n] 77 [l.n] 

>0 

is a quasi-fibration. 

Proof. This proof essentially is a standard example of a Prototype Quasifibration 1.2. 
For that reason, we will be brief. 

We must study the fiber 
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>0 

^(M Tfrn] 

H H 

% [0,n] 
X 

We use the following sequence of homotopies, with the notation as in Section 1: 

>0 

(3.3) 

^o,^" r[0,n 

H H   H 

T   i 

T,, [0,n] 

^O.^F 
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>0 

(3.4) 

7[0^n\^®XNW 

> >• 

r[0,n 
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>0 

(3.5) 

These three homotopies combine to give a homotopy of the identity with the map 

>0 

% [0,n] % [0,n] 

H H 

% [0,n] 

This last map factors as a composite tp o 0, for (ft and ip as below 
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>0 

Tu [0,n] Tu [0,n] 

H H 

77, [0,n] 
X 

t 

Thus ip o (j) is homotopic to the identity. On the other hand 0 o ^ is translation in the 
H-space structure with respect to the zero cell 

0  ►   0 

XNW 

But the simplicial set       ^ 

% [0,n] T%n 

T{0,n] 

is easily seen to be connected. Even more easily one can see that 

0 —>   0 

1 
is in the connected component of 

0       ►   0 
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In any case, by any argument that pleases the reader, 0 and rp are homotopy equiva- 
lences. 

Similarly, if d is any face map, then ipodofiis translation in the iJ-space structure 
with respect to 

0 0 

Xij 

also a 0-cell which is clearly in the identity component. Thus d is a homotopy equiv- 
alence, and we are done. D 

LEMMA 3.7.  There is a natural map 

>0 

% [0,n] ^O^ 

I     *    1     T 
T[ori 

which induces a homotopy equivalence.  The map take the simplex 

YQ   i ►   •••   > ►   Yr   ) ►   Wo ■••   >—»   Wt 

Ato    »■ -»    0 

to the simplex 
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5+1 

times 

Yo > ► 

H 

H 

Y0 > y 

H 

n >—► 

> y   Yr   > y   Wo   >—»- 

H H 

> >-   yr    > y   WQ   > )y 

H 

> y   Yr Ato    »• 

>—»   Wt 

H 

> »   Wt 

-»     0 

Proof. It suffices, by Segal's theorem, to prove that when we realize the simplicial 
structures corresponding to s and t, the resulting map of simplicial spaces is a homo- 
topy equivalence. The resulting simplicial spaces have for their r-simplices the disjoint 
union of the realizations of 

Y 
% [0,n] 

T   i 

respectively 
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>0 

*   *   1   I 
Y 

over all Y = (YQ )—y • • •  >—>Yr). Thus, it will suffice to prove that, for fixed Y, the 
natural map is a homotopy equivalence. 

By our favorite homotopy, there is a homotopy equivalence 

Y 
q-)—* 

-> Y- 

1    1 
(3.6) 

Similarly, there is a homotopy equivalence 

>0 

(3.7) 

* * 1 1 
Y SE 

(We remind the reader that in both cases one uses the homotopy 
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>0 
97 

This homotopy is a little hard to draw when the simplices are 1-dimensional. Recall 
now the compatibility requirement on the truncated differentials, which guarantees 
that the end map of the homotopy indeed factors through 

as we said.) 

Let us now look a little more closely at the homotopy equivalence (3.7). It iden- 
tifies for us the homotopy type of the Segal fiber of the projection 

>0 >0 

% [0,n] Tu [0,n] 

Y 

and the Segal fiber, being 
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has a homotopy type independent of Z. After all, Y^1 = Zsh- This is because the 

map YE -^E+ZSE is by assumption an iJ0-isomorphism. 

It follows that all the fibers of 7 are homotopy equivalent, and the reader can 
easily check that in fact 7 is a quasifibration. But the target of 7 is a contractible 
space. We deduce a homotopy equivalence 

>0 

(3.8) 

Comparing the homotopy equivalences (3.6) and (3.8), Lemma 3.7 follows immedi- 
ately. □ 

LEMMA 3.8.  The projection 

Tu [0,n] Tu [0,n] 

i   1 
\, 

-) Y- 

1     T 

is a homotopy equivalence. 

Proof.   Trivial.   The Segal fiber is the nerve of a category, and the reader gets his 
choice whether to contract it to the initial or the terminal object. □ 

Conclusions from Lemmas 3.5-3.8. The natural truncation map 
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tr 

has for its homotopy fiber the simplicial set 

T« [0,n] 

What has actually been proved is a little less. We proved that there is a map 

having the homotopy fiber 

77, O.n! 

But we have not proved that the map is induced by the truncation. Let us be unchar- 
acteristically honest and complete about this argument. What we have really proved 
is that in the diagram 
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>0 

TM 
riO,n) 

W t 

T     T 

r[0M 77- [l.n] 

>0 

the map /i is a homotopy equivalence (Lemma 3.5), and the map /2 is a quasifibration 
with fiber 
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But in fact, the map /2 is split. There is a map 

T_ 
Tll,n] r. [l,n] 

ril,n) 

]_ 
TlUn} 

>0 

a 

r{ori % [0,n] 

H H 

TM 7[l,n] 

and it is completely clear that $2°.a is a homotopy equivalence. So at least on the 
level of homotopy groups we get a splitting of 

>0 

^o,^ 77, [0,n] 

H H 

!     T 

^o!^" T\l,n\ 

as the direct sum of 
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T  ► 

 ► 

| •■ 

7-   »• 
'[l,n] 

1                1 

 >■ 

 ► 

0    / 

Tll,n}   ' T  *■ 

and 

But the composite of fi with the truncation 

tr 

is another splitting for a; precisely, the composite trofa oa is a homotopy equivalence. 
It is easy to compute that tr 0 /]_ vanishes on the fiber 

r[0,n] 

So at least on the level of homotopy groups, the maps tr o fi and /2 agree. There is 
a map from 

to the homotopy fiber of trofly and by what is now an easy homotopy group computa- 
tion, this map is an isomorphism of homotopy groups, hence a homotopy equivalence. 

Note that in the case of Gr, we achieved as much with far less pain. The many 
pages of complicated homotopies we have just been through prove the analogue of the 
miserable little Lemma 1.8.1. 

Another Gathering of the Strategic Minds. It is time to gather together 
again, and plan our course of action for the next few lemmas. Until now we have been 
studying the diagram 



K-THEORY FOR TRIANGULATED CATEGORIES II 

>0      
103 

% [0,n] 

H H 

^O,^ 

r[0,n 

>0 

% [0,n] 

H H 

f      1 

Our project for the next few lemmas is to repeat everything we have done, but this 
time in the simplicial set with the kernels remembered. Precisely, we will stare at the 
diagram 
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^o!^" 
r%n 

M H 

and exactly as before, we will prove that the map /{ is a homotopy equivalence, 
whereas /^ is a quasifibration. And then we will also identify the homotopy fiber of 
/2 with the simplicial set 
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% [0,n] 

The argument is virtually identical with what we have just gone through, except 
that the proof that /{ induces a homotopy equivalence is much easier. Because the 
kernels are now part of the structure, we do not have to worry about the truncated 
differentials; their existence is guaranteed. We will sketch the proof again, just to 
remind ourselves what has to be done. The reader willing to believe the author can 
skip this, and go right on to the next strategic gathering. 
End of Strategy Session. 
Lemma 3.5'. The simplicial map f[ 

%, [0,n] 77, [0,n] 

t     T 
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induces a homotopy equivalence. 

Proof. Clear. 

Lemma 3.6'. The projection 

77, [0,n] 

)—y 

)—► 

Hi W 

T     I 

T[ori TlUn] 

is a quasi-fibration. 

Proof. In the language of Section 1, whereas without the kernels this was a Prototype 
Quasifibration 1.2, now it is Prototype Quasifibration 1.4. D 

Lemma 3.7'. The inclusion 
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% Tu [0,n] '[Cn] 
— > Y- f 

T[Z,n} 

>—v 

)—> 

i 
T[0,n 

I   f     T   T 
V*] 

induces a homotopy equivalence.   The inclusion in question is the map sending the 
simplex 

YQ   > )-   • • •   > >   Yr    > )-   Wo   > ^   *''   > ^   Wt 

Ato    »- -»-     0 

£0 i/ie simplex 
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0   ► FQ > v   • • •   > ► Yr > ^ Wo : >—»- Wt 

H 

H 

0 —► 

0    v 

-> 0   y YQ > ► 

H 

-^  0    ^ Fo > ► 

H H 

> y Yr > >• Wo >—^ 

> ► Yr Ato » 

>—»• Wt 

-»   0 

Proof. As before, it is enough to "freeze" one of the simplicial structures. We prove 

Y 
Tio 

77, 
♦ 
[0,n] TlO,n: 

f   f     T   T 

is a homotopy equivalence for every Y. The left hand side has the homotopy type of 

whereas the right hand side fibers over the contractible space 
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with the fiber 

i   i 
Y 

Hence the Lemma. □ 

Lemma S.S'^Lemma 3.8.  The projection 

r[0,n} ' Tio r{0,n 

T     T 

25 a homotopy equivalence. 

Proof. Being identical with Lemma 3.8, this trivial statement requires no new proof. 
□ 

Conclusion. Combining everything we have done so far in this section, we deduce a 
commutative diagram whose columns are fibrations 
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Tu [0,n] 

I        1 i   T 

From the diagram we immediately deduce that the map 0 is a homotopy equivalence. 

Command Center Summons for Another Gathering of the General Staff. 
Beyond this, our strategy will be to copy what was done in Section 1.8. Precisely, we 
will now repeat the reasoning of Lemmas 1.8.2-1.8.7. Because we will repeat them for 
both columns of our commutative diagram of fibrations just above, we will deduce 
two new models for the simplicial set 

together with a map between them inducing the homotopy equivalence.  The proof 
will then be complete when we show the map null homotopic. 

General Staff Dismissed. 
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Lemma 1.8.2' The natural projection 

111 

1     T 

is a homotopy equivalence, as is the projection 

1   T     1   T 
T_ 

T   T 

1   LJ   I 

Proof. Because the case with kernels is somewhat more delicate, we will treat that 
case, leaving to the reader the proof without the kernels (which, by the way, is the 
same as the proof of Lemma 1.8.2). 

We need to establish the contractibility of the Segal fiber 
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/  0 

 y 

 >• 

0 

 v 

 ► 

T —w 

T     T 

It is contacted by the homotopy 

T     T     T 

s-'zk SN 

1     T 

And the real point of the proof is that the kernels in the homotopy row of the diagram 
above are desuspensions of objects elsewhere in the diagram. This is because in a 
triangulated category, kernels and cokernels are the same, and this identification allows 
the simplex to reproduce. See also Remark 1.5.5. This is therefore one argument that 
really fails without the coherent differentials. □ 
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Lemma 1.8.3':  The natural map 

113 

T     ! 

25 a homotopy equivalence, as is the natural map 

Proof. This time, the case with kernels and the case without are equally easy. 
Because in Section 1.8 we treated the no-kernel case, we will do the other one here. 
Study the quarti-simplicial set and two projections 
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% [0,n] 
>—v 

Tu [0,n] 

T     T     1     f 

!   T    I   T 

Tu [0,n] 

T   T  :T   T 

77. [l,n] 

1 A 
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/{ is a homotopy equivalence because on the fiber 
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% [0,n] 
Y 

i   T   i 

77, 
X 

we can apply the contracting homotopy 

The map fy is slightly trickier. We resort to our favorite homotopy. The Segal fiber 
is the simplicial set 
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p 

 )> 

 y 

T —* 

1   1 

and we need to show it contractible. By the homotopy 

/ 

 y 

 y 

Q 

/ 1     T 
/        s 

 y 

 y 

p 

]     T 

77. [l,n] 

T     T T     T 

the identity on 
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factors through the simplicial set 

Q 
% [0,n] 

1     t     !     T 

^i."] 

T     T 

rM 

which is trivially contractible, by the contraction to the terminal object. D 

Lemma 1.8.6'. The projection 

t 
 y | 

Tlhn]   ) 

 ► 

T  > 

iji 
T ) y 

'[0,n] 

\ 
 >- 

T  y 

 y 

is a homotopy equivalence, as is the projection 
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—h 

 y 

1 
/[0,n] 

\ 
 y 

 ► 

T[l>n}   ¥ 

 )- 

 y 

Proof. Once again, we treat the case with the kernels. The Segal fiber is the simplicial 
set 

 y 

 )" 

Y 

X           s 
—y 

 y 

X 

—y 

 y 

Tlhn]  ¥ 

and it is contracted by the homotopy 

/ 

 y 

—y 

Y 

/ 

/       s 
—y 

 y 

X 

—y 

—y 

XE T  *• 
'[Ln] 

/ * 
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□ 

Lemma 1.8.7'. The projection 

H 
T ) ► 
'[0,n] 

rihn]   ) 

 y 

 y 

T[hn}   ) 

is a quasi-fibration, as is the projection 

—► 

fj 
T > ^ 

—► 

" 
 >- 

t 
 y 

t 
T[l,n]   ' 

 y  ► 

11!     1 

T[ltn] 

Proof. In the case with no kernels, this is Prototype Quasifibration 1.2, whereas in 
the case with differentials it is Prototype Quasifibration 1.4. □ 

Conclusions So Far. There is a diagram whose columns are fibrations 
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1       I 
T\iM 

It immediately follows that the map 0 is a homotopy equivalence. Because we already 
also know that the fiber in each column is homotopy equivalent to 

Theorem 1.7.1 is an immediate consequence of 

LEMMA 3.9. The natural map 
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!     1 
T\hn} 

is null homotopic. 

Proof. The point is that, up to homotopy, this map factors through 

f   ? 
T, 

[l.n] 

which is contractible. The map cj) just forgets the kernels. Consider next the map 

tp 

given by sending the simplex 

0      ►   YPo   > *    ' ''    > *   Ypq 

H H 

0      ► 

Z-i,o 

^Op    *   ^oo 

-f Z-i^p y   XQ    >■ 

loo   > >■    ••• Yc 0q 

xn 

to the simplex 
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->  5^0   > ► > y    Y' 

<n+l 
Z-l,0 

"^    ^p -►    ^r 00 

^zfrt1—»■ ^o —► 

y7 

->-   X0 

where Z^j1 is the truncation of Z-ij below degree n, and the other objects in the 
diagrams are the truncations forced by this. It is completely clear that the diagram 

natural 

T     T 
T[lri 

commutes up to homotopy. 

If we want to write what would be our notation for the homotopy of (f> to 
[natural) o ^ in the diagram above, we note that 0 is just the map    , 
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and the homotopy to ^ o (natural) would be given by a picture looking something 
like 

Since we are nearing the end of the article, the reader should feel free to improve on 
the author's notation; it could certainly use improvement. 

This establishes our first assertion. Now we will show that 

/   0 

 >- 

—► 
Vn] 

v 

::                   :; 

rM 

is contractible. Observe first that the inclusion 

is a homotopy equivalence, by studying the trisimplicial set and the two projections 
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77- U.n] r[ort 

f     1     T     f 
TM 

T[l,n} 

We want to show that each of fi and /2 is a homotopy equivalence. The Segal fiber 
of fi is contracted by the homotopy 

Y YE 
rio^i 

f If ft T 
X XE 77, [l,n] 

whereas the Segal fiber of /2 is contracted by 
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SE 
B 

T     t   .T     T 
T[hn} 

Finally, the simplicial set 

is clearly contractible. □ 
This completes the proof, and the article.   I will spare the reader the victory 

celebration by the general staff. 
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