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GLUING FORMULAE FOR DONALDSON INVARIANTS FOR 
CONNECTED SUMS ALONG SURFACES* 

VICENTE MUNOZt 

Abstract. Following our work in [18], we prove a gluing formula for the Donaldson invariants 
of the connected sum of two four-manifolds along surfaces of the same genus <?, self-intersection zero 
and representing odd homology classes, solving a conjecture of Morgan and Szabo [14]. 

1. Introduction. This paper tries to answer the question of the behaviour of 
the Donaldson invariants under connected sums along surfaces of arbitrary genus 
g > 2 and self-intersection zero. The problem was first motivated by the computa- 
tion of the basic classes of elliptic surfaces. The general elliptic surface with 6+ > 1 
and simply connected, is constructed by the process of connected sum along embed- 
ded tori of self-intersection zero from elementary pieces (rational elliptic surfaces and 
homotopy if3-surfaces). After establishing the appropriate gluing formula for the 
behaviour of Donaldson invariants under the operation of connected sum along em- 
bedded tori, the information of the basic classes for some particular examples gives 
the basic classes of any such elliptic surface. This has been carried out by many 
authors [13] [3] [17] [15] [19]. 

The following natural case is the connected sum along embedded surfaces of genus 
g = 2. Morgan and Szabo [20] [14] treated the case when the self-intersection of one of 
the surfaces is 1 (and the other —1). The author [18] [17] has solved the case in which 
the surfaces have self-intersection zero and are odd in homology, giving a number of 
nice applications. For this he used the Fukaya-Floer homology as developed in [1]. 

The case we are going to deal with in this paper is the connected sum along 
embedded surfaces of higher (arbitrary) genus g, self-intersection zero and odd, giving 
a positive answer to the conjectures in the literature [14, conjecture 7.2] [17, conjecture 
5.27]. 

Let X be a smooth, compact, oriented four-manifold with &+ > 1 and b+ — bi odd. 
For any w e iJ2(X; Z), D^ will denote the corresponding Donaldson invariant [4] [12], 
which is defined as a linear functional on A(X) — Sym*(#o(X)©F2(X))(g)/\* #iP0 
(iJ*(X) will always denote homology with rational coefficients, and similarly for 
iJ*(X)). Let x G H.§{X) be the class of a point. Then Kronheimer and Mrowka [12] 
define X to be of simple type (with respect to w) when D^((x2 — 4)2;) = 0 for all 
z G A(X), and in that case define 

for all z G Sym*#2(X). The series ID)£(e*a), a G H<i{X\ is even or odd depending 
on whether 

do - db(-X>) = -™1 - li1 " &i + &+) 

is even or odd. When bi = 0 and b+ > 1, X is of simple type with respect to some w 
if and only if it is so with respect to any w. In such case, X is just called of simple 
type. 
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PROPOSITION 1  ([12]).   Let X be a manifold of simple type with bi = 0 and 
b+ > 1 and odd.  Then we have 

rx(ea) = eQ^J2a^e Ki-a 

for finitely many Kj G H2(X]Z) (called basic classes) and ajjW = (—1) 2 aj, 
where aj are rational numbers (the collection is empty when the invariants all vanish). 
These classes are lifts to integral cohomology ofw2(X). Moreover, for any embedded 
surface T, <-+ X of genus g and with E2 > 0, one has 2g — 2 > E2 + \Kj • E|. 

DEFINITION 2 ([18]). (w, E) is an allowable pair ifw^e H2(X] Z), w • E = 1 
(mod 2) and E2 = 0.  Then we define 

When b+ = 1, the invariants depend on the metric through a structure of walls and 
chambers [10] and therefore we have to specify the metric. As w • E = 1 (mod 2); 

we have that E is contained in the closure of a unique chamber of type (w,pi) for 
every pi < 0, pi = w2 (mod 4). So, in the case that the invariants only depend 
on the metric through the period point (for instance, simply-connected manifolds [11] 
and E x QP1, with E a Riemann surface, which are all the cases we need for our 
arguments), we shall consider the invariants referring to the chambers defined by E. 

The series Dj^' (e<a), a G #2(^0 5 is even or odd according to whether do is 
even or odd. Since (w + E)2 = w2 + 2 (mod 4), we can recover D^ and JD^+S from 

ux 

PROPOSITION 3 ([18]). Suppose X is a manifold of simple type with bi = 0 and 
6+ > 1 and odd. Write the Donaldson series as ©£ (ea) = e^W/2 £ ajiW eK^a. Then 
setting do = do(X,w) = —w2 — |(1 + 6"f) we have 

Kj''Z=2    (mod 4) Kj-E^O    (mod 4) 

So giving Bj^ is equivalent to giving D^' '. 
REMARK 4. Under the conditions of proposition 3, we can prove in a similar 

fashion that 

Kj'E=2    (mod 4) Kj.'E=0    (mod 4) 

and using that jD^'E)(a;fl ea+E) = ^ ^D^^\Ebxa ea), one has 

i?^E)(E6a;00 = cg(a)/2 Yl aj,w2a({a + Kj)'E)beK^a + 
KjY,=2     (mod 4) 

+e-Q(«)/2 ^ rdoaJ>(-2)a((-a + 2ii:i).E)6e^"a 

KjT,=0     (mod 4) 

DEFINITION 5 (compare [18]). We say that (X, E) is permissible if X is a 
smooth compact oriented four-manifold and S «—>• X is an embedded Riemann surface 
of genus g > 2 and self-intersection zero such that [E] G #2(^5 Z) is odd (its reduction 
modulo 2 is non-zero, or equivalently, it is an odd multiple of a primitive homology 
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class). So we can consider w € iJ2(X;Z) with w • E = 1 (mod 2). Then (w,£) 
is an allowable pair (we consider E E if2(X;Z) through Poincare duality). This 
implies that 6+ > 0. Let N^ = ^4 = E x D2 fee a tubular neighbourhood of E and se£ 
X0 = X — int(iVs). Then dX0 = Y = E x S1 ffe^t ^/ie isomorphism is not canonical). 
We consider one such isomorphism fixed and (when necessary) we furnish X0 with a 
cylindrical end, i.e. we consider X°e = X0 U {Y x [0,oo)). 

We call identification for Y = E x S1 any (orientation preserving) bundle au- 
tomorphism (j) : Y -> Y. Up to isotopy, 0 depends only on the isotopy class of the 
induced diffeomorphism on E and on an element of H 1(E; Z). 

DEFINITION 6 ([18]). Let (Xi,Ei) and (X2,E2) &e permissible, with Ei and 
E2 of the same genus g. We pick orientations so that dX° = —dX^ — Y (minus 
means reversed orientation). Then X = X((j)) = X° U^ X^ = Xi#s^2 ^s called the 
connected sum along E of (Xi,Ei) and (X2,E2) (with identification (f)). It is a 
compact, naturally oriented, smooth four-manifold with an embedding Y <-» X such 
that X-Y = (XZ)ce U (X2

0)ce C Xi U X2. 
The induced homology classes [Ei] and [£2] coincide and are induced by an em- 

bedded E <-> X. Then (X, £) is permissible. Choose Wi G iJ2(Xj;Z), i = 1,2, and 
^ G i?2(X; Z) such that Wi-lli = 1 (mod 2), w-Y, = 1 (mod 2), in a compatible way 
(i.e. the restricition of w to Xf C X coincides with the restriction of Wi to Xf C X^). 
We have w2 = wf + w^ (mod 2). Changing w by w + E if necessary, we can always 
suppose w2 = wl + wl (mod 4). In general, we shall call w all of them, not making 
explicit to which manifold they refer. Note also that if bi(Xi) = bi(X2) = 0 then 
&i(X) = 0and6+(X) > 1. 

REMARK 7. There is a case when there is a preferred identification. Suppose 
Xi and X2 are complex surfaces, E is a complex curve of genus g and there are 
holomorphic embeddings £ <-> Xi, with image £*, i = 1,2, such that [£$] is odd 
and has self-intersection zero. Then the holomorphic normal bundle to £; gives a 
preferred isomorphism dN^ ^>EixS1 = ExS1, and hence a preferred identification 
dXf ^ -8X1 

REMARK 8. Let Xi and X2 be as in definition 6 and X = XI#EX2. Then 
homology orientations for X\ and X2 induce canonically a homology orientation for 
X. To see this, define if|.(Xf) to be a maximal definite positive subspace for the 
intersection pairing of Xf restricted to the image of ^(X?) —> H2{X°,dX°) = 
H2(X°). Then it is easy to see that the exact sequence for the pair (Xi,X°) and the 
Mayer-Vietoris sequence for X = Xf U X^ yield the following exact sequences 

0 -> H^Xi) -> H1^?) -+ H2(A,dA) -+ Hl(Xi) -> Hl(X?) -> 0 

0 -> ^(X) -> H^Xf) 0 H1^) -> Hl(Y) -> Hl{X) -> H2 (Xf) 0 Hl(X$) -> 0, 

where A = £ x D2 as before. We fix an orientation of H1 (Y) (it does not change when 
we reverse the orientation of Y). So homology orientations for Xi and X2 induce a 
homology orientation for X. 

Let n = {D G H2(X)/D\Y = M§1] ^ H^Y), some ik G Q}. This subspace of 
H2(X) contains the image of i^P^ei^X^). For every D G H, choose A G #2pQ) 
agreeing with D (i.e. A|x? = -D|xfj i = 1,2) and with D2 — D2 +D2. Moreover, we 
can suppose that the map D K> (DI, D2) is linear. Actually, once chosen one of such 
maps, any other is of the form D M» (Di + rE, D2 — r£), for a (rational) number r. 
Let us state now our main result. 
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THEOREM 9. Suppose (Xi,Ei) and {X2^2) are permissible with Ei and S2 of 
the same genus g > 2. Suppose also that Xi, X2 have both bi = 0 and b+ > 1 and 
are of simple type. Let 

and 

B%2(ea) = eQW2l£bk,weLk-a. 

Choose any identification (j) and let X = X{<t>) — XI#E^2 6e the connected sum along 
E, with the induded homology orientation. Suppose finally that X is of simple type. 
Letw G H2(X;Z), Wi G H2(Xi;Z), i = 1,2, m a compatible way, such thatwi-Y^i = 1 
(mod 2), it; • E = 1 (mod 2) and ty2 = wj + ^1 (mod 4). For every D £ H, we 
choose Di G H2(Xi) agreeing with D and satisfying D2 = D2 +D2 in such a way that 
the map D H> (DI,D2) is linear.  Then 

ID)£ (e^) = e<K">)/2(     J2     -279-9aj,wbkiW e(KJ-D1+Lk-D2+2^D)t+ 

KjY,=Lk'Y.=2g-2 

(1) + Y. (-1)' 27P~%>A,™ e{K^+Lk.D2-2^D)ty 
Kj^=Lk^=-(2g-2) 

REMARK 10. If we do not assume w2 = wf+w2 (mod 4), we get an extra factor 
6 = (_i)(2-i)(™2-^-^)/2 in front of formula (1). 

REMARK 11. The reason for the sign is easy to work out. First, w2 = w2 + w2 

(mod 2). Also, 

-l(l-b1(X) + b+(X)) = ~(l-b1(X1) + b+(X1))-l(l-b1(X2)+b+(X2))-3(g-l). 

Therefore, do(X, w) = G?O(^I, w) 4- do(X21w) + g — 1 (mod 2). Now the sign comes 
from the fact that the coefficient for the basic class -K is (—l)docK, being cK the 
coefficient for the basic class K. 

REMARK 12. If we are in the conditions of theorem 9, but g = 1, we get a slightly 
different answer [17, chapter 4] [14]. For all basic classes, it is Kj • E = Lk • E = 0, 
and 

Kj,Lk 

+ E -\ai,»hk,^Ki-*+L''-D*-2*-D)t + E -k>&*1,0e(*'-*+i»-^>«). 
KhLk Kj,!,,, 

COROLLARY 13. Suppose we are in the conditions of theorem 9. Write Dx(ea) = 
eQ(a)/2 £ c^o1, ©x, (ea) = eQ^'2 Y, ajeKia and ©x2 (e

0) = e^^2 E he1"01 for 
the Donaldson series for X, Xi and X2, respectively. Then given any pair (K,L) € 
H2(X?; Z) © H2(X%; Z), we have 

£    C(« = (±i)»-i27»-9( x) ai)-( E 6*) 
{K/K\XO=K,K\XO=L} Kj\xo=K Lk\xo=L 
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whenever K\Y = L\Y = ^{^9 — 2)P.D.[S1]. Otherwise, the left hand side is zero. 
Proof. Allowing D to vary in %, formula (1) gives 

E 0^6^)*=     Y,     -(±l)p-127^9aJ>6fcflI,c^^+Lfc-I>a±2E^. 
{K/K\Xo=K,K\Xo=L} Kj\xo=K 

Lk\x°:=L 

(2) 
We cannot have more precise information on hi as we cannot evaluate W^- on all 
D G H2{X). Now take ti; = P.D.[JD] G H2(X;Z), ^I - P.D.[L>i] € H^XuZ) and 
W2 = P.D.[J32] G H2(X2',Z) with w2 = tu? + ^ and w • £ = 1. Substitute t = 7ri/2 
in (2) and multiply by (-1)™2/2 = (-l)^?/2 (-l)^/2, to get the sought expression. D 

REMARK 14. In theorem 9 we cannot hope for having a similar formula for classes 
D such that D\Y is not a multiple of [S1] in ifi(y). This is due to the fact that we 
cannot find Di E H2{Xi) agreeing with D (i.e. Di\x? — D\x?, for i — 1,2). We 
would need to relate the invariant P^ (etD) with invariants of the form P^ (e£jDi), for 

suitable manifolds Xi containing Xf, Di G ^(X;), such that JDilx? = -D|x?- This 
was done in [18, theorem 10] for the case g — 2 (see also conjecture in section 5). 

This limitation prevents us from having more general results. For example, we 
do not know whether (under the conditions of theorem 9) there are basic classes K for 
X = Xi#sX2 such that \K • S| < 2g — 2 or not (compare [18, corollary 11]). 

In some cases, theorem 9 is all that we need to find explicitly the basic classes for 
X. This is due to the fact that there is a subspace V C H2{X) where all the basic 
classes vanish, such that H2(X) =Ti®V. In [14, definition 4.1], Morgan and Szabo 
define admissible identification, which is a condition which implies that X = Xi#£X2 
is of simple type and such V exists. 

COROLLARY 15. Suppose there exists a subspace V C H2(X) where all the basic 
classes vanish such that H2(X) = Ti 0 V. Then there are no basic classes K for X 
such that |tt • E| < 2g — 2. The basic classes for X are indexed by pairs of basic classes 
(Ki,Lj) for Xi and X2 respectively, such that Ki • E = Lj • E = ±(2^ — 2). 

REMARK 16. Corollary 13 agrees with the results of the kind for the Seiberg- 
Witten invariants [17, section 7.3]. Morgan, Szabo and Taubes [16] have proved 
the analogous result to corollary 13 for the Seiberg-Witten basic classes (not the part 
corresponding to basic classes K for X with |/c-E| < 2g-2). Both results are equivalent 
supposing true the conjecture of Witten [22] about the relationship of Donaldson and 
Seiberg-Witten invariants. 

Our last result is 
THEOREM 17. Let S = E x OP1, w = P.D.pP1] G H2(S;Z). Suppose that S is 

of finite type of order n > 1 with respect to w and w + E for the metrics defined by E 
(i.e. D^^dx2 - 4:)nz) = 0, for all z G A(5);. Then for any (X,E) permissible, X 
is of finite type of order at most n with respect to any w G H2{X; Z) with w • E = 1 
(mod 2) (and for metrics defined by E, in the case 6+ = \). 

2. Gluing theory. Now we are going to develop the gluing theory necessary to 
prove theorem 9. The set up is as follows, X = X° Uy Xg, where <9Xf = —dXg = Y, 
an oriented three-manifold (later Y = ExS1), w G H2(X;Z),Wi = w|xt. G iJ2(Xf;Z), 
and D G ffcPO a homology class. So D\Y G H^Y). We want to evaluate D%{Dd), 
the invariant being linear, we may multiply D by any non-zero rational number, and 
hence suppose that D\Y is either zero or primitive in jffi(Y;Z). Now we represent D 
by a cycle D C X and put D° = DnX?, which we shall write formally as D = DZ+D%, 
D° C Xf. We can suppose 00° — —dD^ = 7, with 7 C Y an embedded curve in Y, 
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so when we give Xf a cylindrical end, we have D° fl (Y x [0, oo)) = 7 x [0, 00) (and 
analogously for X^). 

PROPOSITION 18 ([2] [1] [17]).    Suppose W\Y odd.    Then we have one of the 
following cases: 

• D\Y = 0 in #i(y;Z). Represent D by a cycle so D = Df + 0%, D? C 
X?, dDl = dD^ = 0. Consider the Floer homology groups [2] HF*(Y) 
(graded mod 4). Then (X°,D°) define relative invariants (j)Wl {X°, etD°) E 
HF+{Y) 0 Q[[t}}, (l)wz(X°,etD02) G HF*(-Y) <g> Q[[t]]. There is a natural 
pairing HF*(Y) 0 HF*(-Y) -> Q; such that 

(3) £^'EVD) =< <l>Wl(X;,etD^(l>W2(X^etDi) > . 

• D\Y 7^ 0. Substitute D by a rational multiple if necessary so that D\Y £ 
Hi(Y;Z) is a primitive element in Hi(Y\Z). Represent D by a cycle so 
D = D^+DZ, D? C X?, dDl = -dD^ = 7, with 7 C Y an embedded curve in 
Y. Consider the Fukaya-Floer homology groups [1] HFF*(Y,'y) (graded mod 
A). Then (X?,D?) define relative invariants (j)Wl(X?,etD°) <E EFF^Y^), 
(l)W2(X^etD^) e HFF*(-Y,-j). There is a natural pairing HFF^Y,^) ® 
HFF*{-Y, -7) -> <Q>[[*]], such that 

(4) D{x^\etD) =< (i)Wl{X°,etDi),(j)w*{XZ,etD*) > . 

When b+ — 1, the invariants are calculated for a long neck, i.e.   we refer to the 
invariants defined by S. 

Proof. 
• As explained in [2], the Floer homology groups HF*(Y) are well-defined 

since W\Y is odd (this rules out problems with flat reducible connections on 
Y). Also, there are invariants (t>Wl(X°, (D°)n) e HF*(Y), ^(X?, (£>g)m) G 
HF+(-Y) such that 

D^HiDinnm =< ^{X^iDD^^^iX^iDlD > . 

Now we write 

•T1 (XI etD°) = Y, ^Wl W. (£?)"), 

from where the statement of the theorem. 
• Analogously, in [1] the Fukaya-Floer homology groups HFF* (Y, 7) are defined 

when W\Y is odd. Associated to (Xf, D?), there are invariants (j)™1 {X°, -Dj) G 
HFF*(Y, 7) and ^2(X2

0, ^) G HFF^-Y, -7), where ^ (Xf, Df) is repre- 
sented by a Fukaya-Floer chain (^(Xf, (i^)n))n>o, where ^(Xf, (iP?)n) 
G HF*(Y) (and analogously for (X^,^)), such that 

2jK=)(z?r)== j- Q<^(x^(^1T),r2(x2
0,(P2T-n)>. 

0<n<r ^^ 

So we write formally 

^—' n! 

for the given Fukaya-Floer homology class. D 
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Now we particularize to the case which concerns us, Y — S x S1. Conjugation in 
the second factor produces an isomorphism Y = (—Y) (also (Y,7) = (—Y, —7)). As 
explained in [1] [17], HFF*(Y,'y) is the limit of a spectral sequence whose Es-term is 
HF*(Y) QH+iCP00) (here H^CP00) means the natural completion of if^CP00), i.e. 
Q[[t]], t of degree 2), with difTerencital ds given by 

/i(7) : HFiiY) 0 HjiCP00) -> HF^3{Y) ® ^^(OP00). 

Let 7 = ptx§1cEx§1. Now all the differentials in the E3 term of the 
spectral sequence are of the form (see Proposition 20) i7odd(Mgdd) -> ifeven(M£dd) 
and i/'even(M£dd) -» ifodd(Mgdd). The boundary cycle 7 = S1 is invariant under 
the action of the group Diff(S) on Y = E x S1, so the differentials commute with 
the action of Diff(E). As there are elements p G Diff(S) acting as —1 on H1^), 
we have that p acts as —1 on iJodd(M£dd) and as 1 on iIeven(M£dd). Therefore the 
differentials are zero and the spectral sequence degenerates in the third term. This 
implies that HFF*{Y,j) = HF*(Y) 0 ff^OP00) = V[[t]], where V = HF*{Y). Now 
the relative invariants for (Xf,i)J) can be written as 

where <j)Wl{X^ {Dl)n)   G  HF*(Y) has perfect meaning.    Under the isomorphism 
iJFF* = #FF*(y,7) = y[[t]], i?FF* becomes a Q[[t]]-module and HFF*®HFF* -> 
Q[W] is Q[W]-bilinear. 

COROLLARY 19. 
i.  There is a (rational) vector space V = HF*(Y) endowed with a bilinear form 

such that for every permissible (X, £), i/; G i?2(X0;Z) iwitt iy|y an ode? mul- 
tiple o/P.D.tS1], and cyc/e D0 C X0 witft aJ90 = 0, we /mve (f)w(X0,etDO) G 
y [[*]]. For X = Xf Uy X2

0
; D = Uf + £>§, 9D? = dD$ = 0, w;e /zave 

£>^'SVD) =< ^W^^0),^2^^^0) > . 

2. There is a canonical isomorphism HFF*(Y,§1) = V[[i\], such that for every 
permissible (X, E); w G H2(X0]Z) with W\Y o,n odd multiple of P.D.fS1], 
and cyc/e D0 C X0 with dD0 = ■ S1, w;e Aawe (j)w(X0,etD ) G y[[t]]. For 
X = Xf Uy X2

0, D = D° + D0
2, dD° = -9^ = S1, z^e /lave 

D^,E)(ctD) =< r1^!0^^0),^2^^^) > . 

PROPOSITION 20. Let M£dd 6e t/ie moduli space of odd degree rank two stable 
vector bundles on E; which is a smooth variety [9]. Then there is an isomorphism 

HF*(Y)^H*(MZdd) 

as vector spaces (we are using rational coefficients), where we reduce the grading of 
#*(M£dd) modulo 4. 

Proof Dostoglou and Salamon [5] prove #F*(£ x S1) £ #F*symp(M£dd). It is 
the particular case where we consider <j> — id : E —> E, in which the mapping torus 
of (j) is E x S1. As explained in the introduction of [5], the symplectic manifold M£dd 

is connected, simply connected and 7r2(M£dd) = Z, so the groups #F*symp(M£dd) 
are well-defined. Now #F*symp(M£dd) ^ ^(Mgdd) is a standard result obtained by 
Floer himself [7] for proving the Arnold conjecture. □ 
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There is a map 

^:#*(£)-+#4-*(M£dd) 

given by /i(a) = -\pi(V)/4, where V -> S x M£dd is the associated universal 50(3)- 
bundle,pi(V) € H4(ExM£dd) its first Pontrjagin class. Fix abasis {7^} of ffi(S). Let 
a = ^(S), 6 = //(x), Q — //(7i). These elements generate iJ*(M£dd) as a ring [9] [21]. 
So there is a basis for V = iJ*(M£dd) with elements of the form 

fa = anbmCi1'.-Ci1. EV, 

for a finite set of indices of the form a = (n, m; 21,..., ir), n, m > 0, r > 0, 1 < zi < 
• • • < ir < 2^. Let iV = dim V. We order the set of indices {a} so we identify such 
set with {1,..., N} and write 1 < a < N in general. 

Let / be the ideal of iJ* (M£dd) generated by ci,..., C2g. Then the elements an6m, 
0 <n,m < g, generate the quotient iJ*(M£dd)// (see [9]). So we can suppose these 
elements are the first g2 elements in the basis {/a}, i.e. for 1 < a < g2. 

The intersection pairing in iJ*(M£dd) is given by 

(5) < fa, U > = < fa U //?, [M£dd] > . 

Therefore the intersection matrix (< fa^fp >) is invertible. 
Here we recall that we have defined the manifold A = E x D2, with boundary 

Y = E x S1, and let A = pt x D2 C A be the horizontal slice with <9A = S1. Put 
w = P.D.[A] e H2(A;Z). Put A(E) = Sym*(iJo(E) © ^(E)) 0 A*#i(s)> so there 
is a natural map A(E) —> A(X), whenever E «-> X. Then we define 

^ = Sna;ro7<i---7ir GA(S), 

ea = ^(^zaC
tA) G HFF^S1) = V[[t]]. 

LEMMA 21. T/ie intersection matrix (< ea,ep >) (W£A coefficients in Q[[t]]) is 
invertible.  Therefore, {ea} is a basis for HFF*(Y) = V^]]. 

Proof As the elements /a G i/'*(M£dd) have an integer degree between 0 and 
6g — 6 = dim M£dd, we can reorder the basis {fa} such that the degree goes increasing 
(we use this special ordering only in this lemma).  Now za = Ena;m7i1 • • -7^, zp = 

Sn,a;m'7ii---7i;# 
and 

< ea7e0 >=< r(A,zaetA)^w(A,zpetA) >= ^^.(^z^011), 

where w = P.D.fCP1] G iJ2(E x CP^Z). The matrix (< ea,e0 >) has coefficients in 
Q[[t]], so it is invertible if and only if its determinant is a unit in Q[[t]], i.e. when we 
put t = 0 we obtain an invertible matrix with rational coefficients. Now 

< e^ ep > \t=o = ^X'OP
1
 (z<*z0)' 

The lowest dimension of the moduli spaces of anti-self-dual connections for E x CP1 

is 6g - 6, so if deg za + deg zp < 6g — 6 then < ea, ep > |i=o = 0. The moduli space of 
dimension 6*7 — 6 corresponds to pi — 0 and u? = P.D.fQP1]. All of these connections 
are flat and irreducible, actually pull-back of flat connections on E with w^ odd, so 
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the corresponding moduli space is isomorphic to M£dd. Thus if deg za+deg zp = 6g—6 
then < ea,ep > \t=o =< /a, //3 >• The matrix (< fa, fp >) is of the form 

/ 0     Ao \ 
Ax     0 

\ A6g-G    0    • • •     0      0   J 

where Ai are submatrices corresponding to the intersection product 

odd\ 

So all Ai have non-vanishing determinant det Ai 6 
matrix (< ea,e/3 > \t=o) is 

-> 

Finally, we have that the 

/ 0     Ao \ 
Ax     * 

\ Aeg-e 

and it is invertible. D 

3. Proof of Theorem 9. By the above lemma, {ea} is a basis of V[[£]], so there 
is an isomorphism 

4>^ (< <t>,ea >)a. 

The important feature is that if {Xi, Si) is permissible, w € i?2(Xi;Z) with w-S = 1 
(mod 2), Dl C Xf with dDl = S1, Di = Df + A, then <fi = ^w(Xf,et£,i) goes to 
(cxua(t))i<a<N e Q^[[«]], where 

CXl,a(*) = Z?g,S)(zae*i>1). 

The pairing in V'[[t]] corresponds through the isomorphism to a pairing in Q^ [[£]], 
which is Q[[t]]-bilinear, hence given by a matrix of Q[[t]]-coefficients (Ma/3(t))i<a^<^. 
This matrix is universal (only dependent on the data necessary for the construction 
of the Fukaya-Floer groups, i.e. (Y,7), and on the chosen basis). 

Now if (-X"i,Ei) and (X2,^2) are permissible, let X = X((j)) = Xi#sX2 (with 
an identification (/>) be the connected sum along E, with the induded homology ori- 
entation. Let D e #2p0 with D = Di+D2i dDi = -3^2 = S1- Put Di = A9 + A- 
Then (here cx^aW - ^'^(^e^), ^^(t) - i3&E)(^c^)), 

(6)^'E)(e^) =< r{XletDi),<t>w(X0
2,e

tDz) >=     ^     cx^a^M^^c^^W 
l<a,/?<Ar 

Now suppose that Jfi has 61 = 0. Then cx1,a(^) = 0 whenever r > 0 (recall 
a = (n,m;ii,... ,ir))- So the only non-zero coordinates correspond to za — Sna:m, 
0 < n,m < g — 1. Suppose furthermore Xi of simple type with b\ — 0 and 6+ > 1, 
so for z = (x2 - 4)£n:rm-2, 0 < n < y - 1, 2 < m < flf - 1, U^^e^1) = 0, hence 
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changing the basis {za}, all coordinates cxj.aC*) are zero except for the first 2g of 
them, corresponding to za = S™ and za = Sna;, 0 < n < g — 1. 

LEMMA 22. Let (Xi,£i) be permissible, with Si of genus g, Xi of simple type 
with bi = 0 and b+ > 1, (w, S) allowable and Di £ H2{Xi) with Di ■ S = 1. Then 

Di^\etD^Z) = 0for 

_/(l-f - f )(E + t)((S + t)2 + 42)((S +1)2 + 82) • • ■ ((£ + i)2 + (2g - 4)2) 5 et;en 
)((£ - i)2 - 22)((S - t)2 - 62) • • • ((£ - f)2 - (2g - 4)2) y odd 

Proof. Suppose, for instance, g even. By remark 4, for any polynomial p(E) in E 
(with coefficients in Q[[£]]), 

^'^((l - f MS)^1) = 2e-^tD^2 Y, i-^ptt-tDt+iKj) ■ EJa^e'*^^'. 
iiTj-EEEO    (mod 4) 

Now £)i -E = 1, so the expression above vanishes when p(E) has roots — £, —£±42,.. .— 
£ ± (2p - 4)i. U 

Note that z = (1 ± f )p(E) with p of degree p — 1. Let us choose a basis {za} with 
2i> • • • z2g-i being the elements 

JL, 2J, ZJ   , . . . , 2J        , X, ZJXj . . . , ZJ        X, 

Z20 = z, also ^-fi,..., Zg2 being the elements (x2 - 4)Ena:m_2, 0 < n < g - 1, 
2 <m < g—1 and ep2+1,..., e^ having all r > 0. So, when Xi is of simple type with 
h = 0 and 6+ > 1, 

where Q2^"1 [[£]] is the orthogonal complement to < e2g,..., e^ > in V[[t]]. 
Formula (6) reduces to (when both Xi are of simple type with bi = 0 and b+ > 1) 

(7) D%"*\etD)=       2      ^.a^M^Wcx^W, 
l<a,/?<2p-l 

where 

<*!,*(*)=<( f^S) 
£) J's) (EnetZ51) if 0 < n < g - 1, a = (n, 0;) = n + 1 
£)(«,s)^s,„a, et0l j if 0 < n < g - 2, a = (n, 1;) = n + s + 1 

= < 

^••2=2     (mod 4) 

+e-Q(tD1)/2  j2 i-^a^i-l + iKj ■■S)netiK'Dl 

/CyEsO    (mod 4) 
2eC3(tI>1)/2 ^ aj>(1 + Kj . S)net^.Di_ 

KjE=2    (mod 4) 

_2e-Q(tD1)/2 Y^ i-^aj^i-l+iKj ■ Z)"etiKiDi 
KJ-SEEO    (mod 4) ' 

and analogously for cx2,0(t)- 
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So it is easy to find another basis {zi,..., Z2g-i} (which we do not write explicitly) 
spanning (Qp5-1 such that 

CXi,aC0 = { 

f e^i)/2     £     ajtWetKrD^ if pis odd 

e-Q(tD,)/2     Y,     i-d°ajiWetiKi-Dl if pis even 
Kj'Yl=2p 

where a = 1,... ,2<7 — 1 corresponds to p = g — 1, — (# — 1),<7 — 2, —((/ — 2),... ,0. 
Formula (7) yields 

(8) D^\etD)=       Y,       cXua{t)Ma(}{t)cX2,0{t) 
l<a,(3<2g-l 

with cx2,0(t) defined analogously to cxlla{t), with the letter q in the place of p. 
LEMMA 23.  The matrix (Ma^(t)) is diagonal 
Proof. First we note that 

D%*)(etD+8i:)= Y, cxAt)ets+2ps +  E cxAt)e-ts+2pis. 
p odd p even 

We use equation (8) for D + f £, Di + f X and .D2, so 

l<a,/3<2g-l 
p odd 

+      ^ cJCl|a(t)Ma0(t)cXa^(t)e-*-,-2,,i'. 
l<oc,(3<2g-l 

p odd 

Then 

(9) CxA*) =^2cx1A
t)Ma0(t)cx2A

t)' 

Let us see that Map(t) — 0 unless (3 = a. Suppose, for instance, that p is odd. If we 
write now D = (D° + rS) -h (L^ — r^)i the left hand side of (9) remains unchanged, 
but the right hand side is a sum of exponentials e^2p~29^r, q odd, and e^2p~2q^r

y q 
even. So when q ^ p, it is Map(t) = 0. □ 

Formula (8) gives 

D^V*) = ^    e^(tDl)/2+Q(tDa)/2Maa(t)aifll,&ibfti;e^-Dl+*Lfc-jD2 + 

+ ^        le-Q{tD1)/2-Q{tD2)l2M(t\i-do(XlL,w1)-dQ(Xi,W2) 

Kj-Il=Lk-^=2p, p even 

n.    hj        tiKj-D1+tiLk'D2\ 

Obviously D2 — D2 -\- D2. We are assuming that X is of simple type and recall 
that 6i(X) = 0 and 6+(X) > 1. By remark 11, do(X,K;) -do(^i,^i) - ^0(^2,^2) = 
w2 — w2 — wl - 3(^ — 1) = g — 1 (mod 4) (since we are assuming w2 = w2 + w2 

(mod 4)), so 

DJ (e«) = cW^)/2      ^      ••Maa(t)aJ>6ikfwC«i^+*L* D2 

KJ-S=LfcS=2p 

-(0-l)<P<9-l 
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where s = 0 when p is odd and s = g — 1 when p is even. As g is not dependent on 
the particular manifolds, we absorb this factor into the matrix without affecting its 
universality. 

This expression is valid for any D G H2(X) such that D\Y = S1. We note 
that it does not change if we change (Di,D2) for (Di + rX,Z}2 — r£), as expected. 
This means that we only need to assume the conditions: D and Di coincide in Xf, 
i = 1,2, and Z)2 = Df+Dl. Now take a linear map D H-> {DI,D2) from the subspace 
7i — {D e H2(X)/D\Y = fcfS1], some ^}5 satisfying the former conditions. As the 
set of D G H2(X) with .D|y a non-zero multiple of S1 is dense in H, we have that for 
any D G H, 

(10) ID)£ (e^) - c^^)/2      2      Maa(t(D • E))ai,fi;6ifcftl,e^^+fL*^ 

LEMMA 24. Maa(^) - 0, excep* for a = 1,2. 
Proof. Let y be the i^S surface, which is a manifold of simple type with &i = 0 

and b+ > 1 (see [12]). Consider a tight embedded Riemann surface £' ^ Y of genus 
g' < g and self-intersection zero. By definition of tightness (see [12]), (E')2 = 2</ — 2. 
To construct it, we consider an elliptic fibration for the KS surface. Let T be a generic 
fibre (which is a torus of self-intersection zero) and let 5 be a section represented by 
a sphere of self-intersection —2. Then consider 5 together with g' generic fibres and 
smooth out the intersection points. Call the resulting Riemann surface £'. It is 
homologous to 5 4- g'T, it has genus g' and self-intersection 2g, — 2, as required. 

We blow-up Y at 2g, - 2 points in £', to get Xx = Yft^g' - 2)CIP2. The proper 
transform of £' is a Riemann surface of genus g' and self-intersection zero. Perform 
an internal connected sum with g — g' homologically trivial tori to obtain a Riemann 
surface £i of genus g and self-intersection zero. If E\,..., E2g<-2 are the exceptional 
divisors, £i is homologous to £' + E\ + • • • 4- E2g'-2- 

Moreover, the basic classes of Xi are ±Ei H ±E2g>-2> They all satisfy «• Si < 
2g, — 2 and there is exactly one, K = Ei 4- h E2g'-2, satisfying the equality. 

Let (X2,S2) = (Xi,Si), and consider X = Xi#xX2 with the preferred iden- 
tification of remark 7 (double of Xi along Si). Then X splits off a §2 x §2, so its 
invariants are zero (see [16, section 4.3] for this well-known phenomenon). As in the 
proof of lemma 23, cx,a(t) — cx1,a(t)Moca(t)cx2,a(t)- We proceed by induction from 
g' = 1,2,..., g - 1 and get Maa(t) = 0, for a > 3. D 

Formula (10) becomes 

Wj>(ew)=eQ(tDV2 ]>] M11(t(D-Z))ai,wbk,weiK>-D*+tL'-D' + 
Kj-'Z=Lk-Z=2g-2 

(11) +eQ(tD)/2    J2    M22{t{D.Y.))aj,wbj,wetKiD^tL*Di 
Kj^=Lk^=-(2g-2) 

Now let us compute Mn (t) and M22 (*)• We can do that with a particular example 
of connected sum along a surface of genus g in which the invariants are known for Xi, 
X2andX = Xi#EX2. 

DEFINITION 25.  We are going to define the following smooth manifolds: 
• Let Sn be the minimal elliptic surface with no multiple fibres and geometric 

genus pg =n — l.  This is unique up to diffeomorphism [8]. Si is the rational 

elliptic surface, i.e. Si = CP2#9CT2. 
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Let Si be the blow-up of Si at one point. Therefore, §1 = CP2#10CT2. Con- 
sider a particular elliptic fibration for Si with section a (of self-intersection 
— 1) and fibre F. Call E the exceptional divisor, so Si has an elliptic fi- 
bration with fibre the torus Ti = F and there is another embedded torus T2 
homologous to a + Xi - E with T2 = 0 and Ti • T2 = 1. 
Let Bg — ISI#TI«5I#TI •••#Ti'5i (connected sums along Ti's with the pre- 

9 

ferred identification), which is diffeomorphic to S^gQP . It contains an 
embedded torus Ti of self-intersection zero and a Riemann surface of genus g 
(and self-intersection zero) made up by gluing smoothly the T2 ;s coming from 
each §1. Actually, the elliptic surface Sg has a section Gg with a2

g — —g, and 
Tig can be taken to be the proper transform of cr5. Clearly, E5 • Ti = 1, so 
(Bg^Tg) is permissible. Bg is of simple type with bi = 0, b+ > 1 (as g > 2). 
Let Cg — Bg^Y.gBg with the preferred identification. It contains a Riemann 
surface E2 of genus 2 and self-intersection zero made up from gluing smoothly 
the Ti's. If we perform instead the connected sum of two Si along T<2, we get 
B2 = Sii^TiSi with an embedded Riemann surface E2 of genus 2 and self- 
intersection zero, coming from smoothly gluing the Ti's. Clearly (£2, £2) — 
(52,22). Now 

C9 = BgttVgBg = B2#t2 '' ' #±2
B(Z ' 

By [18, theorem 10], Cg is of simple type with bi  = 0 and &+  > 1.   Al- 
ternatively, we can use [12], since it contains a torus of self-intersection 0 
intersecting an embedded (—2)-sphere transversely in one point (see proposi- 
tion 27). 

PROPOSITION 26. Consider (Bg^g). Let KBg be the canonical class of Bg, and 
w = P.D.pi] G H2(Bg',Z). Then W^g(e9) = ^e^e*** + ^e^e"^^ + • • ■, 
where the dots correspond to basic classes K for Bg with \K • S^| < 2g — 2. 

Proof. Write Bg as Sg#g(CF . Let F be the fibre of the natural elliptic fibration 
(i.e. F — Ti). Let Ei,...,Eg be the exceptional divisors. Then the basic classes 
are kF ± Ei ± E2 • • • ± Eg, with -(g - 2) < k < (g - 2) and Jfc = g - 2 (mod 2) 
(see [12] [6]). So the only basic class K with K • Ey = 2g — 2 is the canonical class 
KBg = (9-2)F + E1+E2 + -' + Eg. Therefore [12] [6] [17] 

BB (e#) = eQ/2(sinh F)^"2 sinh Ei • • • sinh E, 9 

1      OQ/^KB, + __J_eQ/2e-KBg + 
229-2 229-2 

Now we note from proposition 1 that for w = Ti, W^   = Dj^, since w • K = 0 for all 
basic classes «, hence the result. □ 

PROPOSITION 27. Cg is of simple type. Forw = P.D.py G H2(Cg]Z), 

Dg (ea) = -2Z9-heQ<<OL)f2eKc9-a + (-l)5235-5eQ(a)/2e^c^a, 

for a unique basic class K = Kcg G H2(Cg]Z), such that K•E2 = 2, K-Hg = 2g-2. 
Proof By propositon 26 and proposition 3, 

D{72>t2\ea) = -eQ(<a)/2eKB2-a + -eQM/2
e-

KB2^ + ... 
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where the dots correspond to basic classes AC with K • S2 = 0. Now we express Cg = 
^2#s  • • • #£ B2 and use [18, theorem 6], 
v L^ 1—/ 

9 

D{cg
9'±2)(ea) = (-32)^-1 /'iye^)/2e^-a + 32^1 f-Y eQ(«)/2eKcg.<* = 

- (_l)P-l235-5eQ(«)/2eii:cg-a _!_ 23p-5eQ(a)/2eJft:cp-«) 

where i^T = iiT^ G H2(Cg]Z) is defined as the unique cohomology class such that 

• K • E2 = 2 
• IT ■ £, = 20 - 2 

• Writing Cp = C^i Uy JB£, one has if • (ai + a2) = ifc9_i * ai + #£2 ■ ^2, 

where ai G H2{C0
g_l) and as 6 ^2(^2)- 

• Write 4° = (5i - (iVTl U NT2)) ^Y-NTlndNT2 {Si - (NTl U NT2)). For any 
7CEcSx§1 = SA^Ti disjoint from NT2, we consider the vanishing discs 
for 5i with elliptic fibration with fibre Ti (see [8, page 167]). These can be 
considered disjoint from NT2, SO they are embedded (—l)-discs in Bg with 
boundary included in dBg. In the same vein we find many embedded (—1)- 
discs in Cg_1, so, in the terminology of [14], the preferred identification for 

Cg = Cg_1 Uy B2 is admissible.   By remark 14, in the first place Cg is of 
simple type. In the second place, there is a subspace V C H2(X) such that 
H2(X) = n 0 V and K • a = 0, for all a 6 V. 

For w — P.D.P2], using proposition 3 again, 

ID)g2 (ea) _ _2^9-^eQ{oL)l2eKca'Oc + (_1^23^-5eg^/2ejft:c^a    □ 

Finally, we can find Mlx{t) and ilfeft). Let (Xi,Ei) = (^2^2) = (^,Sff), 
^ = ^ = P.D.[r2], D1=.D2= T2 and X = C5, w = P.D.pa], i? = E2, E = E^, so 
formula (11) and proposition 26 yield 

and use proposition 27 to get 

pw /e£Z)+sE\ _ ets/_23p-5e2i+(2p-2)s + /_1^23^-5e~2i~(2^~2)s)7 

from where Mii(t) = -27o-0e2t, M22W = (-l)^27^-9e-2*. This finishes the proof of 
theorem 9. 

4. Proof of Theorem 17. Let 5 = E x CF1, w = P.D.fCP1] e H2(S;Z). 
Suppose that 5 is of finite type of order n > 1 with respect to w and w + E for the 
metrics defined by E. Then 

0 = D^dx2 - 4)n^efapl) =< r (A, (x2 - 4)VA),ea > 

for all a. From lemma 21, ^W(A, (x2 -4)netA) = 0. Then consider (X, E) permissible, 
w e H2(X;Z) with w • E = 1 (mod 2), X = X0 Uy A. For any D G #2^0 with 
D • E = 1, we can write £> = D0 + A, so 

^^((x2 - 4)netD) =< (f)w(X0,etD0), (t)w{A, {x2 - 4)netA) >= 0. 

We conclude that D^^^x2 - 4)netD) = 0 for all D G ^2 W, i.e. A" is of finite type 
of order at most n with respect to w. 



DONALDSON INVARIANTS FOR CONNECTED SUMS 799 

5. Conjecture. Following our results in [18] for the case of genus g = 2, we 
propose the following conjecture. 

For any (X, S) permissible, define X — Xft^Bg (we need to fix one identification 
arbitrarily). Then b+(X) > 1 and also bi(X) = 0 whenever bi(X) = 0. For any cycle 
D0 C X0 with dD0 = 7 C Y an embedded curve (when X0 is given a cylindrical end, 
£>on(yx[0,oo)) =7x[0,oo) ), we choose capp'mgs D = D0 + D0

Bg, dD0
Bg = -7. The 

_   2 
cappings have to satisfy the following condition. In Bg — Sg#g€T   (see definition 25), 
we fix an embedded surface 5 representing ag, intersecting T,g transversely in g points. 
Put 5° = S fi B0, then we impose that Dg  • 5° = 0 (the pairing makes sense as long 
as 7 and 83° are disjoint) 

CONJECTURE 28. Let (Xi, Si) and (X2, S2) be permissible with Xi having bi = 0 
^e c?o not suppose that they are of simple type).    Consider Xi.    Then Xi are of 
simple type. Put B£ (ea) = e^(a)/2 Y, ajiWeki'a and 13^ (ea) = e^^)/2 ^ bk,weLka. 

Choose any identification (f) and let X — X((j)) = Xi#x:^2 be the connected sum 
along £, with the induded homology orientation.   Then X is of simple type.   Choose 
w G iJ^XjZ), Wi G H2(Xi',7i), i = 1,2 in a compatible way such that w • S = 1 
(mod 2), ^ • S = 1    (mod 2) anrf 117^50 = fcP.D.[Ti]|£o. For ever?/ D G ^W, ^e 
write .D = DZ + D%, D? C JCf, with dDf = -dD?, = 7 disjoint with OS0 and consider 
cappings Di G H2(Xi) of D° as above, in such a way that the map D \-¥ (Di,^) is 
linear.  Then 

D- (etD) = ee0<"»/2(     ^     -2-39+5ai,u,6fc,U) e(^-^+i-^)' + 
Kyll^Lk -2=25-2 

XrS=Lfc-S=-(25-2) 

^or 6 = (_l}{9-l){w2-wl-wl)/2 ^ 
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