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EXPANSION OF CONVEX HYPERSURFACES BY
NONHOMOGENEOUS FUNCTIONS OF CURVATURE"

BENNETT CHOW'! AND DONG-HO TSAM

1. Introduction. This paper is a sequel to our previous ones, Chow-Liou-Tsai
[CLT] and Chow-Tsai [CT2], where we considered the expansion of a smooth closed
uniformly convex hypersurface My in Euclidean space along its outward normal vec-
tor direction with speed a function of the inverse of the harmonic mean curvature
and the Gauss curvature respectively. Here we shall study the more general case
concerning the expansion of a closed uniformly convex hypersurface My of dimension
n in Euclidean space R**! with the speed f a nonhomogeneous positive function of
the principal radii. Needless to say, there have been many important works on the
homogeneous flows. We refer the readers to the introductory remarks in the papers
by Chow-Tsai [CT1], Chow-Liou-Tsai [CLT], or Andrews [A1,A2] for literature.

Let Xo : S — R™*! be a smooth parametrization of My = X¢(S™). The expan-
sion is described by the equation

0X
— = (A1, A2y e An) - N
(1.1) ot
X(0) = Xo,
where A1, Az, ....., A, are the principal radii and N is the unit outward normal to the

hypersurface M; := X;(S™). Here we assume f € C®°(I'") is a positive symmetric
real-valued function defined on the positive cone

rt= {(:121,:172,...,11”) cR": z; >0, 1< 7 Sn}

satisfying the strict parabolicity condition gj\ff >0onTt foralll <i<n. Be-
cause f is symmetric, the order of A1, Az, ..., An appearing in f(A1, Az, ..., An) is irrel-
evant. Under certain additional assumptions on the curvature function f analogous
to those considered by Urbas [U1], et al, we prove that the evolving hypersurfaces re-
main smooth, strictly convex and expand to infinity while their shapes become round
asymptotically. In particular, after an appropriate rescaling, the support functions of
M; converge to the constant 1 in C'-norm.

The main observation of this paper is that we may remove the homogeneity as-
sumption on f as imposed on the case of homogeneous expanding flows and still
get results similar to (but weaker) the homogeneous case. However, the concavity
assumption on f as required in the homogeneous expanding flows is still needed in
order to go from C? (S™ x [0,T)) to C>*(S™ x [0,T)) estimate, after that we can
quickly obtain all the higher derivatives estimates by parabolic bootstraps argument
and hence establish the long time existence of the solution. We believe such concavity
assumption is crucial here due to the lack of powerful a priori estimates for rather
general nonlinear parabolic differential equations.
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Owing to the gradient estimate by Chow and Gulliver [CG] (see Proposition 3.3
below), for hypersurface expansion, as long as we have the long time existence, the
asymptotic shape of the evolving hypersurface must be round. This phenomenon is
quite different from the contraction flows. Recently, Andrews [A1] has shown that for
certain type of contraction flows it is possible to have ellipsoid as limiting shape.

2. Main result. Let (S™, g) denote the unit n-sphere with standard metric g;;,
V the covariant derivative acting on tensors, and S2T*S™ the bundle of symmetric
covariant positive 2-tensors on S™. Let F' : S3T*S™ — R* be the smooth function
such ffha.t F () depends only on the eigenvalues of @ € S3T*S™ with respect to g and
satisfies

(2.2) F(a) = flar,02, ..., i)

where oy, s, .....,a, are the positive eigenvalues of @ and f is the curvature function
given in equation (1.1). Also let u(z,t) be the support function of the convex hyper-
surface M;. (We shall show that the convexity is preserved.) It is well known (see Tso
[TS] or Urbas [U1]) that the hypersurface expansion, in terms of its support function
u(z,t), is equivalent to the following single parabolic evolution equation on S™

23) { Owu(z,t) = F(VVu+u-g), (z,t)€S*x|[0,T)
' u(z,0) = uo(z),

where ug(x) is the support function of the initial uniformly convex hypersurface My
and the eigenvalues of the symmetric 2-tensor V;Vju 4 u - g;; are the principal radii
of the convex hypersurface M;.

The following main assumptions on f are imposed throughout this paper:

FAL, A, s An) € C(TH) NCOTT),
(2.4) f is a concave positive symmetric real-valued function on I't,
2L(A1, X2, A0) > 00n T forall 1 <i < m.

In this paper we shall establish the following result:
THEOREM 2.1. Assume f satisfies (2.4) and either one of the following two
conditions' similar to Urbas [U1]:

(2.5) (i). f =0 on the boundry 8T of T'",
1

—3 — is concave on I't.
f(A—l,E,....,)\—n

(2.6) (41). the function g(A1, A, ..., A\p) :=
Then the hypersurfaces M; remain smooth, strictly convex and there exists a unique
solution u(z,t) € C*°(S™ x [0,00)) to equation (2.3) satisfying

VVu+u-g>0 on S™x[0,00)
such that tllglo Umin(t) = 00, where umin(t) = znélg}l u(z,t). Moreover there exists a
constant C depending only on the initial condition ug(x) such that

|Vu(z,t)| < C  forall (z,t) € S™x[0,00).

1'We use either one of these two conditions to obtain the lower bound of hij.
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As a consequence, there exists a solution to the o.d.e.

dR
:i-t— = F(R . g,-j) = f(R, R, ,R)

on [0,00) such that
Umin(t) < R(t) < umax(t)
and the support function @ = % of the rescaled hypersurface M= % satisfies

c
(2.7) Na(,t) = Ulgrsny < 0]

for all t € [0,00). Furthermore the behavior of the expansion is improving in the
following sense:

(a). u,;;(,;gt) is dereasing, (b). u;izt()t) is increasing, (c). Z:?:((:)) is decreasing
on [0, 00).

The geometric meaning of Theorem 2.1 is that there exists a unique one-parameter
family of smooth, strictly convex hypersurfaces satisfying equation (1.1) which expand
to infinity. Moreover, the shapes of the hypersurfaces become round asymptotically
in the sense that if one rescales the solution appropriately, the support functions of
the rescaled hypersurfaces converge uniformly to the constant 1 in C'-norm.

Before proceeding to the proof of the theorem, we provide some examples which
satisfy the hypotheses of the theorem. For any integer m with 1 < m < n, introduce
the m-th elementary symmetric function S,, as

Sm(AL, A2, dn) = SN = D A s i,
1<i1 < <im<n
where A = (A1, A2, ..., Ap). For convenience, we let Sy = 1. For any integers 1 < p <
m < n, there exists the well-known inequality
(28) ( Sm(a+b) )1/P> ( Sm(a) )I/P+( Sm(b) )I/P
' Surp@td) Z\5us@ Sn—p(0)
for any vectors a = (a1, ag, -...,an), b = (b1,bs,....,b,) with a;,b; > 0 for all i, where

the equality holds if and only if m = p = 1 or a; = c¢-b; for some positive constant c for
1/p
all 4. This inequality would clearly imply the concavity of the function (gé'ﬂﬁ&))
m-—p
on the positive cone I'* for any 1 < p < m < n. Interesting special cases are

SV ™ )
<m> = m(/\l,/\z,....,)\n)l/

and

S Vg (L L Lym
Sn_m()\) m Al, A2;-.-1 An
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for any 1 < m < n. For a function f on I'* of the form
f = F(Sm(/\la ’\21 ) )‘n)l/m)a
or

1 1
£ = FSmlsm 30
where F(p) : (0,00) = (0,00) is an arbitrary smooth increasing function, the if and
only if condition for f to be concave I't is that F" < 0 everywhere. Since if F" > 0
somewhere on an interval (a,b), f would not be concave along some segment of the
ray 7 = {(t,t,...,t) : t > 0}.

In the following examples, we understand that A, Ag,...., A, denote the princi-
pal radii of the convex hypersurface and K and H represent the Gauss and mean
curvatures respectively.

ExAMPLE 1. Take

1
ey —) M),
n

l 1 l —l/m)

/\1 , )\—2, ceey An
where F(p) : (0,00) = (0,00) is an arbitrary smooth increasing function, continuous
on [0,00), with F(0) = 0 and F" < 0 everywhere. Then f satisfies (2.4) and (2.5).
Special cases are

f=F(Sm(

f=F(z) (m=1)

and

f=Flm) (m=n)

In the second case, the assumption F'(0) = 0 can be removed. See Chow-Tsai [CT2].
EXAMPLE 2. For any smooth increasing function F(p) : (0,00) — (0,00), con-
tinuous on [0, 00), satisfying

(2.9) F'(p) <0
and

N2
(2.10) F"(p) - p+2F(p) - 2%—” >0

everywhere on p € (0,00)2, the function
F = F(Sm(A1, Az, An) /™)
or

_ L1 Lyam
f —F(Sm(/\l,AQ,“"’ An) )
will satisfy both assumptions (2.4) and (2.6).3

Some possible choices of F for the above two examples are:

2The condition (2.10) is equivalent to the concavity of p_(lf) on z € (0,00).
3The borderline case of (2.10) is the o.d.e. :

(2.
(2.11) F"(p)-p+2F'(p) — 2%3 =0.
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L. F(p) = p%, a € (0,1],
2. F(p) = f’;‘%, where ¢; > 0, ¢ > 0 are any constants,
3. F(p) =log(p + ¢) for some suitable constant ¢ > 0.

3. Proof of Theorem 2.1. Let h;; = V;V;u + u - g;; be the components of
the 2-tensor VVu + u - g with respect to some smooth local orthonormal frame field
on S™. Standard theory for strictly parabolic equations implies the existence of a
unique smooth solution u(z,t) to (2.3) on S™ x [0,T") for some short time T' > 0 and
we have h;; > 0 on the short time [0, T"). We shall prove its long-time existence based
on a priori estimates on solution of (2.3).

Define the linearization of F' at the point h = h;; as

DFy(a) == (—jd; ls=0 F(h+s-a) forall a € S?°T*S",

where $2T*S™ is the bundle of symmetric covariant 2-tensors on S™. For simplicity,
we also use the summation notation Fj;(h)a;; to denote DFj(a). Similarly, we define

d
Fitmn (R) ki By, = % li=o 7 ls=0 F(h+s-a+t-B) foralla, fe S2T*S™.
Denote the eigenvalues of the tensor h;; by A1, As,....., An, which are the principal

radii of the hypersurfaces. It is easy to see

Fj;(h)gij = traceF"' = ng + ot ;Tf
1 n
/ . 9f of
Fi;(h)hi; = /\15)‘—1 + e+ )\né)\—n'

Also we note that the tensor h;; satisfies the identity Vihi; = V;hy;, which is analo-
gous to the Codazzi equation for the second fundamental form. In fact, for any smooth
function v on S", the symmetric 2-tensor ¢;; = V;V;v 4+ v - g;; on S™ satisfies the
identity

Viti; = Vity;.
The proof is based on the formula for commuting covariant derivatives, i.e.,
ViViVv = V;ViVv = =R Viv,
where the Riemann curvature tensor Ry;;; on S™ is given by
Ryiji = 9ri9ij — 9rjgi-

We shall need the following two simple inequalities which depend only on the
concavity of f. They will be used to obtain the upper bound of h;;.

’
We can converted it into a Bernoulli equation using the new variable y = FF((;’)) and solve it to get
the general solution of (2.11), which is

Cc2-p
F(p) = ,
(p) oot

where c1 > 0, c2 > 0 are any constants.
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LEMMA 3.2. (1). Let A = (A1, A2, ....sy Ap). We have
of 9f
(3.12) AL oW A+ e + Ap W (A) <nf(N),

forall X e T'F.
(2). There exist positive constants A, B depending on f such that
(3.13) FO) S A+ B+ Ao+ +An)

forall X e T'T.
Proof. To prove (3.12), consider

FOL A2, s An) > FOL Azy ooy An) = F(0, Az, ooony An)

Of ( 0
= Al BA (Al,/\Q, -..-,/\n) Z AIE;T(AI,A2, ceeey An),

where 0 < A] < );. Similarly we have

FOL Ay ) > M2

6A (/\1,A27 )‘ )7

for all i = 2,3, ...,n. For (3.13), since f is concave on I't, we have

SO+ < SO+ 5200 + et 520

forall A\ € T, i = (u, ..., 1), > 0. Let C be the compact set
C={xel*:|x|<lforalli}.

If A € 't and ) ¢ C, there exists some 7 such that \; > 1. We may assume \; < Ay <
.. < A and A, > 1 for such A. Now

F) < F(AnsAny ey An)
< 7D + O —1)[ @)+t gL (ﬁ]

7 | 9F o
<fM+ [a)\ @ + ... /\n(l)]'(,\1+)\2+....+/\n),
where T = (1,1, ...,1). Choose A = mgxf and B = _3_/\L( )+ o + 38)\{. ). 0

3.1. The gradient estimate. Without loss of generality, we may assume the
initial hypersurface Mo enclose the origin of R"*!. Therefore ug(z) > § > 0 for some
constant § > 0 and u(z,t) will remain positive during the evolution. We will see
later that the quantitative behavior of u(z,t) is close to a solution R(t) to the o.d.e.
48 = F(R- gi;) = f(R,R,.....,R), R(0) € (Umin(0), umax(0)). Because u(-,t) > 0 is
the support function of the strictly convex hypersurface M; (see Corollary 3.8), it is
not difficult to see that

[Vu(p, )| < u(rgats:, t)
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for all (p,t) € S™ x [0,T) whenever |Vu(p,t)| # 0*. Consequently, we obtain

(3.14) sup |Vu(-,t)| <supu(-,t) forall ¢te0,T).
sn sn

This rough estimate can be refined substantially. In fact, there is a uniform bound
for the gradient of u. This is a special case of Theorem 3.1.(iv) in Chow-Gulliver
[CG], which provides a uniform gradient estimate for more general equations based
on an Aleksandrov reflection argument. To get a feeling of the geometric aspects
of Aleksandrov reflection and its application to conformal flows on S™, the readers
can see the recent paper by Chow [C]. The implications of the gradient estimate are
twofold: first, it implies the asymptotic roundness of the hypersurfaces as long as we
have the long time existence of the evolution; second, it tells us how to rescale the
solution in a precise way. The statement is

PROPOSITION 3.3. There exists a positive constant C' depending only on the initial
condition ug such that, as long as the solution to (2.3) exists and h;; > 0 on S™x[0,T),
the support function u(z,t) satisfies the uniform gradient estimate

(3.15) Vu(z,t)] < C,
for all (z,t) € S™ x [0,T). In particular, since the diameter of S™ is 7, we have
Umax(t) —Umin(t) <C -7

on [0,T).

REMARK 1. We only need the parabolic condition g—)f: > 0 to get the gradient
estimate (8.15). The assumptions in (2.5) and (2.6) and that f being concave and
positive on 't are not necessary. However, they are required for the higher derivatives
estimates.

It is worth pointing out that our equation (2.3) is geometrical and therefore any
estimate related to it may depend on the geometry of the setting. For example if, in
the 1-dimensional case, we replace the initial imbedded closed convex curve My in R?
by an immersed closed convex curve with loops, then the gradient estimate (3.15) is
no longer valid. See Tsai [T]. A geometric explanation of this phenomenon can be
given easily as follows. Imagine a cardioidlike curve with one little loop Ly and call
the rest L;. Suppose we also position our coordinate system so that the origin O is
enclosed by the little loop Ly. The support function ug(z) is now a periodic function
with domain [0,47] and is everywhere positive. It has larger values on L;, smaller
values on the little loop Ly. Also, for any point p on L;, which has small curvature,
the expansion speed of p is much faster than the expansion speed of any point g on the
little loop Lo, which has large curvature. Therefore the difference umax(t) — Umin(t)
will not be bounded above by any positive constant as time evolves.

3.2. The second derivative estimate. Regarding the second derivatives esti-
mates of u, we need to compute the evolution equations of h;; and h¥ first.
LEMMA 3.4. (1).

athij = F,éleVlhij + Flé’l;mn
(3.16)
+Fjhjr — Fjhik.

VihiVihmn + (F + Fyghi)gij — (rF')hy;

4This is obtained by computing ;—s |s=0 u(a(s),t) along a curve a(s) € S™ with a(0) = p, &(0) =

;Zgg& and use the definition of support function.
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(2).
Ol = FL,VV ki — (F + Fl h)hPhi? + (tr ')k
(3.17) —h¥ 13 (2 b+ B | Vbt Vo

—h*PRI? . (Fggkhqk - Fékhpk)y

where F, F', and F" are all evaluated at h and trF' = Fy;(h)g.
Proof. The computations are very similar to those as in Urbas [U1], they are
therefore omitted. m|

3.2.1. The upper bound of h;;. We only need the concavity of f on I'" to
get the bound on |VVu|, which in turn implies the upper bound of h;;.
ProprosITION 3.5. Ifu < M on S™ x [0,T) for some positive constant M, then

(3.18) |VVu(z,t)| < C  forall (z,t)€S™x[0,T),

where C' < oo is a constant depending on M, F, ug and T.
Proof. We shall let C denote any constant depending only on F, ug and T, where
C may change from line to line. Let

H = ¢"hij = Au + nu.
By (3.16), we find
O H = F[,ViViH + n(F + Fiyhy) — (trF)H + F}. 0 Vihia Vikmn.
The concavity of f would then imply (see Caffarelli-Nirenberg-Spruck [CNS])
(3.19) FYrin Vibkt Vikmn < 0.
Therefore
OuH < FyViV,H + n(F + F},hy),
since (trF” YH > 0. Applying the inequalities (3.12) and (3.13) to above yields
OH < F,ViVH+C-H+C.
We thus find
(3.20) 0<H<SC on S"x[0,T)
by the maximum principle. Observing that
0< A<M+ 4+X=H<LC
forany 1 <i<nand
[VVu(z, t))? = (A —u)?+ Az —u)+- - (A —u)? < C,
the proof of the proposition is done. m]

Since h;; = V;Vju + ug;;, the upper bound of it is established as long as u stays
finite.
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3.2.2. The lower bound of h;; and the preserving of convexity. We want
to show that the convexity of the evolving hypersurfaces is preserved if we impose
either assumption (2.5) or (2.6) on f. As a consequence, all of the principal radii
A1 A2, ooy Ay Will have positive lower and upper bounds as long as u is bounded.
First we have

LEMMA 3.6. For allt €[0,T), we have

(3.21) rrSg.n F(VVu(-,t) +u(-,t) - g) > n;}'n F(VVu(-,0) +u(-,0) - g) > 0.

Proof. Let w(z,t) = Opu = F(VVu(z,t) + u(z,t) - g). Compute

Oyw = Fjj(h) - [ViVjw + w - gij]
= Fz’(h)V,V]w + Filj (h)gij s w.

J

Since

0 o)
Fy(h)gis = g3+t 5L

an T T e >0

on 8™ x [0,T), we can apply the weak maximum principle to conclude
(322)  w(z,t) = f(Ai(z,t), ey An(z,8)) > rginnw(a:, 0) > f(€,€,.ccie) >0

for some € > 0 and for all (z,t) € S™ x [0,T). (3.21) is proved. O
PROPOSITION 3.7. If f satisfies either assumption (2.5) or (2.6), there ezist a
positive constant C; depending on F, ug and T such that

(3.23) hij > C1 - gij on S™x [0, T).

Proof. Case 1. Assume f satisfies assumption (2.5).

Since we impose the barrier condition f = 0 on 8T it will force each \; to stay
strictly away from O for all ¢t € [0,T) due to (3.22). That is, (A1, A2, .....; Ap) € Q on
S™ x [0,T), where Q is a closed subset of 't with QN 't = ¢. The set Q is also
bounded because of (3.20). Hence Q2 is a compact set. The proof is done.

Case 2. Assume f satisfies assumption (2.6).
Recall we have the equation

Oth" = F[,VyVih" — (F + Fj hy))h*PhIP + (tr F')R¥
—hi RIS [2F,:mhnl + éll;mn] VehiiVshmn
—hPRIT - (Fhyhgr — Fyphpr).
Now let us suppose that the maximum eigenvalue of [h%] over S™ at time ¢ is attained
at a point p; € S™. By a rotation of the frame, we may assume that h'! is the
maximum eigenvalue and h* = 0 for ¢ # j. We get
Bih't = F}, Vi Vih!t — (F + Flyhy) (BY)? + (trF')RM
(3.24) — (B")? - 2} h™ + ] Vit Vihumn.

klymn
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By our assumption (2.6), we have (see Urbas [U1])
- (h11)2 - [2F{h™ + Fyy, timn) VihetVihmn < 0.

Assuming 0 < A\; < Ag < --- < A\, at p; € S™, we have Al = /\1—1 and

—(F + Flhit) (™) + (trF')h M
B 1\° of of 2 Tof af 1/ 1
F(Al) [Alf»l* “"f»]( )*[6&*""*67;} (AT)
1 2
g-F(x) <0.

Therefore we conclude
9:h' <0  at the maximum point p; € S™.

Again the maximum principle implies the upper bound of h¥, which is the same as
the lower bound of h;. a

COROLLARY 3.8. (preserving the convezity) If f satisfies either assumption (2.5)
or (2.6) and u < M on S™ x [0,T), there exist two positive constants C1 and Cs
depending on M, F, ug and T such that

(3.25) 0<Cy- Gij < hij <Csy- Gij on S™ x [O, T).

This means that the evolving hypersurface is uniformly convez as long as u is finite.

3.2.3. Long time existence. So far we have obtained the estimates on the
first and second space derivatives of w and the bound of the tensor h;;, whenever u
stays finite. This will guarantee the uniform parabolicity of our nonlinear equation
(2.3) as long as u is finite. By the same argument as in Urbas [U1], we can quote the
result of Krylov-Safanov [KS] to get the C* estimate of 2%. Since f is concave, by
a result of Krylov [K] again, we also have the C* estimate of VVu. (Both estimates
are with respect to space and time.) Standard parabolic theory again allows us to
derive the C*@ estimates of u provided u stays finite. We hence arrive at the following
conclusion.

PROPOSITION 3.9. (long time existence) Under the hypotheses of Theorem 2.1,
there exists a unique smooth solution u(z,t) to equation (2.8) on S™ x [0,Ts) such
that h;j > 0 on S™ x [0,Te) and tll’l’lr_'l Umin (t) = 00

We shall see immediately that T, =

3.2.4. Rescaling and convergence. By the equation dyu = F(VVu +u - g),
we can get

At Umax(t)
dt

d™ Umin(t)

(3.26) -

S F(Umax(t) ' g) and Z F(Umin(t) ’ g)'

where 4 ~ and & &- are in the Lipschitz sense. (See Hamilton [H] or Chow-Tsai [CT1].)
Because f is concave, we have

F(umax(®) - 9) = f(Umax (), Umax(t), -, Umax (t)) < A+ nB - Umax(t)
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by (3.13). Hence T, = 00. Moreover, based on inequalities (3.26), we can carry out
exactly the same proof as in Chow-Tsai [CT1] to conclude
LEMMA 3.10. (1). There ezists a solution R(t) to the o.d.e.

dR
(3.27) S =F(R-g)
on [0,00) such that
(3.28) umin(t) < R(t) < umax(t)  for all t€[0,00).

(2). For any R(t) satisfying (3.27) and (3.28), we have

Umin (t)
R()

Umax (t)
Umin (t)

Umax (t)
(a). R

is dereasing, (b). is increasing, (c). is decreasing

for all t € [0,00).
From now on we will choose one R(t) satisfying (3.28) and use it to rescale the
solution u(z,t). Define the rescaled solution @(z,t) as

- _u(z,t)
U(ZL’,t) - R(t) )
which is the support function of the rescaled surface M = %. Clearly we have
(3.29) (e, ) — 1] < -0, |[Vii(z,8)] < ~——~
‘ R IOk "= R

for all (z,t) € S™ x [0, 00) and the proof of Theorem 2.1 is finished.

REMARK 2. We would like to point out that the estimate (3.15) and relation
(3-28) hold as long as we have the parabolic condition é%{? > 0.

4. Rescaling of solutions to some parabolic differential equations. In
this last section we establish a theorem which says that under some assumptions
on the parabolic partial differential equation considered, there is a natural way to
rescale the solution. Similar to Lemma 3.10, the rescaling function R(t) is chosen to
be a solution of some ordinary differential equation with its value lying between the
maximum and the minimum values of the solution u(z,t) to the partial differential
equation considered. Again one can see Hamilton [H] or Chow-Tsai [CT1] for the
discussion and notations on the differentiability of Lipschitz functions.

Let F(a;j, b;, x, t) be a real-valued smooth function defined on the set I' =
S(n) x R* x R x [0,T). Here S(n) denotes the n(n + 1)/2-dimensional space of real
symmetric n X n matrices. The main assumption on F' in this section is

(4.30) F (0, 0, z, t) is increasing in the variable z for all ¢ € [0, T).

The main result in this section is
THEOREM 4.11. Let u(z,t) € C*(M x [0,T)), where T < 0o, be a solution to the
following parabolic differential equation

(4.31) Owu = F (V;Vju, Viu, u, t)
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on any compact Riemannian manifold (M, g). Here F satisfies the assumption (4.30).
Then there ezists a solution to the o.d.e.

(4.32) R _ F(0,0, R, t)
dt

on [0,T) such that

(4.33) Umin(t) < R(2) < umax(?)

for allt € [0,T).

REMARK 3. The theorem also holds if we replace (M, g) by a compact set Y in
Euclidean space with standard metric and assume that for any time t € [0,T), both
Umin(t) = arvnelg u(z,t) and umax(t) = max u(z,t) are attained at some interior points

of Y, since at the interior extremum points we have Viu =0 and V;V;u <0 or > 0.
Proof. Consider the first case when T' < co. For any t € [0,T), if umax(t) = u(ps, t)
for some p; € M, then

0
5P t) = F(ViVyu, Viu, u, 8)  at (pi,1)

(4.34) < F(0, 0, umax(t), t)
since V;Vju is semi-negative at the maximum point. Similarly we have

Ou
ot

where umin(t) = u(g:,t) for some g¢ € M. Take an increasing sequence T; € [0,7T)
with lim;,oo T; = T and let R; (t) be the solution to the following

(435) (qtat) 2 F(07 07 umin(t)y t)

dRf

(4.36) =

=F (0 0, R+(t), ), R;*-(Tz) = 'U'max(Ti)'
The domain of R} (t) will be at least (T} — ¢;,T;] for some ¢; > 0. Set

f(t) = umax(t) — B (2)

on (T; — €;,T;]. It will be Lipschitz on (T; — ¢;,T;] and f(T;) = 0. For any t €
(T; — €, T;], compute '

lim sup £ =S¢ =H)
h\0 h
< lim sup Umax(t) ~ Umax( 1) _ (0, 0, Rf(t), t)
ANO h

and by (4.30) and (4.34) we know

(437) LI (1) < F (0, 0, umeslt), )= F (0, 0, BE @), ) <0

whenever f(t) < 0. Therefore

(4.38) f(®) >0 forall te(T;—e;T



EXPANSION OF CONVEX HYPERSURFACES 781

Similarly we consider g(t) = umin(t) — R; (t) and compute

lim inf _________g(t) —9(t— 1)
h\O h
.. Umin (t) — Umin (t - h) +
> llin\l‘glf T —F (0,0, RF(¢), t).

Again by (4.30) and (4.35) we know

%(t) > F (0, 0, umin(t), t) — F (0, 0, Rf (¢), t) >0,
whenever g(t) > 0. Hence

(4.39) g9(t) <0 forall te(T;—e;Ty).

Thus we arrive at the following

(4.40) Umin(t) < R (t) < umax(t) on (T} —&;, T3

From (4.40) and the basic theory of o.d.e., we deduce that the domain of R; (¢) will
be at least [0, T;] and for each i we have

(4.41) Umin(t) < B (t) < umax(t) on  [0,Ti).
Consider the sequence {R}}$,, on any compact subinterval [0,T — 6] of [0,T), the
domain of R} will cover [0,T — ] for i large enough. We may assume all R;" are
defined on [0,T — 6]. Observe that each R (t) is smooth on [0,T — 4] and if j > i, we
have T — 6 < T; < T; and
R;- (t) < umax(t) on [Ti,Tj].
In particular, we see
+ +
R} (T3) < R (To).

Therefore by the basic theory of o.d.e. again we get the monotone relation
(4.42) Umin(t) < RF(t) < R () < tmax(t) on [0,T — 4]
for any j > ¢. Define R*(t) = lim;_,o0 R (t), t € [0,T — 4]. Clearly we have
(4.43) Umin(t) < RT(t) < umax(t) on [0,T —§).
Claim: R} (t) converges uniformly to R*(t) on the interval [0,T — 4.

Proof of the claim:

For any ¢t € [0,T — 6] and j > %, we have

[BF () - B (1)] = [BF (0) - B (0)]

+/0t [F (0, 0, Rf(s), s) — F (0, 0, Rf(s), s)] - ds
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and hence

(4.44) 0 < [Rf (t) — BRI (t)] < [RF(0) — RF(0)] + /O t Ms - [R}(s) — Rf (s)] - ds.

for some constant Ms > 0 since F is Lipschitz when restricted to compact sets.
Gronwall’s inequality implies

(4.45) 0< [Rf (1) - B (9] < [RF(0) — B} (0)] - ™

for all t € [0,T — §]. The claim is proved.

The claim would also imply that we have F' (0, 0, R (t), t) converges uniformly
to F'(0, 0, R*(t), t) on [0, T — 4] due to the mean value theorem. Therefore we secure
the continuity and differentiability of R*(¢) on the interval [0, — §] and moreover

+
% =F (0,0, R"(t),t) on [0,T -]

Letting 6 — 0, the conclusion follows. The case when T = oo is also clear. The proof
of Theorem 4.11 is complete. D

REMARK 4. The fact that we can squeeze a solution R(t) to the o.d.e. (4.32)
between umin(t) and umax(t) has more significance when we have the gradient estimate

|Vu| < C

of the solution u to equation ({.31), where C is a constant depending only on the
initial condition ug(z) and when the solution u will blow up ast — T. In this case we
have

0 < Umax (t) - umin(t) < C- d7

where d is the diameter of M and thn% Umin(t) = 00. So the asymptotic behavior of u
-
is best described by R(t).

Another interesting consequence is:
COROLLARY 4.12. Under the hypotheses of Theorem 4.11, if in addition F also
satisfies all of the following

(i).. F (0, 0, z, t) is concave in the variable x € R, for allt € [0,T),
(4.46) (i1). F (0,0, 0,t) >0, forall te[0,T),

(113). 0 < umin(t), for all t€[0,T)
then for any R(t) satisfying (4.32) and (4.33) we have

Umax (t)

Umax (t) Umin (t)
(a)‘ Umin (t)

R is dereasing, (b). R@)

on [0,T).
Proof. To prove (a), note that umax(t)/R(t) is Lipschitz on [0,7") and get

&+ (umac(®)\ _ REOF (0, 0, wmax(®), t) — tmax(®)F (0, 0, R(t), ¢)
i g (") < IZI0) |

is increasing, (c). is decreasing
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Since F'(0, 0, z, t) is concave in z, we have
FAA+ (1 —=X)B)> A (A)+(1-)NF (B)
for all A € [0,1] and all points A = (0, 0, z, t), B=(0, 0, 0, t). Since
F(0,0,0, ¢ >0,
we therefore have
(4.48) AF (0, 0, z, t) < F(0, 0, Az, t)
for all A € [0,1]. Choosing A\ = R(t)/umax(t) € [0, 1], we get

dt Umax(t) Umax(t) R(t)
EZ( R() )S R2(t) '[umax(t)
<0 on [0,T).

F(0, 0, umax(t); t) — F (0, 0, R(1), t)

The proof of (a) is complete. The proof of (b) is analogous to (a) if we use the
inequality

umin(t)
WF (0, 0, R(t), t) S F(O, 0, umin(t); t) .

(c) is an easy consequence of (a) and (b). a
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