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EXPANSION OF CONVEX HYPERSURFACES BY 
NONHOMOGENEOUS FUNCTIONS OF CURVATURE* 

BENNETT CHOW+  AND DONG-HO TSAI* 

1. Introduction. This paper is a sequel to our previous ones, Chow-Liou-Tsai 
[CLT] and Chow-Tsai [CT2], where we considered the expansion of a smooth closed 
uniformly convex hypersurface Mo in Euclidean space along its outward normal vec- 
tor direction with speed a function of the inverse of the harmonic mean curvature 
and the Gauss curvature respectively. Here we shall study the more general case 
concerning the expansion of a closed uniformly convex hypersurface MQ of dimension 
n in Euclidean space En+1 with the speed / a nonhomogeneous positive function of 
the principal radii. Needless to say, there have been many important works on the 
homogeneous flows. We refer the readers to the introductory remarks in the papers 
by Chow-Tsai [CT1], Chow-Liou-Tsai [CLT], or Andrews [A1,A2] for literature. 

Let XQ : Sn -> En+1 be a smooth parametrization of MQ = Xo(Sn). The expan- 
sion is described by the equation 

(i.i) 

BX 
^ = /(Ai,A2, ,A„)-Ar 

X(0) = Xo, 

where Ai, A2, , An are the principal radii and N is the unit outward normal to the 
hypersurface Mt := Xt(Sn). Here we assume / € C00(r+) is a positive symmetric 
real-valued function defined on the positive cone 

r+ = {(xuX2,...,xn) G Mn : Xi >0, 1 <i <n} 

satisfying the strict parabolicity condition J^- > 0 on r+ for all 1 < i < n. Be- 
cause / is symmetric, the order of Ai, A2,..., An appearing in /(Ai, A2,..., An) is irrel- 
evant. Under certain additional assumptions on the curvature function / analogous 
to those considered by Urbas [Ul], et al, we prove that the evolving hypersurfaces re- 
main smooth, strictly convex and expand to infinity while their shapes become round 
asymptotically. In particular, after an appropriate rescaling, the support functions of 
Mt converge to the constant 1 in C1-norm. 

The main observation of this paper is that we may remove the homogeneity as- 
sumption on / as imposed on the case of homogeneous expanding flows and still 
get results similar to (but weaker) the homogeneous case. However, the concavity 
assumption on / as required in the homogeneous expanding flows is still needed in 
order to go from C2 (5n x [0,T)) to C2'a (5n x [0,T)) estimate, after that we can 
quickly obtain all the higher derivatives estimates by parabolic bootstraps argument 
and hence establish the long time existence of the solution. We believe such concavity 
assumption is crucial here due to the lack of powerful a priori estimates for rather 
general nonlinear parabolic differential equations. 
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Owing to the gradient estimate by Chow and Gulliver [CG] (see Proposition 3.3 
below), for hypersurface expansion, as long as we have the long time existence, the 
asymptotic shape of the evolving hypersurface must be round. This phenomenon is 
quite different from the contraction flows. Recently, Andrews [Al] has shown that for 
certain type of contraction flows it is possible to have ellipsoid as limiting shape. 

2. Main result. Let (5",^) denote the unit n-sphere with standard metric gij, 
V the covariant derivative acting on tensors, and S+T*Sn the bundle of symmetric 
covariant positive 2-tensors on 5n. Let F : S+T*Sn -» E+ be the smooth function 
such that ^(Q:) depends only on the eigenvalues of a G S+T*Sn with respect to g and 
satisfies 

(2.2) F(a) = /(ai,a2, ,a„) 

where ai, 0:2, ,a:n are the positive eigenvalues of a and / is the curvature function 
given in equation (1.1). Also let u{x,t) be the support function of the convex hyper- 
surface Mt- (We shall show that the convexity is preserved.) It is well known (see Tso 
[TS] or Urbas [Ul]) that the hypersurface expansion, in terms of its support function 
ufait), is equivalent to the following single parabolic evolution equation on Sn 

f dtu(x, t) = F(VVu + u-g),    (x, t) e Sn x [0, T) 
(2.3) \ 

I u(x,0) = uo(x), 

where uo(x) is the support function of the initial uniformly convex hypersurface Mo 
and the eigenvalues of the symmetric 2-tensor ViVjU + u • gij are the principal radii 
of the convex hypersurface Mt. 

The following main assumptions on / are imposed throughout this paper: 

(2.4) 

' /(A1)A2,..,An)€C~(r+)nc0(r+), 

/ is a concave positive symmetric real-valued function on r+, 

|£(Ai,A2,...,An) >0onr+for all 1 < i < n. 

In this paper we shall establish the following result: 
THEOREM 2.1.    Assume f satisfies (2.4) and either one of the following two 

conditions1 similar to Urbas [Ul]: 

(2.5) (i). f = 0 on the boundry dT+of r+, 

(2.6) (ii). the function g(Xi, A2,..., An) := ——-j—j —- is concave on F"1". 

Then the hypersurfaces Mt remain smooth, strictly convex and there exists a unique 
solution u(x,t) e C00^71 x [0,oo)) to equation (2.3) satisfying 

Wu + u • g > 0     on     Sn x [0,00) 

such that lim ^min(^) = 00, where um[n(t) = min u(x,t). Moreover there exists a 

constant C depending only on the initial condition Uo(x) such that 

\Vu(x,t)\<C       for all    (x,t) € Sn x [0,oo). 

1We use either one of these two conditions to obtain the lower bound of hij. 



EXPANSION OF CONVEX HYPERSURFACES 771 

As a consequence, there exists a solution to the o.d.e. 

^ = F(R-gij) = f(R,R,...,R) 

on [0, oo) such that 

«min(*) < R(t) < Umax(t) 

and the support function u = ^ of the rescaled hypersurface M — ^ satisfies 

C 
(2-7) \\u(;t)-l\\cl{Sn)< m 
for all t G  [0,oo). Furthermore the behavior of the expansion is improving in the 
following sense: 

(a). — is dereasmg,   (bj. is increasing,   (c). —  is decreasing 
R(t) R(t) ^min(^) 

on [0,oo). 
The geometric meaning of Theorem 2.1 is that there exists a unique one-parameter 

family of smooth, strictly convex hypersurfaces satisfying equation (1.1) which expand 
to infinity. Moreover, the shapes of the hypersurfaces become round asymptotically 
in the sense that if one rescales the solution appropriately, the support functions of 
the rescaled hypersurfaces converge uniformly to the constant 1 in C1-norm. 

Before proceeding to the proof of the theorem, we provide some examples which 
satisfy the hypotheses of the theorem. For any integer m with 1 < m < n, introduce 
the ra-th elementary symmetric function 5m as 

S>n(Ai, A2,...., An) = 5m(A) = / v A^ • • • Aim, 
l<21<---<iTTl<n 

where A = (Ai, A2,...., An). For convenience, we let So = 1. For any integers 1 < p < 
m < n, there exists the well-known inequality 

(2.8) ( g"(0 + 6) \1/P > ( S^a) \1/P + ( 
S^b) N 1/P 

Sm-p{Q> + b)) \Sm-p(a)J xSm-pib) 

for any vectors a — (01,02,...., an), b — (61,62, ••••, bn) with a^,^ > 0 for all i, where 
the equality holds if and only if m = p = 1 or a* = c-bi for some positive constant c for 

all i. This inequality would clearly imply the concavity of the function ( s      X\) 

on the positive cone r+ for any 1 < p < m < n. Interesting special cases are 

l/m 

and 

yiz^xy)   -sm^^....An)i'm 

SnW    \ _g    ,J_   _1_ I  x-l/m 
Sn-mW J Ai    A2 An 
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for any 1 < m < n. For a function / on r+ of the form 

/ = F(5m(A1,A2,....,An)1/ro)) 

or 

where F(p) : (0, oo) -> (0, oo) is an arbitrary smooth increasing function, the if and 
only if condition for / to be concave r+ is that F" < 0 everywhere. Since if F" > 0 
somewhere on an interval (0,6), / would not be concave along some segment of the 
T&y?={(t,t,...,t):t>0}. 

In the following examples, we understand that Ai, A2,...., An denote the princi- 
pal radii of the convex hypersurface and K and H represent the Gauss and mean 
curvatures respectively. 

EXAMPLE 1. Take 

/^(S^f,^,....,^)-1/™), 

where F(p) : (0, 00) —> (0, 00) is an arbitrary smooth increasing function, continuous 
on [0,oo), with F^O) = 0 and F" < 0 everywhere. Then f satisfies (2.4) and (2.5). 
Special cases are 

/ = F(1)    (m = l) 

and 

f = F^)    (m = n). 

In the second case, the assumption F(0) = 0 can be removed. See Chow-Tsai [CT2]. 
EXAMPLE 2.  For any smooth increasing function F(p) : (0,00) —>> (0,00), con- 

tinuous on [0,oo), satisfying 

(2.9) F"(p) < 0 

and 

(2.10) F"{p).p + 2Fl{p)-2F,{rfp)
p>Q 

everywhere on p G (0, oo)2, the function 

/ = F(5m(A1,A2,....,An)1/m) 

or 

f =F(5m(fIf,....,^-)-1/™) 
M     A2 An 

will satisfy both assumptions (2.4) and (2.6).3 

Some possible choices of F for the above two examples are: 

2The condition (2.10) is equivalent to the concavity of     \    on z G (0,oo). 
3The borderline case of (2.10) is the o.d.e. 

(2.11) F"(p) ■ p + 2F'(p) - 2^^' P = 0- 
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1. F(p)=p°, ae(0,l], 
2. F(p) = Ci

C2'^1, where ci > 0, C2 > 0 are any constants, 
3. F(p) = log(p + c) for some suitable constant c> 0. 

3. Proof of Theorem 2.1. Let hij = ViVjii + u- gij be the components of 
the 2-tensor Wu + u • g with respect to some smooth local orthonormal frame field 
on Sn. Standard theory for strictly parabolic equations implies the existence of a 
unique smooth solution u{x,t) to (2.3) on Sn x [0,T) for some short time T > 0 and 
we have h^ > 0 on the short time [0, T). We shall prove its long-time existence based 
on a priori estimates on solution of (2.3). 

Define the linearization of F at the point h = hij as 

DFh(a) := -f- L=o F{h + s- a)    for all a £ S2T*Sn, 
as 

where S2T*Sn is the bundle of symmetric covariant 2-tensors on 5n. For simplicity, 
we also use the summation notation Flj(h)aij to denote DFhiot). Similarly, we define 

F^-mnWakiPmn ■= | l*=o ^ U=o F{h + a ■ a+ t ■ ft    for all a, (5 € S2T*Sn. 

Denote the eigenvalues of the tensor hij by Ai, A2, , An, which are the principal 
radii of the hypersurfaces. It is easy to see 

FUton =traceF' = §l- + .... + g- 

F^hi^X,—+ .... +\n — . 

Also we note that the tensor h^ satisfies the identity Vkhij = Vi/i^j, which is analo- 
gous to the Codazzi equation for the second fundamental form. In fact, for any smooth 
function v on 5n, the symmetric 2-tensor tij = ViVjV + v • g^ on 5n satisfies the 
identity 

* ktij — V itkj • 

The proof is based on the formula for commuting covariant derivatives, i.e., 

VfcViVjt; - ViVkVjV = -RMJIVIV, 

where the Riemann curvature tensor Rkiji on 5n is given by 

Rkiji — Qkigij - 9kj9ii- 

We shall need the following two simple inequalities which depend only on the 
concavity of /. They will be used to obtain the upper bound of h^. 

We can converted it into a Bernoulli equation using the new variable y =  F>p) and solve it to get 

the general solution of (2.11), which is 

ci • p + 1 

where ci > 0, C2 > 0 are any constants. 
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LEMMA 3.2. (1). Let A = (Ai, A2, ,An). We have 

(3.12) Ai^-(A) + .... + An^(A)<n/(A)> 

for all x e r+. 

(2). There exist positive constants A, B depending on f such that 

(3.13) /(A) < A + B(Ai + A2 + ■ • • • +An) 

for all A <E r+. 
Proof To prove (3.12), consider 

/(Ai, A2,...., An) > /(Ai, A2,...., An) — /(0, A2,...., An) 

= AI^T--(A1, A2,...., An) > Ai—-(Ai, A2,...., An), 

where 0 < A^ < Ai. Similarly we have 

df 
/(Ai, A2,...., An) > A^—-(Ai, A2,...., An), 

for all i = 2,3, ...,ro. For (3.13), since / is concave on r+, we have 

for all A G r+, ft = (/i, //,..., //), fi > 0. Let C be the compact set 

I^>+"-+I> 

C = {A € r+ : (Ai) < 1 for all i} . 

If A € r+ and A ^ C, there exists some i such that A; > 1. We may assume Ai < A2 < 
... < An and An > 1 for such A. Now 

/(A)</(An,A„,....,An) 

< /(I) + (A„ - 1) I>--I6<r> 
</(!) + ^) —^ 

■ (Ai + A2 + • • • ■ +An): 

where f = (1,1,..., 1). Choose A = max/ and B = ^-(1)+ .... +^(1). □ 

3.1. The gradient estimate. Without loss of generality, we may assume the 
initial hypersurface MQ enclose the origin of En+1. Therefore uo(x) > 6 > 0 for some 
constant 5 > 0 and u(x,t) will remain positive during the evolution. We will see 
later that the quantitative behavior of u(x,t) is close to a solution R(t) to the o.d.e. 
4£ = F{R'gij) = f(R,R, ,#), R(0) G (timin(0),timax(0)). Because tx(-,*) > 0 is 
the support function of the strictly convex hypersurface Mt (see Corollary 3.8), it is 
not difficult to see that 

Vu(p,t) 
\v«M\ <«($$%> t) 
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for all (p,t) e Sn x [0,r) whenever |Vw(p,t)| # 04. Consequently, we obtain 

(3.14) sup|Vu(-,*)| < supM(-,t)      for all   t € [0,T). 

This rough estimate can be refined substantially. In fact, there is a uniform bound 
for the gradient of u. This is a special case of Theorem 3.1.(iv) in Chow-Gulliver 
[CG], which provides a uniform gradient estimate for more general equations based 
on an Aleksandrov reflection argument. To get a feeling of the geometric aspects 
of Aleksandrov reflection and its application to conformal flows on 5n, the readers 
can see the recent paper by Chow [C]. The implications of the gradient estimate are 
twofold: first, it implies the asymptotic roundness of the hypersurfaces as long as we 
have the long time existence of the evolution; second, it tells us how to rescale the 
solution in a precise way. The statement is 

PROPOSITION 3.3. There exists a positive constant C depending only on the initial 
condition UQ such that, as long as the solution to (2.3) exists and hij > 0 on Snx [0, T), 
the support function u(x,t) satisfies the uniform gradient estimate 

(3.15) \Vu{x,t)\ <C, 

for all (x,t) E Sn x [0,T). In particular, since the diameter of Sn is TT, we have 

Umax{t) -Umin(t)  < C'TT 

on[0,T). 
REMARK 1. We only need the parabolic condition j^- > 0 to get the gradient 

estimate (3.15). The assumptions in (2.5) and (2.6) and that f being concave and 
positive on r+ are not necessary. However, they are required for the higher derivatives 
estimates. 

It is worth pointing out that our equation (2.3) is geometrical and therefore any 
estimate related to it may depend on the geometry of the setting. For example if, in 
the 1-dimensional case, we replace the initial imbedded closed convex curve MQ in E2 

by an immersed closed convex curve with loops, then the gradient estimate (3.15) is 
no longer valid. See Tsai [T]. A geometric explanation of this phenomenon can be 
given easily as follows. Imagine a cardioidlike curve with one little loop L2 and call 
the rest L\. Suppose we also position our coordinate system so that the origin O is 
enclosed by the little loop L2. The support function IAO(^) is now a periodic function 
with domain [0,47r] and is everywhere positive. It has larger values on Li, smaller 
values on the little loop L2. Also, for any point p on Li, which has small curvature, 
the expansion speed of p is much faster than the expansion speed of any point q on the 
little loop L2, which has large curvature. Therefore the difference umax(t) — um\n(t) 
will not be bounded above by any positive constant as time evolves. 

3.2. The second derivative estimate. Regarding the second derivatives esti- 
mates of it, we need to compute the evolution equations of h^ and hli first. 

LEMMA 3.4. (1). 

dthij = F^VkVihij + F^VihMVjhmn + (F + i^M'fe - (trF^hy 
(3.16) 

+Fikh3k -Fjkhik' 

4This is obtained by computing -^ \s=o u(a!(s),£) along a curve a(s) € Sn with a(0) = p, d(0) = 

iv^lp't)! and use the definition of support function. 
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(2). 

dth*' = F^VkViW -{F + F'uhuWh'" + (trF')h^ 

(3-17) -hPh*' [2F'kmhnl + ^;m„] VrhklVshmn 

-hPh" ■ (F;khqk - F'qkhpk), 

where F, F', andF" are all evaluated at h and trF' = F'kl(h)gki. 
Proof.   The computations are very similar to those as in Urbas [Ul], they are 

therefore omitted. □ 

3.2.1. The upper bound of hij. We only need the concavity of / on r+ to 
get the bound on |VVIA| , which in turn implies the upper bound of hij. 

PROPOSITION 3.5. Ifu<MonSnx [0,T) for some positive constant M, then 

(3.18) |VVw(x,*)| < C    for all    (x,t) € Sn x [0,r), 

where C < oo is a constant depending on M, F, UQ and T. 
Proof. We shall let C denote any constant depending only on F, UQ and T, where 

C may change from line to line. Let 

H = gtjhij = Au + nu. 

By (3.16), we find 

dtH = F^VkViH + n(F + F^hu) - {trF')H + F^mnVihkiVihmn. 

The concavity of/ would then imply (see Caffarelli-Nirenberg-Spruck [CNS]) 

(3-19) FkmnVihklVihmn < 0. 

Therefore 

dtH < F^VkViH + n(F + F^hu), 

since (trF')H > 0. Applying the inequalities (3.12) and (3.13) to above yields 

dtH < F^VkViH + C'H + C. 

We thus find 

(3.20) 0<H<C      on       Sn x [0,r) 

by the maximum principle. Observing that 

0 < Xi < Ai + • • • • +An = H < C 

for any 1 < i < n and 

|VVu(:r, t)\2 = (Ai - u)2 + (X2 - u)2 + • • • • (An - u)2 < C, 

the proof of the proposition is done. □ 

Since hij — V;VjU + ugij, the upper bound of it is established as long as u stays 
finite. 
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3.2.2. The lower bound of hij and the preserving of convexity. We want 
to show that the convexity of the evolving hypersurfaces is preserved if we impose 
either assumption (2.5) or (2.6) on /. As a consequence, all of the principal radii 
Ai, A2,...., An will have positive lower and upper bounds as long as u is bounded. 
First we have 

LEMMA 3.6. For all t e [0,T), we have 

(3.21) minF(.VVtt(-, i) 4- iz(-, t) • g) > minF(VVu(-, 0) + u(-, 0) ■ g) > 0. 

Proof. Let VJ(X, t) = dtu = F(Wu{x, t) + u(x, t) • g). Compute 

dtw = Ffjih) • [ViVjW + u; -py] 

= F!j(h)Vi\?jw + Fij(h)girw. 

Since 

on 5n x [0,T), we can apply the weak maximum principle to conclude 

(3.22) w(x,t) = /(Ai(x,t), ,An(:M)) > min^(x,0) > /(e,e,....,e) > 0 

for some e > 0 and for all (a, t) G 5n x [0, T). (3.21) is proved. □ 
PROPOSITION 3.7. /// satisfies either assumption (2.5) or (2.6), there exist a 

positive constant C\ depending on F, UQ and T such that 

(3.23) h^ > Ci • gij      on   Sn x [0,T). 

Proof. Case 1. Assume / satisfies assumption (2.5). 
Since we impose the barrier condition / = 0 on 9r+, it will force each A^ to stay 

strictly away from 0 for all i 6 fO,T) due to (3.22). That is, (Ai, A2, ....■-, An) £ Q on 
Sn x [0, T), where tt is a closed subset of r+ with Q h 5r+ = 0. The set Q is also 
bounded because of (3.20). Hence Q, is a compact set. The proof is done. 

Case 2. Assume / satisfies assumption (2.6). 
Recall we have the equation 

-W [2F'kmhnl + F^mn) VrhklVshmn 

-h^" ■ (F;khqk - F^hpk). 

Now let us suppose that the maximum eigenvalue of [/z2J] over Sn at time t is attained 
at a point pt E 5n. By a rotation of the frame, we may assume that h11 is the 
maximum eigenvalue and /i2-7 = 0 for i ^ j. We get 

ft/*11 = F^VkVih11 - {F + F'klhkl) (h
11)2 + (trF')h11 

(3-24) - {h11)2 ■ [2F'kmhnl + FZ.mn] V^HV^^. 
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By our assumption (2.6), we have (see Urbas [Ul]) 

- (/I11)" • [2^"' + F&.mn] VihuVihmr, < 0. 

Assuming 0 < Ai < A2 < • • • < An at pt G 5n, we have h11 = j- and 

-(F + FM {h11)2 + (trF')hn 

A   df +      +A   df Ai— + .... + A„ — + 
dXi 

+ ....+ 
dXn (i) 

<0. 

Therefore we conclude 

dth11 < 0       at the maximum point pt G 5n. 

Again the maximum principle implies the upper bound of ft1-7', which is the same as 
the lower bound of hij. □ 

COROLLARY 3.8. (preserving the convexity) If f satisfies either assumption (2.5) 
or (2.6) and u < M on Sn x [0,T), there exist two positive constants Ci and C2 
depending on M, F, UQ and T such that 

(3.25) 0 < d • Qij < h^ < C2 • gu        on  5n x [0, T). 

This means that the evolving hypersurface is uniformly convex as long as u is finite. 

3.2.3. Long time existence. So far we have obtained the estimates on the 
first and second space derivatives of u and the bound of the tensor h^, whenever u 
stays finite. This will guarantee the uniform parabolicity of our nonlinear equation 
(2.3) as long as u is finite. By the same argument as in Urbas [Ul], we can quote the 
result of Krylov-Safanov [KS] to get the Ca estimate of ^. Since / is concave, by 
a result of Krylov [K] again, we also have the Ca estimate of VVw. (Both estimates 
are with respect to space and time.) Standard parabolic theory again allows us to 
derive the Ck'a estimates of u provided u stays finite. We hence arrive at the following 
conclusion. 

PROPOSITION 3.9. (long time existence) Under the hypotheses of Theorem 2.1, 
there exists a unique smooth solution u(x,t) to equation (2.3) on Sn x [OJTQO) such 
that h^ > 0 on Sn x [OJTQO) and   lim  umin(t) = 00. 

We shall see immediately that T^ = 00. 

3.2.4. Rescaling and convergence. By the equation dtu = F(Wu + u - g), 
we can get 

(3.26) ^"(t) <F(umax(t)-9)    and    d"^in(t) > F(um[n(t) -g). 
dt dt 

where ^- and ^ are in the Lipschitz sense. (See Hamilton [H] or Chow-Tsai [CT1].) 
Because / is concave, we have 

F{umax(t) • g) = f(umax(t),umax(t),...., umax(i)) <A + nB' umax(t) 
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by (3.13). Hence T^ = oo. Moreover, based on inequalities (3.26), we can carry out 
exactly the same proof as in Chow-Tsai [CT1] to conclude 

LEMMA 3.10. (1). There exists a solution R(t) to the o.d.e. 

(3.27) ^ = F(R-g) 

on [0, oo) such that 

(3.28) um{n(t) < R(t) < umax(t)      for all     t G [0, oo). 

(2). For any R(t) satisfying (3.27) and (3.28), we have 

(a). — is dereasmg,   (b). is increasing,   (c).  —  is decreasing 

for allt G [0,oo). 
From now on we will choose one R{t) satisfying (3.28) and use it to rescale the 

solution u{x,i). Define the rescaled solution u{x,i) as 

u{x,t) 

which is the support function of the rescaled surface M — ^. Clearly we have 

(3.29) |fi(Xjt)-l|< JL,    |Vw(a;,t)|<    C 

R(ty    '      v  ' n- R(t) 

for all (x, t) E 5n x [0, oo) and the proof of Theorem 2.1 is finished. 

REMARK 2. We would like to point out that the estimate (3.15) and relation 
(3.28) hold as long as we have the parabolic condition ^J- > 0. 

4. Rescaling of solutions to some parabolic differential equations. In 
this last section we establish a theorem which says that under some assumptions 
on the parabolic partial differential equation considered, there is a natural way to 
rescale the solution. Similar to Lemma 3.10, the rescaling function R(t) is chosen to 
be a solution of some ordinary differential equation with its value lying between the 
maximum and the minimum values of the solution u(x,t) to the partial differential 
equation considered. Again one can see Hamilton [H] or Chow-Tsai [CT1] for the 
discussion and notations on the differentiability of Lipschitz functions. 

Let F(aij: bi, x, t) be a real-valued smooth function defined on the set T = 
5(n) x En x M x [0,T). Here S(n) denotes the n(n + l)/2-dimensional space of real 
symmetric n x n matrices. The main assumption on F in this section is 

(4.30) F (0, 0, x, t) is increasing in the variable x for all t G [0,T). 

The main result in this section is 
THEOREM 4.11. Letu(x,t) e C2(M x [0,T)), whereT < oo, be a solution to the 

following parabolic differential equation 

(4.31) dtu = F{ViVju, VJU, u, t) 
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on any compact Riemannian manifold (M,g). Here F satisfies the assumption (4-30). 
Then there exists a solution to the o.d.e. 

(4.32) ^ = jp(0, o, ii, i) 

on [0,T) such that 

(4.33) um[n(t) < R(t) < umax(t) 

for allte [0,T). 
REMARK 3. The theorem also holds if we replace (M,g) by a compact set Y in 

Euclidean space with standard metric and assume that for any time t G [0,T), both 
Urnmit) — mmu{x,t) and umax(t) = maxu(x,t) are attained at some interior points 

xEY xEY 
ofY, since at the interior extremum points we have Viu = 0 and VJVJU < 0 or > 0. 

Proof Consider the first case when T < oo. For any t G [0, T), if umax(t) — u(pt, t) 
for some pt G M, then 

du 
-Qj;(Put) = F{ViVjU, ViU, u, t)     at    {put) 

(4.34) <F(0,  0,  TimaxW,  t) 

since ViVjU is semi-negative at the maximum point. Similarly we have 

d ii 
(4.35) —(qut)>F^ o, Mmin(t), t) 

where ^min(^) — u(qt,t) for some qt G M. Take an increasing sequence Ti G [0,T) 
with limi-j.oo Ti — T and let R^it) be the solution to the following 

dR^ 
(4.36) —i- = F(0, 0, Rt(t), t),       R+pi) = u^Ti). 

The domain of i?/"(i) will be at least (Tj — £i,Tj] for some ei > 0. Set 

f(t) = umax(t) - Rf(t) 

on (Ti - ei,Ti\.   It will be Lipschitz on (Ti - e^Tj and /(Ti) = 0.   For any t £ 
(Ti - Ei, Tj], compute 

,.     m-f(t-h) 
hm sup  

h\o h 

< limsup ^maxW-^maxft-ft)  _ ^ ^^  Q^  ^^^   ^ 
h\o h 

and by (4.30) and (4.34) we know 

(4.37) ^J-(t) < F(0, 0, timax(*), *) - F (0, 0, iZ+(*), *) < 0, 

whenever f(t)<0. Therefore 

(4.38) f(t) > 0     for all     t G (Ti - eu Ti]. 
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Similarly we consider g(t) = um[n(t) - Rf(t) and compute 

liminf^-f-^ 
hs.o h 

> liminf um{n(t)-um'm(t-h) _ F . _ , 
~   h^o h v * / 

Again by (4.30) and (4.35) we know 

^f(t) > F(0, 0, iimin(t), t)-F (0, 0, £+(*), t) > 0, 

whenever g(t) > 0. Hence 

(4.39) g(t) < 0      for all     t € (^ - e^TJ. 

Thus we arrive at the following 

(4.40) timin(t) < Rfit) < umax(t)    on     (Ti - ^,1}]. 

From (4.40) and the basic theory of o.d.e., we deduce that the domain of Rf(t) will 
be at least [0, T*] and for each i we have 

(4.41) um{n(t) < R+{t) < umAX{t)    on     [0,2*]. 

Consider the sequence {it^}?^, on any compact subinterval [0,T — S] of [0,T), the 
domain of R^ will cover [0,T — S] for i large enough. We may assume all Rf are 
defined on [0, T — 5]. Observe that each Rf(t) is smooth on [0,T — 8] and if j > i, we 
have T -5 <Ti<Tj and 

R+(t)<umax(t) on    [Ti.Tj]. 

In particular, we see 

R+{TJ<Kt(TJ. 

Therefore by the basic theory of o.d.e. again we get the monotone relation 

(4.42) umin(jt) < R+(t) < Rfit) < um^(t)   on    [0, T - S] 

for any j > i. Define R+(t) = limi^oo Rfit), t e [0, T - 5]. Clearly we have 

(4.43) um[n(t)<R+(t)<umax{t)   on    [0,T - 5\. 

Claim: Rfit) converges uniformly to i?+(£) on the interval [0,T — 5}. 

Proof of the claim: 

For any t G [0, T — 5] and j > i, we have 

[Rt(t)~Rf(t)} = [Rt(0)-Rf(0)] 

+ [  [F(0, 0, Rt(s), s)-F(0, 0, Rf(s), a)] -da 
Jo 
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and hence 

(4.44) 0 < [Rt(t) - Rfit)] < [B+(0) - R+(0)] + [ Ms - [Rt(s) - R+(s)] ■ ds. 
Jo 

for some constant Ms > 0 since F is Lipschitz when restricted to compact sets. 
GronwalPs inequality implies 

(4.45) 0 < [Rt(t) - Rf(t)] < [RfiO) - Rf(0)} ■ e"** 

for all t e [0, T — 5]. The claim is proved. 

The claim would also imply that we have F (0, 0, Rl(t), t) converges uniformly 
to F (0, 0, R+(t), t) on [0, T — S\ due to the mean value theorem. Therefore we secure 
the continuity and differentiability oiR+{t) on the interval [0,T — 8} and moreover 

-^- = ^(0, 0, R+{t), t)     on   [Q,T-S\. 

Letting 5 —> 0, the conclusion follows. The case when T = oo is also clear. The proof 
of Theorem 4.11 is complete. □ 

REMARK 4.    The fact that we can squeeze a solution R{t) to the o.d.e.   (4-32) 
between um\n(t) and umax(t) has more significance when we have the gradient estimate 

|Vu| < C 

of the solution u to equation (4.31), where C is a constant depending only on the 
initial condition UQ{X) and when the solution u will blow up as t —> T. In this case we 
have 

0 < um3iK(t) - umin(t)   <C-d, 

where d is the diameter of M and lim limin(^) = oo. So the asymptotic behavior of u 

is best described by R(t). 

Another interesting consequence is: 
COROLLARY 4.12. Under the hypotheses of Theorem 4-ll> tf in addition F also 

satisfies all of the following 

(i).. F (0, 0, x, i) is concave in the variable x G M,   for all t £ [0,T), 

(4.46) (ii). F(0, 0, 0, t) > 0,   for all t e [0,T), 

(Hi).   0<um-m(t),   for all t e [0,T) 

then for any R(t) satisfying (4-32) and (4-33) we have 

(a).    ^^      is dereasing,   (b).    ^        is increasing,   (c).    max       is decreasing 
R(t) R[t) umin{t) 

on [0,T). 
Proof To prove (a), note that um8iX(t)/R(t) is Lipschitz on [0,T) and get 

(4 47)   ^L (um^(t)\ < R(t)F (0, 0, umax(t), t) - umax(t)F (0, 0, R(t), t) 
dt V   R(t)   ) - R2(t) 
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Since F (0, 0, x, t) is concave in x, we have 

F {XA + (1 - X)B) > XF {A) + (1 - X)F (B) 

for all A <E [0,1] and all points A = (0, 0, x, t), B = (0, 0, 0, t). Since 

F(0, 0, 0, t) >0, 

we therefore have 

(4.48) AF(0, 0, a;, t) < F(0, 0, Ax, t) 

for all A G [0,1]. Choosing A = R(t)/umax{t) G [0,1], we get 

"      /  ^maxV^/  \   ^  ^max\^J 
^^   F(0, 0, iimax(*), «) -^(0, 0, ii(t), t) 

dt   V    ^W     /   "     &{*) L^max(^) 
<0        on     [0,T). 

The proof of (a) is complete. The proof of (b) is analogous to (a) if we use the 
inequality 

^^F(0, 0, R(t), t) < F(0, 0, um.in(t), t). 
K{t) 

(c) is an easy consequence of (a) and (b). □ 

Acknowledgments. We would like to thank Ben Andrews for some discussion 
and the referee for pointing out some minor corrections. 
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