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THREE-MANIFOLD SUBGROUP GROWTH, HOMOLOGY
OF COVERINGS AND SIMPLICIAL VOLUME*

ALEXANDER REZNIKOV! AND PIETER MOREE?

1. Introduction. This paper is concerned with the conjecture, communicated
to the first author by A. Lubotzky and A. Shalev:

CONJECTURE 1.1. Let M be a hyperbolic three-manifold. Let f(d) denote the
number of subgroups of index d in m (M). There exists an absolute positive constant
Cy such that, for infinitely many d, f(d) > exp(C1d).

This conjecture follows easily from the following one:

CONJECTURE 1.2. Let M be as above. For any prime p there exists infinitely

many d, for which there exists a d-sheeted covering N of M such that

mnkp (H1 (N)) > CQd, (1)

where Cy is an absolute positive constant.

Observe that for any finitely generated group G, and a subgroup H of index d,
rank, (H1(H)) < const - d, so that (1) is sharp up to a constant.

A much weaker growth rate than conjectured in (1), namely, rank, (H; (N)) >
(log d)?~¢ has been proved by Shalev [Sh]. It follows from the Class Tower Theorem
of [R1] that rank, (H;(N)) > (logd)?.

These conjectures about the subgroup growth should be compared with the results
of [Tu] and [SW] concerning the word growth of m; (M).

Here we prove the following result for a priori a much wider class of manifolds
than hyperbolic manifolds (given the present status of the hyperbolization conjecture).
Recall the definition of rich fundamental groups given in [R1]:

(R) A closed irreducible three-manifold satisfies condition (R) if either

(a) the Casson invariant A(M) > §( representations of 71 (M) in SLy(Fs)) or

(b) M is hyperbolic.

MAIN THEOREM 1.1. Suppose the three-manifold M is a rational homology sphere
(that is Hy(M,Q) = 0) satisfying (R). Then for all, but at most two, primes £ with
£ = 3 (mod 4), there exists a positive a such that for infinitely many d, there exists
a d-sheeted covering N of M such that either the inequality rank, Hy(N) > c¢d®, or
rankz Hy(N) > cd'/?, holds.

As a corollary we have:

THEOREM 1.2 (SUBGROUP GROWTH). Let M be as in the Main Theorem. Then
for infinitely many d, f(d) > exp(C d%).

Strategy of the proof. Step 1. By Theorem 9.1 of [R1], m (M) admits a Zariski
dense representation to SLy(C). We use the strong approximation of [We] to find
surjective maps from 71 (M) onto SLy(F,y), where F, are residue fields of an algebraic
number field K.

Step 2. If £ is a prime, g, s are prime powers such that £ divides both |SLy(F,)| and
|SLa(Fs)|, and 1 — w1 (N) — w1 (M) — SLa(F;) x SLo(Fs) — 1 is a Galois covering,
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then Hy(N)(g), the £torsion part of H; (), is nontrivial. This is proved in Proposition
2.1. Moreover, the action of SLy(Fy) in Hi(N) () is nontrivial (Proposition 2.2).
Step 3. Using Theorem 3.2 it follows that for appropriate £,q the fvank of Hy(N)
must be ~ p, where ¢ is a power of p.

It may in principle happen, that just one surjective map (M) — SLy(F,) is
not enough to produce nontrivial £homology in N, where 71 (V) = Kera (see Step 2
above). We will prove that if this phenomenon happens for infinitely many p, then M
is hyperbolic in a weak sense (the Gromov simplicial volume is positive).

For a number field K, we denote O its ring of integers, and for a finite set S of
primes we denote Og its localisation at S.

THEOREM 1.3 (WEAK HYPERBOLIZATION). Let M be atoroidal. Let p : w1 (M) —
SLy(Os) be a Zariski dense representation. Suppose that for infinitely many primes
¢, there exists a rational prime p = £1 (mod ¢) and a prime ideal p C O over p
with residue field Fy, such that the covering N defined by 1 — 71 (N) — m (M) —
SLy(Fq) = 1 has trivial £-homology. Then M has positive Gromov invariant.

REMARK. It is enough to demand that £ ¢ |H3(SL2(Os)]tors, S0 given the field K,
the conditions can be effectively checked.

2. Homology of SLy(F,) x SLy(F,)<coverings. Let M be a closed acyclic 3-
manifold. In this section, we will study SLa(Fy) x SLa(Fs)coverings of M where ¢
and s are prime powers and ¢ divides the orders of SLy(Fy) and SLy(Fs), but not gs.

PROPOSITION 2.1. Let 1 = m(N) = m (M) = SLa(Fy) x SLy(Fs) — 1 be a
Galois covering. Then either by(N) > 0, or (Hy1(N))) # 0.

Proof. If N is a £homology sphere, then the spectral sequence of the covering
inplies the direct product SL(F,) x SL3(Fs) has periodic f~cohomology, multiplica-
tively generated by the Euler class. See [CE]. It follows [CE] that any abelian {group
in SLy(IF;) x SLa(Fs) should be cyclic, which is obviously wrong.

Consider the tower of coverings @ - N — M, where 1 = m(N) = m (M) —
SLy(Fg) = 1 and 1 = m(Q) — m(N) — SLy(F,) — 1 are exact. Suppose
(Hl(M))(g) = 0. Then either (H, (N))(g) # 0, or (Hl(N))(g) =0 and (H; (Q))(g) # 0.
Replacing M by N in the latter case, we can assume that the first case holds.

PROPOSITION 2.2. Suppose 1 = w1(N) = m (M) — SLy(F,;) = 1 is a Galois
covering of rational homology spheres. Suppose Hy(M)y = 0 and Hy(N)q) # 0.
Then the natural action of SLa(Fy) in H*(N,Fe) is nontrivial.

Proof. By Quillen [Qu], the cohomology ring H*(SL3(Fy),Z), is freely gener-
ated by one element of degree 4. Let W = H'(N,F;), then as an SLy(F,)odule,
H?(N,F¢) ~ W*. The spectral sequence of the covering will look like

FF 0 0 F R
H'(SLx(F,),W™) = H™(M,F)
H'(SLy(F,), W)

le 0 0 ]Fg ]Fg 0 0 ]Fl

If the action of SLy(F;) in W were trivial, then this would reduce to
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F, 0 0 I, F, 0 0 e,

w* 0 0 w* w* 0 0 = Hiti (M,Fy)
W 0 0 w w 0 0

F, 0 0 F, F, 0 0

Then we see that W* which is indexed by (4k + 3,2) in the E%-term is not hit by
any differential and survives in E®°. This contradicts the finite-dimensionality of
H*(M). 0

3. A variant of Artin’s primitive root conjecture. In 1927 Artin conjec-
tured that if @ # —1 or a square, then a is a primitive root mod p for infinitely many
primes p or, in other words, < a >= F; for infinitely many primes p. Under the as-
sumption that the Riemann Hypothesis holds for certain number fields, a quantitative
version of the conjecture was proved by Hooley [Ho]. The best known unconditional
result to date is due to Heath-Brown [HB]. His main result has the following theorem
as a corollary:

THEOREM 3.1. Let q, r and s be three distinct primes. Then ot least one of them
is a primitive root for infinitely many primes.

In the proof of the Main Theorem we will use the following variant of Heath-
Brown’s result:

THEOREM 3.2. Let g, r, s be three distinct primes each congruent to 3 (mod 4).
Then for at least one of them, say q, there are infinitely many primes p such that q
is a primitive root mod p and, moreover, p = +1 (mod gq). Furthermore, the estimate
Hp<z:<g>=F;, p=—1 (mod )} > z(logz)~? holds true.

(Notice that if £ = 1 (mod 4) with £ a prime, then, by quadratic reciprocity, there
are no primes p such that p = +1 (mod ¢) and < £ >=F;.)

Proof of Theorem 3.2. Let q,r, s be nonzero integers which are multiplicatively in-
dependent. Suppose none of q, 7, s, —3qr, —3gs, qrs is a square. Suppose, moreover,
there exists a prime py such that

=3 (9 = (T = (5 = 1 and (s — 1. 164r
()= () = ()= () =—1end (i~ 1,1647s)}8. (2)

Then it follows from the proof of Theorem 1 of [HB] that N, (), the number of
primes p < z for which at least one of g, r, s is a primitive root and such that,
moreover, p = po (mod 16¢rs), satisfies N, . (x) > z(log z) 2.

Now let ¢, r and s be three distinct primes = 3 (mod 4). Then none of the integers
q, T, 8, —3qr, —3qgs and grs is a square. We are done if we can find a prime py such
that pp = —1 (mod grs) and such that, moreover, py satisfies (2). Using quadratic
reciprocity we see that any prime pg satisfying po = 2 (mod 3), pp = 1 (mod 4),
po Z 1 (mod 16) and pg = —1 (mod grs) (there are actually infinitely many of them),
will meet the demands.

The conjecture alluded to in the heading of this section, is the conjecture that if
£ # 1 (mod 4), £ a prime, then there are infinitely many primes p such that p = +1
(mod £) and < £ >= F,. On the generalized Riemann hypothesis this can be shown
to be true, and moreover a quantitative version can be established [Mo].

4. Proof of the Main Theorem. By Theorem 9.1 of [R1], there is a Zariski
dense representation of (M) in SLy(Q). Let K be the splitting field of this rep-
resentation, and let n = [K : Q. By [We], for almost all rational primes p the
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reduction modulo any prime over p in K will define a surjective map m (M) —
SLy(Fy),q = p™,m < n, and moreover, for two such primes p, f the map m (M) —
SLy(Fy) x SLy(Fs), ¢ = p™,s = f7, is surjective. From now on we only look at
primes congruent to —1 modulo ¢. Suppose that the ¢part of the homology of one
such SLs(Fs)<covering N is zero. If this happens for ¢ big enough, this alone has
far reaching consequences for the nature of M (the Gromov invariant is positive), as
we will see in the proof of Theorem 1.3. Now we just notice that, by Proposition
2.1, we can relabel N by M and assume that for the rest of the primes p, either the
{-part of the homology of the SL,(F,)covering is nontrivial, or these coverings have
positive b;. In the first case, by Proposition 2.2, the action of SLy(F,) in H!(N,F,)
is nontrivial. Since PSLs(IF,) is simple, any element of order p in SLy(F,) also acts
nontrivially. If m = dim H'(N,F;), then we see that p divides |GL,(F;)|, so that
p|(€—1)(¢2 —1)--- (™! —1). By Theorem 3.2 for appropriate £, there are infinitely
many primes p such that the order of £ in F; equals p — 1. It follows that m > p.
On the other hand, |SLy(F,)| ~ ¢® and n = log, ¢ is bounded above by the de-
gree of the number field, over which the representation of m; (M) is defined. Finally,
m > const - |SLy(IF;)|%, where 1/3a is the degree of the splitting field. The proof
is complete in this case. In the other case, we get infinitely many SLy(IF,)-coverings
with by (N) > 0. Since by (M) = 0, the representation of SLy(F,) in H; (N, C) does not
have a trivial constituent. However, the smallest nontrivial irreducible representation
of SL»(IF,) has dimension ~ g, so b;(N) > d*/3. O

Proof of Theorem 1.2. Let N be as above and m = rank,(H,(N)) > Cd®. There
are at least ™! subgroups of index £ in Hi(N)(. So there are at least £°4°~1
subgroups of index ¢d in m (M). O

Proof of Theorem 1.8. Suppose the Gromov invariant of M is zero. By Propo-
sition 5.4 of [R2], for representation ¢ : m (M) — SLy(K), the homology class
o+[M] € H5(SLy(K),Z) is torsion. This applies to the representation p : m (M) —
SLy(Os). Since the real cohomology of SLy(Og) and SL2(K) are isomorphic, p.«[M] €
H3(SL2(Og)) is also torsion. Now, the H;(SL2(Og)) are finitely generated [BS], so
for some 0 # N € Z, we have N - p,[M] = 0. From now on we assume that £ does not
divide N. Then p.[M]y € (H3(SL2(Os))tors)(r)y = 0. For any surjective homomor-

phism SLy(Os) -+ SLy(F,), we will have 0 = (8p).[M](s) € Hs(SLa(F,)) - On the
other hand by Quillen [Qu], H3(SL2(F,))) # 0 if £|p*> — 1. Consider the homology
spectral sequence of the covering 1 — m1(N) = w1 (M) = SLy(F,) — 1:

H;(SLy(IF,),Z)

H;(SLy(Fy), Ha(N))

H;(SLy(Fy), Hi(N)) = Hi1j(M,Z)
Hl(SL2(IFQ)1Z)

Since the map H3(M,Z) = H3(SLy(F,),Z) is zero, one of the two differentials dj :
H3(SL2(]F,I),Z)(£) - Hl(SLg(Fq),Hl(N))(g),dg :Kerds — HO(SL2(]Fq),H2(N))(e) is
nonzero. But if Hy(N) # 0 then N is hyperbolic [Th] and the Gromov invariant of M
is positive. If Hy(N) = 0, then dy # 0, so H;(N)) # 0. 0

Concluding remarks. Theorem 1.3 can be stated with reference made only to
representations of 1 (M) over finite fields:

THEOREM 1.4. Let M be atoroidal.Suppose for infinitely many rational primes
l, there exists a rational prime p = +1(mod l) and a surjective representation p; :
m (M) — SLy(F,), where q is a power of p, such that the covering defined by 1 —
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m(N) = m (M) — SLy(F,) = 1 has trivial [-homology. Then M has positive Gromov
mvariant.

Proof. Let F be an ultrafilter product of Fy, so char(F) = 0. Let p : m (M) —
SLy(F) be the ultrafilter product of p;. Fix an isomorphism between the ultrafilter
product of F, and C, so F is a subfield of C. If p is not rigid as a representation to
SL4(C), then M is Haken, therefore hyperbolic.So we may assume p is rigid, therefore
after a conjugation is defined over a number field K. In particular [F, : I,] are
bounded. Let p be the representation defined over K which is conjugate to p. Then
p is defined over O(K) since otherwise M is Haken again. Since Tr(p) = Trp, the
reductions of j are conjugate to p; over a quadratic extension of Q. Then the proof
goes as in the Theorem 1.3.
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