THREE-MANIFOLD SUBGROUP GROWTH, HOMOLOGY OF COVERINGS AND SIMPLICIAL VOLUME*

ALEXANDER REZNIKOV† AND PIETER MOREE‡

1. Introduction. This paper is concerned with the conjecture, communicated to the first author by A. Lubotzky and A. Shalev:

Conjecture 1.1. Let M be a hyperbolic three-manifold. Let f(d) denote the number of subgroups of index d in $\pi_1(M)$. There exists an absolute positive constant C_1 such that, for infinitely many d, $f(d) > \exp(C_1 d)$.

This conjecture follows easily from the following one:

Conjecture 1.2. Let M be as above. For any prime p there exists infinitely many d, for which there exists a d-sheeted covering N of M such that

$$rank_p\left(H_1(N)\right) > C_2 d,\tag{1}$$

where C_2 is an absolute positive constant.

Observe that for any finitely generated group G, and a subgroup H of index d, rank_p $(H_1(H)) \le \text{const } \cdot d$, so that (1) is sharp up to a constant.

A much weaker growth rate than conjectured in (1), namely, $\operatorname{rank}_p(H_1(N)) > (\log d)^{2-\epsilon}$ has been proved by Shalev [Sh]. It follows from the Class Tower Theorem of [R1] that $\operatorname{rank}_p(H_1(N)) > (\log d)^2$.

These conjectures about the subgroup growth should be compared with the results of [Tu] and [SW] concerning the word growth of $\pi_1(M)$.

Here we prove the following result for <u>a priori</u> a much wider class of manifolds than hyperbolic manifolds (given the present status of the hyperbolization conjecture). Recall the definition of rich fundamental groups given in [R1]:

- (R) A closed irreducible three-manifold satisfies condition (R) if either
- (a) the Casson invariant $\lambda(M) > \sharp$ (representations of $\pi_1(M)$ in $SL_2(\mathbb{F}_5)$) or
- (b) M is hyperbolic.

MAIN THEOREM 1.1. Suppose the three-manifold M is a rational homology sphere (that is $H_1(M,\mathbb{Q})=0$) satisfying (R). Then for all, but at most two, primes ℓ with $\ell \equiv 3 \pmod 4$, there exists a positive α such that for infinitely many d, there exists a d-sheeted covering N of M such that either the inequality $\operatorname{rank}_{\ell} H_1(N) > c d^{\alpha}$, or $\operatorname{rank}_{\mathbb{Z}} H_1(N) > c d^{1/3}$, holds.

As a corollary we have:

THEOREM 1.2 (SUBGROUP GROWTH). Let M be as in the Main Theorem. Then for infinitely many d, $f(d) > \exp(C d^{\alpha})$.

Strategy of the proof. Step 1. By Theorem 9.1 of [R1], $\pi_1(M)$ admits a Zariski dense representation to $SL_2(\mathbb{C})$. We use the strong approximation of [We] to find surjective maps from $\pi_1(M)$ onto $SL_2(\mathbb{F}_q)$, where \mathbb{F}_q are residue fields of an algebraic number field K.

Step 2. If ℓ is a prime, q, s are prime powers such that ℓ divides both $|SL_2(\mathbb{F}_q)|$ and $|SL_2(\mathbb{F}_s)|$, and $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s) \to 1$ is a Galois covering,

^{*} Received July 10, 1997; accepted for publication (in revised form) February 6, 1998.

[†] Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, England (reznikov@mpim-bonn.mpg.de, reznikov@daphne.polytechnique.fr).

[‡] Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, 53225 Bonn, Germany (moree @mpim-bonn.mpg.de).

then $H_1(N)_{(\ell)}$, the ℓ -torsion part of $H_1(N)$, is nontrivial. This is proved in Proposition 2.1. Moreover, the action of $SL_2(\mathbb{F}_q)$ in $H_1(N)_{(\ell)}$ is nontrivial (Proposition 2.2). Step 3. Using Theorem 3.2 it follows that for appropriate ℓ , q the ℓ -rank of $H_1(N)_{(\ell)}$ must be $\sim p$, where q is a power of p.

It may in principle happen, that just one surjective map $\pi_1(M) \stackrel{\alpha}{\longrightarrow} SL_2(\mathbb{F}_q)$ is not enough to produce nontrivial ℓ -homology in N, where $\pi_1(N) = \text{Ker } \alpha$ (see Step 2 above). We will prove that if this phenomenon happens for infinitely many p, then M is hyperbolic in a weak sense (the Gromov simplicial volume is positive).

For a number field K, we denote \mathcal{O} its ring of integers, and for a finite set S of primes we denote \mathcal{O}_S its localisation at S.

Theorem 1.3 (Weak Hyperbolization). Let M be atoroidal. Let $\rho: \pi_1(M) \to SL_2(\mathcal{O}_S)$ be a Zariski dense representation. Suppose that for infinitely many primes ℓ , there exists a rational prime $p \equiv \pm 1 \pmod{\ell}$ and a prime ideal $\mathfrak{p} \subset \mathcal{O}$ over p with residue field \mathbb{F}_q , such that the covering N defined by $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \to 1$ has trivial ℓ -homology. Then M has positive Gromov invariant.

REMARK. It is enough to demand that $\ell \nmid |H_3(SL_2(\mathcal{O}_s))|_{\text{tors}}$, so given the field K, the conditions can be effectively checked.

2. Homology of $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s)$ -coverings. Let M be a closed acyclic 3-manifold. In this section, we will study $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s)$ -coverings of M where q and s are prime powers and ℓ divides the orders of $SL_2(\mathbb{F}_q)$ and $SL_2(\mathbb{F}_s)$, but not qs.

PROPOSITION 2.1. Let $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s) \to 1$ be a Galois covering. Then either $b_1(N) > 0$, or $(H_1(N))_{(\ell)} \neq 0$.

Proof. If N is a ℓ -homology sphere, then the spectral sequence of the covering inplies the direct product $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s)$ has periodic ℓ -cohomology, multiplicatively generated by the Euler class. See [CE]. It follows [CE] that any abelian ℓ -group in $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s)$ should be cyclic, which is obviously wrong. \square

Consider the tower of coverings $Q \to N \to M$, where $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \to 1$ and $1 \to \pi_1(Q) \to \pi_1(N) \to SL_2(\mathbb{F}_s) \to 1$ are exact. Suppose $(H_1(M))_{(\ell)} = 0$. Then either $(H_1(N))_{(\ell)} \neq 0$, or $(H_1(N))_{(\ell)} = 0$ and $(H_1(Q))_{(\ell)} \neq 0$. Replacing M by N in the latter case, we can assume that the first case holds.

PROPOSITION 2.2. Suppose $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \to 1$ is a Galois covering of rational homology spheres. Suppose $H_1(M)_{(\ell)} = 0$ and $H_1(N)_{(\ell)} \neq 0$. Then the natural action of $SL_2(\mathbb{F}_q)$ in $H^1(N, \mathbb{F}_\ell)$ is nontrivial.

Proof. By Quillen [Qu], the cohomology ring $H^*(SL_2(\mathbb{F}_q), \mathbb{Z})_\ell$ is freely generated by one element of degree 4. Let $W = H^1(N, \mathbb{F}_\ell)$, then as an $SL_2(\mathbb{F}_q)$ -module, $H^2(N, \mathbb{F}_\ell) \approx W^*$. The spectral sequence of the covering will look like

$$\mathbb{F}_{\ell} \quad 0 \quad 0 \quad \mathbb{F}_{\ell} \quad \mathbb{F}_{\ell} \quad \dots$$

$$H^{i}(SL_{2}(\mathbb{F}_{q}), W^{*}) \qquad \Rightarrow H^{i+j}(M, \mathbb{F}_{\ell})$$

$$H^{i}(SL_{2}(\mathbb{F}_{q}), W)$$

$$\mathbb{F}_{\ell} \quad 0 \quad 0 \quad \mathbb{F}_{\ell} \quad \mathbb{F}_{\ell} \quad 0 \quad 0 \quad \mathbb{F}_{\ell} \quad \dots$$

If the action of $SL_2(\mathbb{F}_q)$ in W were trivial, then this would reduce to

Then we see that W^* which is indexed by (4k+3,2) in the E^2 -term is not hit by any differential and survives in E^{∞} . This contradicts the finite-dimensionality of $H^*(M)$. \square

3. A variant of Artin's primitive root conjecture. In 1927 Artin conjectured that if $a \neq -1$ or a square, then a is a primitive root mod p for infinitely many primes p or, in other words, $\langle a \rangle \cong \mathbb{F}_p^*$ for infinitely many primes p. Under the assumption that the Riemann Hypothesis holds for certain number fields, a quantitative version of the conjecture was proved by Hooley [Ho]. The best known unconditional result to date is due to Heath-Brown [HB]. His main result has the following theorem as a corollary:

Theorem 3.1. Let q, r and s be three distinct primes. Then at least one of them is a primitive root for infinitely many primes.

In the proof of the Main Theorem we will use the following variant of Heath-Brown's result:

THEOREM 3.2. Let q, r, s be three distinct primes each congruent to 3 (mod 4). Then for at least one of them, say q, there are infinitely many primes p such that q is a primitive root mod p and, moreover, $p \equiv \pm 1 \pmod{q}$. Furthermore, the estimate $|\{p \le x : < q \ge \mathbb{F}_p^*, \ p \equiv -1 \pmod{q}\}| \gg x(\log x)^{-2}$ holds true.

(Notice that if $\ell \equiv 1 \pmod{4}$ with ℓ a prime, then, by quadratic reciprocity, there are no primes p such that $p \equiv \pm 1 \pmod{\ell}$ and $\ell \geq \mathbb{F}_p^*$.)

Proof of Theorem 3.2. Let q, r, s be nonzero integers which are multiplicatively independent. Suppose none of q, r, s, -3qr, -3qs, qrs is a square. Suppose, moreover, there exists a prime p_0 such that

$$\left(\frac{-3}{p_0}\right) = \left(\frac{q}{p_0}\right) = \left(\frac{r}{p_0}\right) = \left(\frac{s}{p_0}\right) = -1 \text{ and } (p_0 - 1, 16qrs)|8.$$
 (2)

Then it follows from the proof of Theorem 1 of [HB] that $N'_{q,r,s}(x)$, the number of primes $p \leq x$ for which at least one of q, r, s is a primitive root and such that, moreover, $p \equiv p_0 \pmod{16qrs}$, satisfies $N'_{q,r,s}(x) \gg x(\log x)^{-2}$.

Now let q, r and s be three distinct primes $\equiv 3 \pmod{4}$. Then none of the integers q, r, s, -3qr, -3qs and qrs is a square. We are done if we can find a prime p_0 such that $p_0 \equiv -1 \pmod{qrs}$ and such that, moreover, p_0 satisfies (2). Using quadratic reciprocity we see that any prime p_0 satisfying $p_0 \equiv 2 \pmod{3}$, $p_0 \equiv 1 \pmod{4}$, $p_0 \not\equiv 1 \pmod{qrs}$ (there are actually infinitely many of them), will meet the demands.

The conjecture alluded to in the heading of this section, is the conjecture that if $\ell \not\equiv 1 \pmod{4}$, ℓ a prime, then there are infinitely many primes p such that $p \equiv \pm 1 \pmod{\ell}$ and $\ell \geq \mathbb{F}_p^*$. On the generalized Riemann hypothesis this can be shown to be true, and moreover a quantitative version can be established [Mo].

4. Proof of the Main Theorem. By Theorem 9.1 of [R1], there is a Zariski dense representation of $\pi_1(M)$ in $SL_2(\bar{\mathbb{Q}})$. Let K be the splitting field of this representation, and let $n = [K : \mathbb{Q}]$. By [We], for almost all rational primes p the

reduction modulo any prime over p in K will define a surjective map $\pi_1(M) \rightarrow$ $SL_2(\mathbb{F}_q), q=p^m, m\leq n$, and moreover, for two such primes p, f the map $\pi_1(M)\to$ $SL_2(\mathbb{F}_q) \times SL_2(\mathbb{F}_s), q = p^m, s = f^r$, is surjective. From now on we only look at primes congruent to -1 modulo ℓ . Suppose that the ℓ -part of the homology of one such $SL_2(\mathbb{F}_s)$ -covering N is zero. If this happens for ℓ big enough, this alone has far reaching consequences for the nature of M (the Gromov invariant is positive), as we will see in the proof of Theorem 1.3. Now we just notice that, by Proposition 2.1, we can relabel N by M and assume that for the rest of the primes p, either the ℓ -part of the homology of the $SL_2(\mathbb{F}_q)$ -covering is nontrivial, or these coverings have positive b_1 . In the first case, by Proposition 2.2, the action of $SL_2(\mathbb{F}_q)$ in $H^1(N,\mathbb{F}_\ell)$ is nontrivial. Since $PSL_2(\mathbb{F}_q)$ is simple, any element of order p in $SL_2(\mathbb{F}_q)$ also acts nontrivially. If $m = \dim H^1(N, \mathbb{F}_{\ell})$, then we see that p divides $|GL_m(\mathbb{F}_{\ell})|$, so that $p|(\ell-1)(\ell^2-1)\cdots(\ell^{m-1}-1)$. By Theorem 3.2 for appropriate ℓ , there are infinitely many primes p such that the order of ℓ in \mathbb{F}_p^* equals p-1. It follows that $m\geq p$. On the other hand, $|SL_2(\mathbb{F}_q)| \sim q^3$ and $n = \log_p q$ is bounded above by the degree of the number field, over which the representation of $\pi_1(M)$ is defined. Finally, $m > \operatorname{const} \cdot |SL_2(\mathbb{F}_q)|^{\alpha}$, where $1/3\alpha$ is the degree of the splitting field. The proof is complete in this case. In the other case, we get infinitely many $SL_2(\mathbb{F}_q)$ -coverings with $b_1(N) > 0$. Since $b_1(M) = 0$, the representation of $SL_2(\mathbb{F}_q)$ in $H_1(N,\mathbb{C})$ does not have a trivial constituent. However, the smallest nontrivial irreducible representation of $SL_2(\mathbb{F}_q)$ has dimension $\sim q$, so $b_1(N) > d^{1/3}$.

Proof of Theorem 1.2. Let N be as above and $m = \operatorname{rank}_{\ell}(H_1(N)) > Cd^{\alpha}$. There are at least ℓ^{m-1} subgroups of index ℓ in $H_1(N)_{(\ell)}$. So there are at least $\ell^{Cd^{\alpha}-1}$ subgroups of index ℓd in $\pi_1(M)$.

Proof of Theorem 1.3. Suppose the Gromov invariant of M is zero. By Proposition 5.4 of [R2], for representation $\sigma: \pi_1(M) \to SL_2(K)$, the homology class $\sigma_*[M] \in H_3(SL_2(K), \mathbb{Z})$ is torsion. This applies to the representation $\rho: \pi_1(M) \to SL_2(\mathcal{O}_S)$. Since the real cohomology of $SL_2(\mathcal{O}_S)$ and $SL_2(K)$ are isomorphic, $\rho_*[M] \in H_3(SL_2(\mathcal{O}_S))$ is also torsion. Now, the $H_i(SL_2(\mathcal{O}_S))$ are finitely generated [BS], so for some $0 \neq N \in \mathbb{Z}$, we have $N \cdot \rho_*[M] = 0$. From now on we assume that ℓ does not divide N. Then $\rho_*[M]_{(\ell)} \in (H_3(SL_2(\mathcal{O}_S))_{\text{tors}})_{(\ell)} = 0$. For any surjective homomorphism $SL_2(\mathcal{O}_S) \xrightarrow{\beta} SL_2(\mathbb{F}_q)$, we will have $0 = (\beta \rho)_*[M]_{(\ell)} \in H_3(SL_2(\mathbb{F}_q))_{(\ell)}$. On the other hand by Quillen [Qu], $H_3(SL_2(\mathbb{F}_q))_{(\ell)} \neq 0$ if $\ell|p^2 - 1$. Consider the homology spectral sequence of the covering $1 \to \pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \to 1$:

$$\begin{array}{ll} H_i(SL_2(\mathbb{F}_q),\mathbb{Z}) \\ H_i(SL_2(\mathbb{F}_q),H_2(N)) \\ H_i(SL_2(\mathbb{F}_q),H_1(N)) \\ H_i(SL_2(\mathbb{F}_q),\mathbb{Z}) \end{array} \Rightarrow H_{i+j}(M,\mathbb{Z})$$

Since the map $H_3(M,\mathbb{Z}) \to H_3(SL_2(\mathbb{F}_q),\mathbb{Z})$ is zero, one of the two differentials $d_2: H_3(SL_2(\mathbb{F}_q),\mathbb{Z})_{(\ell)} \to H_1(SL_2(\mathbb{F}_q),H_1(N))_{(\ell)}, d_3: \operatorname{Ker} d_2 \to H_0(SL_2(\mathbb{F}_q),H_2(N))_{(\ell)}$ is nonzero. But if $H_2(N) \neq 0$ then N is hyperbolic [Th] and the Gromov invariant of M is positive. If $H_2(N) = 0$, then $d_2 \neq 0$, so $H_1(N)_{(\ell)} \neq 0$.

Concluding remarks. Theorem 1.3 can be stated with reference made only to representations of $\pi_1(M)$ over finite fields:

THEOREM 1.4. Let M be atoroidal. Suppose for infinitely many rational primes l, there exists a rational prime $p \equiv \pm 1 \pmod{l}$ and a surjective representation ρ_l : $\pi_1(M) \to SL_2(\mathbb{F}_q)$, where q is a power of p, such that the covering defined by $1 \to \infty$

 $\pi_1(N) \to \pi_1(M) \to SL_2(\mathbb{F}_q) \to 1$ has trivial l-homology. Then M has positive Gromov invariant.

Proof. Let F be an ultrafilter product of \mathbb{F}_q , so char(F)=0. Let $\rho:\pi_1(M)\to SL_2(\mathbb{F})$ be the ultrafilter product of ρ_l . Fix an isomorphism between the ultrafilter product of $\overline{\mathbb{F}}_q$ and \mathbb{C} , so F is a subfield of \mathbb{C} . If ρ is not rigid as a representation to $SL_2(\mathbb{C})$, then M is Haken, therefore hyperbolic. So we may assume ρ is rigid, therefore after a conjugation is defined over a number field K. In particular $[\mathbb{F}_q:\mathbb{F}_p]$ are bounded. Let $\bar{\rho}$ be the representation defined over K which is conjugate to ρ . Then $\bar{\rho}$ is defined over $\mathcal{O}(K)$ since otherwise M is Haken again. Since $Tr(\bar{\rho})=Tr\rho$, the reductions of $\bar{\rho}$ are conjugate to ρ_l over a quadratic extension of \mathbb{Q} . Then the proof goes as in the Theorem 1.3.

REFERENCES

- [BS] A.BOREL, J.-P.SERRE, Corners and arithmetic groups, Comm. Math. Helv. 48 (1973), pp. 436-491.
- [CE] A.CARTAN, S.EILENBERG, Homological Algebra, Princeton University Press, 1956.
- [HB] R.HEATH-BROWN, A remark on Artin's conjecture, Quart. J. Math. Oxford 37 (1986), pp. 27-38.
- [Ho] C.HOOLEY, Artin's conjecture for primitive roots, J. Reine Angew. Math. 225 (1967), pp. 209–220.
- [Mo] P.Moree, On an conjecture stronger than Artin's primitive root conjecture, unpublished manuscript, 1996.
- [Qu] D.Quillen, On the cohomology and K-theory of general linear group over finite fields, Ann. Math. 96 (1972), pp. 552-586.
- [R1] A.REZNIKOV, Three-manifolds class field theory (Homology of coverings for a nonvirtually b₁-positive manifold), Selecta Math. 3 (1997), pp. 361-399.
- [R2] A.REZNIKOV, Rationality of secondary classes, Journ. Diff. Geom. 43 (1996), pp. 674-692.
- [SW] P.SHALEN, P.WAGREICH, Growth rates, Z_p-homology, and volumes of hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 331(1992), pp. 895-917..
- [Sh] A.SHALEV, Personal communication.
- [Th] W.Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), pp. 357-382.
- [Tu] V.Turaev, Nilpotent homotopy type of closed 3-manifolds, LNM 1060 (1984).
- [We] B.WEISFELLER, Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups, Ann.Math. 120 (1984), pp. 271-315.