
ASIAN J. MATH. (C) 1997 International Press 
Vol.  1, No. 4, pp. 729-763, December 1997 005 

MIRROR PRINCIPLE I* 

BONG H. LIAN1, KEFENG LIU2 AND SHING-TUNG YAU3 

Abstract. We propose and study the following Mirror Principle: certain sequences of multi- 
plicative equivariant characteristic classes on stable map moduli spaces can be computed in terms 
of certain hypergeometric type classes. As applications, we compute the equivariant Euler classes of 
obstruction bundles induced by any concavex bundles - including any direct sum of line bundles - on 
Pn. This includes proving the formula of Candelas-de la Ossa-Green-Parkes for the instanton pre- 
potential function for quintic in P4. We derive, among many other examples, the so-called multiple 
cover formula for GW invariants of P1. We also prove a formula for enumerating Euler classes which 
arise in the so-called local mirror symmetry for some noncompact Calabi-Yau manifolds. At the end 
we interprete an infinite dimensional transformation group, called the mirror group, acting on Euler 
data, as a certain duality group of the linear sigma model. 

1. Introduction. 

1.1. The Mirror Principle. In section 2, we develop a general theory of Euler 
data, and give many examples. In particular we introduce the notions of a convex 
and a concave bundles on Pn, and show that they naturally give rise to Euler data. 
In section 3 we apply our method to compute the equivariant Euler classes, and their 
nonequivariant limits, of obstruction bundles induced by a convex or a concave bundle. 

We briefly outline our approach for computing multiplicative equivariant charac- 
teristic classes on stable map moduli. This outline also fixes some notations used later. 
Our approach is partly inspired by the idea of mirror transformations (Candelas et 
al), the idea of the linear sigma model (Witten, Morrison-Plesser, Jinzenji-Nagura,..), 
and the idea of using the torus action and equivariant techniques (Ellinsrud-Stromme, 
Kontsevich, Givental,..). All these ideas are syntheized with what we call the Mirror 
Principle, which we now explain. 

Let M be a projective manifold and f3 G H2(M, Z). Let Mg,k{fiy M) be the stable 
map moduli space of degree /?, arithmetic genus g, with k marked points. For a good 
introduction to stable maps, see [16]. Throughout this paper, we shall only deal with 
the case with g = 0. 

We begin by analyzing two distinguished types of fixed points under an induced 
torus T action on 7Mo,o(rf,Pn). Both types of fixed points reflect the structure of the 
stable map moduli space. A smooth fixed point we consider is a degree d cover of a 
T-invariant P1 joining two fixed points pi^Pj in Pn. A singular fixed point we consider 
is in the compactification divisor. It is given by gluing together two 1-pointed maps 
(/i,Ci,a:i) G .Mo,i(rjPn) and (/i,C2,£2) G M^i{d - r,Pn) at the marked points 
with fi(xi) = 72(^2) = Pi G Pn (pi being a T-fixed in Pn), resulting in a degree d 
stable map (/, C). We consider two types of T-equivariant bundles V on Pn, which 
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we called convex and concave respectively (Definition 2.7). To be brief, we consider 
the convex case in this outline. A convex bundle V -> Pn induces on ^0,0(^5 Pn) an 
obstruction bundle Ud whose fiber at (/, C) is the section space H0(C, f*V). First we 
have the exact sequence over C 

0 -> f*V -> ftV 0 /2*V -> V\Pi -> 0. 

Passing to cohomology, we have 

0 -+ H°(C,f*V) -> H°(Ci,ftV)®H°(C2J2V) -> V\Pi -> 0. 

Hence we obtain a similar exact sequence for the Ud restricted to a suitable fixed 
point set. Let br be any multiplicative T-equivariant characteristic class [23] for 
vector bundles. The exact sequence on the fixed point set above gives rise to the 
identity, which we call the gluing identity: 

bT(V) • bT(Ud) = briUr) • bT(Ud-r). 

Let Md := Mofidhd)^1 x Pn). This space has a G = S1 x T action. There is 
a natural equivariant contracting map TT : Md —> Mo,o{d, Pn) given by 

TT :   (/, C) G Md >-> (7r2 o /, C) G Mo,o(d,pn) 

where 7r2 denotes the projection onto the second factor of P1 x Pn. Here C = C if 
(7r2 o /, C) is still stable; and if (7r2 o /, C) is unstable, this is the case when C is of 
the form C = Ci U Co U C2 with 7r2 o /(Co) a point in Pn, then C is obtained from 
C by contracting the unstable component Co. 

Now via TT, we pull back to Md all the information obtained above on .Mo,o(d, Pn). 
The reason is that there is an collapsing map tp : Md -* Nd = P^+^+r1 which then 
allows us to perform computations on the linear object Nd- We call Nd the linear 
sigma model and Md the nonlinear sigma model. There is a natural G action on iV^ 
such that if is G-equivariant. For example, to determine an equivariant cohomology 
class u on JVd, we only need to know its restrictions Lpir (u) to the (n + l)(d+1) G-fixed 
points {pir} in Nd- The corresponding weights of the G action on iV^ are Aj +ra. Let 
Qd be the push-forward of ^(V^) = ir*bT{Ud) into Nd, ie. Qd = ^! &T(Vd). Then the 
classes Qd inherit the gluing identity (Theorem 2.8) 

LPi,o(Qo) ' LpiriQd) - ^piAQr) ' LpiriQd-r) 

which is an identity in the ring H^pt) — H*(BG). The sequence Qd is an example 
of what we call an Euler data (Definition 2.3). We summarize the various ingredients 
used, now and later, in our constructions: 

Vd = 7r*Ud Ud p*Ud 

Nd    <*- Md -^    Mo,o(d,'Pn)    **-   MoAd,Pn)    -^    Pn 

where p forgets, and ev evaluates at, the marked point of a 1-pointed stable map. Also 
note that Ud = pi(ev*V), ie. the direct image of ev*V. 

The gluing identity is not enough to determine all Qd- In order to get further 
information we localize the Qd to a fixed point in Nd whose inverse image in Md is 
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a smooth fixed point, and compute Qd at the special values of a = (A; — Xj)/d. The 
property of &T(%) at a smooth fixed point comes into play here. For simplicity in 
this outline, let's consider for example the case when br is the equivariant Euler class 
er and V = 0(1). In this case we find that, at a = (A; - Xj)/d, 

Id 

iPiAQd) - n ^ - m(Ai - A^/d)- 
171=0 

This immediately tells us that the Qd should be compared with the sequence of classes 

Id 

P:    Pd = IJ (lK - ma) 
771=0 

(Theorem 2.10), which has ipii0(Pd) = ^Pi,o(Qd) at a = (A* - Xj)/d. We find that P 
is another example of an Euler data. This Euler data will then naturally give rise to 
a generating series of hypergeometric type, and therefore explains the very origin of 
these functions in enumerative problems on stable moduli! The same holds true for a 
large class of vector bundles V on Pn. 

Finally, under a suitable bound on ci(V), we can completely determine the Qd, 
in terms of Pd by means of a mirror transformation argument (Theorem 3.9). We 
can in turn use Qd to compute eriUd) and their nonequivariant limits (Theorem 3.2). 
Our approach, thus, makes the roles of three objects and their relationships quite 
transparent: certain fixed point sets, equi variant multiplicative characteristic classes, 
and series of hypergeometric type. Our method works well for many characteristic 
classes such as the Euler class and the total Chern class. 

We summarize this Mirror Principle. Let br be a multiplicative equivariant char- 
acteristic class, V an equivariant vector bundle on Pn which induces a sequences of 
vector bundles U* -> Mo,o(d,~Pn). 

1. (Euler Data) The behaviour of the Ud at a singular fixed point gives rise to the 
gluing identity. In turn this defines an Euler data Qd on the linear sigma model 
Nd. 

2. (Linking) The behaviour of the Ud at a smooth fixed point allows us to read off 
the restrictions oi Qd at certain fixed points of Nd for special values of weights. 
The restriction values determine a distinguished Euler data Pd to be compared 
with the Qd- 

3. (Mirror Transformations) Compute the Qd and the briUd) in terms of the Pd 
explicitly by means of a mirror transformation argument. 

Our approach outlined here can be applied to a rather broad range of cases by 
replacing Pn by other manifolds. They include manifolds with torus action and their 
submanifolds. We will study the cases of toric varieties and homogeneous manifolds 
in a forth-coming paper [37]. On the other hand, we can even go beyond equivari- 
ant multiplicative characteristic classes. In a future paper, we will study a sequence 
of equivariant classes Td of geometric origin on stable moduli satisfying our gluing 
identity. 

1.2. Enumerative problems and the Mirror Conjecture. For the remark- 
able history of the Mirror Conjecture, see [14]. In 1990, Candelas, de la Ossa, Green, 
and Parkes [8]   conjectured a formula for counting the number rid of rational curves 
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in every degree d on a general quintic in P4. The conjectured formula gives a gen- 
erating function for the rid explicitly in terms of certain hypergeometric functions. 
Their computation is based on the existence of "mirror manifolds", conjectured by a 
number of physicists including Dixon and Lerche, Vafa and Warner on the basis of 
physical intuition. Mirror symmetry took a dramatic turn upon the appearance of the 
papers of Greene-Plesser [21] and of Candelas et al [8]. In [21], they established the 
existence of mirror manifolds for a particular class of Calabi-Yau manifolds including 
the quintic. 

On the mathematical side, it has been conjectured earlier by Clemens that the 
number of rational curves in every degree in a general quintic is finite. The conjec- 
tured formula agrees with a classical result in degree 1, an earlier computation by 
S. Katz in degree 2, and has been verified in degree 3 by Ellingsrud-Stromme.   In 
1994, using results of Uhlenbeck-Sacks, Gromov, Parker-Wolfson, and Witten, Ruan- 
Tian introduced the notions of J-holomorphic maps and symplectic Gromov-Witten 
(GW) invariants. Motivated by the same works, Kontsevich proposed an algebraic 
geometric analogue of GW invariants and stable maps. The latter is the algebraic 
geometric counterpart of J-holomorphic maps. Generalizations have been given by 
Li-Tian and Behrend-Fentachi. A recent paper of Li-Tian shows that the symplectic 
version and the algebraic geometric version of the GW theory are essentially the same 
in the projective category. Beautiful applications of ideas from quantum cohomology 
and GW theory have recently been done by Caporaso-Harris [10], Crauder-Miranda 
[11], DiFrancesco-Itzykson [12], Bryan-Leung [2], and others solving many important 
enumerative problems. 

Closer to mirror symmetry, it is known that the degree k GW invariants for P1 

(the so-called multiple-cover contribution) is given by k~z. This was conjectured in 
[8], justified in [1][44] using a different compactification, and in [38] using the stable 
map compactification. According to [34], the number 

Kd = ^nd/kk-
3 

k\d 

is the degree of the Euler class ctop(Ud) for Ud —► Mo,o(d, P4) induced by 0(5) -» P4. 
By means of the torus action on P4, Ellingsrud-Stromme [15] and Kontsevich 

[34] have verified that ns and 77,4 respectively agree with the conjectured formula. In 
some recent papers [18] [19], Givental introduces some ideas which emphasize the use 
of equivariant version of quantum cohomology (see also Kim [27]). Unfortunately, the 
proof in [18] for the formula of Candelas et al, which has been read by many prominent 
experts, is incomplete. In light of our present paper, it is now clear that essentially 
all ingredients (equivariant cohomology theory, the Atiyah-Bott formula, equivariant 
Euler classes, obstruction bundles, fixed point structures, the linear sigma model, the 
graph construction, hypergeometric series, mirror transformations, etc) required to 
prove the formula of Candelas et al have all been well-known to experts since at least 
1995. Thus the remaining nontrivial task, is to set up and put together in details all 
the pieces in a correct way to give a complete proof. In our present paper, we have 
introduced the substantial new ideas (beyond the known ingredients) needed to give 
the first complete proof. It is conceivable that our new ideas here can furnish the 
necessary parts missing in the paper [18]. More recently, fixed point method has also 
been applied by Graber-Pandharipande [20]   to study GW invariants of Pn. 

We emphasize that the formula of Candelas et al, albeit conjectural, not only 
computes the Kd in terms of hypergeometric functions, but also provides a crucial 
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guide for putting together various technical inputs in our proof. While applying the 
Atiyah-Bott localization formula on the stable moduli and on the linear sigma model 
yield important pieces of information about the cohomology classes in question, it 
is the formula of Candelas et al which provides the clues for how to put the pieces 
together - in terms of hyper geometric functions (which are periods of a holomorphic 
3-form on a mirror manifold). Earlier attempts on the conjectured formula using 
quantum cohomology seem to have confused the issue considerably. 

We believe that the machinery introduced in this paper will be useful for many 
other enumerative problems, aside from proving the formula of Candelas et al. In fact 
we have applied our machinery to problems in local mirror symmetry proposed by 
C.Vafa, S. Katz, and others.4 

We now formulate one of our main theorems in this paper. Let 

Kd= [ ctop(Ud),     F(T) = ^ + V Kde*r. 
JMoAd^4) 0 d>0 

Consider the fourth order hypergeometric differential operator [8]: 

i=-(|)«-W(5| + l)-(5|+«). 

By the Probenius method, it is easy to show that 

f .-1(d Y\H  ..y^+mn^LiCS-ff + m)     ._0123 

form a basis of solutions to the differential equation L • / = 0. Let 

T=f     jr(T) = !(££-£). 
JO *   JO JO        JO 

THEOREM 1.1.  (The Mirror Conjecture) F(T) = .F(T). 

The transformation on the functions fi given by the normalization 

Jo 

and the change of variables 

t ^ T(t) = A 
Jo 

are known as the mirror transformation. By the construction of Candelas et al, the 
functions /o, ..,/3 are periods of a family of Calabi-Yau threefolds. By the theorem 
of Bogomolov-Tian-Todorov, these periods in fact determine the complex structure of 
the threefold. 

A similar Mirror Conjecture formula holds true for a three dimensional Calabi- 
Yau complete intersection in a toric Fano manifold [37]. This will turn out to agree 
with the many beautiful mirror symmetry computations [40] [36] [5] [9] [4] [30] [31]. 

4S. Katz has informed us that A. Elezi has also studied a similar problem. 
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In this paper, to make the ideas clear we restrict ourselves to the simplest case, 
genus 0 stable moduli space for Pn. In a forth-coming paper [37], we extend our dis- 
cussions to toric varieties, homogeneous manifolds, and general projective manifolds. 
We also hope to eventually understand from our point of view the far reaching re- 
sults for higher genus of [6], and the beautiful computations [17] [13] for elliptic GW 
invariants. 

1.3. Acknowledgements. We thank A. Todorov, A. Strominger, C. Vafa for 
helpful discussions. Our special thanks are due to J. Li who has been very helpful 
throughout our project. 

2. Euler Data. One of the key ingredients in our approach is the linear sigma 
model, first introduced by Witten [45], and later used to study mirror symmetry by 
Morrison-Plesser [29], Jinzenji-Nagura [25], and others, resulting in new insights into 
the origin of hypergeometric series. In this paper, we consider the S1 x T-equivariant 
cohomology of the linear sigma model. 

2.1. Preliminaries and notations. Let T be an r-dimensional real torus with 
a complex linear representation on CN+1. Let POI-IPN be the weights of this action. 
We consider the induced action of T on P^, and the T-equi variant cohomology with 
coefficients in Q, which we shall denote by H^(—). Now H^(pt) is a polynomial 
algebra in r-variables, and Pi may be regarded as elements of H^(pt). Throughout 
this paper, we shall follow the convention that such generators have degree 1. It is 
known that the equivariant cohomology of P^ is given by [32] 

HT{V") = HT{ptmi [fliC - A) J • 

Here C> which we shall call the equivariant hyperplane class, is a fixed lifting of the 
hyperplane class of P^. Each one-dimensional weight space in C^-1"1 becomes a fixed 
point pi in P^. We shall identify the rings H^{pi) and H^(pt) = H*(BT). There are 
iV+1 canonical restriction maps ^ : HT(P

N
) -» Hript), given by £ h-> ft, i = 0,.., iV. 

There is also a push-forward map HT(P
N

) -> Hxlpt) given by integration over P^. 
By the localization formula, it is given by 

LJ *-*   I       LO — ReSc Kf • 
•/p"        n£o(c-A) 

Two situations arise frequently in this paper. First consider the standard action 
of T = (S1)^1 on 0+1, and let A = (AQ, .., An) denote the weights. On Pn, there are 
n + 1 isolated fixed points po, ..,pn. We shall denote the equivariant hyperplane class 
by p, the canonical restrictions by ^ : tu i-> ^ (u) = (j(\i), and the push-forward by 

pf : HTP") ^ HT(pt) = Q[\]. 

We shall use the evaluation map A *-> 0 on the ring H^(Pn), and shall call this the 
nonequivariant limit. In this limit, p becomes the ordinary hyperplane class H G 
H*(Pn). 

We now consider the second situation. For each d = 0,1,2,.., consider the follow- 
ing complex linear action of the group G := S1 x T on C(n+1)(d+1). We let the group 
act on the (ir)-th coordinate line in C(n+1)(d+1) by the weights A; + ra (Ai being the 
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weights of T as before, and a being a weight of S1), i = 0,.., n, r = 0,.., d. Thus there 
are (n + l){d + 1) isolated fixed points pir on the projective space p(™+i)d+™5 given 
by those coordinate lines. In this case, we shall denote the equivariant hyperplane 
class by ft, the canonical restrictions by ipir : UJ H-* ^(O;) = u{\i + ra), and the 
push-forward by 

p/d : frG(P(w+1)d+w) -> HG[pt) = Q[a, A]. 

Here we have abused the notation AC, using it to represent a class in iJ(3(P(n+1)d+n) 
for every d. But it should present no confusion in the context in which it arises. 

Let Nd be the space of nonzero (n + l)-tuple of degree d homogeneous polyno- 
mials in two variables wo,wi, modulo scalar. There is a canonical way to identify 
Nd with p(™+i)d+7\ Namely, a point z G P("+i)^+n corresponds to the polyno- 
mial tuple [J2rzorWQW^~r,..,^2rznrWQW^~r] E Nd- This identification will be used 
throughout this paper. The natural T-action on (n + l)-tuples together with the 
51-action on [^0,^1] E P1 by weights (a,0), induces a S1 x T-action on Nd given 
by [/o(wo,wi),..,/n(wo,u>i)] \-> [ex°fo(eawoiWi),..:e

xnfn(e
awo,wi)]. This coincides 

with the 51 x T-action on p(n+i)d+n described earlier. 

DEFINITION 2.1. (Notations) We call the sequence of projective spaces {Nd} the 
linear sigma model for Pn. Here are some frequently used notations: G := 51 x T, 
U := Q(A)[a], n-\:= Q(A,a), UH^Nd) := ^(iVd) <8>Q[A,a] 71, n^H^(Nd) := 
HQ(Nd) 0Q[A,a] ^'_1; an^ ^eP« ^ means the degree in a of UJ E 7£. 

Obviously the maps ^.r, p/d defined linearly over Q[A, a], can be extended 7£- or 
7^-1-linearly. There are two natural equivariant maps between the iV^, given by 

/: Nd-l -> Nd,     [/o,..,/n] >-> [^i/o,..,^i/n] 

:Nd-*Nd,     [fo(wo,m),'.,fn{m,wi)]^[fo{m,wo),-.,fn(wi,m)]' 

The second map induces on equivariant cohomology 7£-1 HQ(N'd), £ = rc—da, a = — a, 
Aj = Ai. In particular any x £71 has the form # = a:_ + x+ with x± = ±x±. We also 
extend ~ to the power series ring ^[[e*]] by leaving t invariant. 

Composing a chain of d J's, we get a canonical inclusion iVo = ~Pn—^Nd. Note 
that the image of the fixed point pi is p^o. For u E lZ~1HQ(Nd), we shall denote by 
Id{w) E 71-

1
HQ(NO) the restriction of u to A^o. Since 51 acts trivially on Pn, we can 

write 
H*G(No) = ^(P")[a]. 

In particular note that H^(Pn) is invariant under ~ , and that I^i^) = P- 
Obviously the set of classes LJ E H^(Pn) with ^. (u) ^ 0 for all i, is closed under 

multiplication. We localize the ring iJJ(Pn) by allowing to invert such elements u. 
We denote the resulting ring by iT^P™)-1. 

DEFINITION 2.2.   (Notations) The degree in a of a class u E H^CP71)-1^] will 
be denoted by dega u. A class fJ E H^(Pn)~l with ^(fi) ^ 0 for all i will be called 
invertible.  Throughout this paper, ft will denote a fixed but arbitrary invertible class. 
S denotes the set of sequences of cohomology classes Q :    Qd E 7^~1if^(iVd),     d — 
1,2,... 

2.2.  Eulerity. 

DEFINITION 2.3. We call a sequence Q : Qd E UH^(Nd), d = 1,2,..., an 
Vt-Euler data if for all d, and r = 0, ..,cZ; i = 0, ..,n; 

(*)      ^(fi) Lp^riQd) = ipi,o(Qr) IviAQd-r), 
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where QQ := Vt.  We denote by A0, the set of Q-Euler data. 

When dealing only with one fixed class fi at a time, we shall say Euler rather than 
Q-Euler, and shall write A for the set of Euler data. 

More explicitly, condition (*) can be written as 

fi(A<)Qd(Ai +ra) = Qr(Ai)Qd-r(Ai). 

Applying this at r = d, we find that 

Qd(Xi + da) = Qd(\i). (2.1) 

Putting a — (Xj - Xi)/d, we see that Qd(Xj) at a = (Xj — Xi)/d coincides with Qd(Xi) 
at a = (Xi — Xj)/d. Applying both (*) and (2.1)at a = (Xj—Xi)/r (hence Xj = Ai+ra), 
we get 

ft(Xi)Qd(Xj) = Qr(Xj)Qd-r(Xi)  at a = (Xj - Xi)/r. 

LEMMA 2.4.   (Reciprocity Lemma) If Q is an Euler data, then for i,j — 0, ..,n; 

r = 0,1,.., d, d — 0,1,2,.., we have 
(i) Qd(Xi + da) - Qd{Xi). 

(ii) Qd(Xj) at a — (Xj — Xi)/d coincides with Qd(Xi) at a — (Xi — Xj)/d for d ^ 0. 
(Hi) fi.(Xi)Qd(Xj) = Qr(Xj)Qd-r(Xi) at a = (Xj - Xi)/r for r / 0. 

EXAMPLE 1. Let / be a positive integer. Put 

id 

P:   Pd=l[(lK-ma)eH£(Nd). 
m=0 

That this is an Zp-Euler data follows from the identity: 

Id lr l{d~r) 

IXi   Y[ (IXi + (r - m)a) - ][[ (ZA* H- ma) x   JJ (ZA* - ma). 

This will arise naturally in the problem of computing the equivariant Euler classes of 
the obstruction bundles induced by 0(1) —>• Pn. (See below.) 

EXAMPLE 2. Put ft = p-2, and 

P:    Pd= l[(^-mayeH^(Nd). 

This Euler data will arise in the problem of computing the so-called multiple cover 
contributions, ie. the GW invariants for P1. 

EXAMPLE 3. Put Q = (Sp)-1, and 

3d-l 

P:    Pd =   H ("^ + ma) e HG(Nd)' 
772=1 

This Euler data will arise in the problem of computing the equivariant Euler classes 
of the obstruction bundles induced by the canonical bundle of P2. 
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EXAMPLE 4. Put ft = -1, and 

2d 2d-l 

P:    Pd=Y[(2K-ma)xY[(-2K + ma)eH£{Nd). 
m=0 m=l 

This Euler data will arise in the problem of computing the equivariant Euler classes 
of the obstruction bundles induced by 0(2) 0 0(-2) on P3. 

EXAMPLE 5. It is easy to show that if Q is fi-Euler and a £ Q(A) is any 
nonzero element, then the data Q' : Q^ = a • Qd is afi-Euler. Similarly, the data 
Q< ;    Q'd = (_i)d+iQd is also -fi-Euler. 

EXAMPLE 6. We observe that the set of Euler data is a monoid, ie. it is closed 
under the product QdQ'di and has the unit given by Qd — 1 for all d. Hence the 
product of an O-Euler with an Q'-Euler data is an Ofi'-Euler data. In the geometrically 
setting, this multiplicative property sometimes corresponds to taking intersection of 
two suitable projective manifolds. In this case, the class 0 G H£(Pn) plays the role 
of the equivariant Thorn class of the normal bundle of such a projective manifold. 

EXAMPLE 7. Let Qd = K(K> — da) e il^iVd). Then it is again trivial to check 
that Q is K,

2-Euler. 
EXAMPLE 8. Let Q be an fi-Euler data, and Q' be an fi'-Euler data. Suppose 

Qd/Q'd € 71HQ(N(I) for all d > 0. Then it is immediate that they form a sequence, 
denoted by Q/Q', which is fl/Cl'- Euler. As a special case, let Qd = Z2ft(ft — da) as in 
Example 7, and let P as in Example 1. Then P/Q is a (/p)~1-Euler data. Example 2 
is obtained by squaring this. Examples 3 and 4 can also be obtained in a similar way. 

EXAMPLE 9. Introduce a formal variable x. We can extend everything above by 
adjoining x, ie. by replacing the ground field Q by Q(a:). For example, it is easy to 
show that 

Id 

P:    Pd= ]J(x + lK,-ma)€H£,(Nd){x) 
m=0 

satisfies the gluing identity as in Example 1, thus is an Euler data in a more general 
sense. Such Euler data will appear in the computations of equivariant total Chern 
classes. 

EXAMPLE 10. Let M^ := Xo,o((l,rf),P1 x Pn) be the moduli space of holo- 
morphic maps P1 -> P1 x Pn of bidegree (l,d). Recall that Md is the stable map 
compactification of M^. Each map / G M^ can be represented by / : [wo,wi] |-^ 
[wij wo] x [fo(wo,wi),.., /n(wo, wi)], where fi are degree d homogeneous polynomials. 
So there is an obvious map 

ip:M°d->Nd, /^[/o,..,/n] 

which is G = 51 x T equivariant. For convenience we define MQ := No = Pn. With 
a bit of work (see below), it can be shown that the map tp has an equivariant regular 
extension to cp : Md -> iV^. Let (/, C) € Md. Then C is an arithmetic genus 0 curve 
of the form C = Co U Ci U • • • U CN such that TTI O / : Co^-P1, where 7ri,7r2 are 
projections from P1 x Pn to the first and second factors. Each Cj, j > 0, is glued 
to Co at some point Xj G Co- The map ^2 0 f '- Cj —> Pn is of degree dj with 
V. dj — d, and TTI o / : Cj -> P1 is constant map with image TTI O f(xj) G P1. If we 
denote by [CTQ, • • •, an] the degree do polynomials representing ^2° f '■ Co —> Pn, then 
^ : (/, C) !->• [(Jog, • • •, <Tn9]i where g = Y[j(aJwo - bjWi)dJ with m o f(xj) = [aj,bj]. 
Thus (p collapses all but one component of C. 
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The idea of using a collapsing map relating two moduli problems is not new. The 
map {p was known to Tian [43], and a similar map also appeared in [35] in which a 
collapsing map was used to relate two moduli spaces. The map tp was also used in 
[18]. Similar maps have also been studied in [24] [26]. 

Let V = 0{l) for / > 0, and consider the induced bundle Ua -» A^o,o(^, Pn)- 
Pulling this back via the projection TT, we get a bundle Vd -> Md (see Introduction). 
Let eriVd) be the equivariant Euler class of Vd, and let yierCVd) be its push-forward 
via if. The following theorem will be a special case of a general theorem proved in the 
next subsection. 

THEOREM 2.5.  The sequence (p\eT{Vd) € H^Nd) above is an Ip-Euler data. 

We now return to the map ip.  The reader who wishes to skip technical details 
can safely omit the proof. 

LEMMA 2.6. There exists a morphism ip : Md —> Nd. Moreover ip is equivariant 
with respect to the induced action of S1 x T. 

Proof. The following proof is given by J. Li. Let Md be the moduli space of 
stable morphisms / : C -> P1 x Pn from arithmetic genus 0 curves to P1 x Pn 

of bi-degree (l,d), and let Nd be the space of equivalence classes of (n -f- l)-tuples 
(/o,--.,/n), where fi are degree d homogeneous polynomials in two variables, and 
(/o, • • • ? fn) ~ (/Q, ..., fk) if there is a constant c ^ 0 such that fi = c- // for all i. We 
first define the morphism ip : Md -> Nd- For convenience, we let S be the category of 
all schemes of finite type (over C) and let 

F : S —► (Set) 

be the the contra-variant functor that send any S € S to the set of families of stable 
morphisms 

F:X —> P1 x P" x S 

over 5, where X are families of connected arithmetic genus 0 curves, modulo the 
obvious equivalence relation. Note that J7 is represented by the moduli stack Md- 
Hence to define (p it suffices to define a transformation 

^:^-^Mor(-,iVd). 

We now define such a transformation. Let S £ S and let £ G ^(S) be represented by 
(X, F). We let pi be the composite of F with the i-th projection of P1 x Pn x S and 
let ptj be the composite of F with the projection from P1 x Pn x S to the product 
of its z-th and j-th components. We consider the sheaf P2^Pn(l) on X arid its direct 
image sheaf 

Cz =.P13*P20P"(1). 

We claim that C^ is flat over 5. Indeed, by argument in the proof of Theorem 9.9 
in [22], it suffices to show that 7rs*(A ® ^iO^{rn)) are locally free sheaves of Os- 
modules for m ^> 0, where TTpi and TTS are the first and the second projections of 
P1 x S. Clearly, this sheaf is isomorphic to p^p^O^n(1) 0p*Opi(m)), which is 
locally free because 

#P3*(P20p»(l) ®Pi0pi(m)) = 0 

for i > 0 and m ^> 0.  For the same reasoning, the sheaves C^ satisfy the following 
base change property: let p : T -» S be any base change and let /?*(£) G ^(T) be the 
pull back of £. Then there is a canonical isomorphism of sheaves of Or-modules 

£p.(0 S (Ipi x pYCv (2.2) 
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Since C^ is flat over S, we can define the determinant line bundle of £^, denoted by 
det(£f) [28]. The sheaf det(^) is an invertible sheaf over P1 x 5. Using the Riemann- 
Roch theorem, one computes that its degree along fibers over S are d. Further, because 
jQ has rank one, there is a canonical homomorphism 

Ct —> det(£6), (2.3) 

so that its kernel is the torsion subsheaf of £^, denoted by Tor {C{). Let wo,..., Wn 
be the homogeneous coordinate of Pn chosen before. wo,...,Wn form a basis of 
H0(Pn, Opn (1)). Then their pull backs provide a collection of canonical sections of 
,Q, and hence a collection of canonical sections 

0"£,o,..., a^n G H0(S, 7rs*det(C^)). 

based on (2.3). Then after fixing an isomorphism 

detOQ) ^ TT* M (8) TT^ Opi (d) (2.4) 

for some invertible sheaf M of (9s-modules, we obtain a section of 

Trs^TrJxOpifd)) 0o5 M = ^i(Opi(d)) 0c -M. 

Finally, we let wo,wi be the homogeneous coordinate of P1. Then the space 

tf^Opifd)) 

is the space of degree d homogeneous polynomials in variables WQ and wi. This way, 
we obtain a morphism 

*(5) : 5 —^ Nd 

that is independent of the isomorphisms (2.4). It follows from the base change property 
(2.2)  that the collection $(5) defines a transformation 

*:^^Mor(-,JVd), 

thus defines a morphism ip as desired. 
It remains to check that for any w E 5, the sections 

cr^o(^),...,^,n(^) € fl"0(P1,det(£^) ®Os kw) 

has the described vanishing property. Because of the base change property of C^, it 
suffices to check the statement when 5 is a point and f E !Fd(S) is the stable map 
/: C -> P1 x Pn. Let xi,..., XN be the set of points in P1 so that pi: C -> P1, where 
px = Trpi o /, is not flat over these points. Let d be Pi1(xi) and let mi be the degree 
of f{[Ci]) E J?2(Pn). Then ^ = pi*P2^Pn (1)is locally free away from xi,..., XN and 
has torsion of length m* at £;. Then C^/Tov(C^) is locally free of degree fc - J^rrii. 
It is direct to check that the canonical inclusion 

££/Tor(/;c) —>. det(^) S Opi(d) 

has cokernel supported on the union of XI,...,XN whose length at xi is exactly mi. 
The statement about the vanishing of a^oM, • • • iG^niw) follows immediately. 
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The fact that y? : Md —> Nj is 51 x T-equivariant as stated follows immediately 
from the fact that (p is induced by the transformation \I> of functors. This completes 
the proof. □ 

2.3.  Concavex bundles. 

DEFINITION 2.7. We call a T-equivariant vector bundle V —t Pn convex (resp. 
concave) if the T-equivariant Euler class eT{V) is invertible and if Hl(C, f*V) = 0 
(resp. H0(C,f*V) = 0) for every 0-pointed genus 0 stable map f : C —► Pn. We 
call V a concavex bundle if it is a direct sum of a convex and a concave bundles. We 
denote by V± the convex and concave summands ofV. By convention, we consider the 
zero bundle to be both convex and concave so that concavexity includes both convexity 
and concavity. 

The convexity of a bundle is analogous to the notion of convexity of a projective 
manifold introduced by Behrend-Manin. 

For example 0(1) —» Pn is convex if / > 0, and concave if / < 0. Given any 
concavex bundle V —> Pn, we have a sequence of induced bundles 

Ud^MoAd^n) 

whose fiber at (/,C) is the space H0(CJ*V+) 0 m(C,f*V-). Pulling back Ud via 
the contracting map TT : Md —> Mo,o(d, Pn), we get a sequence of bundles 

Vd := 7r*C/d -» Md- 

We denote by eT(Vd) the equivariant Euler class of Vd- We also introduce the nota- 
tions: 

Qd:=<pieT(Vd),   Qo:=nv. 

By convention, if V is the zero bundle, we set eriVd) = 1, eriV) = 1, ftv = 1. 

THEOREM 2.8.   The sequence ipieriYd) G H^Nd) is an OX-Euler data. 

Proof. We first discuss some preliminaries. Let M and N be two compact smooth 
manifolds with the action of a torus T, and ip : M —> N be an equivariant map. Let 
F be one component of the fixed submanifold in TV and ip be the inclusion map F 
in N. Let (J)F = iFi(l) £ Hj,(N) denote the equivariant Thorn class of the normal 
bundle of F in N. We then have, for any LJ G H^(M) 

/   uip*((l)F)= /  (pi(u)(f)F= / i*F(ip\(uj)). 
JM JN JF 

On the other hand, let {P} be the components of the fixed submanifold contained 
in ip-l(F). By the Atiyah-Bott [7][3]  localization formula on M, we get 

2/ iUWiMVeHP/M) = J tj.(^(w)). 

Here eriP/M) denotes the equivariant Euler class of the normal bundle of P in M. 
The reason is that the contribution of the fixed point sets not contained in ip-l{F) is 



MIRROR PRINCIPLE I 741 

clearly zero. Actually if Q is a component not contained inside ip~1 (F), its contribution 
to the localization is given by 

I i*Q(u>(p*(<l>F))/eT(Q/M). 

But by the naturality of the pull-backs, we have 

where E — (p(Q) is a fixed submanifold in N and <po denotes the restriction of ip to Q. 
Note that if F is an isolated point, then «P</?*(</>F) can be pulled out of the integral. 

The above formula will be applied to the collapsing map ip : Md —> Nj. All 
manifolds involved here are at worst orbifolds with finite quotient singularities, so 
the localization formula remains valid without any change as long as we consider the 
corresponding integrals in the orbifold sense. 

We consider the 51-action on the P1 factor in P1 xPn with weights a, 0. Combin- 
ing with the natural T-action on Pn, we get the naturally induced G = S1 x T-actions 
on Md and iVd, with respect to which the collapsing map tp is equivariant. As described 
in section 2.1, the G-fixed points in Nd are all of the form 

Pir = [0,'-',0,wZw*-r,0,...,0] 

in which the only nonzero term is in the i-th position. 
For each r > 0, let {Fr} C Mo,i(r,Pn) denote the T-fixed point components 

in Mo,i(r,Pn) with the marked point mapped onto the fixed point pi in Pn. Let 
N(Fr) = NFr/Mo ^pn) denote the normal bundle of Fr in Mo,i(r1'P

n). 
Let 7ri,7r2 be the projections from P1 x Pn onto the first and second factors. 

From the construction of (p, we see that the G-invariant submanifold that is mapped 
to pir consists of the following degree (l,d) stable maps / : C —> P1 x Pn with 
C = Ci U Go U G2. Here Go ~ P1 and 

TTS o /(Go) = [0, • • •, 0,1,0 • • •, 0] = pi e P" 

where 1 is at the i-th position. The map TTI O / : Go —>■ P1 is an isomorphism and 
maps xi — Go fl Gi and X2 = Go fl G2 to 0 and 00 respectively. Actually 

TTI 
0 f(Ci) =0,    TTI o /(G2) = 00  in P1, 

ie. the curves Gi and G2 are respectively mapped to the points 0 and 00 of P1. 
The maps 7r2 o / restricted to Cj for j — 1,2 are stable maps in A^o,i (r, Pn) and 

Mo,i(d - r, Pn) respectively. We consider Fr x Fd-r as a G-fixed submanifold of Md 
by gluing each pair to Go at xi and X2 respectively as above. It is easy to see that 
{Fr x Fd-r} are the G-fixed point sets in Md whose image under ip is the fixed point 
Pir- 

We first consider a convex bundle V on Pn, and the case r 7^ 0, d. Then we have 

Qd(A< + ra)= /    (j)PirQd = [   V*{(t>Pir) eriVa). (2.5) 
JNd JMd 
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Here (f>pir denote the equivariant Thorn class of the G-fixed point pir in A^. We will 
apply the localization formula to compute the right hand side of (2.5). First we need 
to know the normal bundle of the fixed points, which is, in the equi variant if-group 
ofFrxFd-r [34] [20], 

NFrXFd_r/Md = N(Fr) + N(Fd_r) + [Ho(Co, (in o /)*TPi)] 

+ [Lr ^ TXlCo] + [Ld-r 0 TX2Co] - [TPiP"] - [Ac0]. 

Here Lr denotes the line bundle on Mo^r,Pn) whose fiber at (fi,Ci,xi) is the tan- 
gent line at xi. Likewise for L^-r- Their contributions correspond to the deformation 
of the nodal points xi and X2- The term H0(Co,(7ri o /)*TP1) corresponds to the 
deformation of / restricted to Co. The term [Ac0] is the bundle representing the 
infinitesimal automorphism of Co fixing the two points xi,X2. The term —[TPiP

n] 
comes from gluing Fr and Fd-r onto Co and the property that 7r2 o /(Co) = Pi. 

This gives the following formula for the corresponding equivariant Euler classes: 

eriFr x Fd-r/Md) = eT(N(Fr))eT(N(Fd_r))eT(Lr ®TXlCo)eT(Ld-r ®TX2Co) 

x eT(TPiP")-ieT(tf0(Co, (TTI O /)*TPi))e^1(Aco). 

Each term in this formula can be explicitly calculated. We clearly have e:r(7pt.P
n) = 

Tlj^ifii ~ ^)j t*16 weights of TXlCo and TX2Co are a and —a respectively, therefore 

eT(Lr®TXlCo) = a + ci(Lr),    eriLd-r ®TX2Co) = -a + ci(Ld_r) 

where ci(Lr), ci(Ld-r) are the restriction to Fr and i^-r of the equivariant Chern 
classes of the line_bundles Lr and Ld-r with respect to the induced T actions on 
M>,i(r,Pn) and>Io,i(d-^Pn)- To compute eriH0(Co, (7rio/)*rP1)) ander^Co), 
first note that we have the standard exact sequence 

0 -> O -)- O(l) O C2 -^ TP1 -^ 0, 

with O being the trivial bundle. From this we get 

0 -> O -» i/0(Co, 0(1)) (8) C2 -> iJ0(Co, (TTI O /J^TP1)) ^ 0. 

The weights of H0(Co, 0(1)) are a, 0, the weights of C2 are —a, 0 and the weight 
of O is 0. Therefore one finds that the weights of #0(Co, (TTI O/^TP

1
)) are a, -a, 0. 

For [AcoL we have the exact sequence 

0 -► Ac0 -+ H^Co, (TTI O /)*(TPi)) ^ TXlCo 0 TX2Co -+ 0. 

The weights of T^Co and ra;2Co are a and —a respectively. So [Ac0] contributes 
a 0 weight space which cancels with the 0 weight space of [if0(Co, (TTI O /)*(rP1))]. 
Therefore we will ignore the zero weights in our formulas and write as 

eT(tf0(Co, (TTI O /)*(TPi))e^1(^Co) = -a2- 

When Vd is restricted to Fr x Fd-r considered as a fixed point set of Md as before, 
we have the exact sequence: 
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0 -> Vd -± Vr\Fr © Vd-r\Fd_r -± V\Pi -± 0. 

Note that Vr\Fr and Vd-r\Fd-.r is the same as p*f/r|Fr and p*Ud-r\Fd-r which re- 
spectively are the restrictions to Fr and Fd-r of the pull-backs to .Mo,i(r, Pn) and 
MQ,i(d - r,Pn) of the corresponding bundles on .Mo.o^P71) and MQ${d - r,Pn). 
Here V\Pi denotes the fiber of V at pi e Pn. 

Here comes the important point. The multiplicativity of equivariant Euler classes 
gives us 

fiv(Ai) • eT(Vd) = eT(Vr) • er^-r) = P*eT(^r) ■ p*eT{Ud-r), 

when restricted to Fr x Fd-r C Md. Here p : >(o,i(d,Pn) -^ ^Wo,o(^Pn) is the 
forgetting map (same notation for all d). Note that the above equality is just the 
pull-back via TT from Mo,o(d, Pn) of the gluing identity discussed in the Introduction. 

For the case of r = 0 or d, there is only one of the curves Ci or C2, ie. C is of 
the form Co U C2 or Ci U Co. In this case we identify Fd as the fixed point set in Md 
by gluing its marked point to Co at xi or X2 • The normal bundle in these two cases 
are respectively given by 

NFd/Md = N(Fd) + [tf0(Co, (TTI o /)*rpi)] + [Ld 0 TXjCo] - [Ac0] 

in the if-group of Fd. Here Ld is the restriction to Fd of the line bundle on Mo,i (d, Pn) 
whose fiber is the tangent line at the marked point. For simplicity we write L as Ld in 
the following. For j = 1, 2, TXj Co is the tangent line of Co at the corresponding marked 
point Xj. In these two cases, one easily shows in the same way as above that the term 
eT(Ac0), except the 0 weight, contributes one nonzero weight —a or a respectively. 
Its 0 weight space still cancels with the 0 weight space of [iir0(Co, (TTI O /)*rP1)]. 

By putting all of the above computations together and combining with (2.5), we 
get, for r ^ 0, d, 

nv{\i)Qd(\i + ra) - n^(Ai) /    ¥>*(0pj eT(Vd) 
JMd 

-a-^Xi-X^eTipirlNd)   Y,f 

p*eT(Ud-r) 

Md 

P*eT(Ur) 
_ F  .^eT(^(Fr))(a + c1(Lr)) 

VL Fd_r'rd-r eT{N{Fd-r)){-a + ci(Ld_P))' 

(2.6) 
Here eriPir/Nd) = ipir{(t>pir)- Note that <p*(<f>pir) restricted to Fr x Fd-r is the same 
as eriPir/Nd) which is a polynomial only in a and A as given below. Similarly for 
r = <i, we have 

Fd 

and for r = 0 

'WOE/ P*er(^) 
f<j jF<JeT(iV(Fd))(-a + Cl(L))' Qd(Ai)--a-ieTfeo/iVd)V/        .^^^^ ,r^- (2-8) 
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We can easily compute eriPir/Nd): 

n       d 

eT(Pir/Nd) = 11 11 (Ai " A^ + (r " m)a)' 

For r = 0 and c? we have 

n       d 

eriPio/Nd) = J| JJ (Ai - Aj - ma) 

i=0m=0W,m)#(i,0) 
n      d 

eT(Pid/Nd) = H H (Ai - Ai + (d _ m)a) 
^=0m=0W,m)^(i,d) 

n       d 

= 1111 (Ai-A.+ma). 

The last two identities together with (2.7), (2.8)   clearly give us 

Qd(Xi + da) = Qd(Xi) (2.9) 

where a = —a, Aj = A;. Finally our asserted quadratic relation: 

nv(\i)Qd(Xi + ra) = Qr(\i)Qd-r(M) (2.10) 

follows from (2.6), (2.7), (2.8), (2.9), and the following elementary identity: 

n n       d 

n (A* - Ai)x n n     Q* - ^+(r - m)a) 
J-0i#i :''=0 m=0(j)m)#(i,r) 

n       r n    d—r 

= JJ JJ (Aj - \j + ma) x JJ JJ (Ai - Xj - ma) 
i=0 m=0(ifm)#(it0) i=0 m=00fm)#(if0) 

Note that the last identity is just the interesting identity 

eT(Tp.P") • eriPir/Nd) = eT(pir/Nr) • eriPio/Nd-r). 

When V is concave, the fiber at (/, C) G -Mo,o(d, Pn) of the bundle Ud is 
H1^, f*V)i and we need only one change in the above argument. The gluing ex- 
act sequence in the concave case is 

0->V\Pi->Vd->Vr\Fr®Vd-r\Fd_1.->0 

instead. Therefore the gluing identity for equivariant Euler classes becomes 

eriVd) = eT(Vr) • eT(Vd-r) ^AV). 

Since ftv = l/eriV) for concave V, the quadratic relation (2.10)   remains valid in 
this case. 

The case when V is a direct sum of a convex and a concave bundle is also similar. 
□ 
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2.4.  Linked Euler data. 

DEFINITION 2.9. Two sequences P,Q G S are said to be linked if ipit0(Pd — Qd) £ 
IZ"1 vanish at a = (Xi — Xj)/d for all j ^ i, d > 0. 

Let V be a T-equivariant concavex bundle on P71, and C = P1 be any T-invariant 
line in Pn. By Grothendieck's principle, we have the form 

V\c = ®»+10(la)®(BZ:iO{-kb) 

for some positive integers Za,&&. (0 cannot occurs because eriV) is invertible, by 
definitiion.) Assume that {la} and {kb} are independent of C. This is the case, for 
example, if V is uniform [41]. We call the numbers (li,..,lN+;ki,..,kN-) the splitting 
type of V. With this notations, we have 

THEOREM 2.10. Let Qd - ^erCVd) as before. At a — (Xj - Xi)/d, i # j, we 
have 

lad kbd—1 

tiAQd)=n n (i°xi -m^ - Ai)/d)x n n (-^+m^ - ^i^- 
a   ra=0 6     m=l 

In particular the Euler data Q is linked to 

lad kbd—1 

P: Pd=n n (^ ~ma)x n n ^^+ma>>- 
a   171=0 b     77i=l 

Proof Since we shall evaluate the class Lpjt0 (Qd) at a = (Xj — Xi)/d, we introduce 
the notation Qd(K, a) — Qd, and denote the value of the class above by Qd(Xj,(Xj — 
Xi)/d). First consider the case V = 0(1) on Pn. We consider a smooth point in 
(/, C) G Md with C = P1 and in coordinates 

/ : C-^P1 xP",     [wo,wi] H> [wi,wo] x[0,->-,w$,'-,u>ir-,0] 

where in the last term, WQ is in the z-th position, wf is in the j-th position, and all of 
the other components are 0. The image of (/, C) in Nd under <p is the smooth point 

Pij = [0,-',v>or-,wL~',0]- 

It is easy to see that, if the weight of S1 in the group G = S1 x T is a = (Xj — Xi)/d, 
then Pij is fixed by the action of the subgroup of G with a = (Xj — Xi)/d. So (/, C) 
is a smooth point in Md fixed by the subgroup in G = S1 x T with a = (Aj — Xi)/d. 
The class Qd(^ a) restricted to P^ is just Qd(Xj, (Xj — Xi)/d). 

At the points (/, C) G Md and Pij G Na, the map tp is a canonical identifica- 
tion. From definition, Qd(ft,G:) restricted to Pij is the same as eT(Vd) restricted to 
(p~1(Pij) = (/,C) G Md, which by definition, is the same as eT(Ud) restricted to the 
T-fixed point (7r2 o /, C) in Mo,o(d, Pn). Note that (7r2 o /, C) is the degree d cover of 
the T-invariant line joining pi and pj in Pn. Explicitly 

7r2 of :  [WQ,WI] ->[0,--,w$,-',wf,--'0]. 

So the induced action of T on C = P1 has weights {Xi/d, Xj/d}. 
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Now let us compute eriUd) restricted to (7^2 ° f,C). When restricted (7^2 o 
f,C) e Mo,o(d,'Pn) the fiber of ud is just the section space #0(C, fa 0 f)*0(l)) = 
H0(C,O(ld)). It has an explicit basis {w^w1^"16} with k = 0, • • • ,/d. Since the T- 
weight of w§wli~k is feAi/d + (W — k)Xj/d, by multiplying them together we get 

id 

QdiXj, (Xj - A0/d) - H (ZAi " m(Ai " A0/d)- 
m=0 

For a general convex vector bundle V on Pn
5 the fiber of the induced bundle 

Vd restricted to ^(Pij) = (f,C) 6 Md is ^(P1^^ o f)*V). By Grothendieck's 
principle, V restricted to the line spanning pi,pj splits into direct sum of line bundles 
{0(la)}. Pulling them back to C via the degree d map 7r2 o /, we get the direct sum 
of {0(lad)}. Since V is convex, each /a > 0. By applying the same computation to 
each summand, we get 

lad 

QdiXj, (Xj - Xi)/d) = H 11 M - ™^3 - Ai)/d). 
a   m=0 

For a concave bundle V, we need only one minor change in the above argument. 
We leave to the reader as an exercise to check that for V = 0(—k), k > 0, 

kd-l 

QdiXj, (Xj - A^/d) = JJ (-kXj + miXj - A0/d), 

by using either the Atiyah-Bott fixed point formula or by writing down an explicit 
basis for if^P1,0(—kd)). So for an arbitrary concave bundle V, we have the form 

kbd-l 

Qdixj, (Xj - Ao/d)=n n ("**Ai+m^ - *»)/<*)■ 
&       772=1 

Similarly for an arbitrary concavex bundle V, we have the form 

Za<i k^d— 1 

Qd(A,-,(Aj-Ai)/d) = J] JJ(Z0A,—m(AJ—AO/dJxJJ JJ (-A^+m^-AOAO-n 
a     772=0 6       772=1 

THEOREM 2.11. Suppose P,Q are any linked ft-Euler data. If 

dega &.<> (pd - Qd) < (n + l)d - 2 

for all i = 0,.., n and d = 1,2,.., then P = Q. 

Proof By definition, Po = Qo = fi. We will show that Pd = Qd, assuming that 

Pr = Qr,   r = 0,..,d-l. (2.11) 

Since the H-valued pairing pfdiu-v) on KH^Nd) is nondegenerate, it suffices to show 
that 

Ls:=pfd(Ks'(Pd-Qd)) 
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is zero for all s — 0,1,2,.... By the localization formula for pfd, we get 

^ = EDA*+ra)'——2—^(p<l"Qd) . 
i=0 r=0 11^=0 nm=0(fcfm)#(ifr) (Ai - Afc + (r " m)a) 

Since P is an Euler data, it follows that Lpir (Pd), for each r = 1,.., d— 1, is expressible 
in terms of Pi, ..,Pd_i. Likewise for Q. Thus by the inductive hypothesis (2.11), the 
sum over r above receives contributions only from the r = 0, d terms. Applying the 
Reciprocity Lemma (i), we further simplify Ls to 

Af Ai(a)      (\i + da)s Ai(-a) *. = E P^* .=0 v     _ {-aY 

Ai{a)~ ^ lAP'-Q*) 
(2.12) 

dll*,^ - A*) nfc#Jn^=i(A* - A* -ma)' 

Since P, Q are linked Euler data, we have 

$iAPd-Qd) = 0 (2.13) 

at a = (Ai — \k)/d, k ^ i. By the inductive hypothesis (2.11) and the Reciprocity 
Lemma (hi), (2.13) holds at a = (Ai — Xk)/m for m = 1,.., d as well. This shows that 
Ai e 71 = Q(A)[a] for all i. By assumption degaAi < (n -f- l)<i — 1 — nd = d — 1. 
But since Ls ell ie. polynomial in a, /or a// 5, it follows easily that the Ai must be 
identically zero. □ 

2.5. The Lagrange map and mirror transformations. Throughout this 
subsection, we fix an invertible class fi and shall denote by A — AQ the set of fi-Euler 
data. 

DEFINITION 2.12. An invertible map /x : A -> A is called a mirror transformation 
if for any P € A, /i(P) is linked to P.  We call //(P) a mirror transform of P. 

DEFINITION 2.13. (Notations) So denotes the set of sequences B : Bd £ 
n-lH£,{No),    d = 1,2,...  We define the map 1 : 5 -> So, P *-> I(P) = B where 

Bd = I*d(Pd)- 
Recall that any equivariant cohomology class u G 7l~1HQ(Nd) is determined by 

its restrictions tpir(uj) G T^-1, i = 0, ..,n, r = 0, ..,d. Conversely given any collection 
LJir G Ti-1, there exists a unique class u G TZ~1 H^Nd) such that ipir(iJ) = ujir for all 
z,r. In fact, 

n      d x x—s v^ TT K, — Aj — ma 

i=0 r=0 (i,m)^(i,r) 3       V J 

In particular given a sequence B G So, then for each d there is a unique class Pd G 
n-lH^{Nd) such that 

tiriPd) = ^W-1 ^(Pr) i*Pi(Bd-r),   i = 0,.,n,   r = 0,.,d, (2.14) 

where we have set Bo := fi. This defines a sequence P G <S, hence a map 

£Q:SO-*S,   B^£n(B)=P. 
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We shall call £ = CQ the Lagrange map. By (2.14)   at r = 0, we get 

fpiiB*) = L*Pit0(Pd) = itJSiPd),   i = 0,..,n. (2.15) 

First, this implies that the two classes Bd,Id(Pd) on A^o = Pn coincide for each d. 
Thus 

B = l(P)=lo£(B). (2.16) 

Thus £ : So ->• S is a section of the onto map X : S -> So.   Second, substituting 
(2.15)  into (2.14), we get 

GiWipiAPd) = iko(Pr) LhAPd-r). (2.17) 

If, furthermore, we have Pa  G IZH^Nd) rather than in TZ-1HQ(Nd), then eqn. 
(2.17)  says that P is an Euler data. 
(A) The image P = £(B) of a given B G So under the Lagrange map is an Euler data 

ifPdGnH^(Nd)Jd>0. 

On the other hand, it is trivial to show that if Q G A C S then 

Q = £oX(Q). (2.18) 

Now using £ we can lift any map ^o : So —> So to a map 

/d = £ofjJooX:S^'S, 

which we shall call the Lagrange lift of fio- Thus from eqns. (2.16) and (2.18), we have 
(B) Let no ' So —> So be invertible with inverse VQ, and let n,v be their respective 

Lagrange lifts.  Then fio v — v o // = id A when restricted to Euler data. 

We now discuss the relationship between Euler data and series of hypergeometric 
type. 

DEFINITION 2.14. Given any B e So, define 

Bd edt 

HG[B}(t) := c-*/« (ft + £ *' 
\ d>0 llA;=0 llm=l (p - Xk - ma) 

where p G HQ(NQ) is the equivariant hyperplane class of No = Pn. 

Note that HG[B](t) is a cohomology valued formal series. If 

(n+l)d 

P:  Pd=   11   (IK-™**) 
m=0 

as in Example 1, it is obvious that in the limit A —> 0, we have 
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where H £ iJ*(Pn) on the right hand side is the hyperplane class of Pn. The coeffi- 
cients of (——Y for i = 1, ..,n, are exactly solutions to a hypergeometric differential 
equation discussed in the Introduction. 

We now consider a construction of mirror transformations. Let B 6 So, and set 
JBQ := H. Given any power series g 6 e*7£[[e*]], there is a unique B G So such that 

HG[B}(t + g) = HG[B}(t). 

In fact, since 

Bd edted9 
HG[B](t + 9) = e-P*/"e-P0/a ^ — 

d>0 nLonm=i(p-^-ma) 

if we write e<fc = Es>o^^eS<' ^,« G ^ and e"^/a = £s>o^eS<> ^ G ^[P/«]5 
then 

it is straightforward to find that 

d— 1 n d 

r=o ,=oro=r+i 

d-1 n d v / 

B^ := Bd + ^ 9r,d-rBr JJ    Jl   (p - Aj - ma). 
r=0 i=0 m=r+l 

Thus we have an invertible transformation fio : So -* So, B ^ B. Similarly, given any 
power series / G et7i[[et]] we have an invertible transformation fio • So —> So, B h-> B, 
such that 

ef/a HG[B](t) =HG[B}(t). 

Again if we write ef/a = Xls>o /*e**> /* G ^[a~1]> then 

d—l n d 

Bd = Bd + J2fd-rBrl[   JJ   (p-Aj-ma). (2.20) 
r=0 j=0 m=r+l 

We now make an important observation about the transformation fio in each case 
above. For d > 0 the class n^=o(^ — Aj — da) always vanishes when restricted to 
the fixed points pi G Pn, at a = (Ai — Xj)/d. It follows immediately from (2.19) and 
(2.20) that Lp^Bd), ^(Bd) always agree (whenever defined for all d) at a = (Xi — 
Xj)/d, for j ^ i. To summarize: 
(C)  Given g,f€ ^^[[e*]], Ze£ JL/Q : 5o —> So, B v-+ B, be the invertible transformation 

defined by 
efl" HG[B}(t + g) = HG[B]{t). 

Suppose B is such that all values of ip^Bd) are well-defined at a = (Ai — Xj)/d, 
j ^ i. Then these values are preserved under /do- 

Obviously if P is an Euler data and B = 1(P), then the restrictions tpiiBa) = 
Lpi0(Pd) G TZ are polynomial in a. Hence they are always well-defined at a = (Ai - 
Aj)M i / i. 
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LEMMA 2.15. Let /J, be the Lagrange lift of the above transformation fio : So —> So, 
B \-± B. Then /J, is a mirror transformation. In particular, if P is an Euler data, then 
P = /^(P) is an Euler data with 

ef/° HG[I(P)](t + 9)= HG[l(P)}(t). 

Proof The second assertion follows from the first assertion and the fact that 
Xofji = XoCoiJJooX = /JlooX. 

It suffices to consider the two cases / = 0, g — 0, separately. In each case we let 
P be an Euler data, and denote 

P = fi(P),    B=1(P),    B = MB). 

Since /J, :— £ o [XQ oX, we have P — C(B). In each case we will show that P is an 
Euler data. We claim that this suffices. First, by statement (B) above, fi is invertible 
as a transformation on the set A of Euler data. Second, by statement (C) above, the 
restrictions tp. (Bd) = Lpi0 (Pd) and ^ (Bd) = ^,o (Pd) agree at a = (A» - Xj)/d, j ^ i. 
Thus P is linked to P. So, by definition, fi is a mirror transformation. 

We now proceed to checking Eulerity of P.    Since P = C(B),  (2.14)    holds. 
Multiply both sides of eqn. (2.14)   by the respective sides of the following identity: 

e(\i+ra)(t-T)/a 

nT-nn^-n,     x ,/   A\i + ra — \j — ma) 

EWA; - A,-) n?=o n;=i(Ai - A,- + ma) 
e(d-7')r 

X e-AiT/a _ ^ 

njLo FlmJiCAi - Aj - ma) 

and then sum over i = 0,.., n, and r = 0,.., d. The result is 

edT pfd(Pd e^-r)/*) 

= i2pfU-1[e-pt^W- Br ert 

, Bd-r e(d-r)r A 

nju Um=i (p - X
J -ma) / 

Now summing this over d = 0,1,2,.., we get: 

J2 edT Pfd(Pd e^-r)/") = pf (fi-i HG[B](t) HG[B](TJ) . (2.21) 
d>0 

Likewise, of course, for P and B. 
First case: 

HG[B](t) = HG[B](t + g(e*)). (2.22) 
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By (2.21), we have 

pf (n-i HG[B](t) HG[B}(r)) = ^e^ p/d(Pd e-(*-)/-) 
d>0 

p/ (r^"1 frG[B](t + fl(c*)) HG[B](T + (y(cr))) 

= ^ed(r+^(eT)) p^ (pd e«(t+S(e«)-r-(,(er))/a) . 

By (2.22), we can equate the two right hand sides above. Setting q = er, ( = (t — r)/a, 
we get 

' ^Q* pfd(Pd e<«) 
d>0 

(2.23) 
= X~y qdedg(q) pfd (pd eK( eK(g+(qe<:a)-g+(q))/a  e-K(g-(qe<:a)+g-(q))/a\ 

d>0 

where g = g++g- with g± = ±g±. Obviously for any g(q) G Tl[[q]], g+(qe^)-g+(q) G 
a • TZ[[q, C]]- Since the involution LJ ^ Co on 7Z simply changes the sign of a, the fact 
that g- is odd shows that g-(q) G a • TZ[[q]]. Likewise for g-(qe^a). We know that 
Pd G nH^(Nd) (since P is Euler), and that pfd maps nH£,(Nd) to 11. So the right 
hand side of (2.23) now clearly lies in 7£[[<2f, £]]• So, likewise for the left hand side of 
(2.23). It follows that 

pfd(Pd^)en,   « = 0,1,2,.., (2.24) 

A priori Pd G K-lH£,(Nd) has the form 

Pd = OATAV^H + ao5   a* G TJ"1,   iV = (n + l)d + n. 

Since pfd(KN) = 1, it follows from (2.24)   that aN, ..,ao G K. Hence Pd G nH^{Nd) 
(rather than in lZ~1HQ(Nd)). By statement (A) above, P is an Euler data. 

Second case: 
HG[B](t)=ef/aHG[B](t). 

Again applying (2.21) and writing / G e^TJ-ffe*]] as / = /+ + /_ with f± = ±/±, we 
get 

5Z^ P/d(^ eC/€) = e-fl6')/* e/(eT)/« p/ (n-1 ffG[B](*) iyG[B](r)) 

= e-(/+(ge^)-/+(9))/a e(/_(9C^)+/_(9))/a   Y^ qd pfd(Pd eC«). 

d>0 

d>0 

The right hand side lies in TZ[[q, (]] as before, implying that P is Euler. D 

3.  Applications. 

DEFINITION 3.1. A concavex bundle V on Pn is called a critical bundle if the 
induced bundle Ud -* Mo,o(d, Pn) has rank dim .Mo,o(d, Pn) = (n + l)d + 77,-3. We 
denote the nonequivariant Euler class by ctop{Ud). 

Recall the notation that given a concavex bundle V = V+ 0 V-, we have 

QV — eT(V+)/eT(V-) 

Q:    Od = ^CT(Vd),     d>0. 
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By Theorem 2.8   the sequence Q is an f2y-Eiiler data.   If V is a critical bundle, 
introduce 

JMo,o(d^n) d>o 

THEOREM 3.2. Let V be a concavex bundle on Pn. 
(i)  The restrictions I*d{Qd) G H^(Pn) has degaI%(Qd) < (n + l)d- 2. 

(ii) If V is critical, then in the nonequivariant limit A —> 0, 

L e-m/a     —W^) = a-3(2 _ d t)Kd 

(   {HG[l{Q)}{t) - e-mlanv) = a-3(2$ - *$')• 

Proof. The second equality in (ii) follows trivially from the first equality. 
By eqn. (2.8)  in the proof of Theorem 2.8, we have 

Qd{\i)=<pPi(Ao^p-(A,) x; / p (M/IZZ^ r (T\\\     (3-1) V7Fd eT(A'(i;d))[Q:(a - ci(L))] 
Fj 

where ^.p, := n^> - A,-), ^P" := n?=o 11™=!(P - ^i - m<*) € ^(P")- From the 

localization formula, we deduce that 

.   n^ [ P*eT(Ud) f P'erjUd)       ,. 
<PvAM)2^J^ eT{N{Fd))[a{a_Cl{L))] -JMoAdtPn) a{a-c,{L))eV ^ 

f        (P^riPd),, 

^a{a — ci(L)) 

Thus (3.1)   can be written as 

It follows that 

This shows that degaId(Qd) < dega(t>Pn — 2 = (n + l)d — 2, proving (i). 
Since Qd = <^!eT(Vd) G HQ(Nd), their nonequivariant limit A -> 0 exist. In this 

limit (3.2)   gives 

e-in/. W') 
n„=1(tf-ma)"+1 

JMoAd,?") a(a-ci(L)) 
r /    e-ev*Ht/a 

= Ctop(Ud) pi 
JM /^o,o(d,Pn)     ^ '  \a(a ~ cl(£))/  ' 
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Now ctop(Ud) has degree the same as the dimension of Mo,o(d, Pn). The second 
factor in the last integrand contributes a scalar factor given by integration over a 

generic fiber E (which is a P1) of p. So we pick out the degree 1 term in a(a-ci(L))' 

which is just ~ei^3Ht + ^3 • Restricting to the generic fiber E, say over (/, C) G 
Mo,o{d, Pn), the evaluation map ev is equal to /, which is a degree d map E = P1 ->> 
Pn. It follows that 

/ ev*H - d. 
JE 

Moreover, since ci (L) restricted to E is just the first Chern class of the tangent bundle 
to E, it follows that 

r ci(L) = 2. 
JE 

So we have 
.      ,   d t      2 x _ _ 

a6      a6 D 

It is easy to work out the complete list of critical concavex vector bundles V on 
Pn which are direct sums of line bundles. Such a V is of the form 

V = V+ e v- 

V+ = ®E10(la) 

v- = e^Oi-h) 

where li,..JN+, ki,..,kN- are positive integers. By Riemann-Roch, the bundles Ud 
that V induces on .Mo,o(d,Pn) has rank Ud = dQ£/a + E h) + ^+ - ^"^ which 
must be (n + l)d + n — 3 for all d if V is critical. Thus we must have 

^la + ^h^n + l 

N+ - N- = n - 3. 
(3.3) 

The complete list of critical bundles that are also direct sums of line bundles is: 

P1 

p2 

p3 

p4 

p5 

p6 

p7 

e>(-i) © e>(-i) 

0(-3) 

0{2) © 0(-2) 

(9(5),   0(2) © 0(2) © O(-l) 

0(2) © 0(4),   0(3) ©0(3) 

0(2) © 0(2) © 0(3) 

0(2) ©0(2) ©0(2) ©0(2). 

(3.4) 

Note that we have excluded the critical bundles in which the hyperplane bundle 0(1) 
occurs because in the nonequivariant limit it only reduces a given case of Pn to Pn_1. 
For example, even though the bundle 0(1) 0 0(—l) © 0(—l) on P2 is certainly 
critical, computing the Kj for the induced bundles is equivalent to doing the same 
with 0(—1) 0 0(—l) on P1.   It is curious to note that the numerical conditions 
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(3.3) is rather similar to the condition for having a projective complete intersection 
Calabi-Yau threefold. In fact five of the examples on P4 through P7 above involving 
only positive bundles are exactly the cases in which each critical bundle cuts out a 
complete intersection Calabi-Yau threefold. We also note that, with the exception of 
the P1 case, the three examples which involve negative bundles in fact correspond 
to noncompact Calabi-Yau threefolds. The total space of 0(—3) —>■ P2, the total 
space of ip*0(—2) -+ X, where ip : X <-> P3 is a quadric, and the total space of 
ip*0(—1) -> P4 where ip : X c-^ P4 is the intersection of two quadrics, all three are 
noncompact Calabi-Yau. These examples arise in the so-called local mirror symmetry. 
In the next subsection, we shall compute the Euler classes of the induced bundles for 
the list above. 

3.1. The first convex example: The Mirror Conjecture. Throughout this 
subsection, we set / = n + 1, consider the convex bundle V = 0(1) on Pn, and fix 
Qv = lp. PyQ shall denote the following two linked Euler data (cf. Theorems 2.8, 
2.10.): 

Id 

P :  Pd= JI (Z* - ma) 
m=0 

Q :  Qd = <P\eT{Vd). 

Consider the hypergeometric differential equation 

(|)--^(/| + I)...(Z|+»))M*)=O. 

We have seen that a basis /i, i = 0, ..,n — 1, of solutions can be read off from the 
hypergeometric series (cf. Introduction) in the limit A —> 0: 

7?ond
m=i(H-rna)n+i \ a a* ) 

Recall that 

T{t) := A = t + ^ 
jo Jo 

(3.5) 

is the mirror map of Candelas et al, where 

id _ (id)\    dt _sr(ld)\   ^    I 
/o:~^(d!)-+ie   '     9i:~^(dr)1    ^   m 

d>0 v    y d>l v    y    m=d+l 

edt. 

LEMMA 3.3. In the limit A -> 0, we have HG[X(Q)](T(t)) = ±HG[X(P)](t). 

Proof. By expanding in powers of a-1 and using the assumption that / = n -j-1, 
we get 

HG[l(P)}(t) = e-*/° E I^(l*-™1)       .*» 
d>o Uk=o nm=i (P - A* - ma) 

(3.6) 

= /p /o-a-i(p/1+52^Afc) + 
fc=0 
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where £2 = Ed>i §ry Em=i ^edt' 
Put / := (log fo)a -h ^ ELo Xk G e*7i[[e*]]. By Lemma 2.15, we have a mirror 

transformation fi such that 

HG[l(P)}{t) = ef/" HG[I(P)](t) (3.7) 

where P = /i(P). Substituting (3.6)  into (3.7), we get 

n 

HG[X(P)}(t) = (1 + a-i ^ 2 Afc + • • •) /o"1 Zp 

= Ip - a-xlp2— + ■■■ ■ 
fo 

(3.8) 
By Lemma 2.15  again, we have a mirror transformation is such that 

HG[I{Qm = HG[I(QW + f) Jo 

where Q = i/(Q). Since, by Theorem 3.2   (i), I^Qd) = 0(a(n+1)d-2), it is straight- 
forward to find that 

HG[I(Q))(t) = e-p{t+%)/a(lp +..-)= /p - a-i/p2(t + ^) + • • •. (3.9) 
Jo 

From (3.8)   and (3.9), we conclude that for d > 0, 

= 0 
n;uniU(p-Afc-ma) 

modulo order a-2, and hence 

deya ^f0 (Pd - Qd) < (n + l)d - 2. 

But P = fji(P) is linked to P, and Q = ^(Q) is linked to Q. Since P and Q are 
linked, it follows that P and Q are also linked. By Theorem 2.11, we have P — Q. In 
particular, we have 

HG[l(Q)}(T(t)) = HG[l(Q)m = HG[I(P)](t) = ef/<* HGp(P)](t). 

Since both P^, Q^ lie in il^iVd), their nonequivariant limit exist. Taking A —>• 0 yields 
our assertion. D 

Throughout the rest of this subsection, we set I = n + 1 = 5 and consider the 
critical bundle 0(5) -» P4. PFe assume that we have taken the nonequivariant limit 
A -* 0. Recall that 

6       ^ 2/0/0/0 

THEOREM 3.4.  fTAe Mirror Conjecture) F — T. 

Proof. Since 

HG[I(P)](t) = 5tf f/o - /i- + /2^ - /s^ , (3.10) 
\ a aJ a05 / 
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we will prove that (cf. [8]) 

/ H     F' H2     TF' - 2F H3 \ 
HG[X{Q)){T) = 5H(l-T^ + <-^-        ,        ^    ■ (3-11) 

\ a       5  az 5 a6) 

Eqns. (3.10), (3.11) and the preceding lemma imply F — T. Denote the right hand 
side of (3.11)  by R. Then 

/       $'772      2$ H3\ 
eHT/aR = 5ff (i + ?LfL. + ^?-)=5H + 0(eT) 

\        5 a2        5   a3/ 

where $ := F - ^ = 0{eT). Similarly eHT/«HG[l(Q)](T) = 5H + 0(eT), which 
also has no polynomial dependence on T. So (3.11)   is equivalent to 

[   e-HTl« (eHT/°HG[I(Q)]) = [   e-HT/<* (eHT/"R) . 

By Theorem 3.2(ii), this left hand side is 

/   HG[l{Q)]=a-z(2$-T$')+ [   e-HT/a5H = a-3(2F-TF'), 
JP* JP* 

which coincides with Jp4 R. D 
It is straightforward to generalize Theorem 3.4 to all other critical convex bundles 

V in the list (3.4). In each case, ftv becomes Yla lap and the Euler data P to be linked 

with Q : Qd := ipieT(Vd) is given by Pd = Yla IlrJUo^a^ _ mQ:)- ^n ^e nonequivari- 
ant limit, the hyper geometric series HG[I(P)](t) will produce some hypergeometric 
functions /o,.-,/3 defining the function J7. The generating function F for the Kj is 
modified by simply replacing the term ^- by ^- J-^i/;*!!3, where ip : X —)• Pn is 
the Calabi-Yau cut out by V. With these minor modifications in each case, Theorem 
3.4 holds. We leave the details as an exercise for the reader. 

3.2. First concave example: multiple-cover formula. Let V be the bundle 
O(-l) 0 e>(-l) on P1. For d>l,V induces a rank 2d-2 bundle Ud -> MM^P

1
) 

whose fiber at (/, C) is the space H1(C,f*V), thus V is a critical concave bundle 
on P1. We set Slv = l/eriV) — p-2. We shall compute the equivariant classes 
Qd ;— y?ieT(Vd), and the numbers Ka for this critical bundle. Note that by definition 
Qi = l and Ki = 1. As a consequence of Theorem 2.10, 

d-l 

ipiAQd)= UiXi-miXi-X^/d)2 

771=1 

at a — (Xi — Xj)/d, j ^ i. Thus Q is linked to 

d-l 

P:    Pd:= Y[(K-ma)2, 
m=l 

which is ap-2-Euler data. Obviously degaI^{Pd) — 2d—2. It follows from Theorem 
3.2 (i) that degaId(Pd - Qd) <2d-2, implying Q = P by Theorem 2.11. 
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COROLLARY 3.5. Kd = ch3. 

Proof. By Theorem 3.2(ii) in the limit A -> 0, we have 

f    e-Ht/a Wd)  =a-3(2-dt)lQ. 

Since Q = P, we have J*(Qd) - I*(Pd) = UtMH " ^a)2, giving 

^      n;U(tf- 
/5(Od) = a-3rf-3(2 _ d t).     a 

ma)2 

3.3. Second concave example: Kp2. Let V be the canonical bundle 0(-3) -> 
P2. For d > 0, this bundle induces a rank 3d - 1 bundle Ud -> Mo,o(d^2)' Thus V 
is a critical concave bundle. We set rtv — l/eriV) = (—Sp)~1. We shall compute the 
equivariant classes Qd := ^^(Vd), and the numbers if^ for this critical bundle. As 
a consequence of Theorem 2.10, we have 

3d-l 

GiAQd) = II (-3Ai +m(Ai - Aj-J/d). 
771=1 

at a = (Ai - Xj)/d, j ^ i. Thus Q is linked to 

3d-l 

P:    Pd~  Y[(-3K + ma)' 

which is a (—3p)~1-Euler data. 

COROLLARY 3.6. HG[l(Q)](t+g) = HG[X(P)](t) where g := ^;d>0 i=^li|gled*. 

Proof. By expanding in powers of a-1, we get 

-ed* 
v        d>on&=onm=i(p-Afc-m«) /   (3.12) 

As before, it is now straightforward to show that 

HG[I(Q)](t + g) = HG[X(P)](t) 

modulo order a-2. Once again by Theorem 2.11, the two sides are equal identically. 
□ 
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Using Theorem 3.2(ii) and the preceding corollary, we obtain the Kd, for d = 
1,.,10: 

d Kd 

1 3 
2 45 

8 

3 244 
9 

4 12333 
64 

5 211878 
125 

6 102365 
6 

7 64639725 
343 

8 1140830253 
512 

9 6742982701 
243 

10 36001193817 
100 

3.4. A concavex bundle on P3. Let V = (9(2) © 0{-2) on P^ This is a 
direct sum of a convex and a concave bundle. The induced bundle Ud —t Mo,o(d, P3), 
with fiber at (/,C) being H0{CJ*O(2)) © iJ1(C,/*(9(-2)), has rank 4d' We set 
QV = eT{0(2))/eT(0(—2)) = —1. We shall compute the equivariant classes Qd := 
(pierCVd), and the numbers Kd for this critical bundle. As a consequence of Theorem 
2.10, we have 

2d 2d-l 

liiAQd)=n ^ - m(Xi - Ai)/c/)x n ("2Ai+m(Ai - A^/d)- 
m=0 771 = 1 

at a = (Xi — Aj)/d, j ^ i. Thus Q is linked to 

2d 2d-l 

P :    Pd := Y[ (2K - ma) x  II (~2/^ + ma^ 
m=0 171 = 1 

which is a — 1-Euler data. 

COROLLARY 3.7. HG[l(Q)](t + g) = HG[I(P)](t) where g := Zd>o l^^1- 

Proof. By expanding in powers of a-1, we get 

HG[X(P)](t) = e-pt/" I -1 + Y, 
2d-ll n„=o(2p - ma) x U^i (-2p + ma) 

\ d>0 

= -l + a-1p(t + g) + 

nLonl=i(p-^-ma) 
3di 

(3.13) 
which, as in the previous examples, agrees with HG[l(Q)](t + ^) up to order a~2. 
Hence Theorem 2.11  yields our assertion. □ 

Using Theorem 3.2(ii) and the preceding corollary, we obtain the Kd, for d = 
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1,..,10: 
d Kd 

1 -4 
2 9 

2 

3 328 
27 

4 777 
16 

5 30004 
125 

6 4073 
3 

7 2890808 
343 

8 7168777 
128 

9 285797488 
729 

10 714787509 
250 

3.5. A concavex bundle on P4. Consider now the critical bundle V = 0(2) © 
0(2) © 0(-l) on P4. The induced bundle Ud -> Mo,o(d,P3), has rank 5d+ 1. We 
set Qv = eT(0(2))2/eT(0(—l)) — —4p. We shall compute the equivariant classes 
Qd := (pierCVd), and the numbers Kd for this critical bundle. As a consequence of 
Theorem 2.10, we have 

2d d-1 

ko(Qd)= l[(2Xi-m(Xi-Xj)/d^x Y[(-Xi + m(Xi-Xj)/d). 
m=0 m=l 

at a = (Xi — Aj)/d, j ^ i. Thus Q is linked to 

2d d-l 

P :    Pd := JJ (2K - ma)2 x JJ (-« + ma). 
m=0 772 = 1 

which is a — 4p-Euler data. 

COROLLARY 3.8. HG[l(Q)](t + g) = HG[X(P)](t) where 

^     d 
(-1)^ (2d)!2 

d>0 
d!4 

,rft 

Proof. By expanding in powers of a-1, we get 

HG[X{P)]{t) = e-pt/"    -4p + ^ 
^ IlLo 11™=! (P - A* - ma) 

,dt 

= -4p + a-14p2(i + p) H , 
(3.14) 

which, as in the previous examples, agrees with HG[X(Q)](t + g) up to order a-2. 
Hence Theorem 2.11 yields our assertion. □ 

We can work out the Kd here as we did before. The Kd here can be obtained 
by taking Kd from the preceding example on P3, and multiply it by 4(—l)d. This 
is so because in the nonequivariant limit, the hypergeometric series HG[X(P)](t) (cf. 
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(3.13) and (3.14)) in this example on P4 and the preceding example on P3 are related 
by first a multiplication of 4p followed by a change of variable edt ^ (—l)dedt. 

3.6. General concavex bundles. In fact the examples above are representa- 
tive of the most general concavex bundle. Let V — V+ 0 V~ be a concavex bundle on 
Pn, and let Q, P be as defined in Theorem 2.10, and assume that V has splitting type 
(Zi, ..,ZJV+; &i5 "ikjsf-). Note that Xl'a + S^ is the value of the class ci(y-f) — ci(V-) 
on a T-invariant P1 in Pn. 

THEOREM 3.9. // d(^/a + £ fc&) - N- < (n + l)d - 2 for all d > 0, then 
Q = P. If d (£ la + YJ kb) — N- < (n -f l)d for all d > 0, then there exists a mirror 
transformation //, depending only on the la^k^, such that Q — /^(P)- 

Proof By definition of P in Theorem 2.10, 

degaI*(Pd) =d(22la + Y,kt>)- N~ 

Consider the first case, where this is bounded above by (n + l)d — 2 for all d. Then 
by Theorem 3.2, 

dega(I*(Pd) - I*(Qd)) < (n + l)d - 2, 

implying Q = P by Theorem 2.11. 
Consider now the second case. Obviously our assumption implies that £/a + 

J2 h < (n + 1). It is trivial to show that the only possibilities not covered by the first 
case are: (1) N" =0and£/a =n + l; (2) N- = land^/a + ^i =nH-l. (3) N- =0 
and ^21 a — n] In each of these cases, a mirror transformation can be constructed by 
immitating the previous examples in a straightforward way. Case (1) immitates the 
example 0(5) -> P4, while cases (2), (3) immitate the example 0(—3) -> P2. It is 
obvious that in each case, the mirror transformation depends only on the data la, &&. 
D 

COROLLARY 3.10. Under the same hypotheses as in the preceding theorem, the 
Euler data Q : Qd — ^^(Vd) depends only on the splitting type, ie. the numbers 
la^b, of the concavex bundle V on Pn. 

Note that not every concavex bundle on Pn is a direct sum of line bundles. For 
example the tangent bundle is convex, but is not a direct sum of line bundles. 

3.7. Equivariant total Chern class. For simplicity, we restrict to convex bun- 
dles. Let V be a rank r convex bundle on Pn, and let 

cT{V) = xr + ar^ciOO + • ■ • + Cr{V) 

be the T-equivariant Chern polynomial of V. Similarly we denote by criUd) the 
equivariant Chern polynomial for Ud- As explained in Example 9, we can extend the 
notion of Euler data Q allowing Qd to depend on x polynomially, simply by replacing 
the ground field Q by Q(x). Then a similar argument as in Theorem 2.8 shows 
that the sequence Qd := tpii^criUd)) is also an Euler data in the generalized sense. 
Moreover, the analogue of Theorem 2.10 holds, ie. at a — (Xj — \i)/d, we have the 
form 

lad 

ZiAQd) = 11 11 (* + laXi - m^ " Ai)/d)- 
a   77i=0 
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Hence Q is linked to the Euler data 

lad 

P :    Pd = fj JI (^ + laK - ma>>' 
a   7n=0 

Again, under a suitable bound on ci(V), one can easily relate P,Q by a generalized 
(depending on x) mirror transformation. 

For example, by taking the bundle 0(4) on P3, and applying the above result, we 
can compute the nonequivariant limits of all J^ ,d p3, c^diUd)- They are expected 
to count rational curves in a P1-family of K3 hypersurfaces in P3. Similarly we can 
take (9(3) on P2 and compute J^ MP

2
) 

c$d-i{Ud) which should count the number 
of rarional curves in a P2-family of elliptic curves in P2. Details will be reported in 
full in our forth-coming paper [37]. 

3.8. Concluding remarks. The most important result we establised in this 
paper is the Mirror Principle. For simplicity we have restricted our examples in 
this paper, to studying only Euler classes and total Chern classes. As mentioned in 
the Introduction, the Mirror Principle works well for any multiplicative equivariant 
characteristic classes. We shall study in details more examples of the total Chern class 
in our forthcoming paper [37]. Generalization to manifolds with torus action will also 
be dealt with in details there. 

Finally, we make a tantalizing observation which might be of both physical and 
mathematical significance. As we have seen, the set of linked Euler data has an infinite 
dimensional transformation group - the mirror group. For suitable concavex bundle 
V -> Pn, two special linked Euler data (cf. Theorem 2.10) Q : Qd = tpieriVd) arising 
from the nonlinear sigma model (the stable map moduli), and P the corresponding 
Euler data of hypergeometric type, are related by a mirror transformation. Since the 
mirror group is so big, there are many other Euler data which are linked to P and can 
be obtained simply by acting on P by the mirror group. From the physical point of 
view, P arises from type IIB string theory while Q arises from type IIA string theory, 
and mirror symmetry is a duality between the two. This relationship manifests itself 
on the linear sigma model as a duality transformation. This suggests that some other 
Euler data linked to P may arise from some other string theories which are dual to 
type IIA and IIB, via more general mirror transformations. From the point of view 
of moduli theory, P is associated to the linear sigma model compatification iV^ of 
the moduli space M® we discussed in Example 10. Whereas Q is associated to the 
nonlinear sigma model M^, which is the stable map compactification of M®. This 
suggests that some other Euler data linked to P may correspond to other compact- 
ifications of M$. If true, we will have an association between string theories, linked 
Euler data, and compactifications of moduli space of maps, all in the same picture, 
whereby there is a duality in each kind which one sees in the linear sigma model. It 
would be interesting to understand this duality more precisely. 

REFERENCES 

[1]   P. ASPINWALL AND D. MORRISON, Topological field theory and rational curves, Commun. Math. 
Phys. 151 (1993), 245-262. 

[2]    J. BRYAN AND N. LEUNG,  The enumerative geometry of K3 surfaces and modular forms, 
alg-geom/9711031. 



762 BONG H. LIAN, KEFENG LIU AND SHING-TUNG YAU 

[3]   M. ATIYAH AND R. BOTT, The moment map and equivariant cohomology, Topology 23 (1984) 
1-28. 

[4]    V. BATYREV AND L. BORISOV, On Calabi-Yau complete intersections in toric varieties, alg- 
geom/9412017. 

[5]   V. BATYREV AND D. VAN STRATEN, Generalized hypergeometric functions and rational curves 
on Calabi-Yau complete intersections in toric varieties, Comm. Math. Phys.  168 (1995) 
495-533. 

[6]    M. BERSHADSKY, S. CECOTTI, H. OOGURI, C. VAFA, Kodaira-Spencer theory of gravity and 
exact results for quantum string amplitude, Commun. Math. Phys. 165 (1994) 311-428. 

[7] R. BOTT, A residue formula for holomorphic vector fields, J. Diff. Geom. 1 (1967) 311-330. 
[8]   P. CANDELAS, X. DE LA OSSA, P. GREEN, AND L. PARKES, A pair of Calabi-Yau manifolds as 

an exactly soluble superconformal theory, Nucl. Phys. B359 (1991) 21-74. 
[9]   P. CANDELAS, X. DE LA OSSA, A. FONT, S. KATZ AND D. MORRISON, Mirror symmetry for 

two parameter models I, hep-th/9308083. 
[10] L. CAPORASO AND J. HARRIS, Parameter spaces for curves on surfaces and enumeration of 

rational curves, alg-geom/9608024. 
[11] B. CRAUDER AND R. MIRANDA, Quantum cohomology of rational surfaces, Progress in Mathe- 

matics 129, Birkhauser (1995) 33. 
[12] P. DIFRANCESCO AND C. ITZYKSON, Quantum intersection rings, Progress in Mathematics 129, 

Birkhauser (1995) 81. 
[13] R. DIJKGRAAF, Mirror symmetry and elliptic curves, Progress in Mathematics 129, Birkhauser 

(1995) 149. 
[14]    Essays on Mirror Manifolds, ed. S.T. Yau, International Press. 
[15] G. ELLINGSRUD AND S.A. STROMME, The number of twisted cubic curves on the general quintic 

threefolds, JAMS 9 (1996), no. 1, 175-193. 
[16] W. FULTON AND R. PANDHARIPANDE, Notes on stable maps and quantum cohomology, alg- 

geom/9608011. 
[17] E. GETZLER, The elliptic Gromov-Witten invariants on CP3, alg-geom/9612009. 
[18] A. GIVENTAL, Equivariant Gromov-Witten invariants, alg-geom/9603021. 
[19] A. GIVENTAL, A mirror theorem for toric complete intersections, alg-geom/9701016. 
[20] T. GRABER AND R. PANDHARIPANDE, Localization of Virtual classes, alg-geom/9708001. 
[21] B. GREENE AND R. PLESSER, Duality in Calabi-Yau moduli space, Nucl. Phys. B338 (1990) 

15-37. 
[22] R. HARTSHORNE, Algebraic Geometry. Graduate Texts in Mathematics 52. Berlin, Heidelberg, 

New York Springer 1977 
[23] F. HIRZEBRUCH, Topological methods in algebraic geometry, Springer-Verlag, Berlin 1995, 3rd 

Ed. 
[24] Y. Hu, Moduli spaces of stable polygons and symplectic structures on on A4ojn, Comp. Math, 

(to appear), alg-geom/9701011. 
[25] M. JINZENJI AND M. NAGURA, Mirror symmetry and exact calculation of N — 2 point correlation 

function on Calabi-Yau manifold embedded in CPN~1, hep-th/9409029. 
[26] M. KAPRANOV, Chow quotients of Grassmannian, I.M. Gel'fand Seminar, AMS (1993). 
[27] B. KlM, On equivariant quantum cohomology, IMRN 17 (1996) 841. 
[28] F. KNUDSEN, AND D. MUMFORD, The projectivity of the moduli space of stable curves I, pre- 

liminaries on 'det' and 'div'. Math. Scand. 39 (1976) 19-55. 
[29] D. MORRISON AND R. PLESSER, Summing the instantons: quantum cohomology and mirror 

symmetry in toric varieties, alg-geom/9412236. 
[30] S. HOSONO, A. KLEMM, S. THEISEN AND S.T. YAU, Mirror symmetry, mirror map and appli- 

cations to complete intersection Calabi-Yau spaces, hep-th/9406055. 
[31] S. HOSONO, B.H. LIAN AND S.T. YAU, GKZ-generalized hypergeometric systems and mirror 

symmetry of Calabi-Yau hyper surf aces, alg-geom/9511001, Commun.   Math.   Phys.   182 
(1996) 535-578. 

[32] W.Y. HsiANG, On characteristic classes and the topological Schur lemma from the topological 
transformation groups viewpoint, Proc. Symp. Pure Math. XXII. (1971) 105-112. 

[33] S. KATZ, On the finiteness of rational curves on quintic threefolds, Comp.  Math.   60 (1986) 
151-162. 

[34] M. KONTSEVICH, Enumeration of rational curves via torus actions. In: The Moduli Space of 
Curves, ed. by RDijkgraaf, CFaber, Gvan der Geer, Progress in Mathvoli29, Birkhauser, 
1995, 335-368. 



MIRROR PRINCIPLE I 763 

[35] J. Li, Algebraic geometric interpretation of Donaldson's polynomial invariants, Journ.   Diff. 
Geom. 37 (1993) 417-466. 

[36] A. LIBGOBER AND J. TEITELBOIM, Duke Math. Journ., Int. Res. Notices 1 (1993) 29. 
[37] B. LIAN, K. Liu, AND S.T. YAU, Mirror Principle II, in preparation. 
[38] Yu.I. MANIN, Generating functions in algebraic geometry and sums over trees. In: The Moduli 

Space of Curves, ed.   by RDijkgraaf, CFaber, Gvan der Geer, Progress in Mathvoll29, 
Birkhauser, 1995, 401-418. 

[39] Yu.I. MANIN, Frobenius Manifolds, quantum cohomology, and moduli spaces (Chapter 1,11,111)., 
Max-Planck Inst. preprint MPI 96-113. 

[40] D. MORRISON, Picard-Fuchs Equations and Mirror Maps for Hyper surf aces, in [14]. 
[41] C. OKONEK, M. SCHNEIDER AND H. SPINDLER,  Vector bundles on complex projective spaces, 

Progress in Math., Birkhauser. 
[43] Y.B. RUAN AND G. TlAN, A mathematical theory of quantum cohomology, Journ. Diff. Geom. 

Vol. 42, No. 2 (1995) 259-367. 
[43] G. TIAN, private communication, November 1995. 
[44] C. VOISIN, A mathematical proof of a formula of Aspinwall-Morrison, Comp. Math. 104 (1996) 

135-151. 
[45] E. WITTEN, Phases of N=2 theories in two dimension, hep-th/9301042. 


