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METRIC FIBRATIONS IN EUCLIDEAN SPACE* 

DETLEF GROMOLLt AND GERARD WALSCHAP* 

A systematic study of the local and global geometry of metric foliations in space 
forms was begun in [5] and [6], primarily for the spherical case. Recall that a metric 
foliation Tk (without singular focal loci) in a Riemannian manifold Qn+A; is a smooth 
partition into locally everywhere equidistant leaves of dimension fc, or equivalently, a 
Riemannian foliation bundlelike with respect to the fixed ambient metric, so locally 
given in terms of Riemannian submersions. For generic Q, such foliations do not exist, 
except with leaves of codimension n = 1, i.e., parallel hypersurfaces. However, they 
are abundant for some of the most important metrics, notably when Q has constant 
curvature: basic classes of examples here are foliations by principal orbits of isometric 
group actions and by the exponentials of parallel normals of any submanifold with flat 
normal bundle. 

Understanding metric foliations seems to be most difficult at the local level. 
Global problems have roots in the classical theory of isoparametric hypersurfaces and 
isometric group actions. They are also playing an ever increasing role in Riemannian 
geometry, and arise in particular in connection with rigidity aspects of nonnegatively 
curved spaces: The extension of the Diameter Sphere Theorem required the classifica- 
tion of metric fibrations of Euclidean spheres [6] in an essential way. The stronger form 
of the Soul Theorem proved by G. Perelman [11] finally established that all complete 
manifolds with nonnegative curvature can be constructed as certain metric fibrations 
over compact ones. 

The purpose of this paper is to study metric foliations Tk of flat Euclidean space 
Q — M71-^, a border line case which is still fairly rigid and quite interesting in light 
of the above results, as well as in its own right. Our main results are somewhat 
similar in scope to those of [6] for spheres, although the key ideas and arguments 
are often very different. Roughly speaking we show that low dimensional metric 
foliations of Euclidean spaces are homogeneous, and we describe their classification. 
It is remarkable and perhaps somewhat surprising that the Soul Theorem enters the 
arguments when dealing with fibrations. Whether or not our results will extend to 
higher dimensions along the same lines is not at all clear at this point. Our presentation 
is organized in a way that we review and discuss some local facts in Section 1 and 
develop the global techniques needed in Section 2. We can then deal with the stronger 
results for metric fibrations in Section 3, and finally consider foliations in Section 4. 

1. Some local aspects. Let Tk denote a metric foliation in a complete space 
Qn+fc 0£ constant curvature c. The reader is referred to [6] for the terminology and 
basic facts about metric foliations that will be freely used here, cf. also [9]. X, Y, Z 
will denote local horizontal fields, T, £/, V vertical ones, and lower-case letters refer to 
individual vectors. We write e = eh + ev G H © V for the decomposition of e G TQ 
into its horizontal and vertical parts. Thus, the integrability tensor A and the second 
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fundamental tensor S are given by 

AXY = ±[X,Y}V = VxY,        SxU = -VuX. 

The mean curvature form of T is the horizontal 1-form K on Q with K(E) = tr 5^^. 
J7 is said to be isoparametric if the principal curvatures in basic directions are locally 
constant along leaves. This occurs, for example, when J7 is the orbit foliation of 
an isometric group action. In constant negative curvature c, metric foliations are 
in general not isoparametric. This can be seen by taking a complete curve without 
focal points in the hyperbolic plane, and exponentiating parallel sections in its normal 
bundle at constant distance. When c > 0 however, the situation is rigid: 

THEOREM 1.1. All metric foliations in complete spaces of constant curvature 
c > 0 are isoparametric. In particular, their mean curvature form is basic. 

Proof. Let A be an eigenvalue of 5^ with eigenvector u. It must be shown that 
if TT is a Riemannian submersion locally defining J7, and x a horizontal vector with 
7r*x = 7r*ic, then A is an eigenvalue of Sx with the same multiplicity. So consider 
the horizontal geodesic 7 with initial velocity x, and the Jacobi field J along 7 with 
J(0) = u, J'iO) — —Sj^u = —Xu. It is straightforward to check that TT* J is Jacobi 
along TT o 7, with TT* J(0) = 0, and (TT* jy(0) — —TT^A^U (here, A*x denotes the adjoint 
of Ax). Now, if E is the parallel vector field along 7 that equals u at 0, then J(t) = 
(1 — \t)E{t) in the flat case, and J(t) = (cost — Xsmt)E(t) in the positive curvature 
case, which we have normalized so that c = 1. 
Let us assume for now that if c = 0, then A ^ 0. Then 7 has a focal point, and 
TT o 7 has a conjugate point at, say, /. If 7 is a lift of TT o 7, then by [10, Lemma 
1], there exists a unique Jacobi field J along 7 with J(l) = 0, 7r*J = 7r*J, and 
D(J) = J,v + S~JV + 2AzJh = 0. In particular, J,v(0) - -S^Q) J(0). But J(l) - 0, 

so that J — (fiE, where E is parallel, and (j) is the same function that appears in the 
expression for J. It follows that J^O) = J,v(0) = -5-(0)J(0) = 0/(O)J(O), and A is 
an eigenvalue of S±,0y By [10, Theorem 4], the A-eigenspaces for S±,0\ and 5^(0) have 
the same dimension. But then this must also be true for c — 0 and A = 0. D 

2. The global picture in Euclidean space. Throughout the remainder of 
the paper, we will assume that the ambient space is Euclidean, and at least in the 
next two sections, that J7 is a fibration determined by a Riemannian submersion 
TT : Wl+k —» Mn. It follows from the long exact homotopy sequence of TT that M is 
simply connected if and only if the fiber of TT is connected. In general, TT factors as 
a fibration over the universal cover of M followed by a covering map. But M has 
nonnegative sectional curvature by O'Neill's formula [9], and since covering maps of 
nonnegatively curved spaces are fairly well understood [2], we will assume that the 
fibers are connected. Using the spectral sequence for the homology of the fibration, it 
is easily seen that M must be contractible, see also [7]. From [2], one concludes that 
M is diffeomorphic to Euclidean space, and each soul is a point. Our first objective 
is to use the soul construction to obtain a totally geodesic fiber. This idea was used 
in [3] for the first time (unpublished; see also [18] for a generalization to nonnegative 
curvature). 

Recall from [2] that if 7 is a ray in M, and Bj denotes the ball of radius t around 
7(t), then C7 = M\B1, where B7 = Ut>o^7 > is a totally convex subset of M. Inter- 
secting over all rays 7 emanating from a fixed point p yields a compact totally convex 
set (t.c.s.) C. Such sets are submanifolds of M with totally geodesic interior and 
possibly empty or nonsmooth boundary dC. In the latter case, the subset C(l) of C 
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consisting of points at maximal distance from the boundary is again a t.c.s. of strictly 
lower dimension. Iterating this procedure finitely many times yields in our case a 
one-point set C(k) called a soui of M. 

Although convexity is not, in general, a property that is preserved under Rie- 
mannian submersions, the contracting procedure described above does ensure that 
preimages are convex: First of all, these submersions are submetries [1], i.e., maps / 
which take a ball of radius t around p onto the ball of same radius around /(p). Thus, 
with the above notation, if 7 is a horizontal lift of 7 to IRn+A:, then TT maps the open 
half-space B^ onto B1. Denote by B1 the union of all B^, where 7 is a horizontal lift 
of 7, and by C1 its complement in W1^. 

LEMMA 2.1. (77 is a closed convex set in Euclidean space, and 7r(C7) = C7. 
Proof. C7 is an intersection of closed half-spaces, so the first part is clear. The 

inclusion C7 C ^(C^) is obvious. If the other inclusion were false, there would exist 
some q G C7 with 7r(q) G .£?7, so that d('y(to),7r(q)) < to for some £o- Lift a minimal 
geodesic between ir(q) and 7(^0) to q. Its endpoint is 7(^0) for some lift 7 of 7, and 
since ^(^,7(^0)) = c?(7r(^),7(to)) < to, q G 57, which is impossible. □ 

If C denotes the intersection of C7, where 7 ranges over all rays in M emanating 
from p, then C is a closed, convex subset of Euclidean space, and one readily checks 
that C = 7r-1(C), dC = 7r~1(dC) (here C is the intersection of the C7 as described 
in the soul construction above). If the boundary of C is empty, i.e., if C consists 
of a point, then the fiber C over C is totally geodesic. Otherwise, for 0 < a < 
ao = max{d(q,dC) \ q G C}, consider the sets Ca = {q G C \ d(q,dC) > a}, and 
Ca = {q G C I d(q,dC) > a}. Both are closed, and the first one is a t.c.s. in M, 
whereas the second one is convex in Wl+k. Now, given a Riemannian submersion TT 

and any two points p, q in the base, one always has that d(p, q) = d(7r-1(p), 7r-1(^)) = 
d(p,7r~1(q)) for any p in the fiber over p. Using this observation, it is easy to see that 
Ca = 7T~1(Ca). In particular, if C(l) = Cao is the lower-dimensional t.c.s. in the soul 
construction and (7(1) = Cao, then (7(1) = 7r_1(C(l)) is a closed convex subset of 
Euclidean space. Iterating this procedure until the base set consists of a single point 
yields a fiber over this point which is a closed, connected, convex submanifold without 
boundary of Rn+k, i.e., an affine subspace. We have proved 

THEOREM 2.2. If TT : Mn+A; —> Mn is a Riemannian submersion, then the fiber 
7r~1(p) over a soul {p} of M is an affine subspace. 

The fact that 7r~1(p) is totally geodesic implies that the soul {p} is a pole (i.e., 
the exponential map of M at p is a diffeomorphism), and the geodesic reflection in p 
is an isometry. Notice also that if TT is not an orthogonal projection Rn+k -> 0 x Rn, 
then the soul is essentially unique. More precisely, if it is not unique, then M splits 
isometrically as Mo x Rl, and TT splits as TTQ X 1R/ : En+A;~/ x Rl -> MQ X if, where Mo 
has a unique soul: This follows from the fact that the totally geodesic fiber TT

-1
 (q) over 

any other soul {q} must be equidistant from TT
-1
^), SO that the minimal connections 

between these two fibers induce a parallel section in the normal bundle of either. 
Exponentiating this section yields a totally geodesic affine subspace that projects down 
to a geodesic through p and q. Since the preimage is totally convex, this geodesic must 
be a line. 

We now use the above result to give a strengthened version of Theorem 1.1 for 
the fibration case. Recall that a foliation is said to be taut if there exists a metric on 
the ambient space for which the leaves become minimal submanifolds, cf. [13], [14], 
[15], [16].  It is known that when the ambient space is a Riemannian manifold and 
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the foliation is metric, one criterion for tautness is the requirement that the mean 
curvature form K be basic and exact [17]. 

COROLLARY 2.3. Any metric fibration of Euclidean space is taut. 
Proof, n is basic already for foliations by 1.1. Since K(E) — tvSEh, dK,(U,V) = 0 

for vertical U, V. If X is basic, then the bracket [X, U] is vertical, so that dK,(X, U) — 
XK{U) - UK(X) - K[X, U] = 0. It remains to show that dK(X, Y) = 0 for basic X, Y. 
This expression can also be written as -2div AxY, cf. e.g. [4]. To establish that each 
integrability field AxY is divergence-free, we first observe that this divergence is the 
one induced by the metric on the corresponding fiber (since for basic Z, (VzAxY, Z) = 
— (AxY,VzZ) = 0), and that divAxY is constant along a fiber (because ft, and 
hence also dft, is basic). So consider an arbitrary fiber L, and a minimal segment c 
of length / from the totally geodesic fiber F to L. The horizontal lifts of TT O C induce 
a diffeomorphism hc : F -> L. Its derivative is given by h^u = J(Z), where J is the 
holonomy Jacobi field (i.e., J is a vertical Jacobi field satisfying J' = — ScJ — A^J) 
with J(0) = u. Since F is totally geodesic, the Jacobi equations in Euclidean space 
imply that 

(2-1) \Ku\2 = \u\2 + l2\A*xu\\ 

where X is the basic field along F that projects down to 7r*c(0). But since the ambient 
space has constant curvature, l^x^l2 is constant along fibers for basic X, Y, and |/i£|, 
which is bounded below by 1, must also be bounded above on F. It follows that if 
Br denotes the diffeomorphic /iMmage of the ball of radius r in F around some fixed 
point, then voli?r > a • rk and vo\dBr < b • rk~1 for some constants a and b. Now we 
apply Stokes' Theorem and obtain 

a'\divAxY\-rk <\[   div AxY \ = \[    (AxY,Nr) 
\JBr I \JdBr 

<b-\AxY\ -r' k-l 

(with Nr denoting the outward unit normal to dBr) to conclude that div AxY must 
be zero on L if the above inequality is to hold for all r > 0. □ 

Up to congruence, the totally geodesic fiber F of TT : En+A; -> Mn constructed 
in 2.2 is R* = Rk x 0 C Rk x En. The normal bundle i/ of E^ in En+A; comes with 
an induced flat connection which is just the horizontal component of the standard 
Euclidean one. z/ also has a Bott connection given by 

(2-2) Vc/X = [u, x}\      ue xF,   x e ri/, 
where U, X denote extensions of [/, X with U vertical. Observe that the Bott-parallel 
fields are precisely the basic ones: In fact, the connection difference 1-form is the form 
LU on F with values in the skew-symmetric endomorphism bundle of u given by 

(2-3) u(U)X = Vc/X - Vc/X = -A*XU. 

In particular, the curvature tensors of the two connections are related by 

(2-4) Rh = RB + dVBU + [u,u\, 

where dVB is the exterior derivative operator associated with the connection V5; i.e., 
dVBUj(U, V) = V§u(V) - \7$UJ(U) - LJ[U, V], cf. [12]. But the Bott connection is also 
flat because of the Jacobi identity for brackets (or more directly because it admits 
global parallel sections), so that 

(2-5) d^/u; — — d^BLJ = —[a;,cj], 
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where the first equality follows from interchanging the two connections in (2-4). 
Notice that u is Bott-parallel iff u{U)X — — A^U is basic along F for basic X 

and parallel £/, or equivalently, iff AxY is parallel along F for basic X and Y. In 
this case, the fibration is actually homogeneous, and one can explicitely describe the 
group action: 

THEOREM 2.6. Let TT : En+A; -> Mn be, a metric fibration, F the totally geodesic 
fiber over the soul of M, and LJ the connection difference form along F. Then ut is 
closed iff it is Bott-parallel. In this case, 

(1) u induces a Lie algebra homomorphism u : R*5 -> 50 (n); 
(2) TT is the orbit fibration of the free isometric group action tp of Rk on En+A; = 

Rk x Mn given by 

il)(v)(u,x) = (u + v,<l)(v)x),        u,veRk,    x<ERn, 

where (j) : Rk -> SO(n) is the representation ofRk induced by u. 
Proof. Clearly, u is Bott-closed if it is Bott-parallel, and is then also closed by 

(2-5). For the converse, observe that if X, Y are basic along F, 

VuiAxY) - VuVxY - VuVxY = Vx^uY + V[cl*]y = ^x^uY 

= VX{-SYU - A*YU) = VX(-SYU) + AxA^rU, 

so that 

(Vu^AxY^V) = -X(SYU,V) + (UJ(U)YMV)X). 

If a denotes the one-form metrically dual to AxY, then 

da(U,V) = (Vu(AxY),V) - (Vv(AxY),U) 

= -([u;(U)MV)]X,Y) = (dvu(U,V)X,Y), 

where we have used (2-5). Thus, if u is closed, then so is a, and AxY is a gradient. 
But AxY has constant norm, and must therefore be parallel along F. As observed 
earlier, this means that LJ is Bott-parallel. 
We now proceed to show the second part of the statement. Rk will be identified with its 
tangent space at any point via parallel translation, and similarly, sections of the normal 
bundle of F will be viewed as maps Rk -> Rn. The restriction of u to 0 G Rk then 
defines a linear map UJ : Rk —> so(n). By (2-5), u is also a Lie-algebra homomorphism. 
Let (j) : Rk —>• SO(n) denote the corresponding group homomorphism. Observe that 
the section X given by Xu — (j)(u)x is the basic field with XQ = x: Indeed, 

{VWX)V = ftl0(t h-> (f)(v + tw)x) = ftlo(t ^ (t>{tw)) - (j){v)x = UJ(W)XV. 

In particular, the fiber i^^^) of TT through any point (u,x) can be described as follows: 
Let X be the basic field with Xu = x. Then i^aO 'IS the set of all (u + v, Xu+V) as v 
ranges over E^. On the other hand, the free action ip from the statement satisfies 

ip(v)(u, x) = (u + v, (j)(v)x) = (u + v, (j)(u + v)(j){-u)x) = (u + v, Xu+V), 

since XQ — (j){—u)x. This establishes the claim. 
Notice that since |-Ax5^| is constant fiberwise, Theorem 2.6 immediately implies 

homogeneity of one-dimensional fibrations. This is actually already true for foliations, 
cf. [5] and Section 4. 
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3. The fibrations of rank < 3. Consider the vector space A of integrability 
fields spanned by all fields AxY along the totally geodesic fiber Fk from Section 2. 
The rank of the fibration TT along F is defined to be the maximal dimension of the 
space Ap = span{C/p | U £ A} as p ranges over F. Observe that the rank is always 
< k, whereas the dimension of A is < n(n - l)/2. In this section, we show that 
fibrations of rank no larger than 3 are homogeneous in the sense of Proposition 2.6. 
This classifies, in particular, all metric fibrations in Euclidean spaces of dimension at 
most 7. 

Although the above bound suggests that the dimension of A is in general quite 
large, there are indications to the contrary: As observed in [6], O'Neill's identity for 
horizontal curvatures implies that (AxY, AxZ) is constant along fibers. Equivalently, 
A*xAx preserves basic fields, and by polarization, so does A*XAY -i-AyAx- Our main 
goal is to establish that TT is homogeneous if A*XAY preserves basic fields, and from 
now on, we operate under this assumption. Notice that the rank of TT now equals the 
dimension of A. 

LEMMA 3.1. A together with the bracket operation {,}, where {[/, V} denotes 
the orthogonal projection onto A of [U,V], is a (metric) Lie algebra isomorphic to a 
subalgebra of so(n). 

Proof. If CJ denotes the connection difference form from Section 2, then, by hy- 
pothesis, (j(V) preserves basic fields for V £ A. Thus, — u induces a linear iso- 
morphism between A and a subspace LJ(A) of the Lie algebra of SO(n) by setting 
(—u(V)x,y) = —(UJ(V)X,Y) for basic extensions X,Y o£x,y. Moreover, Vu(u(V))X 
= Vt/MV)X) - J(v)(VuX) = [u>(y)MU)]X for U^V e A and basic X, so that 
dLj(U,V) = VuuiV) - Vvu(U) - UJ[U,V] - -2[IJ(U)MV)] - wp7,y], where d is an 

abbreviation for dv- Comparing with (2-5), we deduce that — u[U, V] = [LJ(U),LJ(V)]. 

It follows that LJ(A) is a Lie algebra and —LU induces a Lie algebra structure on A 
whose bracket is the one in the claim. 

LEMMA 3.2. The distribution kercj = A1- generates a Riemannian foliation T 
ofFk. 

Proof. Since wpi^] = -du)(TuT2) = [wTi,00X2] = 0 for T* G kercj, kero; is 
integrable and generates a foliation T. Similarly, if T G kero;, then (jj\T,AxY] — 
—dw{!T,AxY) = [LU(T),LU(AXY)] = 0. In general, a foliation is Riemannian iff the 
Bott connection on the normal bundle of the leaves is Riemannian, i.e., U(X1Y) = 
([U,X],Y) + (X, [U, Y]) for vertical U and horizontal X, Y. It is easy to see that this 
is equivalent to the requirement that ([U,X],X) = 0 for vertical U, and horizontal X 
of constant norm, cf. also [17]. Thus, in our case, J7 is Riemannian, and in fact AxY 
is basic for T. D 

Observe that (VuV,W) is constant for U,V,W G A by 3.2. Let K denote the 
mean curvature form of !F. Then by the proof of 2.3, 

K(AxY) = -divAxY + Yl{Ui,VU{{AxY)) = '£i(Ui,VUi(AxY)) 
i i 

for any orthonormal basis Ui of A. In other words, K, is constant on each element of 
a basic spanning set for A. It follows that dx, — 0, and K, = df for some function / 
whose gradient V/ is a global basic parallel vector field, since K has constant norm. 
Consider a (necessarily geodesic) integral curve c of V/. Then «(c) = |ft|2 is a constant 
function. But the proof of Lemma 3.3 below implies that |Sc(t)| ^ 0 as t —)» 00 for 
any metric foliation of Euclidean space. Thus, K, = 0 and J7 has minimal leaves. 

LEMMA 3.3. Any Riemannian foliation of Euclidean space by minimal leaves is 
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locally congruent to a metric product foliation. 
Proof. For any metric foliation on a Riemannian manifold, differentiation of the 

holonomy Jacobi fields along a horizontal geodesic c yields 

S? = 31-^ + 1%, 

where i?c = i?(-,c)c, see for example [19]. In Euclidean space, we obtain, by taking 
traces, the Riccati-type equation 

where / = ^ trace 5c and A: is the dimension of the foliation, cf. also [8]. Thus, 
|5c|2 = \Ac\2 if the leaves are minimal. Notice that the assertion immediately follows 
in the case of a fibration (since then A is zero along the totally geodesic fiber over the 
soul, and so vanishes everywhere). For foliations, we will argue that in general, 

J^J -+0   as    t -> oo. 
Pc(t)l 

Observe first that ker(5c + A?) is always a parallel subspace along c. In fact, if u 
belongs to the kernel at, say, t = 0, then the holonomy Jacobi field J with J(0) = u is 
parallel (since J'iO) = 0) and belongs to the kernel for all t. Let fo be an orthonormal 
basis of the image of S^o) + ^(o)? and e* vectors such that (5c(o) + A^Q^ei = — /*. 
Denote by Ei (resp. Fi) the parallel vector fields along c that equal e* (resp. fi) at 
0. Then the holonomy fields Ji with Ji(0) = e^ are given by Ji(t) = Ei(t) + tFi(t). 
Notice that 

(TJT - Fi)(t)-> 0    as    t->oo. 
\Ji\ 

Since the Fi are orthonormal, it suffices to show that \AlU\2/\ScU\2 -)» 0 as t -> oo 
for U = J/| J|, where J = £ + £F is a holonomy field. Now, 

ic ,712 _ |o ^,2 > ,<AJh2 _ «E,f)+t|F|2)2 

Pct/|   -pH|j|;i   £1   i^a  J   - QE\2 + 2t(E,F)+t2|F|2)2' 

so that i2|5cf/|2 -> 1. Similarly, 

2|Jf =^Ff 
|JP |J|2    ^   • 

Since 

l^c/|2 + l^|2 = ffi, 

we have that t2\AlU\2 -> 0, and the lemma follows. □ 
By 3.3, the bracket operation {,} in A coincides with the ordinary vector field 

bracket. By 3.1, A is then isometric to a Lie subalgebra of so(n) with a flat metric. 
Such an algebra is known to be necessarily solvable. But the only solvable subalgebras 
of 50(n) are the abelian ones, so that du = —[LJ,LJ] = 0 on A, and therefore on all of 
F. 2.6 now implies: 

PROPOSITION 3.4. Let B denote the space of basic sections of the normal bundle 
of F. If A^ Ay (B) C B for all X, Y G B, then the fibration is homogeneous. 
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THEOREM 3.5. Any metric fibration of Euclidean space with rank < 3 is homo- 
geneous. 

Proof. According to 3.4, it only remains to show that (AxY,AzW) is constant 
along F for X,Y,Z,W G B. We may assume that the rank of Aw is less than 
r = rank J7, for otherwise inner products are constant by [6, Lemma 3.1]. Aw then 
has nullity > n — r > n — 3, and its kernel must intersect span{X, Y, Z} nontrivially, 
except perhaps if X, Y, Z are linearly dependent. But in the latter case, (AxY, AzW) 
may be expressed as a linear combination of terms each of which involves only three 
basic vectors, and these are constant by skew-symmetry of each Ax together with 
the fact that AxAx(B) C B. Suppose therefore that aX + bY + cZ £ ker Aw, with, 
say, a ^ 0. Then a(AwX,AYZ) + b(AwY,AYZ) + C(AWZ,AYZ) = 0, where the 
last two terms are constant because they each involve only three basic vectors. Thus, 
(AwX.AyZ) = (AxW, AzY) is constant, and since A*zAx + A*xAz preserves basic 
sections, so is (AxY,AzW). The cases when b or c are nonzero are handled in a 
similar way. D 

Theorem 3.5 completely describes metric fibrations in Euclidean spaces of dimen- 
sion < 7. More generally, we have: 

COROLLARY 3.6. k-dimensional metric fibrations of En+A; are homogeneous for 
n < 3 or k < 3, and up to congruence, in 1-1 correspondence with equivalence classes 
of representations M^ -> SO(n). 

4. The two-dimensional foliations. The classification of foliations is a more 
delicate problem than the one for fibrations, since for instance, one can no longer rely 
on the soul construction and the totally geodesic fiber guaranteed by Theorem 2.2. 
One-dimensional metric foliations of Euclidean space were completely described in [5]. 
They are always generated by Killing fields, and thus fall under the jurisdiction of 3.7. 
In this section, we show that two-dimensional foliations are homogeneous, and that 
they are in fact fibrations, so that here too, the classification results of section 3 apply. 

Recall that a fc-dimensional metric foliation !Fk is said to be substantial along a 
leaf L if there is a basic X for which Ax is onto V at some q G L. The condition 
is independent of q, and if ^ (with k < 3) is substantial along some leaf, then it is 
homogeneous [6]. In 4.1, we deal with non-substantial foliations, and in 4.2, conclude 
that the substantial ones also are fibrations. 

4.1. Homogeneity of nonsubstantial foliations. Let T denote a nonsub- 
stantial metric foliation of En+2 with 2-dimensional leaves. By [5], we may assume 
that A does not vanish anywhere, and it easily follows that the rank of A is everywhere 
1. Let U denote a (local) unit field spanning the image of A, T a unit vertical field 
orthogonal to U. Thus, 

(4.1-1) VxT = VTX = -A*XT = 0 

for basic X. Recall from [6] that if Y is horizontally parallel along a horizontal geodesic 
c, then (AdYyv = 2ScAdY. It follows that if Ax ^ 0, 

(4.1-2) WxU = 2(SxU,T)T,        V^T = VxT = -2{SxU,T)U. 

Equation (4.1-2) is also valid when Ax =0: If v is an eigenvector of S^, then the 
holonomy Jacobi field J with J(0) = u along the line in direction x must be parallel 
since it never vanishes. Thus, Sx = 0 whenever Ax = 0. Next, choose Y, Z so that 
AyZ ^ 0, and extend them to horizontally parallel fields along t h^ exptX. Then, 
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again by [6], VxAyZ = SxAyZ = 0, so VxU = 0. Now (4.1-2) in turn implies 

[X, T] = (SxT, T)T - (SXT, U)U 
( ' ' ) [X,U] = (SxU, U)U + 3(SxT, U)T. 

LEMMA 4.1.4.   The mean curvature form K is closed. 
Proof. Recall from the proof of 2.3 that K is closed as soon as dK,(X,Y) = 0. 

Now, if {Vi, V2} is an orthonormal basis of V, then 

MX, Y) = X(Y,J2 W, Vi) - Y{X, ^ Vv, V,} - ([X, Y], £ Vvs, Vi) 

= ^2({Y:VxVviVi) - (X.VyVv^i)). 
i 

It remains to show that (VX^TT, Y) and (VxVc/C/, Y) are symmetric in X and Y. 
The first expression can be written 

(VXVTT,Y) = (R(X,T)T,Y) + (VTVxT,Y) + (V^rj^r), 

where 

(VTVXT,Y)=T(VXT,Y) - (VxT,VTY) = -4(SxU,T)(SYU,T) 

(using (4.1-2)) is symmetric in X and Y, and 

(V[x,T\T,Y) = (SxT,T){VTT,Y) - (SxT,U)(VuT,Y) 

= (SxT, T)(SYT, T) - (SxT, U)(SYT, U) 

(using (4.1-3)) is also symmetric. Similarly, 

(VuVxU,Y) = U(VxU,Y) - (VxU^uY) 

= -U(U,AxY)-(X7xU,Vul 

= -(A*xU,A*YU) + 2(SxU,T)(SYU,T), 

-U(U,AXY) - (VxU^uY) - (VxUJuY) 

and 

(V[x,U]U,Y) - (SxUtUUVuUtY) +3(SXT,U)(VTU,Y) 

- (SxU,U)(SYU,U) +-!>(SXT,U)(SYT,U). 

This establishes the lemma. 
LEMMA 4.1.5. For basic X,Y, divAxY = 0. Thus, T is auto-parallel on each 

leaf, or equivalently, U generates a metric foliation on each leaf. 
Proof. AxY is divergence-free by 4.1.4, as explained in 2.3. For the second part, 

choose X, Y so that AxY ^ 0. Since AxY has constant norm along leaves, we have 

(4.1-6) (VTT, U) = - div U = 0, 

and the claim follows. □ 
Let R1- denote the curvature tensor of the normal bundle of a leaf. By the Ricci 

equation for constant curvature, 

(i?x(C/,T)X,y) = ([5x,5y]t/,T). 



METRIC FIBRATIONS IN EUCLIDEAN SPACE 725 

Now, ^{U^X = VC/VT-X - VTVC/X - V[UjT]X. Recalling that VT^ = 0, that 
h 
VuX = -A*XU is basic, and that ([U,T],U) = -(T^uU), we obtain 

(4.1-7) -(TtVuUHAWY) - ([SX,SY]U,T). 

THEOREM 4.1.8. T is homogeneous.   In fact,  a nonsubstantial T is a global 
fibration generated by a Killing field and a parallel field. 

Proof. Observe first that since the leaves are two-dimensional and J7 is isopara- 
metric, each leaf has constant curvature. This curvature is nonpositive by 4.1.5. Let 
C = {p G En+2 | (VuU,T)p = 0}. We will later see that C has nonempty interior. 
Assuming this for the moment, let O C C be open. Notice that [Sx,Sy], being skew- 
symmetric, vanishes at any p £ O by (4.1-7). It follows that x \-^ Sx has rank < 1 for 
x e Up: If not, there is an x for which SXU = XU with A ^ 0. This implies SXT = 0, 
which contradicts the rank assumption. Next, we claim that ST = 0 on En+2. To 
establish this, we may assume the rank equals 1, for otherwise there is a totally geo- 
desic leaf, and (4.1-9) below then implies the claim. Now, any leaf L intersecting O 
is flat because the restrictions of T, U to O fl L are parallel by (4.1-6) and (4.1-7), 
and leaves have constant curvature. For p G O, choose a unit x G Up orthogonal to 
ker(x H* 5a;), and extend it to a basic field X along the leaf through p. By the Gauss 
equations, Sx has 0 as eigenvalue. Thus, there exists a unit vertical field V on O with 
SV = 0. If c is a horizontal geodesic, then the Riccati equation for 5 from 3.3 yields 
0 = {ScV,Vy = \ScV\2 - \A*dV\2, so V = T on O. ST must then vanish on any leaf 
intersecting O: indeed, the trace of Sx is constant along a leaf, and so is (SxU, U), 
since Xl^x^l2 = 4(5xAxY, AxY) for X the tangent field of a horizontal geodesic c 
and Y horizontally parallel along c. Thus, (SxT.T) is constant along a leaf, which 
implies that 5T = 0 on the leaf. By (4.1-9), 5T vanishes everywhere. This implies 
WxT = 0 for basic X. Furthermore, C = En+2 by (4.1-7), and Vc/T is horizontal 
everywhere. Finally, (Vc/T, X) = (SxT, U) = 0, so T is globally parallel, and F splits 
off a line. The remaining foliation is one-dimensional, hence homogeneous. 
To complete the proof of 4.1.8, it remains to rule out the possibility that C has empty 
interior. Suppose this were actually the case. For p ^ C, let Hp := { x G Up \ U is an 
eigenvector of 5^ }. Since the subspace of symmetric operators of E2 that have a fixed 
eigenvector is a hyperplane in the space of all symmetric operators, dimi/p > n - 1, 
hence equals n - 1 (otherwise the right side of (4.1-7) is 0). Thus, Axy — 0 for all 
x, y in Hp. Let z be a nonzero horizontal vector orthogonal to Hp, x a unit vector 
spanning the image of ^4*. For any y G Hp orthogonal to x, 

([Sy,Sz]U,T) = -(AyZ,U)(T,VuU)=0. 

Now, SyU = XU, SyT = 0, so ([Sy,Sz]U,T) = -(SzSyU,T) = -X{SZU,T). Thus, 
A = 0, i.e., 5^ — 0, and there exists a (n — 2)-dimensional subspace H® C Hp C Hp 
on which 5 and A identically vanish. Since C has empty interior, H® is defined for 
all p G Mn+2. We claim this distribution H0 is globally parallel. It suffices to show 
this outside C. Now, H0 is basic along a leaf by the isoparametric property and the 
constancy of | Ax5^1 for basic X, Y. By its definition, H0 is then parallel along leaves. 
Let 7e denote the geodesic in direction e. We only need to show that H0 is parallel 
along 7e for e G H0, and for e — z,x, where z, x are as above. For e — z, denote by 
X the unit field spanning the image of A^z with X(0) = x. Then X is horizontally 
parallel along jz. If Y is a horizontally parallel field orthogonal to X, 7Z, then by [6, 
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(2.6)], 

{AxY o lzy = S^AXY - SyA^X. 

Observe that Sy = 0 whenever AxY = 0. Since AxY(0) = 0, AxY and Sy vanish 
identically. Thus, Y is actually parallel along jz, and is tangent to H0. The argument 
for e — x is similar, so we consider the case e G H0. More generally, let c be a horizontal 
geodesic such that U o c is an eigenvector field of 5c, and let Y be horizontally parallel 
along c. Then 

(4.1-9) (SyT.Uoc)' = 0 

(4.1-10)       (SyU, UocY = {ScU, U o C)(SYU, U O C) - (A^U, AlU). 

The claim clearly follows from the above two equations. We prove (4.1-10), since 
(4.1-9) is similar. Consider basic extensions X (of c) and Y. Since (Uoc)' is horizontal, 

(SyU, UocY = ((SyU o c)', U o c) = -(Vx^uY, U) o c 

= -(VxVt/y, u)oc + <Vx Vt/y, [/) o c 

- -(Vc/Vx^,u)oc- (v^^y,c/) oc- (Vc/y,v^t/) oc, 

and (4.1-10) follows from (4.1-3). This establishes that H0 is parallel and induces a 
splitting En+2 = Rn-2 x E4, with F tangent to E4. Thus, we have a metric foliation 
on E4 with the property that at every point there exists a unique direction X such 
that Sx has U as eigenvector.  We will show this cannot be.   Observe first that X 
is auto-parallel.   Next, we claim that X is basic:  if, say, X is not basic along the 
leaf L, then, since J7 is isoparametric and SxT = 0, there must exist p € L and two 
independent horizontal directions x := Xp and x' such that 0 is an eigenvalue of both 
Sx and Sx>. It then follows that Sy has nontrivial kernel for any horizontal y. To see 
this, choose an orthogonal operator P of Vp that maps Tp to the 0-eigenvector V of 
5a;'—notice that we may assume 5^/ is nontrivial, for otherwise the image of y \-+ Sy 
is one-dimensional, and the statement is clear. Then Sx = aSx> o P for some a G E. 
Thus, for y — ax + fix', Sy = aSx + (3SX> = Sx> o (aaP + /?/) has rank at most that of 
5a;', and hence nontrivial kernel. Now, for any horizontal geodesic c starting from L, 
X cannot be basic along the leaves through c(t) for small t, since otherwise X would 
be basic along L by a limiting argument.  Thus, there exists a unit vertical field V 
along c such that Sc(t)V = 0 for small t. The Riccati equation then implies A^V = 0, 
so that V = T. Hence T, and therefore also U, is an eigenvector of 5^ for any y _L L, 
contradicting the definition of X. This establishes the claim that X is basic. 
Finally, let Y be a unit horizontal field orthogonal to X.   Since X is basic, so is 
y.   Moreover, both [Y,U] and [Y,T] are vertical, so that Y, U, and T generate a 
codimension one foliation on E4.    Since VxX = 0, this foliation is Riemannian, 
and therefore parallel.   Thus, X is a globally parallel vector field, which is clearly 

h 
impossible, since for example VuX = —A*XU ^ 0. 

4.2. Global conclusions. We now proceed to show that 2-dimensional Rie- 
mannian foliations on En+2 are fibrations. In light of 4.1.8, the substantial case is 
essentially the one that remains to be considered. We shall nevertheless treat both 
cases simultaneously. Thus, by [6], F is the orbit foliation of a 2-dimensional con- 
nected Lie subgroup G of isometrics of i?n4"2 acting locally freely. Recall that the full 
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isometry group En+2 = 0(n+2) ix En+2. If (Mi, bi),i = 1,2, form a basis for the Lie al- 
gebra g of G, then [{Mub1),{M2:b2)] = ([Mi, M2],M1&2 -M261) = (0,Mi&2-Af2&i), 
since a 2-dimensional subalgebra of the orthogonal algebra is always abelian. It easily 
follows that g is abelian: This is clear if Mi, M2 are linearly independent. Otherwise, 
we may assume g has as basis (0, a), (M, 6), in which case [(0, a), (M, b)] = (0, —Ma), 
so that a is an eigenvector of M. Since M is skew-symmetric, the bracket is 0. Thus, 
we have a representation 

LEMMA 4.2.1.   There exists a totally geodesic leaf. 
Proof. We may assume that, with the above notation, Mi and M2 are linearly 

independent, for otherwise J7 is generated by a parallel field and a Killing field, and 
the statement is clear: The leaf through any point where the Killing field has minimal 
norm will be totally geodesic. Let (Ai,ai) = exp(M;,&i), and change the origin, if 
necessary, so that Aiai = ai, i.e., bi = ai, and Mi61 = 0. Observe that M2&1 also 
vanishes: Indeed, 0 = M2M1&1 = M1M2&1 = Mf^- Thus, M1&2 = 0 because Mi is 
skew-symmetric, and therefore also M2&1 = 0. Now, the square of the norm of the 
Killing field generated by (Mi,bi) is given by (f)i(p) = \Mip-{- bi\2, which is easily seen 
to assume a minimum at those p satisfying M?p + Mfii — 0. Thus, both Killing fields 
have minimal norm at p when p E kerMi and M2P + M2&2 = 0, where 62 ^ imM2. 
Since Mi and M2 commute, M2 maps the kernel of Mi into itself. Moreover, 62 lies 
in the kernel of Mi as observed earlier. Decomposing 

62 = &2 + M2b\ e ker M2| ker Ml 0 im M21 ker M, , 

we see that the set where both norms are simultaneously minimal is the affine subspace 

-6^ +(ker Mi hkerM2). 

If p belongs to this subspace, then the orbit of p consists of straight lines through p. 
Moreover, p + tbi also belongs to this subspace for any t G M. Since these points lie 
in the orbit of p, this orbit is a plane. 

PROPOSITION 4.2.2. The action of R2 on W1^2 is free. In particular, F is a 
fibration. 

Proof. If L denotes the totally geodesic orbit from the lemma, we claim that the 
restricted action 0 of E2 on L is free: indeed, up to an isomorphism of E2, 

0(s, t)p = exp(s(Mi, h) + t(M2,62) )p = P + £(M2p + 62) + 561 

for all p e L. Thus, if (f)(s,t)p = p, then t(M2P + 62) + sbi = 0, and 5, t must both 
vanish if the action is to be locally free. For arbitrary q £ L, consider the minimal 
geodesic c : [0, /] —► En+2 from q to L. If g(q) = q, then g o c is again a minimal 
geodesic from q to L, so (g o c)(l) = c(l). By the above, g must then be the identity. 

The results from section 3 now immediately imply 
THEOREM 4.2.3. The 2-dimensional metric foliations o/En+2 are, up to congru- 

ence, homogeneous fibrations in 1-1 correspondence with representations E2 —>• SO(n). 
Foliations of codimension one are metric product foliations, and those of dimen- 

sion one are always homogeneous [5]. 
COROLLARY 4.2.4. Any metric foliation ofW1 is a homogeneous fibration ifn < 5. 
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