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MORSE THEORY FOR MIN-TYPE FUNCTIONS* 

V. GERSHKOVICHt AND H. RUBINSTEINt 

At this time the Cheshire Cat vanished quite slowly, 
beginning with the end of the tail, 
ending with a grin, which remained 
some time after the rest of it had gone, [Ca]. 

0. Introduction. Morse theory for distance functions was initiated by Grove- 
Shiohama [GS] and Gromov's [Gl] paper where basic notions of the theory were 
formulated; even this very initial level of the theory leads to important geometric 
applications. Grove and Shiohama [GS] established a generalized sphere theorem by 
constructing a vector field on a Riemannian manifold, with the property that the 
distance function had no stationary points along the integral curves at non-singular 
points of the vector field. They showed that this vector field had exactly two singular 
points and hence the manifold was homeomorphic to a sphere. Later Gromov [Gl] 
was able to bound the sum of the Betti numbers of a positively curved Riemannian 
manifold. He controlled the location of critical points of a Riemannian distance func- 
tion on a positively curved manifold using Toponogov's theorem and then was able to 
bound the number of critical points of this function and hence the homology of the 
manifold, using a spectral sequence argument. 

Morse theory for Riemannian distance functions was discussed in [Gr], [L] and 
other papers, which explained its importance for geometric applications rather than 
developed the theory itself. Even a suitable concept of the index of a critical point 
has not been developed. As a result, the most powerful tools of the classical Morse 
theory such as Morse inequalities and the correspondence between critical points and 
the handle decomposition of the manifold cannot be used. The relationship with the 
classical Morse theory has not been investigated either; in particular, the connection 
between notions of the critical points in both theories is not obvious. 

In a different direction, the structure of Alexandrov spaces with curvatures bound- 
ed below was investigated using distance functions in several papers starting with 
[BGP] and continuing with [PI], [P2]. A key result obtained is a canonical stratifi- 
cation of such Alexandrov spaces into topological manifolds and again the technique 
is a type of Morse theory, using the distance function. As Alexandrov spaces do 
not have as much structure as Riemannian manifolds, our theory gives more detailed 
information on the nature of critical points and index. 

M. Gromov pointed out in [Gl] that the Morse theory for Riemannian distance 
functions can be developed by analogy with the classical Morse theory. The aim of 
this paper is to construct a Morse theory for functions which are minima of finite 
families of smooth functions and clarify the connection with Riemannian distance 
functions for non-positively curved manifolds. We develop the theory in the classical 
style, including the notion of the index for critical points, and clarify relations with 
the Grove-Shiohama-Gromov approach. 

*Received April 9, 1997; accepted for publication (in revised form) January 6, 1998. 

TDepartment of Mathematics, The University of Melbourne,  Parkville, Victoria 3052 AUS- 
TRALIA (rubin@maths.mu.oz.au). 

696 



MORSE THEORY FOR MIN-TYPE FUNCTIONS 697 

Manifolds of non-positive curvature are the simplest class for such an investi- 
gation. A distance function dx is smooth and has no critical points (but x) on a 
simply-connected non-positively curved manifold. All the singularities of distance 
functions for a non-simply-connected manifold M arise from the universal covering 
p : M -> M. Let p be a Riemannian metric on M and p be the corresponding Rie- 
mannian metric on M. Fix a preimage x G p~1 {x) for x G M. A point y G M may 
have several preimages 2/i,...,t/m such that p (x,yi) = p {x,y), for i = l,...,m. Then 
we have dy (z) = min^i,...,™ dyt (z) in a neighborhood of x. When we consider a 
germ of a Riemannian distance function on a non-positively curved manifold, only a 
finite number of preimages are really involved in (1). This leads to an investigation 
of the space of Min-type functions / which are minima of a finite number of smooth 
functions / = min{ai,..., am}. The topology of the space of germs of Min-type func- 
tions is described by the condition that small perturbations of germs of / are results 
of independent small perturbations of germs of ai. 

A similar class of functions which are minima of continuous families of smooth 
functions was investigated by Arnold's school in a different context, see Bryzgalova 
[Bl], [B2], Matov [Ml], [M2], ArnoPd [A]. Morse theory for Minimum-type functions, 
constructed here, is in a more "polyhedral" style. 

The main idea of this paper is: when we extend the class of function outside C2- 
functions, the Hessian disappears but its index (suitably defined) which is the only 
thing necessary to construct Morse theory, still remains, compare the epigraph. 

Morse theory for Min-type functions was used to construct Morse theory for dis- 
tance functions on negatively curved manifolds and for Riemannian metrics on nega- 
tively curved surfaces [Ge]. It appears that this theory can be extended to arbitrary 
Riemannian manifolds [GR]. 

Here is the plan of the paper. 

Section I. We demonstrate that each germ of a distance function for a non- 
positively curved manifold is a germ of a Min-type function. We define global Min-type 
functions on compact manifolds, consider minimal representations of germs of Min- 
type functions and prove that such a represention is, in fact, unique; we discuss a local 
geometry connected with minimal representations. We define the Ck-topology in the 
space of germs of Min-type functions. 

Section II. We define non-degenerate regular points of Min-type functions and 
special non-degenerate critical points. For special regular points, gradients of smooth 
functions in the minimal representations are linearly dependent, and this property is 
stable. We demonstrate that a Min-type function on a compact manifold can have 
only a finite number of such points. We show that germs of Min-type functions at 
non-degenerate regular points have the same normal form as in the smooth case when 
we extend the transformation group from the group of local diffeomorphisms to the 
group of almost smooth local homeomorphisms. Finally, we clarify relations between 
the concept of regular points in the classical Morse theory and Gromov's definition. 

Section III. We define non-degenerate critical points for Min-type functions, ob- 
tain normal forms for germs of Min-type functions at such points, and define the index 
of Min-type functions at non-degenerate critical points. We obtain a theorem on ap- 
proximation of a Morse Min-type function by a smooth Morse function with the same 
number of critical points which has the same vector of indices. This extends the prin- 
cipal results of the classical Morse theory, including Morse inequalities, decomposition 
of the manifold in a union of handles corresponding to non-degenerate critical points, 
to the class of Morse Min-type functions. 



698 V. GERSHKOVICH AND H. RUBINSTEIN 

Section IV. We define Morse Min-type functions and Morse distance functions. 
We show that the set of Morse Min-type functions is open and everywhere dense in 
the set of Min-type functions on M in the C2-topology. 

1. Distance functions and Min-type functions. The aim of this Chapter is 
to explain the connection between Riemannian distance functions on non-positively 
curved manifolds and Min-type functions, which are minima of finite families of smooth 
functions. 

1.1. Distance functions as Min-type functions. Let (Mnip) be a Rieman- 
nian manifold, x G Mn. Denote by dx the Riemannian distance function, dx(y) = 
p(x, y). The aim of this section is to prove the following theorem. 

THEOREM 1. Let (M, p) be a compact manifold of non-positive curvature, x.y £ 
M. Then there exists a finite number of smooth functions ai,..., am such that dx = 
niin;-i,...5m ai around y. 

The theorem follows from several statements below, which give also some ad- 
ditional information. Let (M, p) be a compact non-positively curved Riemannian 
manifold and M be the universal covering of M. There exists a unique Riemannian 
metric p on M such that the projection p : M —> M is a local isometry. Let 7 be 
a geodesic on M starting at x and let x G M with p(x) = x; then there exists a 
unique geodesic 7 on M, starting at x and such that ^(7) = 7. The universal covering 
preserves lengths of geodesies: length 7 = length 7 where 7 = p(7). 

PROPOSITION 1. Letp : (M,p) ->» (M,p) be a universal covering, x^y G M. Let 
xep^ix) andp-1{y) = {yi,...,2/m,...}.  Then 

dy (x) — p(x,y) =      min      p (x,yi) =      min      d^ (x). 
2=1,. ..,771,... 2=1,. ..,771,... 

Proof We have p{x1y) < p (x,yi) for any i, and then 

P(x,y) < .   min      p (x,yi). 
2=1,...,772,... 

Let 7 be a shortest geodesic joining x and y. Let 7 be the geodesic lift to M of 7, 
which starts at x and ends at yi0. Then p (x,y) = length 7 = length (7) = p(x,yi0) > 
minj=i,...,m,.../0 (x,yi). 

LEMMA 1. Let p : (M,p) —>• (M,p) be a universal covering of Riemannian man- 
ifolds. Let x,y G M, x G p'1 (x)^-1 (y) = {yi, ...,ym,...} and p{x,yi) ^ p{x,yj) 
for i 7^ j. Suppose p(x,^0) = mmj=i,...,rnp{x,yj)- Then there exists e > 0 such that 
p(x,yio) + e < p(x,yj) for all j ^ ZQ. 

Proof. If the statement is wrong there exists a sequence ym G p~1(y) such that 
p(x, ym) < p(x, yiQ) + ;—. Then all jjm are inside the ball of radius p(x, y) + 1 centered 
at x. This ball is compact, then there exists a subsequence ym —> yoo and we have 
p^oo) = y. This gives a contradiction, since p is a local isometry. 

We obtain the following Corollary. 
COROLLARY 1. Let p : (M,p) -¥ (M,p) be a universal covering of non-positively 

curved Riemannian manifolds. Let x G p_1 (x) and p"1 (y) = {yi, ...,ym,...}. // 
p (£, yi) ^ p(x, yj) for i ^ j then dx is smooth at y. 

Similarly to lemma 1 we obtain the following result. 
LEMMA 2. Let (M, p) be a non-positively curved Riemannian manifold, p : (M,p) 

—y (M,p) be the universal covering and x^y G M.  Let x G p-1 (x), p-1 (y) = Y = 
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{2/1,2/2, ...,ym,...}. Let r = mini=i,...,m)... p (x,yi)> Then only a finite number of 
points yix, ...,yik € Y satisfy the condition r — p (x^y^). 

Let us estimate the set of points where dx is not smooth. 
PROPOSITION 2. Let (M,p) &e a non-positively curved manifold, x G M. T/ie set 

0/ points y G M where dx is not smooth is of the first category (that is the union of a 
countable number of nowhere dense sets). 

The result follows from the next lemma. 
LEMMA 3. Let (Mn,p) be a simply-connected non-positively curved manifold, 

x,y G Mn- Then the set of points z satisfying the equation p{x,z) = p(y,z) is a 
hypersurface in Mn diffeomorphic to 5Rn_1. 

Let us start with clear infinitesimal analogy of this statement. Let x,y G M, 
denote by Bx,y C M the set of points z G M such that p(x, z) — (y, z). 

LEMMA 4. Let (M,p) be a simply-connected non-positively curved manifold, x,y 
G Mn, z G JB^,^. Let ^ = {^ G T^M | p (x,exp2 e^) < p(y,exp5e^)}, /or sma// 
enough e.  T/ien B^ is diffeomorphic to 5Rn and! its boundary is diffeomorphic to Sft71-1. 

The exponential map gives the necessary global result. 
REMARK. The representation of dx as a Min-type function is closely related to the 

structure of the Dirichlet domain for XQ G M. This is defined as {y G M \ p (x,y) < 
p (xi,y) for all i, where p~l (x) — {XQ, xi,...}. The Dirichlet domain has been studied 
for Riemannian manifolds of non-positive curvature, see for example [El]. 

1.2.  Min-type functions. 
DEFINITION 1. Let f : 5Rn —»• 5R1 6e a ^erm 0/ a continuous function at x G 5ftn; 

/ is saic? to &e a germ of a Minimum type (Min-type) function at x iff there 
exist germs of smooth functions a:i,...,a:m at x such that f = min;=iv..5m oti around 
x. We shall say that f is a Ck - Min-type function if there exists a representation 
f = minjaii} with Ck-smooth germs a*. 

DEFINITION 2. The minimal number of smooth functions in a representation for 
the germ of f at x is called the  Rank of f at x, and is denoted as Rx f. 

DEFINITION 3. A representation f = min{ai.. .am} is said to be minimal at 
xiffm = Rxf. 

REMARK. For a minimal representation / = mini<;<m c^ we have oti {x) = 
a2 (x) = ... = am(x) = f(x). 

Consider two definitions of Min-type functions. 
DEFINITION 4. / : Mn -» R

1 is said to be a Min-type function iff each of its 
germs is a Min-type function in the sense of the previous definitions. 

DEFINITION 5. / : Mn ->• St1 is a Min-type function iff there exist smooth 
functions ai, ...,Q:Q on Mn such that f = min^i,...^ ai. 

THEOREM 1. Let Mn be a compact manifold. Then the definitions above are 
equivalent. 

Proof. Evidently any function satisfying Definition 5 satisfies also Definition 4. 
Suppose / : Mn -» 5R1 is locally a Min-type function around each point x G Mn; 

then there exists m^, an open ball C/(x), and smooth functions ai,...,aQ such that 
f\ux = min {aj, ...,amx}. Since Mn is compact, there exist x\, ...,xr such that Mn = 
Ui=i ^'0(^) for smaller balls U0{xi) C U{xi). We have f\u{xi) = min {al\ ...,0^.}, 
i = 1,..., r. Extend the functions aj* to the whole of Mn such that they increase faster 
than / outside of Uxi • Then we obtain 

/ = min {a?1,..., cfami; af,..., a^2; ...a?",..., a£ar}. 
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1.3. Minimal representations. We investigate further minimal representa- 
tions for germs of Min-type functions. In this section we demonstrate that such a 
representation is, in fact, unique. 

DEFINITION 1. Let f : Mn -» SR1, a Min-type function at the origin, and f = 
min {ai,...,Q:m} be a minimal representation in a neighbourhood of the origin; a 
function ai is said to be   active   at a point y iff ai (y) = / (y). 

Denote by ujf the germ of the set of active points for c^ in a minimal represen- 
tation / = min {ai, ...,am}. 

DEFINITION 2. Let f = min{Q;i}^1 = minj/?}^ be minimal representations. 
Then ai & fa iff uf = Wj  and a^a = Pj^p. 

DEFINITION 3. A minimal representation f = inm{a}^=1 is said to be a LIG- 
representations at x if {grad («;+1 — ai)}^   are linearly independent. 

THEOREM 1. Let f : 5Rn -» 5R1 be a germ of a Min-type function at the ori- 
gin O which is a non-degenerate regular point for f. Let f = min^i,...^ a; = 
minJ=:i,...)m f3j be two LIG-representations. Then there exists a permutation a : 
{1, ...,ra} —> {1, ...,ra} such that ai ~ Pa (i), i — 1? ...,m. 

To prove the theorem we have to clarify the geometry connected with minimal 
representations. Let / : Jtn -^ Sft1, / = inini=i,...jm ai be a germ of a Min-type 
function at x e 5Rn. Then 1-forms {dai}^ are linear functionals on T^Sft71, the LIG- 
condition means that dai — dai-i, i = 1, ...,m — 1 are linearly independent. Denote 
Cli = {£ e TXM | dai (0 = mini=i,...,m da, (0} and ft? = {£ G TXM \ dai (f) < 
daj(0 for any j ^i}. 

LEMMA 1. (ON A PARTITION INTO CONES OF THE TANGENT SPACE). Let f : 
!ftn —>• 3?1 6e a Min-type function, f = min {a:i,...,am} 6e a LIG-representation for 
f. Then Q^Cli are convex polyhedral cones in TxMn « 5in; ft? zs open, ano? fti 25 
i/ie closure of O?. 

Proof. Aj = fli^j A^, where ft^ is a closed half-space defined by the linear 
inequality dai (0 < daj (^) then A; = D^j A] is a closed convex cone. Similarly, 
ftp = Dj^i (ft^)0, where (ft^)0 is the open half space, defined by the strict inequality 
dai (0 < Gfc*j(£). The cones HP are convex and of dimension n, since m < n and the 
representation is minimal. 

LEMMA 2. (ON A PARTITION OF THE GERM OF THE MANIFOLD ON ACTIVE 

SETS). Let f : M -» 9?1 6e a #erra o/ a regular Min-type function at x and m — Rx f. 
Then there exist m germs of maximal open connected sets f7i,...,C/m such that all 
the restrictions f\u. are smooth] the germs of {Ui} are uniquely determined up to a 
permutation. For any minimal representation f — min{a;} there exists a permutation 
o/{l,...,m} such thata^i)^ = f^. 

Proof. Let / = mini=ij...>m ai be a minimal representation for / at x and De{x) 
be a ball centered at x. Define Ui = {y G De {x) \ ai {x) < aj (x) for all j ^ i}. Then 
the sets U® are the maximal connected open sets where / is smooth. Then they are 
determined canonically (up to a permutation). 

COROLLARY 1. Let f : M -> Sft1 be a germ of a Min-type function at x G M. 
Suppose we have two LIG-representations f = mini-i,...^ ai = minj-iv..5m /3j. 
Then there exists a permutation a : {1, ...,ra} -> {1, ...,m} such that C/f = U^ and 
ai ~ Pa(i) ■ 

This finishes the proof of the theorem. 

1.4. Topology in the space of Min-type function. We have to define a 
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suitable topology on the space of Min-type functions. We begin with a definition of 
Ck-small perturbations of germs of Ck Min-type functions. 

DEFINITION 1. Let f : 5Rn -> 5f1 be a germ of a Min-type function at the origin, 
f = min {ai,...,a!fc} be its minimal representation, and ai G Ck($ln). We define the 
class of Ck-small perturbations f5 of f as fs = min {a^, ...,a^}; where af, i = !,...,& 
are Ck -small independent perturbations of on. This defines a Ck-topology on the space 
of Min-type functions. 

We do not demand that the representation is minimal in the definition. However 
we point out the following statement. 

PROPOSITION 1. Let f : 3ftn -> W- be a germ of a Min-type function at the 
origin, f = min {ai,...,a:fc} be its LIG-representation, and ai G C2. Then for any 
sufficiently small C2-perturbations af of ai, i = l,...,fc, f6 = min {a{,...,a6

k} is a 
LIG-representation in a neighbourhood of a point x6 close enough to x. 

We present one more statement to motivate the following definition of Ck-distance 
between Min-type functions. Denote Ui the active set for a* and Uf the active set for 
aj. 

LEMMA 1. Let f : !ftn —> 5R1 be a germ of a Min-type function at the origin, and 
f — min {ai,..., otk} is a LIG-representation. Suppose f6 = min {Q:^,...,a^} is a 
S-perturbation of f. Denote Ui (Uf) the active set of a; (af). Then the Hausdorff 
distance distn between Ui andUf satisfies the following estimate distniUi, Uf) = 0{8) 
for 8 -» 0. 

This lemma allows us to introduce C^-distance between C^-smooth Min-type 
functions that defines the same Ck-topology. We give first a definition for germs. Let 
/ be a germ of a Ck Min-type function at the origin in 3ftn; denote by Nf C 3ftn the 
germ of the set of points where / is not smooth. This germ does not depend on the 
minimal representation, see the previous section. Denote by iVS the e-neighbourhood 

of AT/, and iV* = ft" \ N*r 

DEFINITION 2. Let f,g be germs of Ck-smooth Min-type functions at the origin 
in ftn.  We define the Ck -distance between f and g as 

mm 
e>0 

{e + dwtcfc  (/|#., 9\N*)} 

The following proposition is clear. 
PROPOSITION 2. The Ck-distance defines the same Ck-topology on the space of 

Ck-smooth Min-type functions. 
One more definition of the Ck-distance between Min-type functions is based on 

the following lemma. 
LEMMA 2. Let f : 5Kn -> ft1, be a germ of a Min-type function at the origin and 

f = min {ai, ...,afc} be a LIG-representation. Then for a small enough perturbation 
f5 = min {c^, ...,a^} there exists a germ of a diffeomorphism (f)e ofR71, e-close to the 
identity and such that </>e(£//) = Ui, i = l,...,fc. 

2. Regular points of Min-type functions. We introduce and discuss a con- 
cept of non-degenerate regular points. The germ of a smooth function can be trans- 
formed into the coordinate xi using the group Diffn of local diffeomorphisms of ftn. 
For a Min-type function such a transformation is possible when one uses a bigger 
transformation group Horrin of local homeomorphisms of ftn which are smooth al- 
most everywhere, that is outside a set of positive codimension. This bigger group is 
natural in this theory; the group Diffkoc is too small to obtain "good" normal forms; 
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the space of orbits is parametrised by functions even for Min-type functions of one 
variable. At the same time all Min-type functions at a non-degenerate regular point 
are on the same orbit of the action of Horrin. (This group arose already in Matov's 
works, see [Mai], [Ma2]). 

We consider the simplest degenerate regular points, which are codimension-one 
singularities. Finally we clarify relations between the classical and Gromov's defini- 
tions of regular points. 

2.1. Non-degenerate regular points. 
DEFINITION 1. Let f : 3fn ->> Sft1 be a germ of a Min-type function; a point 

x is said to be a non-degenerate regular point (NDR-point) iff the germ of 
f at x admits a minimal representation f — min2=i,...jm ai, with smooth functions 
a^, i — 1, ...,?77- which satisfy the following properties: 

1) The gradients grad (ai — 0:2), ...,grad (am_i — am)   are linearly independent at 
X] 

2) 0 $ Conv { grad ai (x)}^L1 , ( Conv  means the convex hull). 
3) f\Gf is a germ of a Morse function at x, where Gf = {y \ ai(y) — ... = am(2/)}; 
1^) Any m — 1 gradients among grad ai, ...,grad am are linearly independent at x. 

REMARK 1. The first condition (it is the LIG-condition) shows that Gf is a 
smooth submanifold of dimension n — m + 1, (Gf is determined by (m — 1) equations 
(ai — a;+i) = 0, with linearly independent gradients). The following two statements 
clarify properties of Gf. 

PROPOSITION 1. The germ of Gf does not depend on a choice of a minimal 
representation. 

Proof. A Min-type function / defines uniquely the sets Ui = {y \ f = ai}, as the 
maximal connected sets, where / is smooth, see section 1.3; then Gf = H^ Ui is also 
canonically defined. 

PROPOSITION 2.  The restriction of f on Gf is a smooth function. 
Proof. Gf is a smooth sub-manifold, and f\Gf coincides with the restriction of a 

smooth function ai\Gf for each i. 
REMARK 2. Gf is the germ of the maximal submanifold at x such that f\Qf is 

smooth. 
COROLLARY 1. Let f : !Rn -> 5R1 be a germ of a Min-type function at x, and x be 

a NDR-point for f. Then for any minimal representation f — min {/3i, ...,/3m} the 
functions Pi, i — 1, ...,m; satisfy all the properties of Definition 1. 

Proof. This follows from Proposition 1 of this section and Theorem 1 of section 
1.3. 

Let us discuss some corollaries of the conditions above, related to linear indepen- 
dence. 

PROPOSITION 3. For any j, the gradient grad otj is not a convex combination of 
all other gradients. 

Proof. Suppose there exists j such that grad otj = Yli^j ci 9rad a*> where 
Y^i^j ^ = 1 and Ci > 0 for all i. Then J2i^j ci gradfai — otj) = 0 and then 

{grad (ai — Q^i+i)}^1 are linearly dependent. 
All conditions of Definition 1 are "open" and we obtain the next statement. 
PROPOSITION 4. Let f : Mn ->• K1 be a Min-type function, f = min {ai,..., am}. 

Then the set of NDR-points is open. 
PROPOSITION 5. Let f : 3?n -» 5ft1 be a Min-type function, f = min {ai, ...,aQ}; 

let U be the set of NDR-points and Ui be the interior of the set of points Ui, where ai 
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is active.  Then the restrictions ai|i/nc/i are Morse functions. 
Proof. Let x G U fl Ui and / = min {a^, ...,aiq} be a minimal representation 

around x. When q = 1 the germ of G/ coincides with the germ of Mn and then / = a^ 
is a germ of a Morse function, in accordance with condition 3 of the Definition. When 
q > 1, for any j the gradient grad a^ does not vanish in accordance with condition 4 
of the definition. 

Similarly to this statement we obtain the following result. 
PROPOSITION 6. Let f : 3ftn -» 3ft1 6e a Min-type function, f = min {ai, ...JQQ}. 

T/ien the restrictions (ai — (Xj)\unUinUj are Morse functions. 
COMMENTS. Our definition is based on the following idea. We would like to 

construct a Morse theory for Min-type functions and, in particular, to define Morse 
Min-type functions by analogy with the classical Morse theory, as functions which 
have only (non-degenerate) regular and non-degenerate critical points. To obtain an 
open and everywhere dense subset of Morse Min-type functions we have to admit all 
stable singularities, but exclude all non-stable critical points which can be eliminated 
(decomposed) by small perturbations. 

REMARK 3. Principles, listed above do not fix the definition uniquely. One 
possible technically useful (but not principal) modification is to add conditions that 
all ai and all their differences (a* — aj), i ^ j are Morse functions (everywhere on the 
manifold Mn, not only on the set of active points of these functions, see Propositions 
5 and 6). 

2.2. Linearly dependent gradients. The equations ai = OL<I = ... = am 

define an (n — m + 1) dimensional submanifold. The linear dependence of grad oti,..., 
grad am means that one of them, say grad am, is a linear combination of the others. 
This means that grad am(x) belongs to the (m — 1) dimensional linear subspace of 
TxMn, generated by grad ai (x), i = 1,..., m — 1; this is a condition of " codimension" 
n — (ra — 1) = n — ra + 1 on the n — m dimensional submanifold G/; hence there exists, 
generically, only a finite number of points in Mn, satisfying this condition. This 
motivates the following definition. 

DEFINITION 1. We shall call a NDR-point with linearly dependent gradients spe- 
cial (and non-special when the gradients are linearly independent). To be shorter 
we denote such points as  SR-points (NSR-points). 

The following two examples present linearly independent and linearly dependent 
gradients. In both examples functions are stable. 

1. NSR-point. Let / : 5ft2 —> St1, / = min {0:1,0:2}, where ai — x + y1a2 — x — y. 
Then grad ai = (1,1),grad a<i — (1,-1) are linearly independent and then ai,a2 
satisfy also condition 2, we have Convex (grad ai^grad 0:2) = 1 x [—1,1] ^ 0. The 
origin is an NSR-point. 

2. SR-point. Let f : K2 ->%l1,f = mm (ai,a2),ai =x + y2,a2 = 2x + y2. Then 
grad ai(0) — (1,0), grad 0:2(0) = (2,0) are linearly dependent at the origin. One can 
destroy the linear dependence at the origin, however a point with linearly dependent 
gradients arises near the origin. 

We present one more example to comment on the third condition in the Definition. 
3. The restriction on Gf. Let g = min {x + y3,2x + y3}; then Gg is the y-axis, 

and g\Gg = y3 has a birth-death singularity at the origin. 
THEOREM 1. (ON SR-POINTS). Let f : 5ftn -> 5ft1 be a germ of a Min-type 

function, f = min {ai,...,am} be a minimal representation, and p be an SR-point. 
Then all the other points of a small e-ball around p are NSR-points. 
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Proof. Let p be an SR-point of / : 3fn ->■ Si1, / = min {ai,..., am}. Any (m - 1) 
gradients among grad ai,..., ^rac? am are linearly independent at p and thus in a small 
e-ball De (p) around p. Let q € De (p) \ Gf, then / is a minimum of a smaller number 
of smooth functions and hence is an NSR-point. 

Consider a point q G De(p) fl Gf. One can choose a local coordinate sys- 
tem around p in such a way that ai — xi, ...,am_i = xm_i, then we have / = 
min {a;i,...,a;m_i,am}. Since any (m — 1) gradients among grad on are linearly in- 
dependent and 0 ^ Convex {grad a*}-^! we have am = J^I^i c*^* + ^J where 
grad 0 = 0 and Cj > 0. We have X^HT Ci ^ ^J since ^rad am is not a convex 
combination of all the other gradients due to Proposition 3. 

Let M be the maximal ideal in the local ring of germs of smooth functions at the 
origin. We have Gf = {(xi, ...,xn) \ xi = ... = Xm-i = SUT1 C*a;* + Si!j=i «2,j^^' + 
O (M3)}. The equations for Gf can be transformed into xi = ... = Xm-i = 
^?,j=i aijXiXj + O (M3) and then xi = ... = xm-i = YX^m aijXiXj + O (M3). 

The restriction of am on Gf is a Morse function, then there exists coordinates 

xm,...,a;n such that QfmiG/   = X]™7     ci^ + SILm   ^i* compare [Mil].   In this 

coordinate system one has am = XXT* ^^ + Sij<m-i aiJxixj + SiLm ^^f + 
0(M3). 

For a point of De(x) fl G/, where at least one of Xi,i = m, ...,n does not vanish 
{grad cti}^ are linearly independent. The origin is the only point on G/, defined by 
the equations Xm = ... = Xn = 0, and then the only SR-point inside De(x). 

COROLLARY 2. SR-points are isolated. 
The next statement clarifies the connection between conditions 3 and 4 in the 

Definition of NDR-points. 
PROPOSITION 7. Let / : 5Rn ->' SR1, / = min {ai, ...,am} and tfie on'^m O be a 

NDR-point.  Then {grad f\Qf(x) = 0} <=> {O 25 special }. 

Proof.  [ grad f\Qf {x) = 0 j 4=^ I for each z, ^rac? ai (x) is a linear combination 

of grad (otj — aj+i)(x),j = 1, ...m ) ^=> I rA: {grad ai}7
j?=1 (x) = m — 

REMARK. This statement means that linear independence of the gradients pro- 
vides all the other conditions of the Definition of NDR-points. 

2.3. The simplest example and motivation. We consider Min-type func- 
tions of one variable to motivate our approach to normal forms of Min-type func- 
tions based on Hom^- equivalence. Consider a regular germ of a Min-type function 
/ : 5ft1 -)• 5ft1 at 0. When smooth, / is smoothly equivalent to x. A non-smooth 
germ is a minimum of two smooth functions and we obtain the following elementary 
proposition. Denote by M the maximal ideal of functions vanishing at O. 

PROPOSITION 1. 
1) Let f : 5ft1 -> 5ft1 be the germ of a non-smooth Min-type function at an NDR- 

point q. Then one can choose a (smooth) coordinate around q such that f = Const -j- 
min (x, x ct(x)), where a(q) > 0 and a(q) ^ 1. 

2) Any germ a : 5ft1 -> 5ft1 of a smooth function at q, satisfying the condition 
a{q) > 0 and a(q) ^ 1, defines a regular germ of a smooth Min-type function 
f = Const -f- min (x,xa(x)). 

3) For any two such germs 0:1,0:2 the corresponding functions /i,/2 are C00- 
equivalent iff ai — 02 € M.00 (in particular there exists an infinite set of orbits for the 
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action of Diff[oc ). 

4) All the germs of Min-type functions are on the same orbit of the action of 
Homl. 

2.4. Functions of n-variables. We consider SR-points and NSR-points sepa- 
rately. 

a) NSR-points (rk {grad aOi^i =m). Let / : 5ftn -> W be a Min-type function 
q is an NSR-point, / = mini=iv..5m ai be a minimal representation at q. Then there 
exists a local coordinate system {xi} around q such that ai = Xi, i = l,...,m and 
/ = min {xi,...,xm}. 

We obtain the following theorem. 
THEOREM 1. The set of germs of Min-type functions of n variables at an NSR- 

point consists ofn orbits of the action ofDiffnc numbered by the number of functions 
in a minimal representation. 

b) SR-points: (rank {grad ai}^ = (m—1)). One can choose a coordinate system 
{xi} in such a way that ai—ai = Xi-i, i = 2, ...,m — 1. Then / = min {ai, ...,Q;m} = 
min {ai, ai+xi,..., ai-\-xm-i} = ai+min {0,a;i, ...,£m-i} and Gf is the coordinate 
plane defined by the equations xi = ... = xm-i = 0. Denote ai = ai|G/; this is a 
Morse function and as we know grad di (x) = 0; One can choose a coordinate system 

xm, ...,xn on Gf such that &i = - J2i=m tf + J^^k+i xh Define f = f - ®i, then 
f\Gf =0. We obtain the following lemma. 

LEMMA 1. Let L be a plane defined by the equations xi = ... = xm_i = 0. 
Suppose (3 : 5Rn —> K1 is a smooth function such that (3\L = 0. Then there exist smooth 

functions /3i, ...,f3m-i such that (3 = YH^I    
xi0i' 

This lemma gives 

k n m — l 

/ = -^£?+]P   ^f+X^ BiPi+nnn{Q,xi,...,xm-i}. (2) 
i=m i=k+l i=l 

The functions Pi satisfy the following conditions (*): Pi (O) ^ 0 - this is 
equivalent to the condition of linear independence of any m — l gradients among 
grad ai,...,grad am; {—Pi (O),..., — Pm-i (O)} does not belong to the standard 
simplex S — {£i, ...,£m_i \ U > 0 and ^ ^ = !}> this is equivalent to the con- 
dition 0 ^ Convex {grad ai,...,grad am}. (Both equivalences can be immediately 
obtained from the following formulas: grad ai (0) = X)^a A {0)di, grad ai (O) = 
di-i + Y^^i Pi (O)di, for i = 27...,m we denote di = ^r). On the other hand 
any smooth functions /3i,i = l,...,m — 1 satisfying the two conditions above define a 
Min-type function with linearly dependent gradients. 

2.5. Normal forms (group of local diffeomorphisms). Let us describe the 
orbit structure of germs of Min-type functions !ftn —> 5ft1 for the group Diffpoc. 

PROPOSITION 1. Let f,g : !Rn -* 5ft1 be Min-type functions such that f = 
min;=i5...5z ai and g = minj=i?...)m Pj are minimal representations and I ^ m. Then 
f and g are not smoothly equivalent. 

Proof Smooth equivalence would give the same decomposition of the tangent 
space Tx$ln on maximal open sets where a Min-type function is smooth, and then 
gives I — m. 

There is one more (smooth) invariant of a non-degenerate regular point. 
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PROPOSITION 2. Let f,g : !ftn ->> 5ft1 6e ^erm5 o/ Min-type functions at q. Let 
the origin q be an SR-point for f and an NSR-point for g. Then the f and g are not 
smoothly equivalent. 

Proof. A smooth equivalence conserves linear dependence of gradients. 
We have to obtain normal forms for an SR-point. Formula (2) gives a represen- 

tation for any germ of a Min-type function of n variables at an SR-point for Min-type 
functions with rank m. The parameters in (2) are the natural number kf < n — m + 1 
of negative squares and m — 1 smooth functions {Aj^T1 satisfying conditions (*). De- 
note by fk roirn-i the Min-type function / determined by kf and /%,£ = 1, ...,.ra — 1, 

satisfying (*). We have to determine which k and {ft} define smoothly equivalent 
Min-type functions. 

PROPOSITION 3. k is a smooth invariant. 
Proof. Let there exist a local diffeomorphism (j) of SRn such that ^(/) = /. Then 

(t>{Gf) — Gj and (j){f\Gf) — f\G- and these (Morse) functions has equal indices, that 
is kf — ki. 

REMARK. It is natural to call k the   (smooth) index   at an SR-point. 
PROPOSITION 4. Let {ft,/^}^1 : 5ft1 -)- 5ft1 be germs of smooth functions at O 

satisfying a and (5. Then Min-type functions defined by (2) (with the same smooth 
index) are smoothly equivalent iff there exists a permutation a : {l,...,ra — 1} -> 
{1, ...,ra — 1} such that Pi — a (Pi) G M^, i = 1, ...,ra - 1. 

COROLLARY 1. For SR-points we have a continuum of Diffnc-orbits, parame- 
trized by oo-jets of m — 1 smooth functions of n variables. 

2.6. Group of almost smooth local homeomorphisms. 
THEOREM 1. Let f : 5ftn —>■ 5ft1 be a germ of a Min-type function regular at the 

O.  Then there exists (f) G Homfi which transforms f into Const + xi. 
Proof. We have to consider separately SR-points and NSR-points. 

1)   NSR-points. There exists a local coordinate system {xi} such that / = Const + 
min;<& Xi, where k < n. 

We prove that the Min-type function / : 5ftn —> 5ft1, / = min (xi,X2,.-. ,#m) is 
.Horan-equivalent to xi. 

We define 2u = xi-\-X2 and 2v = xi — X2. Then we have min {xi, X2} = min {u + 
v,u — v} = u — \v\~u — v2ttuttxi. (The equivalence ~ is for the action of Homn, 
« is for Difflnc). Then we have min {£i,...,xm} = min {min{xi, ...,xm_i},a:m} ~ 
min {a;i,...,:rm_i} ~ ... ~a;i. 

2. SR-points. Let / : 5ftn -)» 5R1,/ = min {ai,...,am} be a Min-type function, 
and O be an SR-point, Then ai,..., a:m_i can be chosen as local coordinates in a neigh- 
bourhood of O and we have / = min {:ri,...,£m_i,am}; min {#1, ...,a;m_i,Q:m} = 
min {min {xi, ...,xm_i},am} ~ min {xi^am}. Homn does not conserve linear de- 
pendence of gradients, so we have to consider two cases. 

a) ^l" and grad am are linearly independent. Then there exists a local coordinate 
system such that am = X2 and we obtain min {xi,am} = min {^i,^} ~ xi. 

b) ^|-- and grad am are linearly dependent. Then am — cxi 4-/3, where grad (3 = 

0. The gradient grad xi is a linear combination of ^|-,..., dx
d_ with positive co- 

efficients, then we have c > 0. The almost smooth local homeomorphism $ can be 
defined as xi -4 xi when xi > 0, xi -> cxi + /? when xi < 0; (p is non-smooth only 
on Gf and transforms min {xi,am} into xi. 

2.7. Gradients of Min-type functions. The convex hull Conv {grad ai} 
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plays an important role in the theory. This motivates the next definition of the 
Gradient of Min-type functions (compare with the definition of sub-gradients in non- 
smooth analysis). 

DEFINITION 1. Let Mn be a Riemannian manifold, f : Mn -> 5ft1 be a Min-type 
function, x E Mn. We define gradient Grad f(x) as Conv { grad {oiiix)}^} € 
TxMn, where f(x) = minj=iv..)m {a; (x)} is a minimal representation for the germ of 
f at x. 

REMARK. Grad (x) is a simplex in TXM of dimension (m — 1) at a NDR-point. 
One of its vertices is grad ai and {grad (ai — ai)}^L1 are linearly independent edges 
starting at this vertex. 

PROPOSITION 1. Grad f (x) does not depend on a choice of a minimal represen- 
tation. 

Proof Grad f is defined by values of functions ai at their active points, which 
are defined uniquely (up to a permutation of the {a;}). The definition of the Grad is 
invariant under permutations of the functions ai. 

DEFINITION 2. Let Mn be a Riemannian manifold, f : Mn -» 3?1 be a Min-type 
function. Then we define Gradient as the field of simplexes Grad C TM, such that 
Grad D TXM = Grad (x). 

The dimension of simplexes Grad f (x) depends on the point re, however we have 
the following result. 

PROPOSITION 2. Let Mn be a Riemannian manifold, f : Mn —> 5ft1 be a Min-type 
function. Then the germ of the simplex field Grad is lower semi-continuous at any 
non-degenerate regular point. 

REMARK. (DEFINITION OF "SEMI-CONTINUITY"). The germ of the tangent 
bundle is a direct product TU = U x 5ftn for a neighbourhood U = U(x); a Riemannian 
metric allows us to identify TXM = 5ftn over different points as Euclidean spaces, using 
an orthonormal frame of vector fields on U. Semi-continuity of the family of subsets 
Grad (x) C Tx Mn is defined for Hausdorff distance in 5ftn. 

2.8. Simplest degenerate regular points. We demonstrate in this paper that 
Morse theory for Min-type functions is in a sense equivalent to Morse theory of smooth 
functions (there is a one-to-one correspondence between stable singularities). At the 
same time singularity theory for Min-type functions is more complicated than singu- 
larity theory for smooth functions. The only codimension one singularities for smooth 
functions are so called birth-death singularities. (The normal form of a smooth func- 
tion at a point with a birth-death singularity is xf + X)r=2 ^f)- ^ the same time, 
Min-type functions admit several types of codimension one degenerations. 

An investigation of singularities is beyond our scope. We only point out several 
types of codimension one singularities. 

1) / : 5ftn -> SR1, / = min(a:i,..., am) m < n, q is a regular point, {grad (a; — 
cti-i)} are linearly independent, and f\Gf has a birth-death singularity (an example 
is ai = x + y3, 0:2 = 2x + y3). 

A small perturbation decomposes a degenerate regular point at the origin into a 
union of two NDR-points. 

2) /:ft»->Ri, / = min(ai,...,a„+2) 
1) for any n 4- 1 indices 1 < ii... < in-+-i < m the gradients grad(ai1 — 

ai2),...,grad(ain — a:2n+1+i) are linearly independent; 

2) 0 ^ Convex {grad ai}. 

3) Any n gradients among {grad ai}^ are linearly independent. 



708 V. GERSHKOVICH AND H. RUBINSTEIN 

REMARK 1. In this case Gf is a point, and so we must not demand that f\Q is 
Morse. 

PROPOSITION 1. There exists a small perturbation aj, ....,a^+2 suc^1 that f€ = 
min {af, ...,0:^2} ^a5 n+2 non-degenerate regular points around q, such that minimal 
representations at each point includes n + 1 functions. 

Birth-death singularities which lead to creation-annihilations of a pair of critical 
points with neigbouring indices are far more interesting and important for the theory; 
the reader can find examples in [Ge]. 

2.9.  Gromov's and the classical definitions of Min-type regular points. 
We have two definitions of regular points for Riemannian distance functions dp: 

1) Regular point of this function as a Min-type function (we shall call them ir- 
regular) ; 

2) Regular point in the sense of the Gromov definition, see [Gl], (we shall call 
them G-regular); we recall this definition. 

DEFINITION 1. (GROMOV [Gl]). A point q is said to be G-critical for a distance 
function dp iff for any tangent vector v G TqM there exists a shortest geodesic 7 
connecting p and q such that the angle between 7 (q) and v is at most -. (The point 
is said to be G-regular otherwise). 

This definition admits several simple reformulations. 
DEFINITION 2. A point q is said to be G-regular for dp iff there exists an open 

half-space Tp M C TpM such thatj (q) G Tq~M for any shortest geodesic 7 connecting 
p and q. 

DEFINITION 3. A point q is said to be G-critical for dp iff the linear envelop of 
{jiiq)} (for all shortest geodesies 7* connecting p and q) is a linear subspace in TqM. 

DEFINITION 4. A point q is said to be G-critical for dp iff 0 is a convex combi- 
nation of j^q) (for all shortest geodesies 7; connecting p and q). 

PROPOSITION 1. Let Mn be a negatively curved manifold, p, q G Mn and p, q are 
connected by I < n 4- 1 shortest geodesies. Then the definitions, (1-4) of a G-regular 
point are equivalent to the definition of an M-regular point for f — dp. 

3. Non-degenerate critical points. We define non-degenerate critical points 
for Min-type functions, obtain normal forms for germs of Min-type functions at non- 
degenerate critical points for the action of Honin and define the index of Min-type 
functions at non-degenerate critical points. 

We obtain a theorem on approximation of a Morse Min-type function by a smooth 
Morse function. This approximation preserves topological properties: there exists a 
one-to-one correspondence between critical points of these functions, the correspond- 
ing critical points are e-close and have the same index. This theorem extends results 
of the classical Morse theory: Morse inequalities and the handle decomposition of a 
manifold, corresponding to a smooth Morse function, to the class of Morse Min-type 
functions. 

3.1. Definition. 
DEFINITION 1. Let f : 5ftn —> 5ft1 be a a germ of a Min-type function at a point 

q, and f admits a minimal representation f = min;=i,...,& ai, at q satisfying the 
following properties: 

1) The gradients: grad (ai — 0:2), ..ngrad (am-i — am) are linearly independent at 

Ti 

2) O G Grad /; 
3) The restriction f\Qf is a Morse function] 
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4) Any (m — 1) gradients among grad ai, ...,grad am are linearly independent at q; 

Then q is said to be a   non-degenerate critical point (an NDC-point) for 

f. 
PROPOSITION 1. q is a non-degenerate critical point for the restriction f\Gr 

Proof. We have O G Gradq /, then J2i=i Pi 9rad ai = 0 for some non-negative 
Pi, such that X^iLi Pi = ^' ^n Particular, for any £ G TqGf(x) we obtain (all ai 
have the same restriction on Gf) 2^=1 Pi grad ai (£) = grad (ai\G )(£) = 0. Then 
grad (f\G ) = grad (ai\G ) = 0; hence q is a critical point of the restriction of / on Gf. 

(The third condition of the definition states that this critical point is non-degenerate). 
REMARK. In particular, grad ai(x):...,grad am (x) are linearly dependent for 

an NDC-point. 
The previous statement can be reformulated as follows. 
PROPOSITION 2. Let f : !ftn -> K1 be a germ of a Min-type function at q, f = 

min^i,...^ ai, and q is an NDC-point. Then there exists a local coordinate system 
{xi} such that the germ of Gf is a germ of a coordinate plane of dimension n — k + 1, 

and the restriction f\Gf is given by the equation f\Gf = — 12i=k xl + SlLz+i xh 
Proof. The submanifold Gf is determined by the equations /Si = ... = /3k-i = 0, 

(where Pi = ai — a^+i) with linearly independent gradients. One can choose a local 
coordinate system {xi} such that fa — Xi, i = 1,..., k — 1. Then the germ of Gf is the 
germ of the coordinate plane xi = X2 = ... = Xk-i = 0. Denote / (xk, ...,^n) = /iG/J 

/ is a Morse function and then / = — X)i=A; xi + ElL=/+i ^f • 
DEFINITION 2. (INDEX). Le^ / : 3ftn ->• K1 6e a Min-type function, 

f =   min    ai 
2=1,...,*; 

a£ i/ie origin, and the origin is an NDC-point. Then we define the index Indx f of 
f at x as Indx f — (k — 1) + Indx (f\Gf)- 

Indx (f\Gf) is a smooth invariant of / at an SR-point, see section 2.3; however, 
all functions regular at x are equivalent under the action of Homfi. For NDC-points 
the index Indxf is a iJomn-invariant and has a clear geometric interpretation (similar 
to the index of the Hessian for smooth functions). 

PROPOSITION 3. Let f : !ftn —> 5ft1 be a germ of a Min-type function at q, and 
q be an NDC-point for f. Then Indx f is the maximal dimension of a germ of a 
submanifold Nq at q such that the restriction f\j^  has a strict minimum at q. 

In the following sections (ss. 3.2-3.4) we prove that Indx f is the unique invariant 
of a germ of a Min-type function at an NDC-point. 

3.2.  Normal forms. 
THEOREM 1. Let f : 5ftn -» 5ft1 be a Min-type function, f = min {Q:I, ..., ak}, and 

q be an NDC-point. There exists a local homeomorphism (j) G Horrin which transforms 

f->- YT=i zi + E?=m+i zi> where m = Indqf- 
We transform / to its normal form in several steps. 
PROPOSITION 1. Let f : 5ftn ->> 5ft1 be a germ of a Min-type function, q be 

an NDC-point and f — min {ai, ...,afc} be a minimal representation of f at q. 
Then there exists a smooth local coordinate system xi,...,xn around q such that f = 
min{a;i,...,a:ife_i,-(^*:ri

1 CiXi + (3 (zi, ...,a;„))}, where a > 0, for i = 1,..., k - 1, 
and grad (3 (q) = 0. 

Proof. There exist k — 1 linearly independent gradients among grad an,..., 
grad ak.   We can assume the first (k — 1) gradients are linearly independent and 
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then ai, ...,ak-i can be used as the first (k — 1) coordinates. The expression for the 
last function a^ is due to the fact that 0 G Grad f. 

To obtain the normal form we present / as a sum of "smooth" and "non-smooth" 
parts. 

PROPOSITION 2. Let f : JRn -> 5ft1 be a germ of a Min-type function, q be 
an NDC-point and f = min {ai, ...,ak} be a minimal representation at q. Then 
there exists a local smooth coordinate system {yi, ...,2/n} such that f = /^(yi, ...,2/n) + 

min \yi,...,yk-i,-Y!fiZi CiyA, where a > 0 for i = 1, ...,fc - 1, and grad f3 (q) = 
0. 

Proof. Define Zi = yi + A/? for i — l,...,k — 1, zi = yi for i — k,...,n. Then 
{zi,...,zn} is a local coordinate system and 

{k-l k-l      v   ^ 

z1-\p,...,zk-1 -A/?, -^2 CiZi+(3 + \pY^ ci) (- 

We would like to obtain -A = 1 + A X^1 a & -A(l + ^=1 a) = 1. Recall that all 

Ci are strictly positive; we obtain A = —(1 + J2i=i ci)~1' Denote J3 = —\(3. Then we 

have / = ^-f-min {zi,...,Zk-i,-YliZi   azi}, and grad(3 (0) = 0. 
We recall some standard results related to representations of smooth functions 

vanishing at the origin. 
LEMMA 1. [Ml]. Let (j) : 5Rn —> 5ft1 be a smooth function vanishing at the origin 

q and {xi, ...,a;n} be a coordinate system around q. Then there exist smooth functions 
gi,...,gn such that </> = ^=1 Xigi, where gi (q) = §£:(q)- 

An iteration of this lemma gives the following result. 
LEMMA 2. [Ml]. Let (j) : 5ftn -> 5ft1 be a smooth function vanishing at q together 

with all its first derivatives, and {xi, ...,a;n} be a local coordinate system. Then there 
exist germs of smooth functions {gi,j}fj=i  such that (j) = ^^=1   xixj9ij>  where 

9i,j = 9j,i and 9iJ (q) = | dStjte)- 
We can present the function ft (in Proposition 2) as /3(zi,...,zn) = Const + 

Sr^i ZiZjHij, where {Hij} is symmetric and Hij is a smooth function. The germ 
of the submanifold G/, is the germ of the coordinate plane zi = Z2 = ... = Zk-i- The 
condition of the non-degenericity of the Hessian for the restriction of / on Gf means 
that the minor (Hij (O))™ ■k is non-degenerate. By analogy with the classical Morse 
theory, see [Ml], we obtain the following statement. 

PROPOSITION 3. Let f : 5ftn -* 5ft1 be a germ of a Min-type function, q be an NDC- 
point, and f — min {ai,...,afc} be a minimal representation at q. Then there exists 
a local coordinate system xi,...,xn such that f — min {xi, ...,Xk-i, — ]Ci=i   cixi} ~ 

YT=k x2i + EiLm+i xi + Sfjii xixJHiJ (a:i,...,Xn), where a > 0, for i = 
1,..., A: — 1„ the matrix {Hij} is symmetric and Hij is a smooth function. 

The following clear geometric lemma finishes the proof of the theorem. 
LEMMA 3. The germs of functions K (xi, ...,Xk) = — Yli=i xl and ^ — min {^i? 

...,Xk, — Si=i cixi} at the origin offfi are Homs
k-equivalent. 

The normal form in a neighbourhood of a non-degenerate critical point gives, in 
particular, the following statement. 

COROLLARY 1. Non-degenerate critical points are isolated. 

3.3.  Approximations by smooth Morse functions. 
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DEFINITION 1. A Min-type function is called a Morse Min-type function if 
it has only non-degenerate regular and non-degenerate critical points. 

THEOREM 1. Let f be a Morse Min-type function on a compact manifold Mn and 
yi,...,ym be its critical points with indices qi,-..,qm- Then for any e > 0 there exists 
a smooth Morse function f€ satisfying the following properties: 

1) fe is an e-approximation of f in the C0-metric, 
2) fe is an e-approximation of f in the C2-metric, for any neighbourhood U(x), 

where f is smooth. 
3) fe has the same number of critical points yl^.^yfu with the same indices 

(Indy* f = Indyt f) . 

4) piyuVi) <e fori = l,...,m. 
This theorem is based on results in Chapter 2 and on the next lemma. 
LEMMA 1. 1) A germ of a Min-type function f : 5Rn -> 3?1 at an NDC-point q of 

index m can be e-approximated by a germ of a smooth Morse function fe such that 
a) fe is an e-approximation of f in the C0 - topology; 
b) fe is an e-approximation in the C2 - topology in a neighbourhood of any point 

where f is smooth. 
c) fe is a germ of a smooth Morse function at q and q is a critical point of index m. 

Proof. Let x be a non-degenerate critical point of / and / = min {ai, ...,a&} be 
a minimal representation at x. One can choose a local coordinate system (xi, ...,xn) 
around x which is a smooth transformation of the initial coordinate system and such 
that 

k-i k-i 

f = mm <xi,...,xk-i,-^2 CiXi + ^2 HijXiXj>  - ^ xf +   ^    xf 
i—l i=l ) i=k i=m4-l 

see section 3.2. Clearly the "non-smooth part" of / (in the brackets) can be approxi- 
mated by — J2iZi   tf which gives the necessary result. 

This theorem allows us to extend all results of classical Morse theory to Morse 
Min-type functions. 

4.  Morse Min-type functions. 

4.1. Morse Min-type functions. 
DEFINITION 1. Let f : Mn -> Sft1, be a Min-type function f = min {ai, ...,aQ}; / 

is said to be a Morse (Min-type) function iff f has only non-degenerate regular 
and non-degenerate critical points. 

The aim of this section is to prove the following theorem. 
THEOREM 1. The set of Morse Min-type functions is open and everywhere dense 

in the space of C2 -smooth Min-type functions on any compact manifold Mn. 
Note that only the second conditions are different in the definition of NDR-points 

and NDC-points and these conditions are complementary. We eliminate these to 
define non-degenerate points. We modify the definition slightly to apply for global 
functions on a compact manifold. 

DEFINITION 2. Let f : Mn ->• Sft1,/ = min {ai, ...,aQ}; be a Min-type function, 
x € Mn is said to be a non-degenerate point for f iff the functions {ai,...,Q!Q} 
satisfy the following three conditions: 
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1) grad (a^ — ai2), ...,grad (ail_1 — a^) are linearly independent at each point x 
where a^,...,a^ are active; 

2) The restriction f\Qx is a Morse (smooth) function for each x, where 

GXf — {y I aii (y) — ••• = aii(y) , where o^, ...,0;^   are active at x}; 

3) Let x G Mn and a^,...,^  are active at x.   Then any (I — 1) gradients among 
grad a^,..., grad a^ are linearly independent at x. 

DEFINITION 3. (REFORMULATION). / : Mn -> Sft1, / = min {ai,...,a/} is said 
to be a   Morse Min-type function iff all the points of Mn are non-degenerate for 

/• 
4.2. Minima of two smooth functions. The first series of lemmata relate to 

two smooth functions; they give the base of the induction for the general case. 
LEMMA 1. Let Mn be a compact manifold. Define the subset A2 C C2 (Mn) x 

C2 {Mn) consisting of pairs (0:1,0:2) of smooth functions, satisfying the following five 
conditions, 

a) 0:1,0:2 are Morse functions] 
b) (3 — OLi — a2 is a Morse function] 
c) 0 is a regular level for (3 (denote G the hypersurface (3~l (0)); 
d) grad ai,grad 0:2 do not vanish at any point of G; 
e) The restriction ai\Q = 0:2\G is a smooth Morse function on G. 

Then A2 is open and everywhere dense in C2 (Mn) x C2 (Mn). 
Proof. 1) Evidently A2 is open. 
2) A2 is everywhere dense. Each of the conditions in the Lemma is "open". We 

will perturb sequentially the functions 0:1,0:2 to satisfy the conditions. After each 
step, we choose the following perturbations so small that they do not break any of the 
previous conditions. 

a-b) Choose Morse functions ai, 0:2 close enough to ai, 0:2 and perturb slightly 
di such that /3 = di — 0.2 is also Morse. 

c) Choose a small e such that e is a regular level for ai and for /3. Define d\ — di — e 
and )8 = di — 0:2- Then ai,0:2 satisfy the condition c). (To simplify notation, we shall 
return to the notation ai, 0.2 after each step). 

d) ai, 0:2 are Morse functions and then have only a finite number of critical points 
on Mn- Define Ge by the equation (5 = e. Any small enough e is a regular level of (3. 
Choose such a small e that GS does not contain critical points of 0:1 and of 0:2 and 
define a\ = ai — e (note that 01 and (*{ have the same set of critical points on Mn). 
Then the gradients of a{, 0:2 do not vanish on G€

f = Gj, where / = min {o:^, 0:2}- 
e) Smooth Morse functions are everywhere dense in C2 (G). Then there exists a 

smooth function // small in the C2 (G) -topology such that 0:1 + fj,\G is Morse; /J, can 
be extended to a Morse function p, which is C2-small on Mn. Then ai + p> and 0:2 + ft 
are Morse functions on Mn. 

COROLLARY 1. Let Mn be a compact manifold. Then there exists an open and 
everywhere dense subset A2 of pairs (0:1,0:2) G C2 (Mn) x C2 (Mn) such that f — 
min {0:1,0:2} is a Morse Min-type function. 

4.3. Minima of n functions. 
THEOREM 2. Let AQ be the set of vector functions {ai, ....^aq} 6 C2 (Mn) x 

... x C2 (Mn) satisfying the following five conditions: 
a) ai are Morse for all i\ 
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b) ai — Qi+i are Morse for i = 1, ...,ra - 1; 
c) for any ii < ... < ii the gradients grad (a^. — aii+1),     j = 1,...,/ — 1 are linearly 

independent at any point y where a^ (y) — ... = a;, (y); 

Tto condition means a^ (y) = ... = a^ (y) defines an (n — / + 1) dimensional 
submanifold (which we denote as GXf). 

d) Any {I — 1) gradients among grad a^, ...,grad a^ are linearly independent, when 
a^, ...,ail are active atx. 

e) f^GX = OI^I^X = ... = ctitiQx is a Morse (smooth) function on GXf. 

Then AQ is open and everywhere dense in C2 (Mn) x ...C2 (Mn). 
Proof 1) Evidently AQ is open. 
2) AQ is everywhere dense. We use the same scheme as in the proof of Lemma 1. 
a-b) We can choose Morse functions (di, ...,Q:Q) close enough to (ai, ...,Q:Q). 

There exists a small neighbourhood of these functions consisting of Morse functions. 
We can further perturb these functions ai -> di, i — 1, ...,m inside these neighbour- 
hoods such that oti — dj are Morse for all pairs i ^ j. 

c) We shall prove this statement by induction. Lemma 1 gives the necessary 
result for Q = 2. Assume we have the result for minima of any Q — 1 (or less) 
smooth functions. All conditions are of a local character, then if / < Q — 1 we 
obtain the necessary result from the induction assumption (since the minimal (local) 
representation includes not more than Q — 1 smooth functions). Let / = Q, that is, 
we consider a point x, where ai(x) = ... = aqix). 

By the induction assumption grad (ai — 0:2), ...,grad (Q:Q_2 — Q:Q-I) are linearly 
independent at x (and then Q < n + 2). The equations ai = ... = QQ-I define 
an (n — Q + 2) dimensional submanifold N. Denote Nx the connected component 
of N containing x. The restrictions of all the functions di, ...,dQ_i on Nx coincide. 
Consider the pair of functions Q;Q_i,aQ on Nx. In accordance with Lemma 1, there 
exists small perturbations dQ_i,dQ of aQ_i,aQ such that grad (dQ_i — aq) does 
not vanish on the zero level set of /? = dQ_i — dQ on Nx. We define 6 = aq-i — aq-i 
and di = ai + 5 for i = 1,..., Q — 2. 

d) We prove this statement by induction. When / < Q the induction assumption 
gives the necessary result. Let I = Q and a; is a point where ai(a;) = ... = agix). Let 
us prove that there exist small perturbations di, ...,dQ_i,dQ of ai, ...,aQ such that 
grad di, ...,grad OLQ-I are linearly independent. The induction assumption guarantees 
that there exist small perturbations di,...,dQ such that grad di, ...,grad aq-i axe 
linearly independent on Nx. We have to apply Lemma 1 to the functions dQ_i,dQ 
on Nx. 

e) The proof is the same as in Lemma 1. 
Proof of Theorem 1. Clearly, any function / G AQ is Morse and then the set of 

Morse functions is everywhere dense. The set of Morse functions is evidently open. 

4.4. Morse distance functions. 
DEFINITION 1. Let Mn be an almost non-positively curved n-manifold, p G Mn. 

The distance function dp is said to be a Morse distance function iff dp is a Morse 
Min-type function. 

Results presented in this paper allows us to define index of critical points for 
distance functions on negatively curved manifolds which have a clear geometric in- 
terpretation (indqdp = mp(q) — 1, where mp(q) is the number of shortest geodesies 
connecting p and q minus one). Also one can apply all results of the classical Morse 
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theory to Morse distance functions. The result concerning density of Morse distance 
functions is correct. 

THEOREM [GE]. Let Mn be a compact manifold, p e Mn and p G p_(Mn). Then 
there exists an open and everywhere dense subset of metrics in p_(Mn) such that dp 
is a Morse distance function. 

Nevertheless, it must be proved independently in a more "geometric way". The 
reason is that the location of Riemannian distance functions inside the set of Min-type 
functions cannot be described in a reasonable way. 

4.5. Morse metric on negatively curved manifolds. We point out one more 
application of the theory constructed. 

THEOREM 1. [GE]. Let Mn be a compact manifold, p be a negatively curved 
Riemannian metric.  Then p : Mn x Mn —> 3ft1 is a Min-type function. 

DEFINITION 1. A negatively curved Riemannian matric p is said to be Morse if 
p : Mn x Mn —> W- is a Morse Min-type function. 

THEOREM 2.  [GE]. Almost all negatively curved metrics on Mn are Morse. 

4.6. Positively curved manifolds. The Morse theory can be extended to dis- 
tance functions on positively curved manifolds (they are not Min-type functions but 
admit only a finite number of additional types of stable singularities), see [GR]. 

4.7. Non-degenerate critical submanifolds. We can also extend our theory 
to the case when the distance function has critical sub-manifolds (we follow Bott's 
generalization of the classical Morse theory, see [Bo]). 

The simplest example is the projective space Pn5ft with the standard metric. The 
distance function dp reaches its maximum on Pn_i5R and in a neighbourhood of a 
point q £ Pn-i^K it looks like dp(q) = f — | (j)(q) \ where (j) is the coordinate along the 
geodesic connecting p and q. All notions and results of the Bott generalization of the 
Morse theory (including the index of non-degenerate critical submanifolds and Morse 
inequalities) can be extended for Min-type functions. 
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