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ON QUANTUM COHOMOLOGY RINGS OF FANO MANIFOLDS 
AND A FORMULA OF VAFA AND INTRILIGATOR* 

BERND SIEBERTt  AND GANG TIAN* 

0. Introduction. Quantum multiplications on the cohomology of symplectic 
manifolds were first proposed by the physicist Vafa [Va2], based on Witten's topo- 
logical sigma models [Wil]. In [RuTi], Ruan and the second named author gave a 
mathematical construction of quantum multiplications on cohomology groups of pos- 
itive symplectic manifolds (cf. Chapter 1). The definition uses certain symplectic 
invariants, called Gromov-Witten (GW-) invariants, that were previously defined by 
Ruan for (semi-) positive symplectic manifolds [Ru]. A large class of such manifolds 
is provided by Fano manifolds (complex manifolds with ample anti-canonical bundle). 
Examples are low degree complete intersections and compact complex homogeneous 
spaces like Grassmann manifolds. If M is a Fano (or positive symplectic) manifold 
the quantum cohomology QH?, (M) is just the cohomology space H*(M,C) with 
a (non-homogeneous) associative, graded commutative multiplication, the quantum 
multiplication. This multiplication depends on the choice of a (complexified) Kahler 
class [u] on M. Its homogeneous part (the "weak coupling limit" A • [CJ], A —> oo) is 
the usual cup product. 

In this note we observe that quantum cohomology rings have a nice description 
in terms of generators and relations: If H*(M, C) = C[Xi,..., XJV]/(/I, ..., /&) is a 
presentation of the cohomology ring (for simplicity we assume degXj even for the 

moment) then QH^M) = C{X1,...,XN]/(f[u,],...,fM), where f™,..., /f1 are 
just the polynomials fi,..., /& evaluated in the quantum ring associated to [u] (The- 
orem 2.2). The ff* are real-analytic in [LJ] and thus have a natural analytic extension 
to ijT1,1 (M), and the quantum cohomology rings fit together into a flat analytic family 
overiJ^^M). 

As an application of this observation we shall compute the quantum cohomology 
of the Grassmannians. The calculations for G(k,n) reduce to the single quantum 
product Ck AQ sn-k of the top non-vanishing Chern respectively Segre class of the 
tautological A>bundle. We derive in Chapter 3: 

THEOREM 0.1. Let S be the tautological bundle over the Grassmann manifold 
G(fc,n) of complex k-planes in Cn, [LJ] = —A • ci(S) a (l,l)-c/ass on G(fc,n) (X G 
K>o   ^  M Kahler).  Then 

QH^](G(k,n))=C[X1,...,Xk}/(Yn_k+u...,Yn_uYn + (-l)ke-x), 

where Xi corresponds to the i-th Chern class Ci(S) and the Yj (corresponding to the 
j-th Segre class of S) are given recursively by (Xi = 0 for i > k) 

Yj = —Yj-i • Xi — ... — Yi • Xj-i — Xj . 

This is in fact the form previously derived by Vafa using arguments from Quantum 
Field Theory [Val], [Va2] (but note the sign of the quantum contribution).   These 
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papers and [In] also contain an intriguing formula for all GW-invariants (of the type 
considered here) of Grassmannians. We will see in Chapter 4 that formulas of this 
type occur whenever the cohomology ring has a presentation as complete intersection. 
In particular, we prove as Corollary 4.6 

THEOREM 0.2. (Vafa-Intriligator formula) For any Kdhler class [u] there 
is a finite set C C Cn and non-zero constants ax, x G C, such that for any F G 
C[X1,...,Xk} 

xec 

Here {F)g is the genus g GW-invariant associated to F. In fact, there is a polyno- 
mial W^l in the Xi having C as its set of critical points with ax being (up to sign) 
the determinants of the Hessians at x G C. 

Some remarks on history and related works are in order. One of our starting 
points was a paper by Bertram, Daskalopoulos and Wentworth giving a mathematical 
formulation of the Vafa-Intriligator formula in terms of intersection theory on certain 
compactifications of moduli spaces of maps from a (fixed) Riemann surface to G(A:,n) 
[BDW]. They verified the formula for genus one and k = 2. The content of the first 
three chapters was known to the authors around New Year 93/94 and a preliminary 
version of the paper was spread in January 1994. A preprint version of the full paper 
was made available to the public as alg-geom/940310. The presentation theorem 
for quantum cohomology rings has been observed independently in [AsSa]. Some 
of the considerations of Chapter 2 appear also in [Pi]. We also realized later that 
the quantum product c& A sn-k had already been computed in [Wi3], up to a check 
of genericity conditions. His use of residues for the interpretation of coefficients of 
quantum products inspired us to the arguments in Chapter 4. The main technical 
result there (Proposition 4.1) about higher dimensional residues has independently 
been obtained in [CaDiSt]. 

Further partial support for the Vafa-Intriligator formula was obtained in [RRW] 
and [Bel]. The quantum cohomology of (absolute) flag manifolds (containing G(fc,n) 
as special case) has been calculated in [GiKi] (complete flags) and [AsSa] (general case) 
assuming the existence of an equivariant version of quantum cohomology with certain 
functorial properties. A description (and a proof of associativity) of the quantum 
multiplication for Grassmannians in terms of Schubert cycles ("quantum Pieri" and 
"quantum Giambelli" formulae) has later been obtained by Bertram [Be2]. 

By the effort of several people the quantum cohomology of generalized flag mani- 
folds G/B have more recently been computed in complete generality, cf. [Ki] and the 
references given there. 

The first named author thanks the DFG for support and the Courant Institute for 
hospitality during the academic year 1993/1994 where this work has been done. The 
second author is partly supported by an NSF grant and an Alfred P. Sloan Fellowship. 

1. Definition of quantum multiplications. In this section, we recall the def- 
inition of quantum multiplications for positive manifolds as given in [RuTi]. The 
definition uses the GW-invariants from [Ru]. 

A symplectic manifold (M, u) of dimension 2n is called positive if for any / : 
P1 -> M with [(j](R) > 0 it holds c1(M)(R) > 0, R = /^F1] G H2(M,Z). Example: 
Fano manifolds are positive with respect to a Kahler form representing ci(M). Let J 
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be an almost complex structure on M. A (parametrized) J-holomorphic curve on M 
is a smooth map / : S ->• M from a Riemann surface S satisfying 

JoDf = Dfoj, 

as morphisms from Ts to /*TM, where j is the complex structure of S. This equation 
is a Cauchy-Riemann equation 

5j/ = 0,   9=^(C + JoDoj). 

For a technical reason one also needs the inhomogeneous equation djf = v with v a 
section of A0'1 ISfc TM over S x M, A0'1 the bundle of (0, l)-forms on S. Solutions 
of this equation are called perturbed or (J, i/)-holomorphic curves. The symplectic 
structure comes in by the assumption that J be tamed by UJ which by definition means 

u)(X, JX)>0   V X € TM \ {0} . 

Without this assumption moduli spaces of J-holomorphic curves can have rather bad 
non-compactness behaviour. The tameness condition is crucial in both defining GW- 
invariants and showing that they are invariants of the symplectic structure. 

GW-invariants depend on the choice of R G H2(M,Z) and integral homology 
classes Bi,...,Bs € H*(M,Z) satisfying (g is the genus of E): 

s 

^(2n-degBi)   =  2ci(M)CR)+2n(l-0)   =: d(M,R,g). (dim) 
i=l 

Every integral homology class can be represented by so-called pseudo-manifolds (com- 
pact subspaces with singularities in real codimension at least 2, cf. [RuTi, Def.5.1]). 
For simplicity, we shall also use Bi to denote the pseudo-manifolds representing these 
homology classes. Let ti,...,ts G S be fixed points. It is shown in [RuTi] that if 
(J, u) is generic the moduli space MR^E, J, v) of (J, z/)-holomorphic maps of homol- 
ogy class R is smooth of dimension d(M, /?, g) (dim) and the boundary of the image 
of the 5-fold evaluation map 

has lower dimension. Choosing Bi transversal to the evaluation map and to the 
compactifying boundary there are only finitely many / G MR^, J, v) with /(£«) G Bi. 
A GW-invariant is defined by 

¥{Rju)(Bu...,Ba)  := 1{fzMR{p,J,v)\f(ti)zBi}, 

the algebraic sum of such / counted with appropriate signs according to the canoni- 
cally given orientation. One can prove that $9,R ^(-Bi, • • •, Bs) is independent of the 
choices of J, j, z/, and pseudo-manifolds representing Bi,...,B8. As a matter of 
notation we set $9,R ^(-Bi,. •., -Bs) = 0 unless the dimensions match (dim). 

To describe the compactifying set one generalizes the notion of (J, z/)-holomorphic 
maps to singular domains. Namely, one replaces E by a connected complex curve C 
with at most ordinary double points consisting of E and a number of spheres. One 
requires the spheres to be attached in such a way that the arithmetic genus of C still 
equals g. So C is obtained from E by attaching trees of spheres at points Pa G E. A 
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(J, i/)-holomorphic map from C to M is then a continuous map / : C -> M that is 
(J, z/)-holomorphic on E and J-holomorphic on each of the spheres. The compactifying 
set is obtained by the image of the obvious extension of the evaluation map, where 
the ti may now be replaced by any point on a tree of spheres whenever the tree is 
attached at the original ti. 

We now make a simple but important remark: Let J be an almost complex struc- 
ture such that any J-holomorphic curve with /*[C] = R is regular, i.e. C = S is 
irreducible and the linearization of the Cauchy-Riemann operator at / is surjectice. 
It follows from the construction of [Ru], [RuTi] that one can use exact J-holomorphic 
curves to compute the invariants ^^/^i), cf. [RuTi, Rem.2.8]. In case J is in- 
tegrable and / is an immersion, regularity at / is equivalent to the vanishing of 
JET^EJ/TM/IE) [Gr, 2.1.B]. We adopt the convention that a rational curve in a 
complex manifold is a holomorphic curve (not necessarily smooth or irreducible) of 
arithmetic genus 1. The statement used for computation of GW-invariants in this 
paper is: 

LEMMA 1.1. Let (M,u) be a Kdhler manifold and R G ^(M, Z) such that any 
rational curve C C M homologous to R is non-singular and has Hl(C,Nc\x) — 0. 
Let BI,B2JBS C M be complex submanifolds transversal to the (S-fold) evaluation 
map.   Then 

*0(R,W})(BI,B2,BZ) = J2 (Bi n c) ■ (B2 n C) ■ (B3 n c), 
C 

where the sum is over all rational curves C homologous to R. 
Proof. Let / be the integrable complex structure of M. Then MRQP

1
,!, 0) is 

nothing but the complex space HomjR(F1,M) of holomorphic maps P1 —>• M which 
is thus smooth. And by the Gromov compactness theorem and the assumption on 
smoothness of all rational curves representing it!, .M/^P1,7,0) is compact. Further- 
more (Bi n C)... (B3 n C) is precisely the number of ways to parametrize C by 
/ : P1 -> C with three distinguished points U G P1 mapping to Bi, i = 1,2,3. Finally 
there are no signs occurring in the formula since all spaces involved are canonically 
oriented by their complex structures. D 

To define a quantum multiplication on H*(M,Z), we introduce the real-valued 
invariant 

^H(B1,...,BS)=      J2      *(Ji,M)(Si>-">S.)e~H(*)- 
ReH2(M,Z) 

In general there might be infinitely many terms contributing to the sum (e.g. in 
the important and interesting case of Calabi-Yau manifolds) and one faces a non- 
trivial convergence problem. In the positive case, however, this sum is actually finite 
due to the dimension condition (dim). Let us assume M positive for the following 
(but see Remark 2.3). Note also that letting u vary one gets back all the invari- 
ants $9,R r ,x(2?i,..., Bs) by solving some system of linear equations. The quantum 
multiplication AQ on H* (M, R) is then characterized by the equation 

(aAQ/3)[A} = ^](^,/3'/,A), 

where a, (3 G H*(M,Z) and v means Poincare-dual. In terms of a basis {Ai} for 
H*(M, Z) modulo torsion and with {c^} the Poincare-dual basis of H*(M, Z) we may 
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state this more explicitly as 

k,l 

with (rfk)ki inverse to the intersection matrix (77^) = {Ai • Aj) {YljVijrf1* — dik)- 
The associativity of the quantum multiplication is highly non-trivial and shown by a 
careful analysis of the degeneration of rational curves in [RuTi] (following an idea of 
Witten). 

An obvious, whence decisive feature of this definition, that we are going to exploit, 
is that its homogeneous part of highest degree reduces to the cup product 

ai Aaj = Y, ^ ' (^ " AJ 'Ak)oLi. 
k,i 

2. A presentation for quantum cohomology. For a commutative ring A and 
degrees di attached to variables Xi we denote by A(Xi,... ,Xn) the free graded com- 
mutative A-algebra with generators Xi of degree di, i.e. with XiXj = (—i)di'diXjXi. 
If m of the Xi have odd degree this is isomorphic to A* A171 0 S*An~m. We will call 
elements of this algebra ordered polynomials (since in addition to the coefficients one 
has to select an order among the factors in a monomial to determine its sign). 

Let (M, a;) be a positive symplectic manifold and 

H*(M, Q) = Q(X1,..., X„>/(/i,..., /*) 

be a homogeneous presentation of the cohomology ring, fi = Yl\j\=deR f- aijXJ■ We 

use multiindex notation J — (ji,..., jn)? XJ — X^1 A ... AX^71, \J\ = ^2^—iJidi 
etc. Denote by AQ the product in the quantum cohomology QH?AM). To distin- 
guish clearly between calculations in H*(M) and in QH?JM), we use a hat to mark 
elements of the quantum cohomology. So ^ might be thought of as a C-linear map 
C(Xi,..., Xn) -> QHfJM). An ordered polynomial / may be evaluated on the gen- 

erators of the quantum cohomology. We write f(Xi,... ,Xn) as in the commutative 
case. For instance, XJ := Xi AQ ... AQ XI AQ ... AQ Xn AQ ... AQ Xn with Xu 

occurring j^-often (note the difference to (XJy\). 
LEMMA 2.1. Xi,...,Xn generate QH? AM). 

Proof. By induction on the degree. So assume Xi,..., Xn generate QH?, (M) 

up to degree d — 1. We want to show that the monomials (XJy, \J\ = d, can be 
written as linear combinations of (quantum) products of the X^. But by definition of 
the multiplication in QH?, (M) 

x-> = (xjr+5>/(x
/r, 

and by induction hypothesis (X1)' = ^2K<I biKXK, so 

{XJy = XJ - ^ aibIKXK .   D 
K<I 
\I\<d 

Next we evaluate fi(Xi,... ,Xn), i.e. in the quantum cohomology ring. Since 
fi is a relation in the cohomology ring, the term of top-degree deg fi vanishes.  By 
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the lemma we find an ordered polynomial g^ (depending on [UJ]) in n variables (say 
Ti,...,Tn, degTi = degX;) of lower degree with 

fi{Xu...,Xn) = gY\xu...,Xn) inQH^M). 

Thwflu\Tu...9Tn) :=Ji{T1,.:.,Tn)-gl!*\Tu...,Tn) G C(Tl7... ,Tn) is a non- 
trivial relation between Xi,..., Xn. 

PROPOSITION 2.2. QH^(M) = C<r1,...,rn>/(/}wl,...,/[u;1). 

Proof. Let J C C(Ti,..., Tn) be the ideal of relations between the Xi,..., Xn. 

Then (/j"1,...,/!"1) C J and QH^M) = C(TU... ,Tn)/J by the lemma. Let 
-F G J" \ {0}. Expand F = Fd + F' with i^ 7^ 0 (weighted) homogeneous of degree d, 
d > 0, and degF7 < d. Then 

Fd(Xi,... ,Xn) = —F (Xi,... ,Xn) 

in quantum cohomology, for F is a relation. But the highest degree (deg = d) con- 
tribution to Fd(Xi,...,Xn) is just (Fd(Xi,... ,Xn)y. Its vanishing implies F^ G 
(/1,..., /*), i.e. F^ = <£>(/i,..., /jfe), y a polynomial in k variables. Thus 

with degF" < d, and we may write F = ^(/j^,... J1^) + F' - F", degF' - F" < 

d = degF. Proceeding by induction on the degree we finally see F G (/} ,.. •, f^ ), 

i.e. J = (/jwl,..., /f1) as claimed. D 
REMARK 2.3. 1) The proposition is constructive. The induction process shows 

that a particular coefficient of the perturbed relations /H may involve several GW- 
invariants. So the actual computation of /^ is not always easy, even if one knows 
a good deal about the GW-invariants of M. The converse problem of determining 
GW-invariants from the presentation can be dealt with by Grobner basis methods 
readily accessible to computer algebra programs, cf. Chapter 4. 

2) In the positive case ci(M) > 0 the contributions with R ^ 0 give rise to terms 
of lower degree by the dimension condition, so we were able to fix [u] and argue 
by considerations on the degree. Modulo convergence problems mentioned at the 
end of the previous chapter, Proposition 2.2 remains valid in the semi-positive case. 
Arguments involving the degree can be replaced by linear independence of terms e~A'4 

for various A in the algebra C{t}. 
Another approach, which works without any positivity condition, is to use formal 

power series over H2(M,Z) (cf. also [Pi]): Let 1ZC{M) C H be the monoid generated 
by classes of J-holomorphic rational curves. Since J is also a/-tame for u/ a symplectic 
form sufficiently close to u and uf(1ZC(M)) C M>o, 1ZC(M) is a strictly convex cone. 
Multiplication on the group N := Z |[7£C(M)] of formal power series over TIC(M) is 
thus well-defined. Then H*(M,Z) ®z N appears as natural domain of definition of 
quantum products for more general manifolds. Our arguments provide a presentation 
of the quantum cohomology ring as quotient of Q(Ti,..., Tn) 0Q iV by ordered poly- 
nomials with coefficients in JV. Note also that in the positive case QHfAM) may 
be viewed as homeomorphic image of #*(M, Z) ®z Z[RJC(M)] C H*(M, Z) ®Z N by 
sending R G H2(M,Z) to g-MW. □ 
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3. Grassmann manifolds. As is well-known (e.g. [Fu, Ex. 14.6.6]), the coho- 
mology ring (in fact even the Chow ring) of the Grassmann variety G(A;, n) of ft-planes 
in Cn has a presentation 

H*(G(fc, n), Q) = Q[ci,..., ck]/(sn-k+1,..., sn), 

with Ci corresponding to the Chern classes of the tautological A:-bundle S and Sj to 
its Segre classes viewed as polynomials in ci,..., c& via 

(1 + Ci + . . . + Ck)(l + Si + S2 + .■■) = 1> 

i.e. Sj = —Sj-iCi — ... — siCj-i — Cj. (*) 

Note that Sj is also the j-th Chern class of the universal quotient bundle Q, which has 
rank n — k, so Sj = 0 in H*(G(k,n)) for j > n — k. In fact, as a polynomial in Q, Sj 
lies in the relation ideal for j > n by the recursion formula (*). Under the canonical 
isomorphism $ : G(A;,n) c^ G(n — k,n), A *-+ (Cn/A)*, 5 corresponds to the dual of 
the universal quotient bundle Q* on G(n — fc,n) and Q to the dual of the tautological 
(n — A:)-bundle 5'. Thus Ci and Sj exchange (up to sign) their roles and one might as 
well write 

iT(G(fc, n), Q) = QJsi,..., sn_fc]/(cfc+1,..., cn), 

this time with c* polynomials in si,... ,sn_jfe (this presentation is actually better 
adapted to Schubert calculus, i.e. geometry, see below). These remarks are made to 
emphasize the symmetry between Cf and Sj. Note also that the generators all have 
even degree, so we need not worry about questions of sign. 

Schubert calculus (e.g. [Fu, § 14.7]) provides a basis of H*(G(k,n)) as Q-vector 
space (indeed a basis of integral homology/cohomology as Z-module), indexed by 
tuples (Ai,..., Afc), n — k > Ai > ... > A^ > 0, via 

{Ai,..., A*;} := det(sAi+j~i)i<ij<jfe ? 

i.e. by evaluating the Schur polynomial (S-function) associated to (Ai,..., A*) on the 
Segre classes of the tautological A:-bundle (SJ = 0 for j $ {0,..., n — k}). {Ai,..., A^} 
is (weighted) homogeneous of degree 2 ^ A^. The Chern respectively Segre classes are 
given by 

d = (-IHI,..., 1,0,..., 0}     ("1" i-times), 

5j = {i,0,...,0} 

(for Ci see [Fu, Lemma 14.5.1] or do an easy induction). The connection to classical 
Schubert calculus is given by Poincare-duality. In fact, {Ai,..., A^} fl [G(A;,n)] may 
be represented by the Schubert varieties 

fV(n — k + 1 — \i,... ,n — h + i — \i,... ,n — Xk). 

To define the latter one has to fix a flag V = (Vi,..., Vn), Vi C ... C Vn = Cn of 
linear subspaces of Cn, dim Vi = i. Then for (ai,..., a&), 0 < ai < ... < a^ < n 

nv(ai,...,aib) := {A G G(&,n) |dimAn Vai >i,l<i<k}. 

The homology class (ai,..., an) := [Qy^ai,..., a&)] is independent of the choice of 
flag. We write {A}v := (n - k + 1 - Ai,... ,n - k + i - Ai,... ,n - Xk) e H*(G(k,n)). 
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What is important for us is that [G(A;,n)] is Poincare-dual to {0,... ,0} = 1 (trivial) 
and that the class of a point [*] is Poincare-dual to {n — k,... ,n — k} = s^l_k = 
(—l)n~kc2~k (which makes sense as dimG(A;,n) = k(n — k), but is less trivial: What 

is the Poincare-dual of q ?).   The intersection of classes of complementary di- 
mension is especially easy: |A| + |//| = k(n - k), then ("duality theorem"): 

({A} A {/x}) [G] = {A} n Mv = {A}v • Mv - { 1    ,     if£=A*. 
0    ,     otherwise. 

with A* := (n — k — A^,... ,n — k — Ai). In particular, we get rjx^ = Sx^ for the 
intersection matrix. This ends our collection of facts concerning Grassmannians. 

We thus see that .ff1,1(G(A;,ra)) is spanned by the single class {1,0, ...,0} = 
si = — ci. The ample generator is si = ci(Q) for si = L*CI (C?p(Afc(0)(l)) where 
i : G(k,n) ^ r(AkCn) is the Pliicker embedding. Dually, H2{G(k,n),Z) is spanned 
by the class of a line {n — k,..., n — k, n — k — 1}V = (1,..., k — 1, k + 1) =: [L]. 
Since TG(fc}n) — Horn (5,(5) ~ S* 0 Q, as one easily verifies by using the standard 
local coordinates on G(k,n), ci(G(k,ri)) = rk(Q) • ci(5*) + rk(5*) • ci(Q) = n • si. 

So G(A;, n) is a Fano manifold of index n with Picard group infinite cyclic of rank 
one and it makes sense to talk about its quantum cohomology in the version presented 
in Chapter 1. The product in QH?-<(G(k,n)) reads 

U}AQ{3=       £       X;**(U}V,{fi}V,fe}v){?}e-H(,l)- (**) 
i?=d.[L],d>0   id 

Recall from Chapter 1 that $°.[L] ({A}v, {^}v, {z/}v) = 0 unless |A| + y + |z/| = 
A;(n — k) + ci(G(A:,n)) (d • [L]) = A;(n — k) 4- d • n. In calculating sn-k+i(ci, ...,Ck) 
(i.e. in QHrtJG(k, n)), Q the generators corresponding to Cj as in Chapter 2) we have 
|A| + |/i| < n, and "=" only in the case of sn. But |z/| < k(n — k) = dimG(ft,n), 
so we get no quantum contributions except in case of sn with \u\ = k(n — k) and 
d = 1. Thus writing c = (ci,...,c^) we obtain Sn-A:+i(c) = ... = 5n_i(c) = 0 in 
QHfaiGfan)) and 

Sn(c) = -CiSn-i(c) - ... - Cfc_iS„_jfe+i(c) - CfcSn_fc(c) 

= -6fca„-*(s)  -  -*fL]K,^-*,M)-e-M(L), 

where for the last equality we have used (**). By Proposition 2.2, to prove Theo- 
rem 0.1, we are left with 

PROPOSITION 3.1. f°L] {cXX-M) = (-!)*• 
For the proposition we first have to classify holomorphic curves homologous to [L] = 
(1,...,&-!,£; + l). 

LEMMA 3.2. LetC C G(A;,n) be a (rational) curve homologous to (1,..., k — l,k+ 
1). Then C is a Schubert variety fiy (1?..., fc — 1, A; +1), z.e. ^Ziere are linear subspaces 
U CW cCn,dimU = Jfc-1, dim W - fe + 1, urftt C = {A € G(ik,n) | 1/ C A C W}. 

Proof. Since si [C] = 1 by the duality theorem, deg L(C) = 1, so the image of C un- 
der the Pliicker embedding t : G(k, n) -¥ P(AA;Cn) is a linear P1. The image of G(A;, n) 
consists precisely of (rays of) decomposable vectors v\ A ... A vu = L((VI, ... ,Vk)) 6 
A^C2. Locally, the vectors vi,...,Vk may be chosen to vary smoothly with A G 
G(A:,n):  In fact, the standard (affine) coordinate neighbourhood of A G G(A;,n) is 
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Hom(A,Cn/A) with * : Hom(A,(Cn/A) -> G(fe,n), (^ ^ (v + ^(v) | v G A) (in par- 
ticular 0 G Horn (A, Cn /A) corresponds to A). Now fixing a basis vi,..., Vk of A, i o ^ 
may be represented (lifted to A^C1) by 

y) t-> {yi 4- ^(fi)) A ... A (vk -h ip{vk)) • 

Thus choosing A' e C sufficiently close to A G C and letting ei,..., e/ be a basis of 
A h A', completed by ej+i,..., e* and ej+1,..., e^ to a basis of A and A7 respectively, 
we have for t G C small 

ei A ... A efc + £ • ei A ... A e/ A ej+1 A ... A e'k = vi(i) A ... Avk(i) 

with vAO) = ei by construction. Taking — 
at 

yields 

ex A ... A ei A e'l+1 A ... A e'k = Vi (0) A 62 A ... A e^ + ... + ei A ... A e^-i A ^ (0). 

As one sees by expanding i^(0) in terms of a basis of Cn containing {ei,...,e&, 
ej+l5... ,6^} we may gather the linearly independent terms with and without e^ to 
form two equations. The left-hand side of the equation above belongs to the latter 
(A ^ A' => / < k), so we get 

ei A ... A ei A ej+1 A ... A e* = ei A ... A e&-i A (^(0) - A • ek) , 

where A G C is chosen in such a way that Vk (0) — A • e^ lies in the span of the basis 
vectors different from e^. By linear independence of wedge products of a basis of Cn 

this shows I = k — 1 and ef
k — Vk(0) — Ae^. In view of the linearity of L(C) we conclude 

*(C) = {[t-ex A... Aejfe-i AeJb+tx-ei A ... A ek-i A ek] \[t:u]e P1} , 

so C is the Schubert variety IV (1, •••■,& — 1, A; + 1) belonging to a flag V_ with Vk-i = 
(ei,...,eifc_i) =: C/ and 14+1 = (ei,... ,6^-1,6^,6^) =: W. D 

LEMMA 3.3. Let Ax = fiy^n- A;,n- fe + 1,.. .,n- 1) = {1,.. .,1}V = (-1)*^, 
A^ = fiv:2(l,n-fe+2,...,n) = {n-A:,0,...,0}v = s^.^ A3 = {*} = ^3(1,..., k) = 
{n — k,..., n — k}v, where V}, V?, V? are three transversal flags, i.e. dim V^ fl T^2 fl 
V^3 = max{0, i + j + k — 2n} for any i,j, k. 

Then there is exactly one rational curve C homologous to [L] and with Cn Ai ^ 0, 
2 = 1,2,3. Moreover, C • Ax = C • A2 = C • A3 = 1. 

The lemma can be proved by doing intersection theory on the flag manifold F(k — 
l,k 4- l;n) which parametrizes rational curves of minimal degree by the preceding 
lemma, and using the two obvious maps TT : F(A: — 1, k + l;n) —> G(k,n) and p : 
F{k - l,fe + l;n) -+ G(fc,n) (calculate (p,7r*[i4i]) • (p*7r*[A2]) • (P^TT*^])). This 
method might be appropriate for more general Ai, ^2,^-3, yet in our case an explicit 
linear algebra argument is simpler and even more enlightening. 

Proof. We need to find three ft-planes A1, A2, A3 and subspaces U,W C Cn, 
dim U = k - 1, dim W = A; + 1 with 

1. U C A1 n A2 n A3 C A1 + A2 4- A3 C W. 
2. dim^ny^^^^i^i,...,^. 
3. V? C A2. 
4. A3 = V^ 
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(1) says that A1, A2, A3 lie on the rational curve C defined by U and W according 
to Lemma 3.2, whereas (2)-(4) rephrase the conditions Aj = Ai fl C, i = 1,2,3. We 
now use transversality of the flags V}, V2, V_3: From (3), (4) and (1) we readily 
deduce W = Vj? + T^2, and (2) with i = k shows A1 C V^_1, so by (4) and (1) we get 
U = Vj* H l^Li. This choice of I/, W implies A1 = WflT^.i, A2 = fZ + T^2, A3 = T^3. 
Conversely, these A1, A2, A3 fulfill (l)-(4). D 

Proof of Proposition 3.1. Let / be the integrable complex structure on G(A;,n). 
Consider the evaluation map 

ev :ExM[L](P
1,/,0) —>G(ife,n) xG(ifc,n) xG(Jfc,n). 

Since the tangent bundle of G(A;, n) is generated by global sections, so is iV£,/G(jfe,n) 
for any line L. Hence i?1(ArL/G(A;,n) = 0 for any such line and .M^P1,/, 0) = 
Horn [£] (P1, M) is a manifold of expected dimension n + fc(n — fc) (in fact a PGL(2)- 
bundle over F{k — l,k + l;n)). By the preceding lemma the preimage under ev 
of Ai x A2 x As for any Ai belonging to transversal flags consists of exactly one 
/ € ^[LjC^j-fjO). But letting the transversal flags vary, the variation of ev(/) D 
Ai x A2 x A3 sweeps out the normal directions of Ai x A2 x A3 in G(A:, n)3 as follows 
explicitely from the proof of Lemma 3.3. □ 

This finishes the proof of Theorem 0.1. 

REMARK 3.4. (ON ALGEBRAICITY) While we use the symplectic definition of 
GW-invariants here, our arguments are essentially algebraic. In fact, the computation 
of the invariant ^fWcjjf, s^_k, [*]) is done by ordinary intersection theory on a moduli 
space of algebraic lines in G(k,n). And in a joint work of the second named author 
with J. Li it is shown by purely algebraic methods that for homogeneous varieties the 
"naive", algebraic, genus zero invariants, defined by intersection theory on algebraic 
moduli spaces, also obey associativity [LiTi] (and coincide with the symplectic GW- 
invariants). So these symplectic GW-invariants are "enumerative" in the sense that 
they count numbers of actual holomorphic curves. 

For the Grassmannians analogous results have been given independently by [Bel]. 
In this paper a different compactification of Hom(S, G(k,n)) is used (by a quot 
scheme). The author also shows enumerativeness of the invariants for curves of higher 
genus and sufficiently high degree, and the induction formula for the genus (Proposi- 
tion 4.4 below). 

More recently, an enumerative theory has been worked out by Behrend and Manin 
for genus zero invariants and so-called convex projective manifolds by using Kontse- 
vich's very pretty concept of "stable maps" [BeMa]. A smooth variety M is defined to 
be convex if ^(P^^TM) = 0 for any tp € Hom(P1,M). This includes homogeneous 
varieties for these have globally generated tangent bundles. 

In all these examples Hom(P1,M) is smooth of the expected dimension. The 
boundary being of lower dimension, intersection theory on any compactification (or 
of the image of the moduli space in Ms) gives the same result. D 

4. Formulae of Vafa-Intriligator type. The main results of [RuTi] show how 
to compute higher GW-invariants (i.e. with more than three entries or for higher 
genus Riemann surfaces) from the genus 0 three-point functions inductively. Namely, 
for g > 0 

^](51,...,^)-^^$f-1(51,...,^,^,^), 
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(rjij) the intersection matrix with respect to a basis {Ai} of H*(M,Q). More invari- 
antly, the right-hand side is the trace with respect to rj of the bilinear form 

H*(M,Q xH*(M,C) -»C     (B',B")^$9
[-]

1(BU...,BS,B',B"). 

Secondly, for g — 0 and 1 < r < s — 1 (otherwise trivial) we have the composition law 

^](B1,...,Bs) = YJl
iJ$U(Bi,-.-,Br,Ai)-$l](Aj,Br+1,...,Bs), 

a trace with respect to 77 as well .For s = 4 and r = 2 this equation states the 
associativity of quantum products. Our goal in this section is to give a closed formula 
for higher invariants in terms of the relations ff*,..., /^ of the quantum cohomology 
ring. 

Putting all $? 1 together for different s we get a C-linear map 

(  )g:C(X1,...Xn)->C    Xr-..^-^^^,...,^,...,^,...,^), 

the Poincare-dual X^ of Xi occurring z/^-times. But from the composition law, letting 
ai denote the Poincare-dual of Ai, 

X? AQ...AQX^=J2 Vij *U {X?,...,X?,...,XX, Ai) a, , 
ij 

so (X?1 .. .X^)0 = ^(X^ ... ,X?,... ,XX, [M]) is nothing but the coefficient of 

the class [Q] of the normalized volume form in X"1 AQ ... AQ X^n. That is, ( )o 
factorizes in the following way: 

C(X1 ,...,Xn)-^ C(X1,..., Xn)/(f["],..., /M) ~ ff^j (M) -^ ^2"(M, C), 

when H2n(M, C) is identified with C by sending [fi] to 1. In case n = k and the 
generators have even degree, i.e. H*(M,C) is a (commutative) complete intersection 
ring, one can use higher dimensional residues to express this map more explicitely (we 
refer the reader to [GrHa] and [Ts] for the general facts on residues to be used): 

Recall that the residue in a G C of F G C[Xi ,...,Xk] with respect to a polynomial 
mapping g = (#1,... ,#&) : C^ -> C^ with <7-1(0) finite is defined by 

1       f        F 
res9 (a; F) := ,   /     dXi ... dXk , 

with F^ = {x G U(a) \ \gi(x)\ = e}, U{a) a neighbourhood of a with #_1(0) fl 
U(a) — {a} and e so small that Te

a lies relatively compact in U{a). T£
a is smooth 

for almost all e by Sard's Theorem and has a canonical orientation by the fc-form 
d(arg gi) A... A <i(arg gu) \ Te

a. (This local residue of course makes sense for holomorphic 
g and F G Oa, but the polynomial case, to which the general case may easily be 
reduced, is sufficient for our purposes). Note that the hypothesis og ^~1(0) being 
finite is equivalent to the saying that the ring C[Xi,..., Xk]/(gi, • • •, gk) is Artinian, 
i.e. finite dimensional as vector space over C. We define the total residue 

ReSg(F) :=     ^    reSp(a;F), 
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which is also known as Grothendieck residue symbol ( i 
F    ) in the context of duality 

theory in algebraic geometry [Ha]. Let J — det f^:) be the Jacobian of g. For 

regular values y of g 

Ress_1/(JF)=     Y,    (T) W-to (f)(0)- 

Therefore tr(F/J) extends holomorphically to a neighbourhood of 0 (the extension 
will be denoted tr(F/J) as well) and 

Res5(F)=tr (f)(0). 

One abstract feature in our setting is that we have weights di associated to Xi and 
that our relations ff* form a Grobner basis of the relation ideal with respect to these 
weights, i.e. 

(In/M,...,In/M) = (/1,...,A)=In(/M,...)/H), 

where "In" means taking initial forms with respect to the weight order. This is trivial 
in our case since we started with the homogeneous generators /1 ,...,/& of the relation 
ideal in a presentation of H*(M,C). In such situations one can describe the residue 
map algebraically as follows: 

PROPOSITION 4.1. Let R - G[Xi,...,Xk\l{gi,...,gk) be Artinian with {gi} 
a Grobner basis of the relation ideal with respect to weights di of X^. Put N :— 
Zi^di-Eidi, R<N := {FeC[Xu...,Xk] I degF<N}'/(g1,...,gk) and J = 

det(|^).  Then 

R = R<N 0 C • J, 

and the total residue map ReSg : C[Xi,..., Xk] -> C factorizes via the projection onto 
the second factor as follows 

where the last map sends J to dime R. 
Proof To check the normalization we observe 

ReSg(J)  =   (tr5l)(0)  =  degree of g over 0  =  dimc-R- 

The last equality is generally true by flatness if the covering space is Cohen-Macaulay, 
cf. eg. [Fi]. Next, it is well known that the residue vanishes on elements of (#1,..., gk). 
The claim thus reduces to ker(ReSp)/(^i,... ,#&) = R<N- 

If deg F < N then F dXi ... dXk/gi - - gk extends to a rational differential form 
<p on the weighted projective space V = P(i>dlj...,dfc) with polar divisor Di +...-f Dk £ 
Div(y), Di the natural extension of the divisor (gi) to V. The point of course is that 
the divisor at infinity V \ Ck is not a polar divisor of (p. We claim \Di| fl... fl \Dk\ C 
C*. In fact, the restriction of the homogenization of gi to V \ Ck ~ ^(d!,...^) is 
just Ingi and V(Ingi,... ,In^) = {0} G C*. The latter follows because otherwise 
dimSpecC[Xi,..., Xkl/ilngi,...,In^) > 0 by homogeneity. But from the Grobner 
basis property we have 

dime C[Xi,..., Xfc]/(In#i,...,In^)  =  dime C[Xi,..., Xk]/(gi,. •••>gk)- 
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We may thus desingularize V (at infinity) without violating the discreteness of |JDI| fl 
... H |jDfe|. We keep the notations for the pulled-back objects. Now the global residue 
theorem tells that on the compact manifold V the sum of the local residues of ip 
with respect to Di,...,Dk equals zero (the local residue reSp(a;F) makes sense on 
manifolds by noting that it depends only on the associated rational differential form 
FdXi... dXk/gi.. .gk and the divisors (pi),..., (gk))- This proves Res^(F) = 0 in 
case degF < iV. 

The second case is F homogeneous of degree > iV. We show F G (Inpi,..., In^). 
This is an easy generalization of a theorem of Macaulay (cf. e.g. [Ts]) to the weighted 
situation. Namely, let Q be any homogeneous polynomial and set P = F • G. With 
Q := In(gi) • • • In(gk) we have 

?rdX1...dXk = (degP - degQ + Yldi)~ld(7 = (degP - iV)"1^ 
Q 

with 

p   *   
a = - ^(-l)^1^ • Xj dX1... dXj ...dXk, 

Q 3=1 

where means that this entry is to be left out. This is a simple check using the 
weighted Euler formula ^. djXj-j^- = deg(iJ) • P, H weighted homogeneous (same 
proof as usual). Thus 

Resin5(F-G) = ^ /   d(J = 0 

for all (homogeneous) G G €[Xi,... ,-X"jfe]. But this implies F G (Inpi,... ,Ingk) by 
the "duality theorem", cf. [Ts] (this is Poincare duality in the case of cohomology 
rings). Modulo {gi,...,gk) this means that we may reduce F to lower degree. So 
proceeding by induction N turns out to be "top-degree" in R in that all elements of 
R can be represented by polynomials of degree < N. 

What remains to be checked is that for F homogeneous of degree N, either 
Res^(F) ^ 0 or F/(gi,... ,gk) G R<N. In fact, if Res^(F) = 0 then Resin{g)(F • G) = 
0 V G G C[Xi,..., Xk], because for G homogeneous of positive degree this has just 
been shown. So again F G (Inpi,..., In (fa), i.e. modulo (pi,..., pjfe), F may be repre- 
sented by a polynomial of degree < N. D 

REMARK 4.2. The decomposition R = R<N 0 (J) is not canonical but rather 
depends on the particular presentation of R. This may be seen either in elementary 
terms from the transformation formula for residues or as manifestation of the choice 
of an isomorphism Exty(Oz^v) — H0(V, Oz) in the duality morphism 

Extkv(Oz,nk
v) x H\V,Oz) —> c 

induced by the global residue. For quantum cohomology rings and weightings 
coming from cohomology, however, i^<iv = ®d<NHd(M,C), N = dimcM and 
(Y) = H2N(M, C), so the decomposition has an invariant meaning in this case. □ 

In the quantum cohomology ring the top-degree class C • J is thus spanned 
by the class [fl] of the volume form. Let F[Q] be a polynomial of degree iV rep- 

resenting [fi] (modulo (/]   ) or modulo (/$), this will yield the same result), and 
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set c  =   l/Res^[u,](i7|Q]).    By the interpretation of (F)o  as coefficient of [Q] of 

F(Xi,...,Xk) G QHTAM) we conclude (for H*(M,C) a complete intersection) 

<F)o = c • Res/[w, {F) = c • tr/M (f) (0). 

To incorporate the higher genus case we prove 
LEMMA 4.3. For notations as in Proposition 4-1 and F G C[Xi,..., Xk] let BF he 

the bilinear form RxR -» C, (a, ft) ^ Resg(F'Ga-G(3) (with Ga, Gp G C[Xi,.. .,Xk] 
representing a, (3 — this is well-defined), rj = Bi the "intersection form".  Then 

tijjBF = Resg(F - J). 

Proof. We give a basis-free, geometric proof. By definition tx^Bp is the trace 
of the endomorphism HF ' R —> R of multiplication by (the class of) F. Putting 
Z — Speci? we have R = (Bzeg-i(o)Oz,z' For z G ^~1(0), F — F(z) is nilpotent in 
Oz,z (for it has value 0 in z), so /fF-F(2)|e>z,z has trace 0 and 

ti(fiF\Oz,z) - ti(fjiF-F(z)\Oz,z) + tT(iAF(z)\Oz,z) = F(z) - dime Oz,z • 

Furthermore, dimcOz,z = degz(g), the local mapping degree of g at z, so summing 
up we get 

tTT1BF=     Yl    degz(g)'F(z)=tTg(F), 
zeg-Ho) 

which is nothing but Res^(F • J) as claimed. □ 

In view of the reduction formula to lower genus stated above we conclude a math- 
ematical version of Witten's "handle gluing formula" in topological QFT [Wi2]. 

PROPOSITION 4.4. Let H*(M,Q) = Q[Xi,.. .,Xk]/(fu.. .,/*) (the commuta- 
tive complete intersection case) and ff*  the induced relations in QH?AM)  as in 

Proposition 2.2. Put J = det (-^r).  Then 

(F)g = (J.F)g-1 

holds for all F G C[Xi,..., Xk]. D 
In other words, multiplication by J acts as "attaching a handle" to our Riemann 
surface. 

We summarize our considerations in the following main result of the present 
chapter: 

THEOREM 4.5. Assumptions as in the preceding proposition then for all F G 
C[Xi,..., Xk] the following holds 

(F)g = c • Res/M (J9 • F) = c •       lim      tr/M (J^"1 • F) (y), 

y regular 
value of fiu* 

with c = l/Res^[u,](F[Q]); FJQJ a polynomial representing the class [ft] G QH^(M) of 
the normalized volume form. U 
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We emphasize that for g > 0 or 0 G Ck a regular value of /M the right-hand side 
has the form ^2vciuF(yj/) with <7-1(0) = {y^} and constants a^ independent of F\ 

Note also that 0 is a regular value of /H iff dime Oz,z = 1 for all z G (/M)"1 (0), 

Z = SpecC[Xi,..., Xk]/^,..., /M), which is if and only if 

dimcir(M,C) =j|(/M)"1(0) 

(">" always). 

We claim that this is the case for G(k,n): We have a basis of Schubert classes 
{Ai,..., Xk} parametrized by sequences n — k > Ai > ... > A^ > 0. The latter are 
in 1-1 correspondence with subsets {A& -f 1, A^-i + 2,..., Ai + k} of {1,..., n}, so 
dimctf*(G(A;,n),C) - (*)■ 

To find (2) distinct elements in (f^) (0), we use a description of the coho- 
mology ring coming from the study of the corresponding Landau-Ginzburg model in 
physics [Val]: There is a polynomial W in the Xi ("Landau-Ginzburg potential") so 
that in the notations of Theorem 0.1 

dW 

and then /|a;]  =  -^- with W^  := W + (-i)ke-["m . x^   w has a simple 

description in terms of Chern roots, i.e. after composition with the A;!-fold branched 
covering E : C^ —> Ck 

S(A)  -  (-a1(A)5a2(A)...,(-l)^(A)), 

ai the elementary symmetric polynomials: 

Wox = —^TE^1- n + 1*-'   l 
i 

Thus 

*     / \n+l \ 

WrHoE = -^r^i-I-(-l)*e-HW.AiJ . 

This all is an easy formal consequence of the algebraic relations between Chern and 
Segre classes on one side and Chern roots on the other, cf. [BDW] for a mathematical 
account. 

Now in a non-degenerate value S(A) of £, WM is degenerate iff 

dXi     (A)-0 

for all i. Non-degeneracy of E in A is equivalent to Xi ^ Xj for i / j. Solving the 
equation means 

A? = (-IJV-MW,    i = l,...,]fe. 
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This system of equations has exactly n- (n — 1) - • • (n-k + l) solutions with pairwise 
distinct A;. The fiber of E over the regular value E(A) consists of the fc! permutations 
of {Ai,...,A&}, so we get precisely (£) distinct elements of (/^)_1(0), as wanted. 
Applying the last theorem we obtain 

THEOREM 4.6. (Formula of Vafa and Intriligator) (Notations as in Theo- 
rem 0.1) For any [u] £ if1'1(G(A:,n)) the setC^ of critical points ofW^ is finite and 
all of these are non-degenerate. Moreover, for any F E C[Xi,..., Xk] the following 
formula for the genus g GW-invariants of G(k,n) holds: 

Proof. What is left is a check of the normalization. This amounts to calculate the 
residue of [ft] = (-l)n-kX^-k with respect to /K We set a = (-l^eHW. Using 
standard properties of residues one gets 

Res/M ((-ir-kXrk) = ^Res^.jf[xrk UiXi - A,)2) , 

where 

Xn_a-(Xn_a Xn , _      d(W^ o S)   _ ^       OS A       a-(A!     a,...,A,     a)- ^ -    /     o —. 

In fact, X%~k o E(A) = (Il^i)n~k, Yl^ji^i - ^j)2 is the squared Jacobian of E and 
fc! is the degree of E. Since terms of degree less than k(n — 1) modulo (AJ1 — a) have 
vanishing residue (Proposition 4.1) only the term Yli=i \~1 from the expansion of 
TliKji^i ~ A?')2 contributes. The coefficient of this term is (—l)*^-1)/2 • k\ as one sees 
by writing Yli<j(^i ~ A?')2 as determinant of a product of a Vandermonde-matrix with 
its transposed. What is left is a multiple of the Jacobian nk YiK'1 0^ An — Q, the 
residue of which is known to be the degree nk of An — a. Putting everything together 
we get the claimed normalization. D 
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