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DIFFUSIVE LIMIT OF LATTICE GAS WITH MIXING
CONDITIONS*

S.R.S. VARADHANT AND HORNG-TZER YAU!

Abstract. We prove, under certain mixing conditions, that the hydrodynamical limit of a
stochastic lattice gas on the cubic lattice Z ¢ is governed by a nonlinear diffusion equation. Following
[V1], we characterize the diffusion coefficient by a variational formula, which is equivalent to the
Green-Kubo formula. The fluctuation-dissipation equation is established rigorously as an important
step of the proof. Our mixing conditions are implied by the Dobrushin-Shlosman mixing conditions
which are always valid at high temperatures.

1. Introduction. Classical or Newtonian mechanics is described by a system
of ordinary differential equations involving usually a two-body interaction potential.
When the number of particles involved is large, rather than describe the motion of ev-
ery particle, one usually tries to describe the collective behavior of these particles. The
typical formulation involves the consideration of local averages of conserved quantities
like density, average velocity, and energy. Since these local averages of conserved quan-
tities tend to vary slowly in time, under some suitable space-time rescaling, referred
to as hydrodynamical scaling, we expect to obtain a closed system of equations for
these conserved quantities, as functions of macroscopic space and time. While such a
transition is reasonably well understood from a physical point of view, these problems
appear to be far beyond the current available methods for a rigorous mathematical
treatment.

One way to make the problem tractable is to introduce some noise or randomness
into the dynamics and in this way we obtain stochastic interacting particle systems.
There are many interesting models that have been studied successfully, and we wish
to mention two of them. The first one is a Hamiltonian system perturbed by a weak
noise considered in [OVY], that leads to the Euler equation under hydrodynamical
scaling. The scaling there is the hyperbolic scaling ¢ — ex and t — e~1¢. The second
model is one of interacting Brownian motions. Here the dynamics is controlled by
the infinitesimal generator for the Markovian motion of these interacting Brownian
particles. The infinitesimal generator involves a second order term which is the Laplace
operator defining the noise, perturbed by a drift term or a first order term that comes
from two particle interactions like in the Hamiltonian case. The similarity extends
further in that the invariant measures are Gibbs measures very much like in the
Hamiltonian case.

The natural scaling here is however the diffusive scaling z — ez, t — =2t and the
limiting equation is expected to be a nonlinear diffusion equation. This is rigorously
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established in [V2] for dimension d = 1. For dimension d > 2 and away from phase
transition, one can prove it by applying the relative entropy argument of [Y1].

If we replace the Brownian motions by random walks, we obtain lattice gas mod-
els. The invariant measures are thus Gibbs states on Z ¢. One would expect that
the hydrodynamical limit should be much easier to establish for lattice gases than
for interacting Brownian motions. This turns out to be wrong. The main reason is
that while the interacting Brownian motions model satisfies the ‘gradient condition’,
lattice gas models in general do not. We will now explain briefly what the gradient
condition means and why it is important in establishing hydrodynamical limits under
diffusive scaling. To keep the notation simple let us take d = 1.

Denote by n = (z)zez with 17z € {0,1} a typical configuration of of particles in
Z with n, denoting the number of particles at . From the dynamics of our lattice
gas model, we can write down the microscopic conservation law

d”]z = [wz—l,m - wz,z+1]dt + sz(t)

where wg g1 1s the current along the bond (z,z + 1) and dM; is a martingale term
due to the noise. Because our goal is to derive a diffusive limit, it is most convenient
if the current is itself a gradient. In other words, wz z+1(n) = h(72n) — h(7z+17) for
some local function h; here 7, is the shift by z. This is the condition that is called
the ‘gradient condition’[KLS]. An analogous condition is satisfied in the interacting
Brownian motions model but the condition is in general not satisfied for lattice gas
models. Let us take a quick look at the role played by the ‘gradient condition’. If we
want to study the change of density as a function of space and time under diffusive
scaling we need to study

d= ZJ( )ne(N2t) = ZJ’ ) We z41(n)dt + dMp (t) (1.1)

where J is a test function. If the ‘gradient condition’ holds we can simplify (1.1) to
get

d— Z J(Z)ns(N2t) ~ < Z J"(— h(7zn)dt + dMn (t) (1.2)

If we believe in the validity of a local averaging principle, then the term h(7,;7) can
be replaced by h(p(t,z)), where h(p) is the expected value of h(-) in the Gibbs state
with density p. The martingale term becomes negligible for large N and we end up
with the nonlinear diffusion equation

% ot 2)n = (ot 2o 1, (13)

It is not clear how we would ever arrive at an equation like (1.3) without the gradient
condition.

One way to bypass the gradient condition is to obtain a fluctuation-dissipation
equation. A difficult step for us will be to establish the relation

wo,1(n) = D(p)(mo —m) + Lg (1.4)

where £ is the generator of the dynamics and Lg represents fluctuation in a certain
sense. One then obtains a diffusive limit

% _ D(o(t,2))p 1,2 (L5)
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This step, while unnecessary for gradient models, is the key step for nongradient
models.

A curious fact concerning lattice gases is the difficulty of constructing gradient
models [S]. Except when the dimension d is 1 or when the Gibbs measures degenerate
into product measures, we are not aware of any gradient lattice gas models. If, instead
of the lattice gas models, we consider Ginzburg-Laudau models, there are plenty of
examples satisfying the gradient condition. The hydrodynamical limit in this case is
established in [R], following the approach of [GPV], and is valid even in the phase
transition region. On the other hand, one can easily construct nongradient versions
of Ginzburg-Laudau models or interacting Brownian motions. Indeed, the hydrody-
namical limit for a nongradient Ginzburg-Landau model at infinite temperature is
established by [V1] where a basic outline for the analysis of nongradient models is
first given. It is then extended to lattice gases at infinite temperature in [Q1].

In this approach, one requires an accurate estimate on the spectral gap of the
generator in a finite volume. This estimate is obtained in [LY] under certain mixing
assumptions, summarized as assumptions A.1-A.3 in [LY]. These assumptions are
imposed on the canonical Gibbs states and are hard to check. They are replaced in
[Y2] by some mixing conditions on the grand canonical Gibbs states, to be stated as
assumption (A) in Section 2. Indeed, in that paper a much stronger inequality, the
logarithmic Sobolev inequality, is obtained. The assumption A is the usual Dobrushin-
Shlosman mixing condition and holds, e.g., for ferromagnetic Ising models up to the
critical point [MOS, N] in dimension d = 2 and at sufficiently high temperatures for
general lattice gas models.

Even with an accurate estimate on the spectral gap, the hydrodynamical limit
for lattice gases at a finite temperature is by no means a straightforward extension of
the earlier work. This is because one has to solve the equation (1.4) and the generator
L exhibits the effect of interaction between particles, an effect that is not present in
any of the earlier work on lattice gas models that deal exclusively with the infinite
temperature case where the Gibbs measures are product measures. Besides the ap-
proach of [V1] and [Q], we also find that the formulation of in [EMY, LOY1], designed
mainly for nonreversible nongradient systems, provides a convenient framework for
this paper.

Two problems remain outstanding. One is establishing hydrodynamical limits
of lattice gases without assuming mixing conditions; the other is hydrodynamical
limit for nongradient models in continuum, namely, nongradient interacting Brownian
motions. For the second problem, one has to derive accurate estimates of spectral gap
for interacting Brownian motions in a finite volume. It seems that the approach of
[LY, Y2] might be useful here. A more ambitious goal is to establish hydrodynamical
limit without using any estimates on the spectral gap. We are not aware of any such
approach that works for nongradient models.

This paper is organized as follows: In Section 2 we state the main result. An
outline of proof is given in Section 3. The tightness is proved in Section 4, and an
energy estimate is obtained in Section 5. The two-block estimate is proved in Section 6,
and an eigenvalue estimate is in Section 7. In Section 8 and 9 we solve the fluctuation-
dissipation equation (1.4) in a precise sense. Finally, we prove some mixing conditions
needed in this paper in Section 10.

2. Statement of the main result. Let A = A, be a cube of width 2L + 1 in
Z4 and let 1 = (9z)zen, denote the configuration of a lattice gas where for each z,
ne € {0,1}. ny = 1 if there is a particle at z and 7, = 0 means that the site z is
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empty. For any two points in Z4 we define two notions of distance:

d
lz -yl =) lzi—wil; le—yl:= Jmax |zi —yi (2.1)
2 max

By the boundary A of A we shall mean the complement A¢ of A although in practice
we need only be concerned with those sites in A¢ that are within a certain fixed distance
(the range of the interaction) of A. A boundary condition w is a configuration on A
and 7 U w is a configuration on AU JA. Let F(n) be a local function depending on
the configuration in some finite box of width 2R + 1. Formally the Hamiltonian H is
given by

H(n) =) _ Fu(n) (2.2)

Let us recall that F;(n) = F(7zn) where 7, is the translation (729)y = 7)z+y. The
energy H,, of a configuration 7 on A with boundary condition w is given by

Hy(n) =) F:(nUuw). (2.3)

TEA

We note that H,(.) depends on w only through the configuration at sites in A that
are with in a distance 2R of A. We denote by pa ,,» the finite volume Gibbs measure
on A with Hamiltonian H, boundary condition w and chemical potential A, namely

prwa() = Z5 %, yexp[—Ho(n) + A D 7], (2.4)
zEA

Here Zj ,,» is the normalization constant (the partition function)

Zrwp =D exp[=Ho(m) + A ) _ 7o)
n

€A

so that pa . is a probability measure on the space of configurations on A. For
simplicity, we assume that the inverse temperature § has been absorbed into F. When
A = 0 we will drop the suffix A.

Recall that the pressure p()\) of the lattice gas is defined by

p(A) = lim |A|=!log Zpw,x- (2.5)

Elementary theory of thermodynamics assures us that p(A) exists and is independent
of the choice of boundary condition w. We also have the usual definition of the free
energy h(m), as the Legendre transform of p :

h(m) = Sl;p[/\m = p(N)]. (2.6)

It is well known that the infinite volume Gibbs measures that are limits of the finite
volume ones given by (2.4) exist, are characterized by the DLR equations, and in
general may not be unique when there are phase transitions. Our resells are restricted
to the single-phase region. Indeed, we need certain mixing conditions.

&
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Assumption A. let pa ., x denote a Gibbs measure on A with boundary condition w
and chemical potential A\. Denote the corresponding density by p = p(L, A, w). Then
there are constants ;1,2 and 3 > R+ 1 such that for any two functions f and g
with supports Sy and Sy we have

|ErwALf; 9]l € mp(1 = p) exp[—2 dist(Sy, So)]ll flloollgll oo (2.7)

provided that the diameters of Sy and S, are bounded by y3. Note that the constants
are independent of the size of the cube A, the chemical potential and the boundary
condition.

This exponential mixing condition is stronger than what we need in this paper
and the exponential decay can be replaced by a weaker decay property. Since for most
Gibbs measures, one usually obtains mixing conditions via the Dobrushin uniqueness
condition or the cluster expansions that automatically yield exponential estimates, we
will not attempt to find the optimal mixing condition.

We also need the concept of canonical Gibbs states. Let p be a fixed positive
number. Then the canonical Gibbs state with total density p and boundary condition
w is the conditional probability of ua, . given that the total number of particles is
equal to L¢p, namely, 7j := L=4 3 ., 7 = p. Certainly, p has to be a rational number
of some special form for the total number of particles to be an integer. One can avoid
trouble by requiring that the total number of particles equal [L2p] rather than Ldp.
Symbolically, we write the canonical measure as

d,UA,w,p = dﬂA,uL-’:p (28)

Note that since 7 is fixed we can replace pa,, by pa,w,x with any A. Define the
canonical partition function

Z§ .= Y exp[-Hru(m)], (2.9)

n:=p

where Hp = Hpwp. It should be emphasized that the mixing condition A by
itself does not imply any mixing property for the canonical Gibbs measures. It is
proved in [Y2] that the mixing condition A does imply some mixing property, though
not as strong, for the canonical Gibbs measure. More importantly, exact estimate
on the spectral gap as well as a Logarithmic Sobolev inequality are obtained under
assumption A.

Denote by b an unoriented bond (z,y) € A X A with |z — y|; = 1. All bonds
in this paper are unoriented unless otherwise specified. We have limited ourselves to
nearest neighbor bonds mainly to simplify notation. As long as bonds with a fixed
finite bound on length are used, the proofs will remain the same. Let S, be defined
by

(Sem)z == (M) = (n®¥) =ny fz=2
=n; fz=y . (2.10)
=71, otherwise

and define Ty by
Tof(m) = f(n*) — f(n). (2.11)
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If b happens to be the bond (0, e) for some e > 0 we will denote T} by T.. Define L,
to be the symmetric generator defined by

~ [ 1 Lgdn=3 [ estn) [Tos ) 1 Tuglor) 1o (212)

and £ = ), L. The rate cy(n) is assumed to be a local function that is translation
invariant i.e. ¢, 5(727) = cp(n) and bounded away from zero and infinity, i.e., 0 < 6 <
¢p(n) < 6—1 < oo for some constant §. Explicitly, £p is given by

Lyf = A(b,n)Tsf(n), (2.13)

where

A(b,n) = (1/2) [ exp {(Ts logcs)(n) — (ToH)(n)} + cs(n) ] (2.14)

When b = (z,y) we sometimes use the notation A(z,y,n) instead of A(b,n). The
operator £ can serve as the infinitesimal generator of a Markov process 7(t) of config-
urations changing in time. We could consider either the infinite lattice Z ¢, a finite
box A with boundary conditions w or a periodic lattice of size L. In all these cases the
Markov Process will be reversible with respect to the corresponding Gibbs measure
(in the infinite volume situation, with respect to any measure that satisfies the DLR
equations ). We shall for the present be concerned mainly with the periodic case with
L ~ ¢~1 and we denote by p. the corresponding Gibbs measure with A = 0. We will
speed time up by a factor of e=2 so that the generator is e~2L. Let us start the system
initially with a distribution having density f§ with respect to p.. We denote by pl
the corresponding Markov Process with generator e=2£ and initial distribution f§due
on the space of trajectories n(-) in a fixed macroscopic time interval [0, T].

If ff is the density of the system at time ¢ relative to the measure p.. Then ff
satisfies the forward equation

Buff = e2Lf5. (2.15)

We have, of course, already rescaled time with a diffusive rescaling ¢t — €~2¢ and by
considering the evolution of empirical measure defined by

ve(d,t) =2 5(6 — ez)n-(t), (2.16)

zEA

where §€'T4, we are rescaling space by a factor of € . Because n € {0, 1}, the relation
(2.16) induces (from P:) a distribution, Qef", of v¢(-,-) on the Skorohod space X =
D([0,T] = M1[T4]), where M;(T?) is the space of nonnegative measures on T¢ with
total mass bounded by 1. The space M;(T4) is compact under the topology of weak
convergence. We now describe the hydrodynamical limit. As € — 0, one expects
the distribution Q£° of empirical measures to converge to Om(6,.)d9> the Dirac measure
concentrated on the trajectory m(0, -) df where m(¢, 6) satisfies the following nonlinear
diffusion equation:

am(@,t) =Vo(D(m(0,t)Vem(8,t) ) ; m(6,0) =me(9) (2.17)

Here mq(6) is the initial density determined by the initial distribution f§du. and
D(m) is the diffusion (matrix) coefficient given by the Green-Kubo formula to be
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described later. Clearly, in order for this to make sense, we need at least that the
initial distribution f§dpu. satisfies

lim sup P H / Ve (8,0)7(8)d8 — / mo(8)J(6)d8 l > 5] 0 (218)

e—0

for any smooth test function J(-) on T<¢ and § > 0. We shall make this assumption for
the rest of this paper. Since it is the only condition we need on the initial distribution,
we may as well have deterministic initial conditions and suppose that at 0 we start
from a nonrandom configuration £&5. We shall denote by P* the distribution of the
process with this initial condition and the corresponding distribution on X by Q5.
When no confusion arises, we shall drop the label . The condition (2.18) takes the
form

lim sup
e—=0

% > J(%) & — /mo(G)J(G)dG ‘ =0 (2.19)

The Green-Kubo formula for the diffusion coefficient can be written in several
ways [S]. Let 7, denote the translation by z, namely,

(rzm)(y) =n(y — ), and 729(n) = g(7=n). (2.20)

Denote by pm the infinite volume Gibbs state with density m and x(m) its compress-
ibility defined by

x(m)= " E#n[no;n (2.21)
z€Z4

here the truncated correlation is defined by

Eunm [ f; g]=Evn[fg]— Ebn|[f]Erm[g]

The following characterization is due to [V1]. For all vector a we have

< a,D(m)a>=

2x(m) II;f Exm Z Ce (77) aeVeno — T Z Tz9
le|=1,e>0 zeZ4
(2.22)
where the infimum is over all local functions g, T is defined in (2.11) and V. is defined
by
(Ve)hy = hgqe — ha (2.23)

for any function on Z 4. Since g is local, Te ), cz ¢ Teg makes sense even though the
infinite sum ) .4 7zg does not. Since the right hand side of (2.22) is a quadratic
expression in the a and g, and the infimum is taken over g belonging to the linear
subspace of all local functions, the left hand side is quadratic in @ and defines a
symmetric nonnegative definite matrix D(m) for each m. Moreover because (2.22)
defines the diffusion coefficient as an infimum we get upper bounds for D(m). It is
much harder to obtain a lower bound for the diffusion coefficient. Such a bound is
obtained in [SY] which states that in matrix sense

D(m) > Clx(m)]=1 (2.24)
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for some constant depending on the Hamiltonian. We remark that this bound is
independent of phase transition and does not require any mixing conditions. However,
we do need the mixing conditions to establish rigorously that the hydrodynamic limit
can be taken to get a nonlinear diffusion equation with coefficients given by (2.22).

The uniqueness of (2.17) is quite subtle. If the diffusion coefficient is a scalar,
then the uniqueness follows easily. Another situation where uniqueness holds is when
the diffusion coefficient is Lipshitz continuous in m and satisfies uniform ellipticity
bounds. Under this assumption, the general theory guarantees the existence of Lip-
shitz continuous solutions. Suppose v is such a solution and u is a weak solution
satisfying an energy estimate. Then we have

) /(u _0)2(8)d0 = — / V(v - v)(6) [ D(w)Vu — D(w)Vv | (6)d8
_ / V(u - v)(0)D(u(8)) [ Vu — Vo | (6)d8
+ / V(u = v)(6) [ D(u) — D(v) ] (6)Vo(8)d8
From the Schwarz inequality the last term is bounded by
/V(u —v)[ D(w) — D(v) | Vud8
< [ (V=0 F a0+ [ [Dw) - D) I (Vo)2a

Since v is Lipshitz continuous, the sup-norm of Vv is bounded. Together with the
Lipshitz continuity of D, the last term is bounded by

Cy-1 /[ D(u) — D(v) ] df < Cy~1 /(u — v)2df

By choosing 7 small enough, we have thus proved that

Ot /(u —v)2df < Cv—1 /(u —v)2df

This proves the uniqueness. Our main result of this paper is the following theorem:

THEOREM 2.1 Suppose that the Gibbs measure satisfies the mizing condition A.
Suppose the initial data £¢ satisfies the condition (2.18) and that (2.17) with the initial
condition specified by (2.18) has a unique solution m(0,t) in the class of weak solutions
satisfying the energy estimate. Then

lim sup PEE

e—0

et " J(ex)na(t) - / J(O)m(8,¢) de‘ > 5] =0

zEA

Here Pf refers to the process with initial data &¢.

Note that one can start from a deterministic initial data as long as (2.18) holds.
The Lipshitz continuity of the diffusion coefficient has not been proved, though it is
proved for the self-diffusion coefficient in [V3] and for asymmetric simple exclusion in
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[LOY2]. In the special case d = 1 or when the Hamiltonian is isotropic (Lemma 8.3),
the diffusion coefficient is a scalar and Theorem 2.1 is then always valid.

As a technical remark, all error terms arising in the proof of Theorem 2.1 will
be shown to be superexponentially small. Hence our estimates already give an upper
bound to the large deviation probability in the hydrodynamical limit. One needs a
corresponding lower bound to complete the large deviation theory. Since this has
been carried out carefully in [DV, Q2] for Ginzburg-Landau models, in [QRV] for the
symmetric simple exclusion processes with several colors and in [QY2] for lattice gas
models for the incompressible Navier-Stokes equation, we will not pursue this direction
here.

3. Outline of the proof. Our basic approach for proving the hydrodynamical
limit consists of three steps: establishing the tightness of the measures {Q§ 1€ >0},
deriving an energy estimate that provides some regularity for functions in the support
of any weak limit @ of Q¢ as £ — 0 and identification of the support of @) as weak
solutions of (2.17). To prove tightness, from Prohorov’s theorem, it suffices to prove
the following estimate:

LEMMA 3.1 (TIGHTNESS) For any initial data &5, any smooth test function J
and any § > 0 we have

lim sup lim sup P¢ sup | gd Z J(ex)n, (t) — e E J(ex)nz(s) ] >4 ] =0
a—0 e—0 |s—t|<a,0<s,t<T z z
(3.1)
Note that

lim sup |9 J(Eex)ng| <|| J
m sup| zﬁ: (ex)ma| <I| T |In

Hence any limit point @) of Q¢ s supported on measure valued functions on [0, T, that
are absolutely continuous w.r.t. the Lebegue measure, with densities m(6,t) bounded
between 0 and 1. At this point we only know that m(0,t) is a measurable function.
The next step is to prove that it satisfies a basic energy estimate.

LEMMA 3.2 (ENERGY ESTIMATE) Suppose Q is any limit point for Q%. There
is a constant C such that

EQ{ /0 " N dH(ng(G,t))2} <c.

Finally, we have to prove that @) is supported on densities m that satisfy the
equation (2.17) in the weak sense. Denote by 7, ¢ the average density of 7 in a cube
of width 2¢ + 1, namely,

ﬁz,l = (2€ + 1)—d Z Ny = Avytly—z|gl Ny (32)
y:ly—z|<e

This operation of averaging over a cube of side 2¢ + 1 centered at z will be denoted
by Av.y—z|<¢ and can be performed on other random fields defined on the lattice.
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THEOREM 3.3 (IDENTIFICATION OF THE EQUATION) For any 6 > 0, let

By = {n(-) : sup 6d2J ex)n () — e Z J(e2)75 (0)

0<t<T

/ 2b) led Z [na:+bs"1 — Nz—be—le ( ]Dee Nz, ae"l(s))(V€' J)(am)ds

T,e,e’

>4}

denote the event that leads to the violation of the limiting equation for the smooth test
function J; here D is the diffusion coefficient given by (2.22). Then

lim sup lim sup lim sup Pt [B 51=0 (3.3)

a—0 b—0 e—0

Clearly, Theorem 2.1 follows from these three results and the uniqueness of the
weak solution for the equation (2.17) satisfying the energy estimate.

The tightness will be proved in next section. The energy estimate will be proved
in section 5. We now outline the proof of Theorem 3.3.

Proof of Theorem 3.3.
Step 1: Recall that the current is defined by the equation

Lne = — Z Ve wg z+e(n)

e>0

where ) ., denotes the summation over the unit vectors in the positive coordinate
directions and for any (possibly random) function h(z,-) = hz(-) on the lattice

V;h(.’l), ) = h(l?,') - h(l? - e:')'

We shall follow the convention of using e to denote a unit vector in the positive
coordinate direction. Explicitly, the current is given by

wx,x+e(n> = A(w, T +e, 77)(77$ - 7]a:+e) (34)

where A is the jump rate defined in (2.14). We have the summation by parts identity

S 9@)Veh(@) =~ 3 (Veg(@)h(z)

x

where V is defined in (2.23) and ) denotes the summation over the lattice sites on
the periodic lattice with width e—!. This convention will be followed in the rest of
this paper unless otherwise stated. From stochastic calculus,

ed Z J(ex)n. (t) — e Z J(ez)n:(0) = /i U(n(s))ds + Mn(t),
0
U(n) = ed-1 Z Z "1V J(ex))wz,z4e(n) (3.5)

z e>0

t
Mn(t) = / €4 " " VeJ(ez)ns(5)dMz o e(s)

0 z e>0
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where My z4.(t) is a martingale with quadratic variation
d < My gye(t), My zye(t) >=e2A(z,z + e,n) dt.
Clearly,

d < Mn(t), My(t) >=e2d Z ~1V7 J(ez))2n: () A(z, z + e,n)dt < C(J)ed dt

Hence we can neglect the martingale term.

Step 2 (Fluctuation-dissipation equation in equilibrium) It remains to identify the cur-
rent as —D(7);,4.-1) VN2 (s). This step is very subtle and is the key step in nongradient
system. In fact, we can not expect the substitution wz,zve = — ., De e (1z,0e-1)
Venz to hold as it stands. The correct statement is that the relation

We,z+e = — Z De,e’ (nm,as"l)ve"’h + Lge (36)

holds for some suitable choice of local functions {g.}. For processes in equilibrium,
a precise statement is given by the following Theorem 3.4. We will first need some
notation.

Following [LOY1] , we define the space

G ={h: his alocal function and h satisfies F#[h|F,] = 0 for some s }, (3.7
where Fs = Fo,s and
Fz,s = the o-algebra generated by {7js} U {ny : |y — x| > s}. (3.8)
For latter usage, we also define the o-algebra
$ = o-algebra generated by {n,||z —y| < s} . (3.9)
For any local function h € G we define the variance

Ve(h,y,w) = e Avpg<tha s (L) T Avpgi<riha) ,, (3.10)

where hy = 75k, €1 = £ —V/? and Me,y, is the canonical Gibbs measure on A, with
the boundary condition w and total density y. From the choice of ¢; it follows that
for any fixed h € G, for sufficiently large ¢, 7-h depends only on the configuration
inside the cube A, provided = € A;,. Since the boundary condition w on A§ and total
density y in A are specified by the o—algebra F;, the quantity V;(h,y,w), is an F
measurable function Vy(h,n) of the configuration n on Z ¢. We define

V(h, B) = limsup B [Vy(h,n)]. (3.11)
B'—p

£— o

Here pg is the (unique) infinite volume Gibbs state with density 8. For a local function
h ¢ G, i.e. not satisfying the mean 0 condition E+[h|F;] = 0, we define ¢, x(w) =
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Ertye [ hy|Fyr | where Fy i defined in (3.8) is the o-algebra generated by j, x and
{ny : ly — z| > k}. Then we define

V(h,B) = limsup V (h — gi, B"). (3.12)

B'—=B

We now state the Theorem.
THEOREM 3.4 Fiz a density 3. Suppose g = {ge(n)} is a local function (with d
components) of n. Let

$e(8) = wo,e + Lge(n) + Y De,er (B)Vermo, (3.13)

where the diffusion D(B) is given by (2.22) . Then for any {c.},

ing ( ;aetbe(g) B ) =0. (3.14)

Assuming this result, we continue to prove Theorem 3.3. The minimizing sequence
for (3.14) depends on the density 8. Since, from the definition, the variance V' is upper
semi-continuous, we have the following Corollary:

COROLLARY 3.5 For any {a.} and § > 0 there exists g = {ge(8,n)}, which is
smooth as a function of B and is local as a function of n, such that

St;pV ( > aede(B,8),B ) <4 (3.15)

where

e(B8,8) = wo,e + Lge(B,n) + > _ Deer (B)Verro. (3.16)

Step 3 (Insertion of local functions) To use theorem 3.5, we have to extend it to
nonequilibrium process and insert the local function g into the stochastic equation
(3.5). We first replace J by J *wg, where wy, is the normalized characteristic function
for a cube of size 201 + 1 with £; = £ — v/, namely,

_[@a+1)~d i |y <b
we (v) {0 otherwise

Let ®% be defined as the vector with components
<I>§’e = Avly—wlgh [ Wy, y+e T L:ge(ﬁm,la TyN) ] (3.17)

Note that ® depends additionally on £ which does not appear explicitly in the indices.
Then

el Y (J(ex) x wey)ma () — €2 ) (J(€2) * we, )na(0) + e (1(t)) — Ve (n(0))

- / Un(s), g)ds + Mg(t)
(3.18)
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where
= gd+1 Z -1V, J E:B) *wzl]ge Nz L’,Tyn)
z,e>0
(3.19)
) =t 3 (e,
z,e>0

The explicit form of Mg(t), the martingale term, is not important. One can check
easily that
d < Mg(t), Mg(t) > < C(J, g)e dt

and thus it is negligible for proving Theorem 3.3. Also, for any local function g

sup [Qg(n)| < Ce
n

and is negligible too.

The generator £ in (3.17) acts on the variables 7 as well as 7, , when applied to
the function g.. We first prove that the contribution of £ acting on 7 ¢ is negligible.
For this purpose, we need the next lemma relating the nonequilibrium process to
equilibrium one.

LEMMA 3.6 Recall that P¢ denotes the process starting from £ and P. := Pre is
the equilibrium process starting from p. defined in section 2 after (2.16). Then there
is a constant K depending only on the Hamiltonian such that

dpf
log || P lp< ke=4, 1<p<oco. (3.20)
AS a consequence,
P%(A) < exp[ke—9]P.(A) (3.21)

In particular, for any events A. which are superezponentially small in equilibrium,
i.e.,
limsupedlog P-(A) = —
e—0
we have
lim sup e log P£(A) = —
e—=0

The proof of this Lemma is tr1v1al One simply notes that, since the dynamics of
the two processes are the same, dP* /dP. = dp(;(g) /due; here ¢y is the delta measure
of the configuration £. From the explicit expression of du., we can get a lower bound
on pe(§) of the form log p.(§) > —ke—? and (3.20) follows and we have proved this
Lemma.

This lemma shows that the notion of superexponentially small events is the same
under equilibrium and nonequilibrium processes. The following lemma is a simple
consequence of the Feynman-Kac formula and allows us to transform equilibrium
exponential estimates into eigenvalue problems.

LEMMA 3.7 Let L be the generator of a Markov process x(t) with a reversible

invariant measure v. Let
T
u(z,t) = E; exp{/ V(:c(s))ds} , (3.22)
0
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where E [] denotes the expectation with respect to the process starting at . Then
1
T log/u(x,T) dv(z) < sup spec{V — (-L)}

= sup Vfdv — DG/ '
{/ v} 029

[ fav=1, f>0

Here D(f) = — [ fLfdv is the Dirichlet form.

Proof. By the Feynman-Kac formula, u solves the equatlon = Lu + Vu with
the initial condition u(0,z) = 1. Multiplying the equation by u and integrating by
parts we obtain

01

%3 udv = /Vu2 dv — D(u) < sup spec[V — (—L)] /u2 dv (3.24)

Therefore 1
— —_— 2 < — (-
T log/udz/ < oT log/u dv < sup spec[V — (—L)]

Applying these two lemmas to our setting, we have
LEMMA 3.8 The event A = {| fOT V(n(s))ds| > d} is super exponentially small if
and only if for all v > 0

lim sup sup spec {V — y—1e=2+d(- L)} <0 (3.25)

e—0

Proof. Suppose the process is in equilibrium. Then the corollary follows from
Lemma 3.7 and Chebyshev’s inequality. For a general nonequilibrium process, we
only have to use Lemma 3.6 to prove the Lemma. Note that we do not have to specify
the initial distribution of the process.

We now return to the local function g. Let

where b € Ay ; means that both ends of the bond b lie in the box Ay s of width 25+ 1
centered at y. We have

Lge(Mz,6, Tyn) = ﬁy,ﬂ 9e (a6, Tyn) + Z Lo ge(Mz,e, y) (3.26)
bEdA,
ven, e

provided v/Z is bigger than the range of the local function g, which we shall assume.

By b € A, we mean that the bond straddles A and Ac. By the definition of £ and
Schwarz’s inequality, we have for any function g,

E‘I/fﬁbgdus =€‘1/cb(n)[f(n”) = f(n) 1Tvg dpe
<e2- [ o) [ Vi) - Vi ] du
+€"/0b(n)[\/— ”)+\/_n)] (T19)? dpe
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Since g, is smooth as a function of its first variable, we have Tyge (¢, Tyn) < C2—d
for any boundary bond b € 0A; ;. Note that T} does not act on 7,7 since g, is a local
function and £ is large enough. Since the number of boundary terms is of order £4-1,
we have for any smooth function J and any v > 0,

lim sup sup spec 6_12 J(ex) Z Ls9(Mz,e,myn) | — 7 e 2Avy(—Ls) | <0

Le bEA,
YA, VT
where
lim sup = lim sup lim sup (3.27)
Le £—o0 e—0

We will use this notation repeatedly when we want to take successive limsups in a
specified order. Hence we can replace £ in (3.17) by L‘y’ Vi namely, we can assume
that £ in (3.17) does not act on 7, ¢. Throughout the rest of this paper, while computing
Lge(Tjz,e, Tyn), we will therefore be justified in keeping only the first term on the right
side of (3.26), and effectively ignoring the action of the generator on the first variable
of ge.

Step 4 (Eigenvalue estimate) Our goal is to prove that (1.4) holds in nonequilibrium.
The basic tool is Lemma 3.8. In order to apply this lemma, we will need to estimate
some eigenvalues, to be proved in section 7.

THEOREM 3.9 (EIGENVALUE ESTIMATE) Suppose J = {J.} is a smooth vector
valued function and g = {g.(8,m)} is smooth as a function of B and is a local function
of . Recall the definitions of ®& (8.17) and ¢ (3.13). Let us define the density
gradients . .(z) componentwise by Ve c () = €(2¢) 72 [Mytee-1e — My_ce-1c]- Then
for any v > 0, there exists a constant C(vy) such that

lim sup sup spec [ €1 (J(2), 85 + Dy, ac-1) Avy ity [ Ye o) ] — ve>Avs(~L3) ]

f,a,c,e

SCH I 1B sup supV ( D 0ede(8,8),8 ) ;
St 8\

_ ; (3.28)
here (J,J) = Av, Ze>0’|e'=1 Je(ex)Je(ex) and the meaning of the limit is given in
(3.27).

We can now conclude Theorem 3.3. From (3.14) we can choose g so that the
variance on the right side of (3.28) is arbitrarily small for any fixed v . Hence the.
infimum over g of the left hand side of (3.28) is bounded above by zero. From Lemma
3.8 we can prove Theorem 3.3.

4. Tightness. In this section, we shall prove the tightness Lemma 3.1. Cor-
responding results are obtained in [GPV] and [V1] via the Garsia, Rodemich and
Rumsey Lemma. We will however provide a more direct martingale argument that
establishes tightness.

Recall the definition of current in (3.4). We have the exponential martingale:
eZ(8:t) where

26,9 = B3 Tlex)ne(t) =83 Tex)n:(0) — [ (AU + An(e)) s, (4.1)
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Un) = e-1 Z 1V J(ex))we,z+e(n)

and

Qn) =exp(-B Y J(ez)nz) £ exp(BY _ J(ez)n.) — BU(n)
Since J is smooth,

sup [Q(n)| < C(J)B%e~?, sup|U(n)| < C(J)B2e~1-2 (4.2)
n n

LEMMA 4.1 For each smooth J, for sufficiently small € we have

Pt sup sup
0<j<Te2 je2 <t<(j+1)e?

et Y J(ex)ma(t) — 4 3 T(ez)na (ie?)

20
< exp(~dc1/8)

Proof. Let 8 = 1. From the martingale inequality we have

Pf [ sup Z(1,s) > e—dé] < exp(—de—4)Ef [eZ(1.1) ]| = exp(—de—1)
0<s<t

From (4.2), we have, assuming without loss of generality that ¢ < 1,

P§ l sup

0<s<t

ed Z J(ez)n. (t) — ed Z J(ex)n=(0) l >4 ]
< 2exp[2C(J)e~1— dt — de—9]

Let t = g2. Then, for ¢ sufficiently small, the right hand side is bounded by the
quantity exp(—de—4/2). We divide the interval [0, T] into e—2 subintervals of size £2.
We can apply previous argument in every subinterval. Taking the intersection of these
events we obtain, for sufficiently small ¢,

Pt sup sup
0<j<Te~2 je? <t<(j+1)e?

< Te—2exp(—de—2/2)
< exp(~0c=1/8)

e " J(ez)na(t) —e? D J(ex)na (j2)

.

which establishes (4.3).

Equation (4.3) provides some continuity. Hence in order to prove Lemma 3.1, we
can assume that the time ¢ and s in (3.1) are of the form £2j for some integer j. Hence
it suffices to prove

LEMMA 4.2 For § small enough,

Pf sup
e2]i—j|< 84
0<i,j<Te~2

4 " J(ex)ne(e2i) —e? Y J(ex)ma(e2j) | > 6 | < exp(—Ce—9)

(4.4)

here i and j are integers and C is some positive constant.
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Proof. From Lemma 3.6, we only have to prove (4.4) for the equilibrium process
as long as the constant C can be chosen arbitrary large. From the definition of Z(8,t)
and Schwarz’s inequality, we have for any t fixed and 3 positive ,

Eﬂsexp[ <ZJ(e:cnz ZJeznz 0))}

< (el [ [ [ (o000 + 0006 105 |}

NS

From the exponential martingale E#< [eZ(6:8)] = 1. We can bound Q by (4.2). Also,
from Lemma 3.7 we have

cttog B [ o * Be=aU(n(s))ds) | < tswpspec [ 8U(n) - 2 am(-L0) ] (46)

The current (3.4) satisfies an identity (b= (z,z + €))

/fwa:,w+e dpe = /[ f®) — f(m) Jeo(n)(Ma+e — a) dpte. (4.7)

Hence by and Schwarz’s inequality, we have for any function f,

E_lﬁ/fw’”””“ due < (5"2/4)/%(71) [ VImb) = Vf(n) ]2 dpse
+45° / [ V) + VT | eolm) e = mese)? dse

The last term is bounded by C [ fdu. Hence, for the eigenvalue problem, we
get the bound CtB2¢—¢. Therefore, together with the bound of Q in (4.2) the last
expectation in (4.5) is bounded by Ct32¢—4. From Chebyshev’s inequality,

Pl‘e l

Let B8 = §—2. For any t < §* we have

gd Z J(ex)ng (t) —ed Z J(ex)ne(0) \ >4 ] < exp(—dfBe—2/4 + CtB2e—4)

Peue

edZJ ex)ng(t —6‘12J (ex)ne(0 ‘ > 5] < exp(—d-1g—4/8)

Clearly, (4.4) follows from this estimate and we conclude Lemma 3.1.

5. The energy estimate. Let us first recall a lemma concerning perturbation
theory of eigenvalues applied to our setting. Because we are interested in lattice gases
in a finite volume, it is only ordinary perturbation theory for eigenvalues of matrices
and the following lemma can be proved by writing down the usual perturbation ex-
pansion for eigenvalues and using the assumption on the spectral gap. This lemma
actually holds in considerable generality [RS] and an elementary proof is given in [JY].

LEMMA 5.1 Let v be a probability measure on a finite set B. Denote by (,)
the inner product in L2(v) defined by (f,g) = E¥[ fg]. Let L be the generator of
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e Markov process on B, which is symmetric with respect to v. Then A = —L is a
nonnegative definite symmetric operator on L2(v). Suppose that the lowest eigenvalue
0 of A, with the corresponding eigenvector (the ground state) go = 1 has a spectral gap
of § > 0. Let X be a bounded function on B considered as a multiplication operator
on L2(v). Let || X ||loo denote the sup norm of X. Assume that E¥{X} = (1,X) =0.
Then there is a universal constant C such that for any constant v > 0 satisfying

1)
X fles § (51)
we have
| X 1%
sup spec X — A < Cy*(X, A71X) + Oy* ==

In particular,

X 3%

supspec X — A < Cv —

We can now state the following corollary of Lemma 5.1 in our context. Let pg y
denote the (canonical) Gibbs measure with density y and a fixed boundary condition
w on a cube A, of width £. Recall the definition of £, given in (2.12) and (2.13)
representing a jump across the bond b. The rates are determined in such a way
that £y is symmetric with respect to the measure pg , . If the bond b is close to
the boundary, the explicit coefficients of £, depend on the boundary condition. The
boundary condition will not be specified because our results are all uniform w.r.t. the
boundary conditions. In order to apply Lemma 5.1, we will need an estimate on the
spectral gap. A key analytical input is provided by a result from [LY] stating that the
gap of the operator ), ,(—Ly) is of order £-2.

LEMMA 5.2  Suppose h is a local function in G (3.7). Let £, = £ — /€ and
Vie(h,y) be given by (3.10). Recall also that the mizing condition Assumption (A) is
satisfied. Then there is a universal constant C such that for any v > 0 we have the
following estimate on the eigenvalue

sup spec e~ Avjzi <o, h — ve~2Avsen, (~L1) — CVi(hy)| SO (52)
provided .
ekl £>1 and [fe+ K0. (5.3)
Furthermore,
Ve(h,y) < Cld+2Enevw [ (Avjgi<e, 7h)? | (5.4)

Proof. From [LY], the spectral gap of the operator e=2Awvpep,(—Ls) is of order
€~2¢~2—d_ It is easy to verify that (5.3) implies the condition (5.1). Hence the sup-
norm of the first term in (5.2) which is of order e~! is much smaller than the spectral
gap of the operator appearing as the second term in (5.2) provided (5.3) is satisfied.
Hence (5.2) is just a simple consequence of Lemma 5.1. The bound (5.4) just restates
that the spectral gap is of order £-2.

The following theorem combines Lemma 5.2 with multi-scale analysis and provides
a key estimate needed in estimating eigenvalues in connection with Theorem 3.9 and
the energy estimate Lemma 3.2.



DIFFUSIVE LIMIT OF LATTICE GAS WITH MIXING CONDITIONS 641

Let us recall that A.-1 is the periodic lattice of side e~1 and p. is the Gibbs
measure on it. For any k, Fj is the o-field generated by the configuration in A, i.e.
{ne : x € AL} and the density 7z = Avp, Mz in Ag. The complement A{ is relative to
the periodic lattice A.-1 in this context. Otherwise it could be with respect to Z4.

THEOREM 5.3 Let h be a local function satisfying

sup [h(n)| < Ch
n

(5.5)
sup | E#e [h|AL, k]| < Cpk—4/2-1-2a
n

with constants Cp, and a > 0 and for all k in the range 1 < k < ¢"74. Then there
are positive constants C,k and a function F such that for any h, v > 0,

sup spec | e~ 1h —ye—2 Z (=Lp)|b—0]~2=d | < Cy~1C} +e~F(vy,Chr) (5.6)
beA, -1

on L2(u.) where u. is the Gibbs measure defined in section 2. Furthermore, (5.5) is
satisfied for all h € G, as well as for h = wg g4e, h = Veng and h = Lg for some local
function g.

Let a nonlocal function h' be of the special form h'(n) = G h, where, for some
0 >0, G = G(n,75.-1) depends only on the configuration n|AS__, and the density
flo,6e-1 and h is a local function satisfying (5.5). Then (5.6) remains valid in a slightly
modified form

sup spec [ e 1h —Coy 1G22 —ve—2 Z (—=Lp)|b — 0]—a—4d ] <esF(y,Cq) (5.7)
bEAe_l

where Cy is a universal constant and Cy is the Lo, bound for G.
If we replace h by hs = E* [h|fo,s], then for any v > 0,

lim sup lim sup sup spec [ e~1hs —ye—2 Z(—Eb) |b — z|—a—d ] <0 (5.8)

s§—00 e—0 b

REMARK. For the rest of this paper, the constant a will be fixed and can be
chosen to be any small positive number.

Proof of Part I. Fix an integer ¢. Let us denote by F, the o-field Fp» and by A,
the cube Ay». Define h, by
hn = Etke[h|Fy) (5.9)

as the conditional expectation of h w.r.t. F,. By definition, ho = h. Rewrite the
function h appearing on the left side of (5.7) as

M-1
h=Y" (hn— hns1) + has (5.10)

n=0
where M is the largest integer such that ¢Ml(d/2)+1] < (ge)~1, so that

EMI(d/2)+1] < (ge)~1 < ((M+1)[(d/2)+1] (5.11)
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with a constant ¢ to be determined later. From the assumption (5.5) we have

sup | har(n) | < Cpl—M(d/2+1+20),
n

With (5.11),
e=1sup |har(n)| < Cplld/2+1+2e)e~1(ge )~ (5.12)
n
wheren=1+-24q_°‘g>1.
We compare the two sides of (5.13) in operator sense. For some C < oo ,
S ke Avgen, s (=Lo) < C S (=Ly)]b — 0= (5.13)
n b

where k = ¢n+1. Because each —L; is a symmetric positive semidefinite operator
establishing (5.13) amounts to verifying

Y ke=d<C) [b—0]-ad (5.14)

'n,:An+13b b

for all b. This is easily seen to be true with a constant C' < oo, that depends only on £
and a. We can clearly estimate the term on the left hand side of (5.6) by decomposing
both the function ~ and the operator according to (5.10) and (5.13) to obtain

supspec | e~1h —ye—2 Z (—Ls)|b — 0]7>—d

bEA, 1
Y
< sup spec [ e1h — ol €2 ; k= Avpen,, .1 (—Ls) l (5.15)
M-1
< Z Ent1 + sup |har(n)]
n=0 n
where
En+1 = sup spec [ e=1(hn — hnt1) — %e*k“’AvbeA"“ (—=Ls) ] (5.16)

By limiting the operator to bonds in some An+1 we have introduced considerable de-
generacy. The extremal invariant measures are precisely the canonical Gibbs measures
Un+1 in the box A,4+1 and are parameterized by w, representing the boundary con-
dition on A¢,, and the average density in An41. Since the spectrum is calculated in
each La(pn+1) we obtain an upper bound for ,41 by estimating it in each La(tn+1)
and then taking supremum over w. Hence we only need to get bounds on (5.16) in
Ls(pn+1) that are uniform in w. Note that once Fr41 is given, from [LY] the spectral
gap of & e~2k=*Auyen, ., (—Ls) is bounded below by 7 e~2k—2-4-2 for some ¢ > 0.
We note in addition that [(hn — hny1)dpns1 = 0. For the perturbation theory to
work, by Lemma 5.1, we need

€1 || Bn = hnir [|loo< %6—2g—(n+1)(2+d+a) (5.17)
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to hold for all 0 < n < M — 1. From our assumption (5.5) we see that
£=1|hn — Bngloo < 2Che=14—n(d/2+1+20)
so that (5.17) holds provided

2Che—14-7(d/2+1420) < %6—2[—(n+1)(2+d+a)

which is implied by

EM(d/2+1) < —SCC"éhrl (5.18)

so that the choice of ¢ = max(1, 8(’;5") will work in (5.11) as well as (5.18). By Lemma
5.2 one can now bound &,+1 by

Ent1 < Cy~le2e2kd+24 || hy — hpy %

5.19
< C-1k=aC? = Gy-1C26-a(ntD), (5.19)

We have denoted by C, a constant that may change from line to line, but will always
remain independent of the parameters €, and h.. Summing over n, we conclude that

Ml 4 8CC 4
> Enta +sup | (n)] < Oy1CF + COpea (14 =1+ 455)
n=0 n

= Cy~1C} +er~F(v,Ch)

concluding the proof of part I of Theorem 5.3.

Proof of Part II. Clearly, (5.5) holds for h € G. From (4.7) wg,o+e € G and (5.5)
holds. For any local function g, there is an s large enough such that g is measurable
w.r.t. the o-algebra generated by {ns,|z| < s}. Let L5 = Y ;5 L. Then we have
Lg = Lsg and also Ere[L;g|Fs] = 0. In other words, L£g € G. This proves (5.5) when
h = Lg. We now establish (5.5) for h = V7., namely,

Ene[Veno|Fi] < Ck—d/2-1-a, (5.20)

This is clearly a type of mixing condition. Unfortunately, the mixing condition we
have is for the grand canonical measure (2.5) rather than the canonical one that we
are interested in here. We shall however prove in Section 10, that (5.20) holds .

We now prove (5.7) for ' = Gh. Note that in the argument in the part I, G is
effectively a constant and replacing h by Gh only changes C}, into GC},. Therefore (5.7)
is not all that different from (5.6). Finally to see (5.8) we can assume for simplicity
that Im0 = s and sum (5.17) for n > ng. This concludes the proof of Theorem 5.3.

Lemma 5.3 states that, in an average sense, any h; satisfying (5.5) Ef{e~1h,} is
of order 1 for any probability density f satisfying

e~2Avyea Dy(\/f) < C (5.21)

We now prove the energy estimate.

Proof of Lemma 3.2. As we have already established tightness of the empirical
measure valued process €4 Jc +7z(+), we know that any limit point of Q¢ is a measure
@ on the space C[0,T]; M]] of weakly continuos maps ¢t — m(t,8) of densities on T4
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that are bounded by 1. The energy estimate is established by proving, for some finite
C,

EQ{sgp [/OT (D)t 0)m(,0) deds - %/OT/NU(t,G)P dtde]} <C (5.22)

where the supremum is taken over all smooth functions of ¢ and 8. If we ignore the
supremum, for the approximating processes, this amounts to proving

lim sup EQ- ed/Tz(VeJ)(t 3)nz(t)dt—gad/TZ|J(t Deatl <
0 - ’N 2 0 - ’N —_—

e—0
(5.23)
or

lim sup EQ: { gd-1 /TZJ(t L \Vena(t) dt — gsd/T2|J(t Iyedts <
o - )N 2 o . ,N —_

e—0
(5.24)
In view of Jensen’s inequality and the relative entropy bound H(Q¢; P¢) < Ce—4, it
is sufficient to establish

T
T
li dlog EPe -1 J(t,— z(t) dt
im sup ¢ log {exp [E /0 Em ( ,N)Veﬂ (t)

e—0

—%/{)Tgu(t,%n?dt]} <0

(5.25)

or equivalently

limsupedlogEPe{exp {e 1/ ZJ(t —)Ven:(t) dt]} / / J(t,0)|? dtdo

e—0
(5.26)
Since P¢ is the equilibrium and the functional inside the expectation is a Feynman-
Kac functional with a time dependent potential we can estimate (5.26) by estimating
the largest eigenvalue. If we denote by

T
Ae(t) = sup spec[e~! }; J(t, N)Ven:t -2 Zb:(—ﬂb)]
it is sufficient to prove

lim sup &4 / Ae(t)dt < — / / J(t,0)|? dtdd (5.27)
Td

e—0

For estimating the eigenvalue A we decompose
T
—1EJt—V ——22—5
€ . ( aN) ellz — € a (—Ls)

and, for some vy > 0, estimate ), (¢) from above by the sum

Ced)(t) <ed zx: sup spec [a—lJ(t , %)Venm - E,,: |b — z|—e—d(—L)
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We have in addition the bound

sup €4X:(t) < sup ed Zsup spec [E_IJ( —)Vene — 'yz |b— x|—°‘—d(—£b)}
0<t<T © T O0<I<T ;

< sup supsupspec[ “18Veng — 7Z|b—x| a—d(— Eb)]
1BI<C =

where C is an upper bound on |J(-,-)|. Now (5.6) provides a uniform bound

sup edX.(t) < C
0<t<T

as well as a bound on the limit

T C T
lim sd/ e (t) dt < 5/ |7(¢,8)|2 dtdd
0 0

e—0

concluding our estimate. In order to complete the proof of Lemma, 3.2 we only have to
remark that whenever we use large deviation bounds and Jensen’s inequality to pass
from

lim sup €4 log EP* { exp [s—dFa]} <0 (5.28)
e—0
and
H(Q#; P¢) < Ced
to
EQ [Fa] <C (5.29)
we actually can obtain
EQ[supF,] <C (5.30)

because, while one cannot sneak the supremum inside the expectation to go from (5.29)

0 (5.30), to do it in (5.28) is trivial and for any finite set of a’s yields (5.30) with the
same constant C, independently of the finite set. The rest is a routine application of
the monotone convergence theorem.

6. Two blocks estimate. In this section, we prove the two block estimate
Theorem 6.2. It will be used in the next section to prove Theorem 3.9. The first step
toward proving a two block estimate is to get a bound on the Dirichlet form involving
"long jumps” in terms of the usual Dirichlet form with only the ”nearest-neighbor
jumps”. This was one of the main difficulties in establishing the hydrodynamical limit
of lattice gas models in dimension greater than 1. If u is a Gibbs state on the space
of configurations on a lattice A and z,y are two lattice sites that are a considerable
distance away from each other, the problem is one of estimating E#{|(T;,,u)(n) |2} =
E#{|u(n®¥) — u(n)|?} in terms of the usual Dirichlet form involving E* {|u(n®=e+e) —
u(n)|2}. Let us introduce the notation S; yn = n=¥. The natural way to make this
estimation is to write

Sz,y = Sz,zl Szl,azg Tt Sz.,,_l,z,. Szn,ysxn_l,a:n Tt Szl,zzsz,zl
= Sbon_1 " by
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as a product of exchanges over shorter bonds and estimate T yu by a telescoping sum

2n—1

|“(Sm,y77) - U(’?)| < Z |u(Sbj T Sbﬂ?) - U(Sbj—l T Sbﬂ?)|
7j=1

and conclude that

2n—1
Er{|u(Se,ym) —u(m)|2} < (20— 1) Z En{|u(Sy; -~ Sbym) — u(Sb;_y -+ - Soym)|2}
2n—1
=(@2n—1) Y Er{|u(Ss,Sin) — u(Sin)|2}

=1

where S§7 = S --- S, is some more complex permutation along the way. If p were
a Bernoulli measure or some other permutation invariant measure like a Bernoulli
measure conditioned on the value of the sum ) 17, then

2n—1 2n—1

(2n—1) Y Er{|u(Ss,S9n) —u(Sin)2} = (2n —1) Y E#{|u(Ss;n) — u(n)I?}

Jj=1 j=1

and, if we choose our intermediary chain of sites to be nearest neighbors, we are done.
Difficulties arise because, in general, p is not invariant under permutation. We will
pickup a constant factor which is an upper bound on the Radon-Nikodym derivatives
when p is transformed by the permutation S7. We note that if we are able to bound
the Radon-Nikodym derivatives in both directions then conditioning to a set of the
form ) _ 7. = m causes no problem. While the factor 2n — 1 which is comparable to
the distance from x to y is acceptable, if not taken care of, the bound for the Radon
Nikodym derivative will grow exponentially in n and is unacceptable for our purposes.
The following theorem therefore requires a careful proof. Without loss of generality
we will assume that the jump rate ¢, = 1 in (2.12).

THEOREM 6.1 Denote by u a Gibbs state on a cube A and let D, denote the
Dirichlet form w.r.t u for a nearest neighbor bond b € A. For any two sites z,y € A
let vzy denote the nearest neighbor path that goes from x to y, moving successively as
far as it has to in each of the coordinate directions, following the natural order for the
different coordinate directions. For every function u on {0,1}|Al define the Dirichlet
form along the path by

D=v(u) = ) Dy(u)

bEYzy

Then we have
Er[(Toyu)?] < colYay|DV=v(uw), (6.1)

where co is a constant depending on the dimension d and the Hamiltonian. Here |7y.y|
is the length of the path. Note that no mizing condition is needed.

Proof. Step 1. With out loss of generality we can assume that y = z + fe;. The
general path is just a finite sequence of such straight lines (z,z1), (z1,22) - - - (g-1,¥)
along different coordinate directions going through at most d — 1 intermediary corners
Z1,---,ZT4—1- We can estimate the left side of (6.1) by a telescoping sum. Although
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the Radon-Nikodym derivatives could cause trouble here, because the only transfor-
mations that are involved in the telescoping sum are permutations among the d + 1
sites 2,1, - -, ZTq—1, Y the extra factor is just a constant depending on the Hamiltonian
and d.

Step 2. We can assume with out loss of generality that y = z + £ke; for some £ with
k fixed at some positive integer so that two sites that are at a distance at least &, do
not both interact with any third site in the Hamiltonian. This involves again the same
idea. If z —y = fe; where £ is not a multiple of k£, we can go through an intermediate
point that is a multiple and the difference is at most a fixed finite distance away.
Step 3. The choice of k in the previous step guarantees that the conditional distri-
bution of {7;4jke, : 0 < j < £} under the canonical Gibbs measure given the configu-
ration on the complement of the sites {z + jke: } is a product measure conditioned on
the sum Zﬁ.:l Nz+jke, - Of course the conditional probability pu(j) = pw[Nz4jke; = 1]
is given by the DLR formula, and although different for each j takes only a fixed finite
number of values depending on the total number of different configurations possible in
the neighborhood of any one site. If we can establish (6.1) for the conditional distri-
butions p, with a uniform constant independent of w, we can integrate with respect
to p at the end.

Step 4. The problem is now reduced to the following. We just have sites 0,1---,£.
We have a measure p which is the product measure with Pr[n; = 1] = p; conditioned
on the set Z§=0 n; = m. If we assume that {p;} takes only a finite number r of
distinct values and they all satisfy § < p; <1 — 4, then with a constant ¢y depending
only on r and 4, the analog of (6.1) is satisfied. This problem came up in the context
of one dimensional lattice gases with random magnetization and the proof given in
[QY1] is reproduced below. The proof is by induction on r where r is redefined as
the number of distinct values among {p;} with 1 < j < £—1. If r = 1, except for
the end points all probabilities are the same. In this case the factor produced by the
Radon-Nikodym derivative is easily seen to be bounded by a constant independent of
£. Any permutation can only change the probabilities at most four sites. Now let us
prove the induction step. Assume that if there are r distinct values we have a bound
with a constant ¢, independent of £ . Suppose now that there are r +1 distinct values.
Let 1 < j1 < j2 < --- < js < £—1 be an enumeration of all the sites where p; is equal
to one of these distinct values. If we write

So,t = 80,j1Sj1.42 *** Sdac1,ds S tSGam1,de " Sj1,5250,51
all but the two endsites have the same probability and therefore, for all the inter-

mediate permutations, the Radon-Nikodym factor is controlled uniformly in s by a
constant C'. By Schwarz’s inequality

1
ZE"{|T0,£ ul?}

1 s 1
< C| = Bu{[Tog ul?} + > T B I T g ul}

1
i . 2
r— Jr—1 E_jsE {!T]heu' }

r=2

By the induction hypothesis each summand satisfies the analog of (6.1). We obtain
¢r+1 < Cer and the theorem is established.

Using this Theorem, it is not hard to prove the two block estimate. The following
proof is similar to the one given in [GPV, R].
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THEOREM 6.2 (Two BLOCKS ESTIMATE) For any bounded continuous function
h and any v > 0,

lim sup sup spec {szAvy:Iy—a:ISaE‘l [ AT k) = Ay k) I* — 75_2Avb(“£b)} =0

k,a,e
(6.2)
where lim supy, , . = limsupy_,, limsup,_,o limsup,_,o. In particular,

lim sup sup spec {sz M7z, 0e-1) — M7 k)2 — 'ye‘?Avb(—ﬁb)} =0 (6.3)

k,a,e

Proof. Let Ly, be the generator associated with the Dirichlet form E#[(T,yu)?],
namely they are related via (2.12). For every pair z,y of sites in A let us choose
a canonical path 7,4, consisting of d straightlines that lie along the d coordinate
directions following their natural order. |ygy| is of order |z — y|. Recall that R is
the range of the Hamiltonian defined in section 2. Hence we can rewrite (6.1) as an
operator inequality

—Lu:<Clw=—2z| Y (—L).

bEYw=

Taking the average of w with |w — z| < k and z with |z — y| < k and then averaging
over z € A and y with 2R+ k < |y — z| < ae~1, we have

szAUy:2R+k<|y—z|§ae“Avw:|w—z|Sksz:lz—y|§k(—£7.U,2) < C€_2a2Avb(_£b) (64)

A similar inequality holds if we replace |z—y| < k by |z—z| < k or replace |lw—z| < k
by |w — y| < k. Let A% denote a cube of width k and centered at z. Hence we have

Avg Avyopik<ly—o|<ae-1AVu zentuns (—Lw,z) < Ce2a2Avy(—Ly)  (6.5)

We can replace the average of y in (6.2) by the average over y with 2R + k <
ly — z| < ae~? since the error term is negligible. Together with (6.5), we can bound
the eigenvalue of (6.2) by

Avg Avy:2R+k<,y—zI§ae”l sup spec {[ h(ﬁz,k) - h(ﬁy,k) ]2

(6.6)
_Avw,zeA’;UA’; Ca_Q(_ﬁw,Z)}

Clearly we obtain an upper bound by replacing the average over x and y with sup
over x and y and over the boundary conditions of A% U A%. Denote the configuration
on U = Ak U A* by (£,¢). Then (6.6) is bounded above by the supremum of

sup spec {[ h(&) — h(Cr) ]2 - Ca—2Avw,z€U(—£w,Z)} (6.7)

as an eigenvalue problem on L2(uy,, ,) with boundary condition w and density p.
We now fix a boundary condition w and a density p. The operator

Ca_QA'Uw,zEU(_‘Cw,z)
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on L?(py,w,p) clearly has a gap C(k)a—2 and the ground state is the constant function.
For any k fixed, and a — 0, the gap diverges to co. Since h is bounded, for any k
fixed from Lemma 5.1 we can bound the limsup of (6.7) as a — 0 by

sup Erve [ h(E) — h(Cr) ]

w,p

Taking the limit £ — oo, we have py,w,, = pp X fp, Where p, denotes the infinite
volume Gibbs measure on Z ¢ with density p. Clearly, (6.2) and (6.3) follow from the
law of large number of Gibbs states. This proves Theorem 6.2.

7. Eigenvalue estimate. We are now ready to prove Theorem 3.9.
Proof of Theorem 3.9. Step 1. Let us recall that ®% ., defined in (3.17), and ¥ ¢ e
defined in Theorem 3.9 are given by

Qg,e = AUIy—zISll [ wy,y+e + Lge(7s,0, TyN) ]

\P€,C,€($) = 8(20)_1Av|y—w|§ll [771:+cs—1e - nz—cs‘le]~

Here we continue to follow the convention set up after (3.26) in step 3 of the proof
of Theorem 3.3 that the generator £ does not apply to the variable 7, , because the
error terms were proved to be negligible. We can rewrite

e+ZDee nzas-l)‘I’s c,e —(b%’e‘l'\l’me‘l'\l’ie‘i‘\l’ze,
el
where

8,8 73/;
@z = Avh/ —z|<h

e = [wy,y+e + L ge(Tz,e, Tyn) + ZDe,e' (710,6) (Verny — ER[Veny|Fy,s))]
1:’,2 Z D, . (771,- a1 )A'Uly z|<l E”[Ve 7Iy|7:y S]
:v’,i = Z[De e’ 771: a€-1) e e’ (ﬁz,l)][Av|y—a:|§l1 ( Ve’ny - Eu[VC'nylj: 73] )]

‘I’w,e = Z De e ﬁz,as‘l) [A'Uly—zlg’l [‘I'E,c,e’ (y) - Ve’ny]]
e/
Hence we can establish the eigenvalue estimate of (3.28) by showing

limsup Qo < C(v) || J |3 _sup SUPV ( > 0ee(8,8), 8 ) (7.2)
s,a,c, b, 2 a2=1

and for i = 1,2, 3,
limsup 2; =0 (7.3)

s,a,c, e

where
Qo = sup spec [ e=1(J, ®8:5) — (v/4)e=2Avp(—Lp) ]

2 = sup spec [ e 1(J, Uis) — (y/4)e 2Avy(—Ls) ], 1 =1,2 (7.4)
Q3 = supspec [ e=1(J, U3 ) — (v/4)e=2 Avy(—Ls) |
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and the inner product (,) is as defined in Theorem 3.9.
We first consider Q5. From (5.8), we have (7.3) holds for i = 1. For i = 2, we
apply (5.7) to reduce the problem to showing

limsup sup spec [ C(s, 7, J)Ave (D (g 0e-1) = D(f1z,¢))? = (7/8)e "2 Ave(—Ls) | =0

s,l,a,e
(7.5)
which is the familiar form of two block estimate. From (6.3) we conclude (7.5). Note
that we take £ — oo before taking the limit s — oo.
To deal with Q23 we rewrite

(J,2%) = Avg[Go e (J,n) Verne]

and use (7.6) to control limsup, .,.{23. G is easily seen to satisfy the hypotheses
needed to apply (7.7) . The problem reduces to one of showing

lim sup sup spec| Av, G2 — (7/8)e~2Avy(—Lp ] < 0

a,c,le

which is easily seen to follow from the two block estimate.
Finally we have to bound Qo. Note that E+[¢$:Y°|F, s] = 0 if |y — z| < 41 and
hence from Lemma 5.2 we have

Qo < C'sup spec

AvaVy ( D Je(ex)dBE° , Tne ) - (7/8)6‘2Avb(—£b)] +o(1)

e>0

with limg ¢ 4. 0(1) = 0. Note we have kept some Dirichlet form. For k > £ let

w(Zamo%%mq

e>0

Uz,k = Ehe

f:z,k]a

and we can bound Qo < Q4 + Q5 + o(1) with

Q4 = C sup spec [sz {Vz ( PIRACIL Sl ) - Uz,k} - (’7/8)5_2Avb(“£b)l

e>0
Qs = sup Uzp

zv]:z,k

Using Lemma 5.2 and noting that the factor e~! in front of h in (5.2) is not present
in this calculation, we have

lim Q4 =0.

e—0

It remains to bound 4. By the translational invariance,

Qs < sup E#vaeree | V(Y Je(ez) 880, 7ie)
WP e>0

Fi :l (7.8)
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where fip,; ., w,p denote the canonical Gibbs measure on Asxy; with boundary condi-
tion w and density p. For every ¢ fixed, we can take the limit £ — co and any limiting
point of the right hand side of (7.8) is given by

VoY~ J(ex)¢§2° 7e) (7.9)

where pg is the unique Gibbs state with density 8 given by the limit of 7. Note
that from our mixing assumption, there is only one Gibbs state for a given density.
From the law of large number of Gibbs state, we can replace the density 7y in the
definition of d)g’o ** in (7.9) by the total density 3. Recall ¢&(0) is given by (3.13) and
by definition of ¢§¢*° we have

£0° = ¢E(B) — Ere [ ¢8(B) | Fs ]

for s large enough; where the density 79, in ¢g’ *° is replaced by 8. We can now take
the limit £ — oo and then s — co to have

limsup E#s | V, ZJ(€$)¢3’08777£)

£—00 e>0

<V ( > e(e2)65(8), 8 ) (7.10)

e>0

where we have used the definition (3.12) of V' This proves Theorem 3.9.

8. Computation of variance. Let us recall the definition of G
G ={h:Er[h|Fs)=0 for some s}
We would like to define the variance

V(h,h;B) = hm Ema[< 0] .c(e) RO >; 0y ] (8.1)

as a uniform limit in 8. Since we cannot show the existence of this limit at this time
we define the upper and lower limits

V*(h,B) = limsup B’ [ < h(O, L3 hO > ] (8.2)
o8
and
Vi(h,B) = h;’f,l %ﬂ Ete [ < RO, L3 hO >y ] (8.3)
Here

0 =
h (2(1 + l)d Z Tz h

zGAl
with #1 = £ — /¢ and

1
Lo = 2¢+1)4 bEZA Lo
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For any h € G, for sufficiently large ¢, E#¢.«.v[h(8)] = 0. The following calculation is
a typical way to estimate (8.2). From E#s.«.v[h] = 0, we conclude that

h = L5 us

for some u,. If we denote by C;™! a lower bound on the spectral gap for a box of size
s, for any function v of the configurations in the box A,

1
|Elhe o]| < QL1 > |E[rho)|
T€Ag,

VCs
< L+ > VErh?] / > Dy)
ZEA[I beAr,a

d
2

< VCi(as + 1 LZEED®

A Ihlla,e < v, Lgyv >3
1

providing us the bound

_ £\
< B, LG RO >4, < C; ( A ) (2s + 1)¢||nliZ,

where E denotes expectation with respect to any canonical Gibbs measure p; ., , and

1
Rl = g e Bl > Imhl?]

€A,
Taking expectations with respect to u#', letting £ — oo and B’ — 8 we have

V*(h,B) < Cs(2s + 1)4I|All3 4 (8:4)

Because we defined V*(h,() as the limsup, and did not show the existence of the
limit, it is not quite clear that V*(h,() is a quadratic form in h, and consequently
it is not possible to generate the inner product from it by the standard polarization
formula:

Ve(hg,0) = 3V*(g+h,8) V(g ~ h, )]

Because V;(h;w,y) is actually a quadratic form, it is possible to polarize it and
try to calculate directly the quantity

V(g,h;p) = lim E**{Vi(g,h;w,y)} (8-5)

B'—=p

We will show that the limit exists and calculate it explicitly for a large class of local
functions g and h. Let us define the shifts 7, for z € Z 4 by

(T2N)y = My—z, Teb=b—m, (729)(n) = g(Tzn)

on configurations 7, bonds b and functions g. We have the basic exchange operator
Sy defined by Spn = nb = n=¥ for a bond b = (z,y) in (2.10). The operator T} was
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already defined as (Tyg)(n) = 9(Sen) — g(n). The shift operators 7, and the exchange
operators Sy satisfy the commutation relations

72850 = Sp+2TzM,  (S6729) (1) = (7o Sb+29) (1)

leading to the identities

(Ty29)(n) = (TeTo+29) () = (T2 Tr_.b9) (M)

Suppose g € G, i.e it is a local functions such that E#{g|F,} = 0 for some s, then for
any other local function h, E#[g7; h] = 0 provided 7, & does not depend on any of the
variables {n, : z € A;}. In particular for any h which is a local function and g € G
the series

Z Erlgre h) =< g,h >0

T

is well defined as a finite sum. If it happens that h € G as well, then

<g,h>0(B)=) Erslgroh) =) Ers[groh] =< h,g >0 (8)

T T

is a continuous function of 8 and

1 2
<g,9>0(B) = Am (%—)—E“"[(zgzﬁg) ]>o0

so that for each 3, <,>¢ is a positive semidefinite inner product. We will also need
the quantities

te(g,8) =Y _(e,@)E e[z g]

T

which are again only finite sums for g € G. Let u be a local function with Lu = g.
Clearly g € G and L1yu = 759 for all x € Z 4. In particular

El( Z Tzu) =£( Z Tzu) = Z Tag

TEAg, TE€Ae, zE€A,

If v is now another local function with Lv = h, a direct calculation yields

1
. —___ He,w E
Vg(g,h,w,y) (281-{-1 E y oich TygTZ’v}
z, 2

and one can easily show that the limit

V(g,h;B) = lim E* {Vi(g,h;w,y)} == > Er{gmo}=—<g,v>0(8)
ﬁ'—>ﬁ z€Z
(8.6)
exists.
The following calculation is easy to carry out. For each local function u let us
define the formal sum
u= Z ToU
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Although u is not well defined,
& = Tru

is well defined for every b and

728 = Ep—a
for every = and b. If we denote Tp,. by Te, and &o,e by &, we have

<g:;9 >0 (ﬁ):_<£u U >0 (B _Euﬁ Zce é‘e]2

and by polarization

<g,h>0(B)=—<£u,v>0 :—El‘B zce £e<e

where

(e =Tev=T. ZTJ:'U

We next take g = we = wo,.. From the definition of the current w in (3.4) it is easy
to establish the following identity, which is essentially an integration by parts formula,
for any p which is either pg for some 8 or any canonical Gibbs measure p3¥ on a box
A that contains the bond (z,z + e).

Exr [wz,z+e U] =—-E¢r [(7h+e - nz)ca:,z+e(77) (Tz,z+eu)(77)]
If we take any set B C A, it follows that
| B2 (D we) w]2 < BHRY LY an(m)(Vem2] XX [ eol(Th w) (m)]?]
beB beB beB

In particular

< Z Wy ;[,Zl Z Wy >uw y< CIBI
beB beB

Therefore in the definition of V(w, ,we ;8) on can take
W(we ) we’ ;w ) 3/) =< AvA[we I [Avl\[ Eb]_lAvA[we >w,y
and because

£Ae Z <zT,e>1MNy = Z Wz, z+e

zEA, T€EA,

it is easy to calculate that

V(e w5 B) = 25 ¥ fea(n) (Vo)) .1

and for any local u

V(we , Lu;B) = —Euﬁ [Ce(n )(Te ZTz Ve’f]] (8.8)
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and in fact for any g € G
V(we 19;:6) = te(gyﬁ)- (89)

We collect these results as a lemma.

LEMMA 8.1 If we define the class Go C G of functions as those which are of the
form g = Lu+ Y, acwe for some local u, then V(g ,h; (), given by (8.6) -(8.9), is a
well defined, possibly degenerate inner product on Go. In addition V(g,h ;) exists as
a limit in the sense of (8.5) so long as g,h € G and either g or h is in Go.

Our next goal is to show that G is not all that much larger than Go. We want to
show that, for any 8, G is contained in the completion Gg of Gy relative to the inner
product V(-,-; 8). More precisely with V' (h, h;3) defined as the limsup for h € G we
want to show that

inf V¥(h—g,h—g;8) =0 (8.10)
9€%0
Notice that although V*, defined by(8.2), may not be a quadratic form it is still true
that for g € Go and h € G

V*(h—g,h—g;8)=V*(h,h;8)—2V(h,g;8)+V(g,g;8)

so that (8.10) reduces to proving the variational formula

Ve(h,h;B) = sup {2V<h,g;ﬂ) —V(g,g;ﬂ)} (8.11)

9€Go

The variational formula (8.11) also proves that for Vi defined by (8.3)

Va(h ,h;B) =Va(h—g,h—g;B8)+2V(h—g,9;8) +V(g,g;8)
> sup [2V(h,g;8) —V(g,9;8)]
9€Go
=V*(h,h;B)

establishing the equality V* = V, and therefore V., = V* = V(h, h; B) exists as a limit
and defines a quadratic form for all h € G. Let us remark that from the definition
V* is upper semicontinuous in 8, while V, is lower semicontinuous. In particular the
equality implies the continuity in 3. We now state these results as a theorem. Since
B will be fixed from now on, we will drop all references to it.

THEOREM 8.2 For h € G the variance V(h,h) satisfies the variational formula

1
=V(h,h) = sup
2 a.€ER,uEG

e>0 e>0

V(h,Zaewe —Lu) - %V( Zaewe —Lu) j]
= sup {Zaete(h) + (h,u)o

a.ER,UEG e>0
- 1/4ZEM [ ce(n)( aeVen + Te ZTzu )2 ] }

e>0
(8.12)
The equivalence of the two formulae in (8.12) follows from Lemma 8.1. Hence we
only have to prove the first identity in (8.12). This will be the main thrust of the rest
of this paper.



656 S.R.S. VARADHAN AND HORNG-TZER YAU

We now assume Theorem 8.2 and conclude the proof of Theorem 3.4. In general
Ven ¢ G. However for any e and s, he,s = Ven — E#[V.n|F;s] € G and for s1 < sz, by
(8.4) and the estimate on the spectral gap

—(d
V(he,sx - he,sz 7he,51 - he,s2) S ng+2 $1 ( +2+a)'

This is enough to prove that hes is a Cauchy sequence (uniformly with respect to 3)
in G and letting s — 00, h = lim,_sco he,s gets represented in G. Using (8.6) and (8.9)
we can explicitly calculate

V(we ) Ve’n) = te(ve’n) = 56,6’ Z <No;Nz >u= de ¢ (8-13)

and
V(Lu,Ven) =0 (8.14)

Proof of Theorem 8.4. Let

GO ={) " a.Veno} (8.15)

e>0

We claim that G(®) + £G is also dense in G where £G denotes the linear space {Lu}
as u varies over all local functions. From (8.14), G(® 1 £G. From (8.13) we see that
the projection of the space G(¥) onto G(®) has rank equal to the dimension of G(®).
Therefore the dimensions of G(©) and G(*) are both d. Since G(*) + LG is dense in G,
it follows that G = G(©) @ LG.

Let & denote the orthogonal projection of w, onto the space £G. Hence there is
a diffusion matrix D such that

1
we = 3 E*Z;o DeexVestio + &e, (8.16)

as an identity in G. Clearly, the projection of Yoo YeWe is Y, Ve&e. By definition, & can
be approximated by elements of the form £ g, and thus }__ v.£. can be approximated
by £ 3", Yege. Therefore, (3.14) holds for some diffusion matrix D. Our final task is

to prove the characterization (2.22).
Using the current notation, we can rewrite the diffusion coefficient (2.22) as

1
oD~y =1 j Cay —
27 D-y=x C}Enﬁng(’y w — () (8.17)

The minimizer is simply the projection of v - w onto the space £G, namely, Y, ve&.
Taking inner product of (8.16) with we, we have

1
V(w87 we') = 5 Z De,e*V(Ve*UOa we') + V(fe, we’)

We can compute V(Vexno, wer) by (8.13) and thus

1
V (we,wer) = '2“De,e'X + V(&e, wer)
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Hence for any vector vy we have

%7-D-7=X‘1[V(v-w)—V(v-f,’y-w)] (8.18)

Since 7 - ¢ is the projection of y - w onto the space £G, we have
Viv-& v €—vw)=0
Therefore we can rewrite (8.18) as

57 Doy =X [Vl w) =2V €, 7 w) + Vi 9 =V(yw—7-8) (819)
establishing the equivalence of (8.19) and (8.17). This proves Theorem 3.4 assuming
Theorem 8.2.

We now prove that the diffusion matrix is diagonal if the model is isotropic, i.e.,
the Hamiltonian and the jump rate A in (2.14) are isotropic.

LEMMA 8.3 Under the previous assumption, the diffusion coefficient is diagonal

Proof. Fix two coordinate direction e and e’. Taking inner product of (8.16) with
Vermo, we have

1
V(wea ve’770) = '2‘ Z De,e*V(Ve*no, Ve'no)

We can compute V(Vexo, wer ) by (8.13). Hence we only have to prove that V(Ve.no,
Vep) is diagonal. Denote by 8: Z — Z the reflection with respect to the origin
along the e’ direction. We may extend 8 to the space of configurations in the natural
way: (0n)(z) = n(f(z)) and to the space of continuous functions: (0f)(n) = f(6n).
Clearly, V(f,g) = V(0f,8g) since our model is isotropic. Notice that

0(Ven(0)) = —T—Vern(0) 5 8(Ven(0)) = Ven(0), if e #e

Hence V(Veno, Venp) = =V (Veno, Vernp) = 0. This proves the Lemma.

Return to the proof of Theorem 8.2. We shall follow the approach of [V1] and
[Q1]. We first need the notion of ”closed forms”. This is some what parallel to the
usual notion of closed forms in differential calculus. Our goal is to characterize the
1-form arising from

wy = Tpg (8.20)

for some function g. Clearly, there are compatibility conditions for w = {ws}. One
can check easily that the following conditions hold:

Tywg = Tqwp, ifgNb=1¢ . (8.21)

Unlike in differential calculus, (8.21) fails if ¢ N b # ¢ because the operators are not
local. Hence (8.21) is not enough to characterize the forms arising in this manner. We
therefore use instead the definition: w = {wy} is ”closed” provided for any sequence
of nearest neighbor bonds {b1, bs, ..., bn} such that S Sy, _, ...Ss, Sp, = I one has

Z Wh; (Sbi—l Sbi_g---Shy n) =0, (822)
i=1
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where Spnp = nb. Let P;n denotes the new configuration obtained by applying the
permutation P; = Sp, Sp,_, ...Sp, to n. One can check easily that if w is given by
(8.20) then (8.22) holds. To prove this, we substitute w, = Tpg into the equation and
we only have to check

> Tog(Pi-an) =0, (8.23)

i=1

By definition,

T, 9(Pi—1m) = 9(Sp; Pi—1n) — 9(Pi-1n) = g(Pin) — g(Pi-1n)

We see that (8.23) is a telescoping sum vanishes because P, = Py = I. Conversely,
if (8.22) holds, we can reconstruct the function g as long as we are in a finite cube A
with a fixed total number of particles. This can be achieved in a standard way.

For any two configuration 7 and ¢ with the same total number of particles, i.e.,
[n| = |¢|, we can construct a sequence Sp,,¢ = 1,---,n so that { = S, -+ Sp,7.
Starting from a configuration 7, we can define the value of the function g at any
configuration ¢ with |n| = |{] by

g(() = Z Wh; (Sbi—lex'—2 v 5b177)

i=1

The condition (8.22) is exactly the compatibility condition that two different ways to
reach ¢ will yield the same value for g({). Note that configurations with different total
number of particles are completely unrelated. Hence in general we can require that

En[g|FL] =0 (8.24)

if the cube A is of width 2L + 1; here Fr is the o-algebra defined in (3.8). This
procedure can be performed in a finite cube and thus the function g always exists
locally, i.e., if we condition on the configuration outside a cube A, the condition (8.22)
implies the existence of a function g such that Spg = wp for all bonds b inside A.
Therefore, (8.22) implies (8.21). In addition to the existence, we have the following
bound

Er[g2]<CL? Y Er[uw}] (825)

bEAL

For the whole lattice Z 4, it is more subtle and, indeed, the reconstruction is not
necessarily valid. We shall discuss this in details in the next section. For now, we
define the space of (translationally covariant) closed forms , G¢, by

Ge ={w = {ws} : w is translationally covariant and is closed} (8.26)
where w is said to be translationally covariant if it satisfies
Tzwp(1) = we(T2n) = wr,b(1N) = wo—2(n) (8.27)

The existence of translationally covariant closed 1-forms is not entirely obvious. The
idea is that, if we start with a local function u and define the formal sum

u= E Tzl ,

z€Z 4
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as we saw before, although u does not really exist as a translation invariant function,
its formal ”gradients”
=Tpu

are well defined local functions and constitute a translationally invariant closed 1-form.
These are to be thought of as exact forms. On the other hand for each e the form

w::,a:-}-e' (77) = 66,8' [77:1:+e’ - 77::]

is a "closed” 1-form that is not of the exact type. The following Lemma is the first
step in proving Theorem 8.2 and provides a variational formula for the variance in
terms of ”closed forms”. The proof will be completed in the next section where we
will prove that Gy = G in a suitable sense. .

LEMMA 8.4 For h € G the variance V*(h,h) satisfies the variational principle

—V*(h h) < sup Er[>_co®B(n)é] — —Eu[z ce(&)?], (8.28)

o e>0 e>0

where, for each e, ®2(-) is a local function depending on h to be defined in (8.30) and
(8.31). In addition there is also the counterpart

SVe(h,1) > sup BAY et ()] - 1EHY cel€)?, (8.29)

£€Go >0 e>0

with the same functions ®2(-).
Proof. First we prove (8.29), which is the easy part. Clearly

1 1
ng(h,h;w,y) = sup {E#wu [[szeAlleh]v] - ZE#lva [AvbeA, [cb(n)(Tb v)2]]}

By choosing
v = <a,r> - Tz U
| S <o 3l
(2¢+1) ey cehn,

for some local u, taking expectations with respect pg, letting £ — oo while 8/ — 8,
we get

1
—3B (D ce(mé?]
for the second term, where
e = aeVeno — Te Z Tz U.
T€EZ d

Since h € G we can write
h=LH=Y LH (8.30)
beA,

with H measurable with respect to some K;+r (see (3.9)), and calculate

EnEbtwy [[Avmemlrzh]v] = E#[(A’U;,;GAZI Te Z LoH)v]
bEAS

- _% > Avpen,, B#[rales(n) (T H)(Tr—gv)]
beR,



660 S.R.S. VARADHAN AND HORNG-TZER YAU

It is now easily seen that the first term reduces to

—%E”[ZCe('ﬂ)( Z TyT‘ryeH)ée = E”[Zce(ﬂ)q"é(ﬂ)fe(ﬂ)]
e Y:Tye€EA, €
with

1
@Q(n)=_§ > nTrH (8.31)
y:Tye€A,

thereby proving (8.32) . We now turn to the proof of (8.28).
Stepl. Let
V* =limsup E*#' [Vy(h,h;w,y)]

£— o0

B'—B

and suppose that £ > 1 and 3’ ~ 3 have been chosen so that, for some small § > 0,
with ¢/ = ug,
E¥ [Ve(h,hiw,y)] > V* — 6.

We have the usual variational principle
1 1
§Vg(h yhi;w,y) = sup {E“fw [u Av|g|<e, h] — ZE“ZW [A'U|b|sg6b(7])(Tb u)2] }

that is valid for each w. Integration with respect to the infinite volume Gibbs measure
W' yields

1_, ' 1 .
S ¥ [Ve(h, hsw,y)] = sup {Av|z|se1E“ [(rah)u] =7 Avppj < E¥ [ce(n)(TbuP]} (8.33)
Hence, there exists a function v = u(©) such that
1 ! 1 1 !
LB Vil b5, )] < Aviayee, B [(rehu] = vy e B [ee(n)(Tu)?] + 6, (8:34)

where £; = £ — \/f. Moreover we can assume without loss of generality that u is a
function of the configurations on As4 g and satisfies

) 1 ,
Avig|<e, B¥ [(Tzh)u] - ZAvmgeE“ [ce(n)(Tpu)?] > 0 (8.35)

Since h is a local function, it is measurable w.r.t. Ks for some s large enough. Because
h € G (3.7), as we saw earlier, h = L;H for some H that is Ks+r measurable.
Therefore, there is a constant C(h) such that, for any constant v > 0, and = € Ay,

B [(r-ch)u] < (40)70 Y B [eo(n)(Tow)?] + 2C(h) (8.36)

[b—z|<s

Let v = 2(2s + 1)4. Summing (8.36) over z with |z| < #; and using (8.35), we have
the following energy bound that holds uniformly in ¢:

Av“,'SgE“ [Cb (7’)) (Tbu)Q] < CSC(h) (837)
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Step2. For h € G (3.7), {®%(-)} were defined by (8.30) and (8.31). From
EW'[uh|Fs] = EW'[u LsH|Fs)

we deduce that
BW whl ] =~ 3 B [ey ) (T ) () (To) () ), (8.38)
beEA,

and ,
Avjgi<e, B* [ (Teh)u ]

—_%(2z1+1 —dpu’ { > > am(TnH ()(TbU)(n)}

|o| <ty b+z€A,

=21 + 1)=4E | Y cy(n) @y (n)(Thu) (n)

beA,

where for b = 7ye € Ay,

&)= Y, (TyraH)(n) = 7B (n) + U ()

z€Ay,
bt+zEAs

where Q; are boundary terms that satisfy Q = 0 for b € A,_, ; and |Qs| < C(h)
otherwise. Clearly, from Schwarz’s inequality, and (8.37)

(261 +1)° Y. B e (reh)Tou] < CL2

beA,
bEA_ovE

and we can therefore replace
A‘UlzlShE”/ [ (Tzh)u ]

in (8.33) with
Avjgj<co, BY [ To[ce(n) @8 ()] Tr.eu ]
so that

' 1 .
Avjg|<e, B [ Tz [ce(n) B8 ()] T+, cu) ] - ZAU|b|§£E“ [eo(n)(Tpu)2 ] > V* - 35

Step 3. Let us pick k£ > 1 and fix it. There must be a good box of size k, i.e with
Az k+r C Ay, such that

/ 1
Avyen, o B [ 1yleem@EMITreu] | - 7Avpjen.  B¥ [e(n)(Thu)? | > V* — 49
If we now replace u = u(® by @(®) = E+' [ u®|K; 545 | we still have

: _ 1 , _
Avyen,  E¥ [ my[ce(n) @2 (n)]Tr,a0] ] — ZAU|b|eA,,kE“ [ eo(n)(Tpa®)2 ] > V> —45
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by taking conditional expectations first. It is easy to pass to the limit as £ — co and
u' — u, taking a subsequence if needed. We produce in the limit a function u; such
that it is K measurable and satisfies

1
Avyen, EH l > 1yl (m) @2 ()] T cun } — 7 Avblen. B [eo(m)(Thuk)? | > V> — 46
or

1
Ew - ZAv]weAkE" [co(m)(Toup)? | > V* — 46

> ce(n) @2 (n) Te[Avyen, Tyur]

If we define ¢§ = T, Avyea, [Ty ux] then

Br [ ce(n)(€5)?]

e

=E# [Z ce(n) [Avyea, Tryeuk]z] < Ew [Z ce(n) [Avyen, (Tryeuk)2]]
=Avppjen, B# [ eo(n)(Tour)? |

We conclude that

B[ Y celm)®E(n)es] — B4 [ 3 el (e)?] > Ve — 45

While £¥ is not a covariant gradient it is routine to show that any limit point of £§ as
k — oo is one. This concludes the proof.

It remains to establish that Gy is dense in G in a suitable sense, and this will be
taken up in the next section.

9. Structure of closed forms. Our goal is to prove that any translationally
covariant closed form & = {£.} can be approximated in L?(u) by forms of the type
{aeVen +Te Y, 729} with suitable scalars {a. : e > 0}.

More precisely, let

Ge=1{(:G="Tp Z Tz9, g is a local function} 9.1)
z€Z 4

be the space of translationally covariant exact forms and G(1) be the d-dimensional
space of translationally covariant closed forms given by

G) = {ga: gx = Zaeéb,evbn for some a. € R} (9.2)
e>0

where 0y . = 1 if the bond is in the same direction as e, and 0 otherwise. Formally
one can think of

& =-T, Z <o, > N
z€Z?
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Clearly, these two spaces are subspaces of Go. Define the L2 norm of a closed form by

Il € 13= E» [Zez}

e>0

To simplify notation we use £, to denote & with b = (0,e). Then our goal is prove
the main Theorem of this section.
THEOREM 9.1 The following decomposition holds in La(u):

Gc =Gp + G0 (9.3)

Together with Lemma 8.4 this proves Theorem 8.2. Theorem 9.1 has a paral-
lel version if the conservative (Kawasaki) dynamics is replaced by a nonconservative
(Glauber) one. For any configuration n and z € Z ¢ we define

Y 1—-n if z=y

i.e the spin is flipped at the site z. The Glauber gradient o, at site z of a function u
is defined as

(ozu)(n) = u(n®) — u(n)

For any local function g, although the formal sum

u = Z T29

z€EZ 4

does not exist, the Glauber gradients
Wy = OzU

exist and are in fact local functions. Moreover we have the translational covariance

We = TgWyg (9.4)
along with the obvious identities
Ozwy = oywy forall z#vy (9.5)
and
Ozwy = —2w,; forall ze€Zd (9.6)

Let GS be space of covariant closed forms (in the Glauber sense), i.e. {w;} that satisfy
"(9.4) , (9.5) and (9.6). Equip G§ with the L2 norm defined by

lwli3=Ex[w ]
Let Qg be the space of translationally covariant exact forms, namely

G¢ ={w:w; =04 Z Tyg, g is a local function }. (9.7
2€EZ 4
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We have the following approximation Theorem.
THEOREM 9.2 In L2(u):

GE =69 (9.8)

Our interest in the Glauber dynamics arises from the observation that the spin flip
and the spin exchange are related in the following manner. Given a pair of functions
u and v let Q denote the function

Q:z:,a;-l—e(u: U) = [771:(1 - 771:+e) + 77:D+6(1 - 771)][024‘6“ +u+ ’U] (99)
Then for any function F,
TrzteF = Qzzte(0zF 054 F). (9.10)

We now prove Theorems 9.1 and 9.2. The first few steps of the proofs are very
similar and the steps leading to Theorem 9.1 are harder. We shall provide the details
for this case and just sketch the proofs for the easier version.

Proof. In general, given functions &, defined for bonds in a box A, satisfying the
compatibility conditions for being a closed (Kawasaki) form, we can ”integrate” it,
and find a function g such that

& =Tpg forall be A,

The function g is not unique, but can be determined uniquely by imposing a mean 0
condition
Bureev[g]=0

that makes the solution depend on the external boundary condition w and the particle
density y in A;. For such a choice we have the estimate

Erews [ |g|2 ] < CR2ERewy | Z ] (9.11)
bEA,

as a consequence of the estimate on the spectral gap. The constant C is of course
independent of £,w and y. We can perform this step even if g depends on the external
boundary condition w, so long as the compatibility is satisfied for each such w. There
is a similar result on integrating Glauber forms {&; : z € A;} with the normalization
Erewn[ g ] =0 along with the estimate

Bucen [ g2 ] < CBrewn [ €3] (912)
z€EA,

again based on the spectral estimate, but now for the Glauber dynamics.

Let us recall that R is the range of interaction in the Gibbs measure. For each
box Aps let OAps denote the ”boundary” of Aps, consisting of sites in Aps that are
within a distance R from some site in A§, ( the complement of Aps) as well sites in
A§, that are within a distance R of some site in Aps. Let A%, = Ar\OApr denote the
”interior” of Apr. Given a (Kawasaki) closed form {£,} we can try to truncate it over
a finite volume Ajs by defining

M=FEr[&|Kn] foreach beAy (9.13)



DIFFUSIVE LIMIT OF LATTICE GAS WITH MIXING CONDITIONS 665

While the conditioning interferes with the gradient near the boundary, if we restrict
&M to b € AY, it does in fact define a (Kawasaki) closed form and in particular if
& = Tpyg for some g, then &M = TygM where gM = Er [ g|Kas ] so long as b € AS,.
The identical statement is valid for Glauber forms as well.

Suppose we are given a translationally covariant (Kawasaki) form {,}. For some
L >> 1 we define the truncations &% according to (9.13) for a box of size 3L. We
can use these to construct a function g3 measurable with respect to K3z such that
Tygsr = &L for b € AJ;. We then define

hp = E¢r [ gsL|KrL |

and finally an approximation that is translationally covariant and exact by

~ 1
L _
{b - (2L+1)d Tb EZZdehL
z

In the Glauber context the approximation takes the form

1

~L —

N CT AV 2 meh
2€Z ¢

with a different but similarly constructed hp .

LEMMA 9.3 The Kawasaki form €& can be decomposed as the sum éeL = Q(Ll)e+fl(L2)e
coming respectively from the interior terms and the boundary terms. For each e > 0,
they satisfy

. O ra s
Jim_ B [le. =012 ] =0 (9.14)
and ~
sup Ex [ |Q(L2)e|2 ] < oo (9.15)
L

The Glauber form @F admits a similar decomposition as @f = Q_(Ll)o + ﬁ(ﬁ)o coming
from the interior terms and the boundary terms and they satisfy

. —(1)
Jlim 5w [ lwo — Qg b2 ] =0 (9.16)
and the stronger estimate
sup LEw [ DL ] <o (9.17)
L

REMARK. In the Glauber case, from (9.16) and (9.17) it follows that @} — wo as
L — o0, and this proves Theorem 9.2 . In the Kawasaki case we will take a weak limit
of Q(L%) which will again be a covariant Kawasaki closed form and analyze it further
and show that it is made up of density gradients. This will complete the proof of
Theorem 9.1.

Proof. Denote by Q1) the ”interior part” and Q(2) the "boundary part”, namely,

~ 1
Q(l) =—T: E T hL
o (2 l)d vy, y+e€Ad !
Y, 7
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5@ _ 1
Ve=Grrmal X h
y:{y, y+e}NdAL#P

It is important to note at this point that, if y, y + e € A} then
Teryhr = 7yTy,y+e hr = Ty E# [ &y, y+elKL ]

Since & € La(p), for large k, Er[ | — E# [ &|Ky ]|2] is small. By translational
invariance E# [ {&r,e — E# [ &,e|KCyx ]}2 ] is independent of y and is therefore uni-
formly small for large k. For most y € Ar, Ayr C AY and consequently for most

bonds b (with density close to 1 for large M), E~ [ (& —Er[&lKL])? ] is small.

This proves (9.14). The proof of (9.16) is identical. The following lemma provides a
key estimate.

LEMMA 9.4 Let h be a function in the cube Asr. Suppose AL is the centered
subcube of width 2L+ 1, h = Ex[h|KL] and z is a site in A;,. Denote the configuration
by n = (&,1m2,() where { denote the configuration on Ar \ {z} and & denote the config-
uration on Az, \ Ar. Denote by Avy = Avyep,,_p\AL,r- Let i be a Gibbs measure on
A3z, or an infinite volume Gibbs state such that for any local function F' the following
mizing property holds:

Ev| Avy Fy; Avy Fy | < CpL—4d (9.18)

Then
Er [ (0:h(n:,0))? ] < CL=2Er[ h2(n) | + CAvyE# [ (T:,yh)%(n) | (9.19)

where the constant C' may depend on the density of the Gibbs measure.
We will defer the proof of the lemma to the end of the section and proceed with
our main goal. We first consider the Glauber case.

By definition, 5(1,2)0 has contribution from the boundary consisting of

o2
QLo = 7577773 90 E Tyhi = /3 E Tyoyhr
(2L+ 1) e (2L+ 1) e

and (9.17) will follow provided we show that

sup sup E*r[|oyhr]?] < C < o0 (9.20)
L yeAr

Clearly, (9.20) follows readily from (9.19) with the choice of h = g3z. We only have
to note that in the Glauber case we have from the spectral gap bounds (9.12)

En[ g3 (n)]< CLd (9.21)

and
Er [ (Tz,y930)%(n) ] < CE# [ (02 932)%(n) + (0y 932)2(n) | < C (922)

so long as z and y remain in A3, . This concludes the proof of Theorem 9.2
We now turn to the Kawasaki case. We observe that instead of (9.21) and (9.22)
we obtain from (9.11)
Er[ g3,(n) ] < CLa+2 (9.23)
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and
Ev [ (T:,y931)%(n) | < CL? (9:24)

so long as z and y remain in AY,. This provides the estimate
g 3L

sup E# [ (oyhi)2(n) ] < CL? (9.25)
yEAL

with a constant C independent of L. Because the boundary terms are only O(L4-1)
in number, from the definition of Q the estimate (9.25) is sufficient to establish
(9.15). This concludes the proof of Lemma 9.3.

Return to the proof of Theorem 9.1. The proof is broken up into several steps.
Step 1. The boundary in d dimensions comes in 2d faces with some overlap at the
corners. The overlap involves only O(L4-2) sites and hence negligible in view of the
bound (9.25). We can therefore analyze the contribution from each face by itself. Since
they are all similar we will just consider one of them. Depending on the range of the
interaction, for some integer g > 1, the face consists of points z = (21, -+ -, 24) € Z ¢
satisfying —L < 21 < =L+ g and —L < z; < L for 2 < 7 < d. The face consists
naturally of layers

Bi:{z:(zl,---,zd):zl=—L+j;—L§zi§L for 2<i<d}

indexed by 0 < j < q. We need to analyze the terms

B,L __
e’ P 7T, z, z+e hy = ——+T. T hr
(2L D) zze B (2L 1) ZZEBL

where By, is the slightly thickened boundary
Br = U_15<B]

We can rewrite
B,L 7
=T, E T} hr

-1<5<q

where

- 1
hy = 75— T: hr
2L + 1) ZZB:O

and le = Tje, is the translation by j steps in the z; direction. For each site in
z = (z1,-++,2q) € Z 4 let us consider

Wz’ =0z ’_l L

Since w2’ is bounded in Ly(p), we can take a weak limit as L — oo, with one
subsequence working simultaneously for all z, and call the limt w5.

Step 2. By construction, as a weak limit of Glauber gradients, {w®} is again a
Glauber gradient although it may not be covariant. Because averaging is done in
all directions except in the first coordinate direction, it is covariant, in all directions
except possibly in that direction. Moreover wf = 0 if ; < 0, because none of the
functions depend on the configuration at any site z with z; < 0. Let b be a bond that
does not intersect the infinite strip Boo = {y = (y1,**,y4) : 0 < y1 < ¢}, as well as
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the site z. Then Tyh; — 0, and o, commutes with Ty. Therefore TywB = 0. This
implies that w? can only depend on the configuration in Boo U {z}. In particular for
Y ¢ Boo U {2}, oyw® = 0. As a Glauber gradient oyw# = o w§ for all z,y and hence
we also have o,wP = 0 for such pairs z and y. It is easy to arrive at the following
conclusion: for each z € B, w® depends only on the configuration in Bs. On the
other hand for = with z; > ¢, w# can only depend on 7, and as a gradient must equal
c(z)(2ny — 1) for some constant ¢(x). Covariance in all directions except the first
coordinate means that c(z) is a function of the first coordinate only i.e ¢(z) = c(z1)
Step 3. If we denote by ¢B the weak limit of £2 %, then

€8 = Jim [0 = ) 4711 = m)]|(ovoe + 00 +0)( Y 73|

—-1<5<¢q
= I}gréo[no(l —17e) +ne(l — [ Z 7' Oetjer hL Z 7' Oje, hL
—-1<j<q —-1<j<q
> rioershi)
-1<5<q
=@ =)+ = milfoo( Y reli) + (3 e
-1<j<q -1<5<g

S )

—1<j<q

If w, is a Glauber gradient then

Wy = E TzWz+2

z€Z ¢

is a covariant Glauber gradient. If w, is covariant in all directions except the first, we

can redefine
— — 1 .
Wy = E TjWetjeq
J

and get a covariant Glauber gradient. Let us define a new Glauber gradient
OB = wf —c(z1)(2n: — 1)

where ¢(z1) is defined in Step 2 for z; > ¢ and is taken to be 0 otherwise. Then
w’? - ZT Watjer

is a covariant Glauber gradient and so can be approximated by exact Glauber gradients
according to Theorem 9.2. Therefore the Kawasaki gradient

& =0 —ne) +ne(1 = mo)][of +WE +@E]

is covariant and can also be approximated by exact forms. We now calculate the
difference

8 — T2 = [no(1 — 1) + ne(1 — mo)) |00 (uB — BE) + (uB —@F) + (vB — &F)
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where

= ) T

—1<]<q

wE =Y THwE, - ¢;(2nje, — 1)]
i
Z T;weB-f-jel

—1<j<q

we = Z 7 [we-!—Jel Cj+de,e, (2Metje, — 1))
J

A straight forward calculation reveals that uB = @E and if e # e; we also have
=B
vB = wE. However if e = €1, vB — @& = ¢j+1(27, — 1) and then £8 — €., is seen to
equal ¢V, no, a multiple of the density gradient. This completes the proof of Theorem
9.2.
Proof of Lemma 9.4. By definition,

R(nz,¢) = E* [ h|n:,¢ ] = Z(n:,0)~ lzh ) exp[—H (n)]

where Z(n2,() = >_; exp[—H (£, 7z, ()] is the partition function. Let

£= Avy€A3L~R\AL+R fy

and denote E* [ £|n;,¢ ] by p(n:,¢). From the definition of truncated correlation
function, we have h(7, () = Ba(nz,¢) — B1(n2,¢) where

B1(n:,¢) = p(0z, Q)1 E* [ h; €|n2,C ]
B2(n2,¢) = p(nz, ()~ Er [ hE|ne,( |

Explicitly,

B2(0,¢) = p(0,0)71Z(0,¢) Y £h(£,0,¢) exp[-H(£,0,0)]
3

Replacing h(¢,0,¢) by Avy & h(0yé,1,(), we have B(0,({) = Bs + B4 where
B5(¢) = p(0,0)12(0,)* Y Avy & [ h(£,0,0) — h(04€,1,¢) Jexp[~H(,0,()]
13

By(¢) = p(0,0)=12(0,0)~ > Avy & h(0y€,1,¢) exp[—H(£,0,()]
13

(9.26)
By definition,

(& [ R(E,0,0) — h(0y€,1,0) 1) < (Teyh)(£,0,¢)?

Hence we can bound B3 by

Er [ (Bs(Q))* ] < CAvyBx [ (Toyh)(n)? ] (9.27)
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By changing the variable o,& — £, B4 equals to

By(Q) = p(0,0)"1Z(1,Q)1 D _ [ (Avy Fy) h(€,1,¢) Jexp[-H(£,1,)]
£ (9.28)

= p(oa C)_lEu [ (Avy Fy) hl 17C ]
where Fy is the local function

FyZBXP[H(f,l,C)—H(O'yf,O,C)].

and Because the sites y and z are sufficiently apart G does not depend on y. By
definition of the corrected correlation function,

En[ (Avy Fy) h|1,( ] = Er[ (Avy Fy); h|1,¢ ]+ Er[ (Avy Fy) |1, | B+ | h”(:(])

9.29

To compute E# [ (Avy Fy)|1,( ], consider h independent of £. From (9.26), B4(¢) =

h(1,¢). From (9.28) and (9.29), B4(¢) = p(0,¢)"1Ex [ (Avy F,)|1,¢ 1h(1,¢). Hence
p(0,0)"1EHr[ (Avy Fy)|1,( ] =1 and thus

Bu(¢) = p(0,) " E# [ (Avy Fy); h|1,( ]+ R(1,0)
We have thus proved that
7(0,¢) = h(1,¢) = —=B1(0,¢) + Bs(¢) + p(0,¢)~LEx [ (Avy Fy); h|1,¢ ]

From the mixing assumption (9.18) the last term on the right hand side satisfies the
bound
Er{Er[ (4v, F); h11,¢ )

< CEr {Er[(AvyFy); (Avy Fy)[1, (]2} E#{Ex#[R?|(1, Q)]}
< CL-4E"r[h?]
Also, B satisfies a similar bound. Together with (9.27), this concludes Lemma 9.4.

10. Mixing properties of grand canonical and canonical gibbs mea-
sures. Let us recall our basic mixing condition.

ASSUMPTION A. Let pa,.,» denote a Gibbs measure on A with boundary condition
w and chemical potential X. Denote the corresponding density by p = p(L, A, w). Then
there are constants y1,v2 and y3 > R+ 1 such that for any two functions f and g with
supports Sy and S; we have

|EAwalf; 9]l £ mp(1 = p) exp[—2 dist(Sf, Sg)]ll flloollglloo (10.1)

provided that the diameters of Sy and Sy are bounded by 3. Note that the constants
are independent of the size L of the cube A, the value of A of the chemical potential
and the boundary condition w.

REMARK. The term p(1 — p) is effective only for densities p that are close to 0 or
1. The effect of L and w is minimal. In fact for any local interaction, by low density
cluster expansion, (10.1) is seen to be always satisfied provided || is sufficiently large.
The factor p(1 — p) in (10.1) is therefore available for free.

From this assumption, one immediately obtains the following lemma.
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LEMMA 10.1 There is a positive function C on Z such that the following holds.
Suppose w is a boundary conditions on OA and z € OA. For any g in A,

|EAwal9] = Eno.walgll < C(IS,]) exp[—72 dist(z, So)lllglleo - (10.2)

where o,w denote the boundary condition obtained by changing the configuration at
the site z and |Sy| denotes the number of the sites in Sy.

Furthermore, there is a universal function C(|S¢|,|Sg|) such that (10.1) holds with
no restriction on the diameter of Sy or S, provided that the constant y1 is replaced by
C(IS¢1,151) -

We now sketch a proof of this lemma. By definition, |Ea w x[9] — EA,0.w,2[g]] can
be estimated by correlation between g and a local function around the site z. Hence
(10.2) follows from (10.1) provided that the diameter of the support g is bounded by .
Next, we prove (10.1) if the diameter of Sy is bounded by 3. Let @ C A\ Sy be a cube
of size smaller than 2 dist(Sf,Sy) and containing Sy such that dist(09Q \ dA, Sy) >
dist(Sy, Sg) — 2. Then

EA,w,)\[f;g] = EA,w,/\[ f 5 EA,w,A [ gl"h"x €A \ Q ] ]

Since the diameter of Sy is bounded by 73, we can apply the estimate (10.2). Hence
EpAw[ 9|nz, 2z € A\ Q] is independent of the boundary condition 7.,z € A\ &, up
to exponentially small error. This proves (10.1). Repeating the argument in the
beginning of the sketch, we have (10.2) holds without restriction on the diameter
of the support S,. It follows that (10.1) holds without restriction on Sy or S, by
repeating the previous argument.

‘We now recall some of the notation that will be used in this section. We denote
by AL a cube of width 2L+ 1. The (grand canonical) Gibbs measure with the chemical
potential A and boundary condition w is denoted by pr . If, instead of fixing the
chemical potential A, we fix the number of particles N in Ap or equivalently the
density y = 77 = NL—% in Ay, the resulting canonical measure is denoted by fr,.,y-
We denote by M = (2L + 1) = |AL|. Using the elementary Fourier analysis the
canonical measure pr,.,y can be represented as

1 1 [7 .
dppwy = — {-—2 / exp [ 10M (7] — y) | dpr,w, d9} (10.3)
Dy m

-7
where
Py =prLwr[N=y]. (10.4)
By definition, M7 is an integer and thus My has to be an integer for pr 4 to be
meaningful. We shall always assume this to be the case. The chemical potential A is
usually chosen such that
Evrex[f]=y+o0(1), (10.5)

where lim sup;,_, ., 0(1) = 0. We shall make the choice of A so that the right hand side
is actually equal to y.

The boundary conditions will be fixed in this section and we will drop the sub-
script w. The main result of this section is the following Lemma.

LEMMA 10.1 Suppose AL, is a cube of width 2L + 1 centered at 0. Let the mizing
condition (10.1) hold.. Then for any s > 0, there is a constant Cs such that the
following estimate holds

sup sup | ErLovno — nel | < C,L—* (10.6)
w oy
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for any e > 0.

A version of Lemmas 10.1 was proved in [Y2] using expansion techniques in local
limit theorems, for s < 3/2. Our proof, although partly based on this approach, is
somewhat simpler and yields a stronger result in the special case considered here.
Since a local limit theorem is proved in [Y2], we have in particular

py > Cy)L=4/2 (10.7)

under the mixing assumption (10.1) . Here the chemical potential X is chosen such
that (10.5) holds without the error term o(1) . We will need a lower bound that holds
uniformly in the range 1 — Le—d > y > Le—d. Since, in principle, the lower bound
should get better at the edges we will provide a simple proof of a uniform version of
this estimate while proving Lemma 10.1 below.

Proof of Lemma 10.1. Case 1: 1 — Le—2 > y > Le—4d,
Step 1: Cutoff.

By definition, the expectation w.r.t. the canonical measure is given by

Errv[(no — ne)] = ply% _: Erea {(no —ne)exp [ 16 M(77 —y) ]} db

We first prove that the contribution to the integral from the range {6 : |6| > L—%}
is exponentially small, provided 46 < €. Let I' be such that it contains 0 as well as
e, and for some positive constant ¢, A \ I" consists of cM widely separated sites that
become independent when conditioned on I' U A§. Since

|Bra{ (0 — ne) exp [§0 M(7 — y)] }| = | ¥+ {(mo —me) exp [16 Y m2]}|

T€EAL
=|Erer{(no —ne)exp [i0 Y o] Erra{exp[i6 D ma}}l
zel z€A\T
< sup |E#ra { exp [iG Z 77w}|
e z€A\T
it is enough to prove that
|E#ra{exp[i6 > no}| < exp(~CL®) (10.8)

z€A\T

for the expectation with respect ur,x, the distribution obtained by conditioning on
the configuration in the domain I'. Let pf = E#r.2[n,]. Since the interaction between
7, and its neighbors is uniformly bounded for each fixed z, there is a constant C' such
that

Pt 1-ps

Cc-1<—=<¢C and C-1<——<(, (10.9)

y I-y
where y is the total density. Note that this bound is independent of the shape of I
Since under pr x, {nc} are independent random variables one has

Eeeafexp Y ifn]] = ] [PEe? +(1—pf)].

zeA\T zA\T
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For any 0 < a <1 and —7 < 6 < 7 we have the elementary bound
|ae?® +1—al?2 =1 —2a(1 — a)(1 — cosf) < exp(—a(l — a)6?).
We have thus proved
|Erea{(no—ne) exp [0 M (7—y)] }| < exp [-C—1Le=dcML~20] = exp [—cC 1 Le—20)

Step 2. We can now assume that

Choose a cube I of width L® with a to be chosen depending on ¢ and centered at 0.
Hence
EHL {(T]O — Ne) €XP [’Le Z (n: — y)]}
zEAL (1011)
= EHL,A { exp [i@ Z (Me — y)]U(n)}
zel°
where

U(n) = E*2>[(m0 —me) exp (i) (ns — v))|ns,x € I°]
zel

From the Taylor expansion and the bound (10.10) on € , for any integer £, we have

4
UGn) = 3 Uj(n) + O(L-(+16—de))
=0

Ui =Y S B [y —9). (e — )0 - ) |[T] (1012)

zi€l,i=1,-j

We claim that
sup |Ui(n)| < Cexp[—L~7] (10.13)
n

for some 3 > 0.

Step 3. 'We now prove this bound, e.g., for j = £. Given a box Ay, we pick an integer
<y such that L > (¢ + 1) and consider boxes AJ = {z : |z| < jy} for 1 < j < ¢, and
A+l = Ap. We have (£+1) annuli of width at least . Given £ sites z1, - - -, z; at least
one annuli A; = A7\ A7-1 is empty. Let us write the set of all possible configurations
as a disjoint union of By, - -, Bey1 where B; is all configurations with A; having no
points and each A; for ¢ > j having at least one site from among z1,---,z,. We fix
the boundary condition w and denote by

fe(@, 21, m0) = ELe (e — y) ey —¥) -+ (e — ¥)]

for x =0,e and z1,---,2, € Ar. Our goal is to estimate the sum

A(UJ,L)= Z [ff(l,l'l,“',-’l'l)—ff(O,IE],"',l‘l)]

z1, -, Te€EAL
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and show that it decays uniformly in w faster than a stretched exponential in L. It is
clearly sufficient to show that every j < £+ 1

AJ(W’L)z Z [ff(l,fl'l,"',xl)—ff(o,-’lfl,"',l'l)]

z1,,2¢€B;

has the same property. The set B; has no sites in the jth annulus and can further be
split up in to £ + 1 sets depending on how many sites are inside and how many are
outside. We denote the infinite volume expectations by

f(l',l’l,"',.’l,‘[) =E[77$77E1 "‘Uzz]

If there are m inside sites y; - - -, ym and n outside variables 21,---, 2z, with £ = m +n
and (z1,---,2¢) = (Y1, **,Ym, 21, *, 2n), from the mixing conditions it follows that

ff(l’,l’l,"',x[) - f(xayl "'aym)ff(zlv"'azn)

is exponentially small. Hence up to exponential small error we have

Aj(w’L)N Z [f(l’yl""ym)_f(ovyl"'vym)] Z ff(zla"'azn)

Y1, Ym €A1 z1,,2n EA\A;

Since the number of terms is only polynomial in L, it follows that our task can be
achieved if show that for every L the sum

A(L) = Z [f(l,.’lfl,"',.’lfz)—f(o,.’ltl,"-,:l,'[):'

T1,,Te€EAL

is exponentially small. We prove this by induction on £ and we use the completely
corrected correlation functions.

Recall that the definition of the completely corrected correlation function can be
defined inductively by

ge(@1,- -, k) = fr(@r, -+, ze) = Y 914/ (A)g;p) (B)
AB

where A, B is a proper partition of the variables z1,-- -,z into two disjoint subsets
with A and B nonempty. It is well-known that under the mixing assumption A the
function g decays in all directions, i.e.,

|gk(-771, te ,(L'k)l S Ce—clzi—zj|

for all 4, j. Since f is expressed in terms of g, it suffices to prove that A(L) is exponen-
tially small if f is replaced by g, for k < £+ 1. Since gx(z, 1, - -, Tx) is exponentially
small unless |z;| < L¢ for some € > 0, we can drop the restriction that z; € Az because
the added terms are exponentially small. But from the translational invariance of the
Gibbs state, we have

Z [ge(1, 21, -+, zk) — gk(0, 71, -+, zk)] =0

T1,Tk
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This concludes the proof.
Step 4. Lower bound.
Let y be given in the range 1 — Lc—4 > y > Le—4 and A = A(L, y, w) be picked
to satisfy
El‘A,A,w{M—l Z 77:5} =y.

T€EAL

Let find a set I' such that conditioning on I' U A¢ makes {n; : ¢ € A \ I'} mutually
independent. The cardinality of A \ T' is about ¢M for some ¢ > 0. Let us denote
by nr and npe the number of particles in I' and I'¢ respectively and for z € I'c by
pL the conditional probability that 7, = 1, given the configuration in ' U Ac. By a
conditioning argument

pa,xw{ =y} = Eraxe {pp x w{nre = My —np|CUAc}}
The quantity nre is a sum of independent Bernoulli random variables with expecta-

tions pf that satisfy cy < pf < Cy, one can easily derive the standard local limit
theorem that provides the lower bound

My — — 2
ﬂA,)\,w{nI‘c = M’y—nr\lruAc} 2 - [~ )exp[_( Y nr )uL(w)) ]

L (w 202 (w)
provided
(My —nr — pr(w))? < Co}(w)
where
prw)= Y pk
€A\
and

o2w)= 3 pE(L—ph)

z€A\I

Since 0 (w) ~ C M y uniformly in w, it is sufficient to obtain a uniform lower bound

N =

parwl(My —nr —pr()2 < CyM} >

for some fixed C'. By our choice of A
Epeaxw {nF +/J'L(w)} = My
and by orthogonality
EHA A w {(nr‘ + ,,L(w) _ My)2} < EHane {Mz(,—’ _ y)2} < CMy

An application of Chbechev’s inequality completes the proof of Lemma 10.1 for the
case 1 — Le—d >y > Le—d,
Case 2. y < L=—¢. [Case 3. y > 1 — Le—d is similar. ]

We will actually prove the much stronger assertion

EﬂA.y,w [7]0 _ 776] = O (1014)
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which is of course a purely combinatorial fact. It is convenient to normalize the
energy H=73" \ H(7;n) by assuming that the local function H(n) is 0 for the
empty configuration. For any boundary condition w and particle density y = NL—4,
we define the canonical partition function

z¢ = Y n(x)exp[H(n)]

=y

and prove that for large enough L, Z§ = Z¢.

We shall construct a graph with vertices in Ay, connecting every site with a
particle to all the sites in a cube of width 2R + 1 centered at the site with the particle.
Since the total number of particles is small, the cube will split up into several connected
clusters. each cluster has a protective layer of empty sites preventing any site outside
the union of all the clusters with interacting with any other site. Denoting the interior
clusters by Ci,- -+, C; and the clusters that interact with the boundary by Dy ---,Dp
the Hamiltonian takes the form

H(p) = Y H(C)+ > Hu(D:)
0<i<q 0<i<p
The clusters are actually slightly more complicated animals, because one has to keep
in mind that inside each cluster there are some occupied sites and some empty sites.
We shall fix the boundary clusters, but translate the interior clusters by arbitrary
translations. For fixed C = C1,--+,Cy, D1, -, Dp we define

zZ§= Y exp[ > H(mCi)+ Y. Hu(Dj)]

T1,Tq: Az 0<i<gq 0<i<p

where A; is the set of (z1 ---,zq) such that {7;,C;,1 < < ¢} and {D;,1 < j < p}
are all mutually disjoint and = € Ui<i<,C;. It is clearly sufficient to prove that for
large L, and for any C and boundary condition w,

Zg =7¢
Since the energy depends only on the class C it is sufficient to prove that
[Ao| = [Ae]

This will be carried out by careful counting, using the inclusion exclusion formula.

First, we note that the number of particles in any cluster must be at least a fixed
fraction of its diameter. Since the total number of particles is of the order L& with
€ < 1, we can never connect any boundary cluster to the sites 0 or e by a chain of
overlapping clusters that are translates of C;. To simplify the notation let us think
of a graph G with p + ¢ vertices corresponding to C; and D;. We will have bonds
connecting two vertices that correspond to two different C’s or between C-vertex and
D-vertex but not between two D-vertices. A bond represents the intersection of the
corresponding clusters after arbitrary translations of the C’s. For each z = (z1,---,z,)
we have the corresponding collection of bonds I'(z). If z = (z1,- -, z4) is to be counted
in Az, I'(z) must be empty and = € Ui<i<,7z,C;. Therefore

[Az| = #{z:T(2) =0,z € Ur<i<q72:Ci} = Z #{z:T(2) =0,z € 75,Ci}

1<i<q
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because = cannot belong to different C’s without creating an intersection. For each
summand

|AL] = #{z:T(2) =0,z € 73,C;}

by inclusion exclusion formula

1851 =3"(-1)r > #{z:T(2) DT,z € 7. Ci}

r I:|T|=r
=> (=1 > 1A
T :|T|=r

It is now a simple matter to complete the proof by establishing

|AFT| = AV

for all 7 and I'. The bonds I' divide the graph G into connected components and the
vertex 7 is in some component Go. Go cannot contain any of the D vertices due to
the absence of long chains. If we shift by e all the clusters that correspond to vertices
in Gy, this establishes a one to one map between AS’F and AYT. and we are done.

[DV]
[EMY]
[GPV]

[IY]

[KLS]

[LOY1]

[LOY?2]
[LY]
[MOS]

[N]
[oVY]

Q1]
Q2]
[QRV]

[QY1]
[QY2]
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