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DIFFUSIVE LIMIT OF LATTICE GAS WITH MIXING 
CONDITIONS* 

S.R.S. VARADHANt AND HORNG-TZER YAU* 

Abstract. We prove, under certain mixing conditions, that the hydrodynamical limit of a 
stochastic lattice gas on the cubic lattice Zd is governed by a nonlinear diffusion equation. Following 
[VI], we characterize the diffusion coefficient by a variational formula, which is equivalent to the 
Green-Kubo formula. The fluctuation-dissipation equation is established rigorously as an important 
step of the proof. Our mixing conditions are implied by the Dobrushin-Shlosman mixing conditions 
which are always valid at high temperatures. 

1. Introduction. Classical or Newtonian mechanics is described by a system 
of ordinary differential equations involving usually a two-body interaction potential. 
When the number of particles involved is large, rather than describe the motion of ev- 
ery particle, one usually tries to describe the collective behavior of these particles. The 
typical formulation involves the consideration of local averages of conserved quantities 
like density, average velocity, and energy. Since these local averages of conserved quan- 
tities tend to vary slowly in time, under some suitable space-time rescaling, referred 
to as hydrodynamical scaling, we expect to obtain a closed system of equations for 
these conserved quantities, as functions of macroscopic space and time. While such a 
transition is reasonably well understood from a physical point of view, these problems 
appear to be far beyond the current available methods for a rigorous mathematical 
treatment. 

One way to make the problem tractable is to introduce some noise or randomness 
into the dynamics and in this way we obtain stochastic interacting particle systems. 
There are many interesting models that have been studied successfully, and we wish 
to mention two of them. The first one is a Hamiltonian system perturbed by a weak 
noise considered in [OVY], that leads to the Euler equation under hydrodynamical 
scaling. The scaling there is the hyperbolic scaling x —> ex and t —> e~1t. The second 
model is one of interacting Brownian motions. Here the dynamics is controlled by 
the infinitesimal generator for the Markovian motion of these interacting Brownian 
particles. The infinitesimal generator involves a second order term which is the Laplace 
operator defining the noise, perturbed by a drift term or a first order term that comes 
from two particle interactions like in the Hamiltonian case. The similarity extends 
further in that the invariant measures are Gibbs measures very much like in the 
Hamiltonian case. 

The natural scaling here is however the diffusive scaling x^ex,t->e~2t and the 
limiting equation is expected to be a nonlinear diffusion equation. This is rigorously 
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established in [V2] for dimension d — 1. For dimension d > 2 and away from phase 
transition, one can prove it by applying the relative entropy argument of [Yl]. 

If we replace the Brownian motions by random walks, we obtain lattice gas mod- 
els. The invariant measures are thus Gibbs states on Zjd. One would expect that 
the hydrodynamical limit should be much easier to establish for lattice gases than 
for interacting Brownian motions. This turns out to be wrong. The main reason is 
that while the interacting Brownian motions model satisfies the 'gradient condition', 
lattice gas models in general do not. We will now explain briefly what the gradient 
condition means and why it is important in establishing hydrodynamical limits under 
diffusive scaling. To keep the notation simple let us take d = 1. 

Denote by 77 = (rjx)X£2Z with r]x G {0,1} a typical configuration of of particles in 
2Z with 7]x denoting the number of particles at x. From the dynamics of our lattice 
gas model, we can write down the microscopic conservation law 

drjx = [wx-i,x - wXlX+i]dt + dMx(t) 

where wx,x+i is the current along the bond (x,x + 1) and dMx is a martingale term 
due to the noise. Because our goal is to derive a diffusive limit, it is most convenient 
if the current is itself a gradient. In other words, wXiX+i(r)) = h(rxr]) — h(Tx+\r]) for 
some local function h\ here TX is the shift by x. This is the condition that is called 
the 'gradient condition'[KLS]. An analogous condition is satisfied in the interacting 
Brownian motions model but the condition is in general not satisfied for lattice gas 
models. Let us take a quick look at the role played by the 'gradient condition'. If we 
want to study the change of density as a function of space and time under diffusive 
scaling we need to study 

d^E J^)^NH) = jjY,J'(jj')w*>*+^)d* + dMNit) (1.1) 
X X 

where J is a test function. If the 'gradient condition' holds we can simplify (1.1) to 
get 

dJj E J^)^N2t) - J} E J,,(^) hMdt + dMN{t) (1.2) 
X X 

If we believe in the validity of a local averaging principle, then the term h(Txrj) can 
be replaced by h(p(t,x)), where h(p) is the expected value of /i(-) in the Gibbs state 
with density p. The martingale term becomes negligible for large iV and we end up 
with the nonlinear diffusion equation 

^ = [h(p(t,x))]mm = [h'(p(t,x))px(t,x)]x (1.3) 

It is not clear how we would ever arrive at an equation like (1.3) without the gradient 
condition. 

One way to bypass the gradient condition is to obtain a fluctuation-dissipation 
equation. A difficult step for us will be to establish the relation 

woAv) = D(p)(r]o - 771) + Cg (1.4) 

where £ is the generator of the dynamics and Cg represents fluctuation in a certain 
sense. One then obtains a diffusive limit 

^ = [D(p(t,x))px(t,x)]x (1.5) 
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This step, while unnecessary for gradient models, is the key step for nongradient 
models. 

A curious fact concerning lattice gases is the difficulty of constructing gradient 
models [S]. Except when the dimension d is 1 or when the Gibbs measures degenerate 
into product measures, we are not aware of any gradient lattice gas models. If, instead 
of the lattice gas models, we consider Ginzburg-Laudau models, there are plenty of 
examples satisfying the gradient condition. The hydro dynamical limit in this case is 
established in [R], following the approach of [GPV], and is valid even in the phase 
transition region. On the other hand, one can easily construct nongradient versions 
of Ginzburg-Laudau models or interacting Brownian motions. Indeed, the hydrody- 
namical limit for a nongradient Ginzburg-Landau model at infinite temperature is 
established by [VI] where a basic outline for the analysis of nongradient models is 
first given. It is then extended to lattice gases at infinite temperature in [Ql]. 

In this approach, one requires an accurate estimate on the spectral gap of the 
generator in a finite volume. This estimate is obtained in [LY] under certain mixing 
assumptions, summarized as assumptions A.1-A.3 in [LY]. These assumptions are 
imposed on the canonical Gibbs states and are hard to check. They are replaced in 
[Y2] by some mixing conditions on the grand canonical Gibbs states, to be stated as 
assumption (A) in Section 2. Indeed, in that paper a much stronger inequality, the 
logarithmic Sobolev inequality, is obtained. The assumption A is the usual Dobrushin- 
Shlosman mixing condition and holds, e.g., for ferromagnetic Ising models up to the 
critical point [MOS, N] in dimension d = 2 and at sufficiently high temperatures for 
general lattice gas models. 

Even with an accurate estimate on the spectral gap, the hydro dynamical limit 
for lattice gases at a finite temperature is by no means a straightforward extension of 
the earlier work. This is because one has to solve the equation (1.4) and the generator 
C exhibits the effect of interaction between particles, an effect that is not present in 
any of the earlier work on lattice gas models that deal exclusively with the infinite 
temperature case where the Gibbs measures are product measures. Besides the ap- 
proach of [VI] and [Q], we also find that the formulation of in [EMY, LOY1], designed 
mainly for nonreversible nongradient systems, provides a convenient framework for 
this paper. 

Two problems remain outstanding. One is establishing hydrodynamical limits 
of lattice gases without assuming mixing conditions; the other is hydrodynamical 
limit for nongradient models in continuum, namely, nongradient interacting Brownian 
motions. For the second problem, one has to derive accurate estimates of spectral gap 
for interacting Brownian motions in a finite volume. It seems that the approach of 
[LY, Y2] might be useful here. A more ambitious goal is to establish hydrodynamical 
limit without using any estimates on the spectral gap. We are not aware of any such 
approach that works for nongradient models. 

This paper is organized as follows: In Section 2 we state the main result. An 
outline of proof is given in Section 3. The tightness is proved in Section 4, and an 
energy estimate is obtained in Section 5. The two-block estimate is proved in Section 6, 
and an eigenvalue estimate is in Section 7. In Section 8 and 9 we solve the fluctuation- 
dissipation equation (1.4) in a precise sense. Finally, we prove some mixing conditions 
needed in this paper in Section 10. 

2. Statement of the main result. Let A = AL be a cube of width 2L -f 1 in 
Zd and let 77 = {rix)xeAL denote the configuration of a lattice gas where for each x, 
rjx E {0,1}.  rjx = 1 if there is a particle at x and rjx = 0 means that the site x is 
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empty. For any two points in Zd we define two notions of distance: 

d 

\x - 2/I1:- /C \Xi ~ y^  \x ~ y\:= .max \Xi - yil (2-1) 
2=1 

By the boundary <9A of A we shall mean the complement Ac of A although in practice 
we need only be concerned with those sites in Ac that are within a certain fixed distance 
(the range of the interaction) of A. A boundary condition u is a configuration on dA 
and 77 U u is a configuration on A U dA. Let F(rj) be a local function depending on 
the configuration in some finite box of width 2R + 1. Formally the Hamiltonian H is 
given by 

H(V) = Y/FX(V) (2-2) 
X 

Let us recall that Fx(r]) = F(Txrj) where TX is the translation (Tx7])y — rjx+y. The 
energy Hu, of a configuration rj on A with boundary condition u is given by 

Hu,(7)) = Y,F*(TlVu)' (2.3) 
xeA 

We note that iJa;(-) depends on u only through the configuration at sites in dA that 
are with in a distance 2R of A. We denote by fiA,u>,\ the finite volume Gibbs measure 
on A with Hamiltonian H, boundary condition CJ and chemical potential A, namely 

HA^Av) = ^A,L,A expi-H^rj) 4- A ^ Vx ], (2.4) 
xEA 

Here ZA,U;,A is the normalization constant (the partition function) 

ZA,U;,A = Yl exp[-ifa,(7?) + A ^2 Vx ] 
7? xeA 

so that ^A^yx is a probability measure on the space of configurations on A. For 
simplicity, we assume that the inverse temperature (3 has been absorbed into F. When 
A = 0 we will drop the suffix A. 

Recall that the pressure p(X) of the lattice gas is defined by 

p(X)=  lim |A|-ilogZA,u,,A. (2.5) 
A—too 

Elementary theory of thermodynamics assures us that p(X) exists and is independent 
of the choice of boundary condition u. We also have the usual definition of the free 
energy /i(m), as the Legendre transform of p : 

h(m) = sup[Am — p(X)]. (2.6) 
A 

It is well known that the infinite volume Gibbs measures that are limits of the finite 
volume ones given by (2.4) exist, are characterized by the DLR equations, and in 
general may not be unique when there are phase transitions. Our resells are restricted 
to the single-phase region. Indeed, we need certain mixing conditions. 
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Assumption A. iet /XA,U;,A denote a Gibbs measure on A with boundary condition UJ 

and chemical potential A. Denote the corresponding density by p = p(L, A, LJ). Then 
there are constants 71,72 and 73 > R + 1 such that for any two functions f and g 
with supports Sf and Sg we have 

\EA*,,xU;g]\ < 7ip(l - P) exp[-72 dist^/.S^H/HoolMloo (2.7) 

provided that the diameters of Sf and Sg are bounded by 73. Note that the constants 
are independent of the size of the cube A, the chemical potential and the boundary 
condition. 

This exponential mixing condition is stronger than what we need in this paper 
and the exponential decay can be replaced by a weaker decay property. Since for most 
Gibbs measures, one usually obtains mixing conditions via the Dobrushin uniqueness 
condition or the cluster expansions that automatically yield exponential estimates, we 
will not attempt to find the optimal mixing condition. 

We also need the concept of canonical Gibbs states. Let p be a fixed positive 
number. Then the canonical Gibbs state with total density p and boundary condition 
u is the conditional probability of //A^ )U, given that the total number of particles is 
equal to Ldp, namely, fj := L-d J2xeA rjx = p. Certainly, p has to be a rational number 
of some special form for the total number of particles to be an integer. One can avoid 
trouble by requiring that the total number of particles equal [Ldp] rather than Ldp. 
Symbolically, we write the canonical measure as 

dpA,u>,p = dpA^l-^ (2.8) 

Note that since fj is fixed we can replace p^^ by p\,uj,\ with any A. Define the 
canonical partition function 

Z
A^,P = E exph-ffA,^)] , (2.9) 

where HA,UJ 
= ^A^o- It should be emphasized that the mixing condition A by 

itself does not imply any mixing property for the canonical Gibbs measures. It is 
proved in [Y2] that the mixing condition A does imply some mixing property, though 
not as strong, for the canonical Gibbs measure. More importantly, exact estimate 
on the spectral gap as well as a Logarithmic Sobolev inequality are obtained under 
assumption A. 

Denote by b an unoriented bond (x,y) € A x A with \x — y\i = 1. All bonds 
in this paper are unoriented unless otherwise specified. We have limited ourselves to 
nearest neighbor bonds mainly to simplify notation. As long as bonds with a fixed 
finite bound on length are used, the proofs will remain the same. Let St be defined 
by 

{SbTf)z := (r)b)z = (r)x>y)z = rjy    if z = x 

= r)x    ttz = y   . (2.10) 

= r]z    otherwise 

and define T& by 

nm = fW) - m ■ (2.11) 
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If b happens to be the bond (0, e) for some e > 0 we will denote T& by Te. Define Cb 
to be the symmetric generator defined by 

-Jf£bgd»=±Jcb(rl)[Tbf(r1)]lTbg(r1)]dli (2.12) 

and C = Y^beA J^b' ^^ rate c&(^) ^s assume(i to be a local function that is translation 
invariant i.e. cTxb(Txrj) — 0,(77) and bounded away from zero and infinity, i.e., 0 < <5 < 
Cbirj) < 8~l < 00 for some constant 8. Explicitly, Cb is given by 

Cbf = A(b,7i)Tbf(T,), (2.13) 

where 
A(b,ri) = (1/2) [ expKTUogc^) - (TbH)(r,)} + c^) } (2.14) 

When b = (x,y) we sometimes use the notation A(x,y,7]) instead of ^4(6,77). The 
operator C can serve as the infinitesimal generator of a Markov process rj(t) of config- 
urations changing in time. We could consider either the infinite lattice 2Zd, a finite 
box A with boundary conditions a; or a periodic lattice of size L. In all these cases the 
Markov Process will be reversible with respect to the corresponding Gibbs measure 
(in the infinite volume situation, with respect to any measure that satisfies the DLR 
equations ). We shall for the present be concerned mainly with the periodic case with 
L ~ £_1 and we denote by fi£ the corresponding Gibbs measure with A = 0. We will 
speed time up by a factor of e~2 so that the generator is £-2C. Let us start the system 
initially with a distribution having density /J with respect to fi£. We denote by P/0 

the corresponding Markov Process with generator £-2C and initial distribution f^d^e 
on the space of trajectories 77(-) in a fixed macroscopic time interval [0,T]. 

If /f is the density of the system at time t relative to the measure //£. Then ff 
satisfies the forward equation 

dtff = e-i£f{. (2.15) 

We have, of course, already rescaled time with a diffusive rescaling t -» e~2t and by 
considering the evolution of empirical measure defined by 

ut(9,t)=^Yl5(e-€z)r,x(t), (2.16) 

where 0ETd, we are rescaling space by a factor of e . Because rj G {0,1}, the relation 
(2.16) induces (from Pe) a distribution, Qi0, of ^(v) on the Skorohod space X = 
D([Q,T] -t Mi[Td]), where Mi(Td) is the space of nonnegative measures on Td with 
total mass bounded by 1. The space Mi(Td) is compact under the topology of weak 
convergence. We now describe the hydro dynamical limit. As e —► 0, one expects 
the distribution Qi0 of empirical measures to converge to <Jm(0,.)d0, the Dirac measure 
concentrated on the trajectory ra(#, •) d6 where m(t, 6) satisfies the following nonlinear 
diffusion equation: 

—m{e,t) = Ve(D(m(6,t))Vem(9,t) ) ;    m(M)=mo(0) (2-17) 

Here mo(0) is the initial density determined by the initial distribution f^dfie and 
D{m) is the diffusion (matrix) coefficient given by the Green-Kubo formula to be 
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described later.   Clearly, in order for this to make sense, we need at least that the 
initial distribution /gd/Ue satisfies 

lim sup Pfo [ v£{9,0)J(e)d6 - f mo(6)J{9)d6 >S 0 (2.18) 

for any smooth test function J(-) on Td and 6 > 0. We shall make this assumption for 
the rest of this paper. Since it is the only condition we need on the initial distribution, 
we may as well have deterministic initial conditions and suppose that at 0 we start 
from a nonrandom configuration £e. We shall denote by P| the distribution of the 
process with this initial condition and the corresponding distribution on X by Qf. 
When no confusion arises, we shall drop the label e. The condition (2.18) takes the 
form 

lim sup ^EJ(;^-/m°WJW = o (2.19) 

The Green-Kubo formula for the diffusion coefficient can be written in several 
ways [S]. Let TX denote the translation by x, namely, 

(Txri)(y) = r)(y - x),     and rxg(r]) = g(Txr]). (2.20) 

(2.21) 

Denote by /im the infinite volume Gibbs state with density m and x(m) ^s compress- 
ibility defined by 

x(m) =   Y, Ellrn [ W) 5 ffa ]; 
xe2Zd 

here the truncated correlation is defined by 

E^ [ f ; g } = EPm [fg] - £>m [f]E»m [g] 

The following characterization is due to [VI]. For all vector a we have 

< a,D(m)a >= 
2x(m)   g 

miE^ ^2    Ce(^)     OLeVer)o-Te  ^  TX£ 

|e|=l,e>0 \ xeZd 

(2.22) 
where the infimum is over all local functions <?, T is defined in (2.11) and Ve is defined 
by 

(Ve)hx = hx+e - hx (2.23) 

for any function on /Zd. Since g is local, Te J2xezd Tx9 makes sense even though the 
infinite sum Y^xezd Tx9 ^oes not' Since the right hand side of (2.22) is a quadratic 
expression in the a and g, and the infimum is taken over g belonging to the linear 
subspace of all local functions, the left hand side is quadratic in a and defines a 
symmetric nonnegative definite matrix D(m) for each m. Moreover because (2.22) 
defines the diffusion coefficient as an infimum we get upper bounds for D(m). It is 
much harder to obtain a lower bound for the diffusion coefficient. Such a bound is 
obtained in [SY] which states that in matrix sense 

D(m) > C[x(m)]-i/ (2.24) 
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for some constant depending on the Hamiltonian. We remark that this bound is 
independent of phase transition and does not require any mixing conditions. However, 
we do need the mixing conditions to establish rigorously that the hydrodynamic limit 
can be taken to get a nonlinear diffusion equation with coefficients given by (2.22). 

The uniqueness of (2.17) is quite subtle. If the diffusion coefficient is a scalar, 
then the uniqueness follows easily. Another situation where uniqueness holds is when 
the diffusion coefficient is Lipshitz continuous in m and satisfies uniform ellipticity 
bounds. Under this assumption, the general theory guarantees the existence of Lip- 
shitz continuous solutions. Suppose v is such a solution and u is a weak solution 
satisfying an energy estimate. Then we have 

dt f{u - v)2(d)dd = - fv(u- v)(0) [ D(u)Vu - D(v)Vv } {6)de 

= - f W{u - v)(0)D(u{8)) [Vu-Vv] {e)dQ 

+ f V(w - v){6) [ D(u) - D(v) ] (0)Vv{6)de 

From the Schwarz inequality the last term is bounded by 

f V(u - v) [ D{u) - D(v) ] VvdO 

<7 / [ V(Ti - v) f dO + 7-1 f [ D{u) - D{v) f {VvYdO 

Since v is Lipshitz continuous, the sup-norm of Vv is bounded. Together with the 
Lipshitz continuity of D, the last term is bounded by 

C7-1 f [ D{u) - D{v) ]2 d0 < C7-1 f(u - v)2de 

By choosing 7 small enough, we have thus proved that 

dt f(u - vydO < C-f-1 [{u - vYdO 

This proves the uniqueness. Our main result of this paper is the following theorem: 

THEOREM 2.1 Suppose that the Gibbs measure satisfies the mixing condition A. 
Suppose the initial data ££ satisfies the condition (2.18) and that (2.17) with the initial 
condition specified by (2.18) has a unique solution ra(#,£) in the class of weak solutions 
satisfying the energy estimate. Then 

lim sup Pe 
£->0 

1 5] J(ex)vx(t) - f J(0)m(0, t) d6 >S = 0 

Here P| refers to the process with initial data ££. 
Note that one can start from a deterministic initial data as long as (2.18) holds. 

The Lipshitz continuity of the diffusion coefficient has not been proved, though it is 
proved for the self-diffusion coefficient in [V3] and for asymmetric simple exclusion in 
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[L0Y2]. In the special case d = 1 or when the Hamiltonian is isotropic (Lemma 8.3), 
the difTusion coefficient is a scalar and Theorem 2.1 is then always valid. 

As a technical remark, all error terms arising in the proof of Theorem 2.1 will 
be shown to be superexponentially small. Hence our estimates already give an upper 
bound to the large deviation probability in the hydrodynamical limit. One needs a 
corresponding lower bound to complete the large deviation theory. Since this has 
been carried out carefully in [DV, Q2] for Ginzburg-Landau models, in [QRV] for the 
symmetric simple exclusion processes with several colors and in [QY2] for lattice gas 
models for the incompressible Navier-Stokes equation, we will not pursue this direction 
here. 

3. Outline of the proof. Our basic approach for proving the hydrodynamical 
limit consists of three steps: establishing the tightness of the measures {Qf : e > 0}, 
deriving an energy estimate that provides some regularity for functions in the support 
of any weak limit Q of Qz as e —> 0 and identification of the support of Q as weak 
solutions of (2.17). To prove tightness, from Prohorov's theorem, it suffices to prove 
the following estimate: 

LEMMA 3.1 (TIGHTNESS) For any initial data t;£, any smooth test function J 
and any 5 > 0 we have 

lim sup lim sup P? 
a->-0 er—>-0 

sup I ed V J{sx)r]x (t) - ed Y] J(ex)rjx (s)\>5 
\s-t\<a,0<s,t<T x ^ 

= 0 

(3.1) 

Note that 

limsup|£dy^ J{£x)r]x\ <\\ J ||i 
x 

Hence any limit point Q of Qe is supported on measure valued functions on [0, T], that 
are absolutely continuous w.r.t. the Lebegue measure, with densities m{6,t) bounded 
between 0 and 1. At this point we only know that m(0,t) is a measurable function. 
The next step is to prove that it satisfies a basic energy estimate. 

LEMMA 3.2   (ENERGY ESTIMATE)   Suppose Q is any limit point for Qf. There 
is a constant C such that 

EQl   f   dt f   dO(Vom(6,t))A < C. 

Finally, we have to prove that Q is supported on densities m that satisfy the 
equation (2.17) in the weak sense. Denote by f)x^ the average density of r) in a cube 
of width 2£+l, namely, 

fjXit = (21 + l)-d     ]r     riy := Avy^y-^i % (3.2) 
y:\y-x\<£ 

This operation of averaging over a cube of side 2£+l centered at x will be denoted 
by Avy:\y-X\<i and can be performed on other random fields defined on the lattice. 
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THEOREM 3.3   (IDENTIFICATION OF THE EQUATION) For any 8 > 0, let 

( 0<t<T |       Y V 

+  /   (26)-!^  E^+fe-1e(S)-^-6e-i6(s)]JDe,e'fe,ae-i(s))(Ve'J)(ea;)dS|  ><j} 

denote the event that leads to the violation of the limiting equation for the smooth test 
function J; here D is the diffusion coefficient given by (2.22).  Then 

lim sup lim sup lim sup P| [B^ 5] = 0 (3.3) 
a-»0 6—>-0 €->0 ' 

Clearly, Theorem 2.1 follows from these three results and the uniqueness of the 
weak solution for the equation (2.17) satisfying the energy estimate. 

The tightness will be proved in next section. The energy estimate will be proved 
in section 5. We now outline the proof of Theorem 3.3. 

Proof of Theorem 3.3. 
Step 1: Recall that the current is defined by the equation 

£tyr = - 5^ Ve Wa.s+e W) 
e>0 

where ]Ce>o denotes the summation over the unit vectors in the positive coordinate 
directions and for any (possibly random) function h(x, •) = hx{-) on the lattice 

Vjh(x, •) = /i(x, •) — h(x — e, •). 

We shall follow the convention of using e to denote a unit vector in the positive 
coordinate direction. Explicitly, the current is given by 

wXiX+e(ri) = A(x, x + e, rj)(r)x - r)x+e) (3.4) 

where A is the jump rate defined in (2.14). We have the summation by parts identity 

Y,9(x)^h{x) = -Y,{Ve9(x))h(x) 
X X 

where V is defined in (2.23) and J^ denotes the summation over the lattice sites on 
the periodic lattice with width e-1. This convention will be followed in the rest of 
this paper unless otherwise stated. From stochastic calculus, 

£^JM^(t)-6^7(^)^(0)- f U(r,(s))ds + MN(t), 
x x •'0 

U{rj) = e*-1 ^^(^-1VeJ(^))^,iC+e(7/) (3>5) 

x   e>0 

MN(t)=  /  €dy2Y]VeJ(ex)r]x(s)dMx^+e(s) 
JO „     ^n x    e>0 
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where Mx,x+e(t) is a martingale with quadratic variation 

d< Mx,x+e(t),Mx,x+e(t) >= 6-2A(x,x + e,ri) dt. 

Clearly, 

d < MN(t),MN(t) >= e^Y^^'^e J(ex))2r]x(t)A(x,x + e,ij)dt < C(J)eddt 
X 

Hence we can neglect the martingale term. 
Step 2 (Fluctuation-dissipation equation in equilibrium) It remains to identify the cur- 
rent as —D(r]x^a£-i)S/r]x(s). This step is very subtle and is the key step in nongradient 
system. In fact, we can not expect the substitution Wx,x+e —> — ]Ce' ^e^'iVx^e-1) 
Ve'Tjx to hold as it stands. The correct statement is that the relation 

Wx ■Y2,De,e<{r)x,a£-i)Ve'rix + Cge (3.6) 

holds for some suitable choice of local functions {#e}. For processes in equilibrium, 
a precise statement is given by the following Theorem 3.4. We will first need some 
notation. 

Following [LOY1] , we define the space 

Q —iji: h is a local function and h satisfies E^[h\!Fs] = 0 for some s },        (3.7) 

where ^ = !Fo,s and 

Fx^ = the cr-algebra generated by {fjs} U {rjy : \y — x\ > s}. (3.8) 

For latter usage, we also define the cr-algebra 

ICX —  cr-algebra generated by {r)y\\x — y\ < s] . (3.9) 

For any local function h £ Q we define the variance 

Ve{Ky,u) = td(Av\x^1hx .{-C^Av^^K)^^ (3.10) 

where hx = rx/i, ti — £ — y/i and /JLI^^ is the canonical Gibbs measure on A^ with 
the boundary condition u and total density y. From the choice of £i it follows that 
for any fixed h £ Q, for sufficiently large £, rx/i depends only on the configuration 
inside the cube A^ provided x £ A^. Since the boundary condition u on Aj and total 
density y in A are specified by the cr—algebra J7^, the quantity Vi(h,y,u), is an Fi 
measurable function Ve(h^rj) of the configuration rj on Zjd. We define 

V{h,l3) = limsnpE^iViih^)]. (3.11) 

Here fip is the (unique) infinite volume Gibbs state with density (3. For a local function 
h £ G, i-e.  not satisfying the mean 0 condition E^[h\!Fs] = 0, we define qx,k(v) = 
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Ev^y," [ hxl^x^k ] where J*^ defined in (3.8) is the cr-algebra generated by 77^ and 
{Vy '• \y — x\ > k}. Then we define 

V(h,0) =limsupV(h-qk,P'). (3.12) 
fc—too 
/3'-)./3 

We now state the Theorem. 
THEOREM 3.4 Fix a density (3. Suppose g = {9e(r))} is a local function (with d 

components) 0/77. Let 

ME) = wo,e +Cge(v) + ]r£e,e<(/3)Ve>77o, (3.13) 
e' 

where the diffusion D((3) is given by (2.22) .  Then for any {ae}, 

infW  5>e<Mg),/? ) =0. (3.14) 

Assuming this result, we continue to prove Theorem 3.3. The minimizing sequence 
for (3.14) depends on the density (5. Since, from the definition, the variance V is upper 
semi-continuous, we have the following Corollary: 

COROLLARY 3.5 For any {ae] and 5 > 0 there exists g = {geiP ,17)}, which is 
smooth as a function of (3 and is local as a function of rj, such that 

supvl X>c^G8,g),/3 ) <<*; (3.15) 

where 

Mfrg)=™0,e+£ge(P,r))+Y2D^,(P)Ve'r10- (3-16) 
e' 

Step 3 (Insertion of local functions) To use theorem 3.5, we have to extend it to 
nonequilibrium process and insert the local function g into the stochastic equation 
(3.5). We first replace J by J*^ where u^ is the normalized characteristic function 
for a cube of size 2ti + 1 with t\ = £ — V^, namely, 

lW      10 otherwise 

Let <I>f be defined as the vector with components 

$f ,e = Av\y-X\<£l [ Wy^y+e + Cge(fjx,l, TyT)) ] (3.17) 

Note that $ depends additionally on £ which does not appear explicitly in the indices. 

sdJ2(J(ex) *u>tl)r,x(t) -edJ2(J(£X) *^i)^(0) +figfaW) - «g(^(0)) 
X X 

= I U(V(s),g)ds + Ml 
Jo 

Then 

g(*) 

(3.18) 
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where 

x,e>0 

rx.e 

(3.19) 

x,e>0 

The explicit form of Ms(t), the martingale term, is not important.   One can check 
easily that 

d < Ms{t), Mg(t) > < C(J, g)ed dt 

and thus it is negligible for proving Theorem 3.3. Also, for any local function g 

sup\ns(v)\<cs 

and is negligible too. 
The generator £ in (3.17) acts on the variables rj as well as fjx^ when applied to 

the function ge. We first prove that the contribution of £ acting on fjxj is negligible. 
For this purpose, we need the next lemma relating the nonequilibrium process to 
equilibrium one. 

LEMMA 3.6 Recall that P| denotes the process starting from £ and P£ := P*^ is 
the equilibrium process starting from ii£ defined in section 2 after (2.16). Then there 
is a constant K depending only on the Hamiltonian such that 

dp** 
log || -jp- \\P< Ke-d,     l<p<oo. (3.20) 

As a consequence, 
l£(A) < exv[Ke-d}Pe(A) (3.21) 

In particular, for any events A£ which are superexponentially small in equilibrium, 
i.e., 

lim sup ed log P£ (A) = — oo 
£->-0 

we have 
lim sup £d log Pe (A) = — oo 

The proof of this Lemma is trivial. One simply notes that, since the dynamics of 
the two processes are the same, dPi/dP£ = dfis^/d/jts] here //$(£) is the delta measure 
of the configuration £. From the explicit expression of d/jL£, we can get a lower bound 
on fis(0 of the form log/ze(f) > -Ke~d and (3.20) follows and we have proved this 
Lemma. 

This lemma shows that the notion of superexponentially small events is the same 
under equilibrium and nonequilibrium processes. The following lemma is a simple 
consequence of the Feynman-Kac formula and allows us to transform equilibrium 
exponential estimates into eigenvalue problems. 

LEMMA 3.7 Let L be the generator of a Markov process x(t) with a reversible 
invariant measure v. Let 

u{x, t) — Ex   exp £v(x(s))ds\\, (3.22) 
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where Ex [•] denotes the expectation with respect to the process starting at x. Then 

— log / u(x,T)diy(x) < sup spec {V — (-£)} 

sup        {/v/di/-P(v7)} 
f fdv=l, f>0 w J 

ilere X>(/) = — J fLfdv is the Dirichlet form. 
Proof. By the Feynman-Kac formula, u solves the equation ^ = Lu + Vu with 

the initial condition tx(0,a;) = 1. Multiplying the equation by u and integrating by 
parts we obtain 

dt 

Therefore 

i j u2 dv = j Vu2 dv - V(u) < sup spec[V - (-£)]   / u* dv (3.24) 

— log / u dv < —— log / u2 dv < sup spec[V — (—£)] 

Applying these two lemmas to our setting, we have 

Jo LEMMA 3.8   The event A = {\ J0 V(7](s))ds\ > 5} is super exponentially small if 
and only if for all 7 > 0 

lim sup sup spec {V - >y-1£-2+d{-£)} < 0 (3.25) 

Proof Suppose the process is in equilibrium. Then the corollary follows from 
Lemma 3.7 and Chebyshev's inequality. For a general nonequilibrium process, we 
only have to use Lemma 3.6 to prove the Lemma. Note that we do not have to specify 
the initial distribution of the process. 

We now return to the local function g. Let 

beAy,s 

where b € Ay,s means that both ends of the bond b lie in the box A^ )S of width 25 + 1 
centered at y. We have 

£9e(fjx,l,Tyri) =£y^ge(Vx,l,Tyrj)+     ^     Cb ge(fix,l, TyTj) (3.26) 

provided \/I is bigger than the range of the local function #e, which we shall assume. 
By b 6 9A, we mean that the bond straddles A and Ac. By the definition of C and 
Schwarz's inequality, we have for any function g, 

e-1 J fCbgdfi£ = e-i Jc^rj) [ ftf) - /(//) }Tbgdfi£ 

< e-H-d j cM [ y/fW) - V/fo) f dfr 
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Since ge is smooth as a function of its first variable, we have Tbgeifjx^^yV) ^ C£~d 

for any boundary bond b € dkx^. Note that T^ does not act on TyT) since ge is a local 
function and t is large enough. Since the number of boundary terms is of order £rf~1, 
we have for any smooth function J and any 7 > 0, 

<0 

lim sup = lim sup lim sup (3.27) 

/                                 \ 

lim sup sup spec 
X 

J(ex)   ^J   Cbg(fjx,e,TyT]) 

h€A*-e                        i 

_7-l e-2Avb(-£b) 

where 

We will use this notation repeatedly when we want to take successive limsups in a 
specified order. Hence we can replace £ in (3.17) by C ^ , namely, we can assume 
that C in (3.17) does not act on fjx^. Throughout the rest of this paper, while computing 
£ge{Vx,£,Tyri), we will therefore be justified in keeping only the first term on the right 
side of (3.26), and effectively ignoring the action of the generator on the first variable 
ofge. 
Step 4 (Eigenvalue estimate) Our goal is to prove that (1.4) holds in nonequilibrium. 
The basic tool is Lemma 3.8. In order to apply this lemma, we will need to estimate 
some eigenvalues, to be proved in section 7. 

THEOREM 3.9 (EIGENVALUE ESTIMATE) Suppose J = {Je} is a smooth vector 
valued function and g = {pe(/^,^)} is smooth as a function of j3 and is a local function 
of rj. Recall the definitions of $s (3.17) and (j)e (3.13). Let us define the density 
gradients ^^(z) componentwise by $ejCje(a;) = e(2c)~l \riy+ce-ie — ^-C£-ie]- Then 
for any 7 > 0; there exists a constant C[p/) such that 

lim sup sup spec [ e"1 (J (ex), $f 4- D(f)x^a£-i)Av\y_x\<i1 [*e,c(2/)] - ^e^Av^-Cb)] 
£,a,c,e 

< Cfr) || J ||2oo    sup    supW 5>e<M/3,g)5/? J; 

(3.28) 
here (J,J) = Avx ^2e>0 \e\=1 Je(sx)Je(ex) and the meaning of the limit is given in 
(3.27). 

We can now conclude Theorem 3.3. From (3.14) we can choose g so that the 
variance on the right side of (3.28) is arbitrarily small for any fixed 7 . Hence the 
infimum over g of the left hand side of (3.28) is bounded above by zero. From Lemma 
3.8 we can prove Theorem 3.3. 

4. Tightness. In this section, we shall prove the tightness Lemma 3.1. Cor- 
responding results are obtained in [GPV] and [VI] via the Garsia, Rodemich and 
Rumsey Lemma. We will however provide a more direct martingale argument that 
establishes tightness. 

Recall the definition of current in (3.4). We have the exponential martingale: 
ez(p,t) where 

Z(/3,i) = ^^J(ex)%(t)-/3^J(ea;)7?x(0)- f ( pU(ri(s)) + nfa(*)) )ds,   (4.1) 
Jo 
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Ufa) = ^-1 Y.(£~1Ve J(£x))™x,x+e(r)) 

rtiri) = exp(-/3 J2 A^Vx) £ exp(^ ^ J(ex)rjx) - pu(rj) 
X X 

Since J is smooth, 

sup 10(77)1 < C(J)P2e-d,    sup ([/(r/)! < ^(J)/?2^-1-^ 

LEMMA 4.1   For each smooth J, for sufficiently small e we have 

(4.2) 

P« sup sup 
0<j<Te-2 je2<t<(j+l)s2 

sd Y^ J(ex)7ix(t) -ed^ J(ex)r)x(jei) 
l8"   ' X X 

< exp{-6e-d/S) 

Proof. Let 0 = 1. From the martingale inequality we have 

> S 
(4.3) 

P! sup Z(l,s) >e-d6 
0<s<t 

< ex.p(-5e-d)El [e2^) ] = exp(-^-d) 

From (4.2), we have, assuming without loss of generality that e < 1, 

Ft sup 
0<s<t 

ed Y, J(sx)vx(t) -ed^ J{ex)7ix(p) >S 

< 2exp[2C(J)e-1-dt - Se-d] 

Let t = £2. Then, for £ sufficiently small, the right hand side is bounded by the 
quantity exp(—Se~d/2). We divide the interval [0,T] into £~2 subintervals of size £2. 
We can apply previous argument in every subinterval. Taking the intersection of these 
events we obtain, for sufficiently small £, 

p« sup sup 
0<7<T£-2 je2<t<(j+l)£2 

<Te-2exp(-Ss-d/2) 

< exp(-Se-d/S) 

ed ^ J{ex)r)x{t) - £d ^ J{ex)rjx(je
2) >S 

which establishes (4.3). 
Equation (4.3) provides some continuity. Hence in order to prove Lemma 3.1, we 

can assume that the time t and s in (3.1) are of the form e2j for some integer j. Hence 
it suffices to prove 
LEMMA 4.2   For S small enough, 

pi sup 
e2|i-i|<<54 

0<t,j<Te-2 

ed ^ J(ex)rjx(e2i) - ed J^ J\ex)r]x(e
2j) >S 

here i and j are integers and C is some positive constant. 

< exp(-Ce-d) 

(4.4) 



DIFFUSIVE LIMIT OF LATTICE GAS WITH MIXING CONDITIONS 639 

Proof. From Lemma 3.6, we only have to prove (4.4) for the equilibrium process 
as long as the constant C can be chosen arbitrary large. From the definition of Z(/3, t) 
and Schwarz's inequality, we have for any t fixed and (5 positive , 

Ei*' exp P ^JMrfeW-^JteaO^O) 

< {£>£ [eZO?.*)] }1/2 IEH*   exp     f ( PU(»/(«)) + fi(»j(s)) ) ds     \ 
1/2 

(4.5) 

From the exponential martingale E^ [e^^'*)] = 1. We can bound H by (4.2). Also, 
from Lemma 3.7 we have 

ed log E^z exp{ / ^-d?7(7/(5))d5} < t sup spec [ /Jt/fa) - t-2Avh(-Ch) } (4.6) 

The current (3.4) satisfies an identity (6 = (x,x + e)) 

/ fwXiX+ediJ£ =  / [ /(ry6) - /(ry) ] ch{rj)(r)x+e - rix)dfjLe. (4.7) 

Hence by and Schwarz's inequality, we have for any function /, 

S-ipJ fwx,x+edfi£ < {e-*l±)JcM [ y/fW) - y/fM ]' dfJLe 

+ ^2 y [ V%6) + V/W ] 2 C6(f/)(l?* - ^x+e)2 d^e 

The last term is bounded by C J fdfi. Hence, for the eigenvalue problem, we 
get the bound Ctl32e-d. Therefore, together with the bound of ft in (4.2) the last 
expectation in (4.5) is bounded by Ctp2e~d. From Chebyshev's inequality, 

PVe ed ]r J{ex)rix (t) - ed J] J{ex)r]x (0) 
X X 

Let P = S-2. For any t < 54 we have 

> S < exp(-5pe-d/4 + Ct(32e-d) 

P»e ed J2 J(ex)rix{t) - ed ^ 7(^)^(0) >5 < exp(-(5-1e-d/8) 

Clearly, (4.4) follows from this estimate and we conclude Lemma 3.1. 

5. The energy estimate. Let us first recall a lemma concerning perturbation 
theory of eigenvalues applied to our setting. Because we are interested in lattice gases 
in a finite volume, it is only ordinary perturbation theory for eigenvalues of matrices 
and the following lemma can be proved by writing down the usual perturbation ex- 
pansion for eigenvalues and using the assumption on the spectral gap. This lemma 
actually holds in considerable generality [RS] and an elementary proof is given in [JY]. 

LEMMA 5.1 Let u be a probability measure on a finite set B. Denote by ( ,) 
the inner product in L2(y) defined by (/,</) = Ev [ fg ].   Let C be the generator of 
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a Markov process on B, which is symmetric with respect to v. Then A — —C is a 
nonnegative definite symmetric operator on L2 (v). Suppose that the lowest eigenvalue 
0 of A, with the corresponding eigenvector (the ground state) go = 1 has a spectral gap 
of S > 0. Let X be a bounded function on B considered as a multiplication operator 
on L2{v). Let || X ||oo denote the sup norm of X. Assume that EV{X} — (ij-X") — 0. 
Then there is a universal constant C such that for any constant 7 > 0 satisfying 

7 II X ||oo< \ (5.1) 

have 
|3 

sup spec X - A < C-i2(X,A-lX) + C73 "   J'00 . 

In particular, 
II X II2 

sup spec X — A < C72 r—— . 
0 

We can now state the following corollary of Lemma 5.1 in our context. Let 111^^ 
denote the (canonical) Gibbs measure with density y and a fixed boundary condition 
u on a cube A^ of width I. Recall the definition of Ci given in (2.12) and (2.13) 
representing a jump across the bond b. The rates are determined in such a way 
that Cb is symmetric with respect to the measure ^ ^ tU. If the bond b is close to 
the boundary, the explicit coefficients of £& depend on the boundary condition. The 
boundary condition will not be specified because our results are all uniform w.r.t. the 
boundary conditions. In order to apply Lemma 5.1, we will need an estimate on the 
spectral gap. A key analytical input is provided by a result from [LY] stating that the 
gap of the operator Y^beA (—^) ^s 0^ order ^~2- 

LEMMA 5.2 Suppose h is a local function in Q (3.7). Let £1 = £ — v£ and 
V£(h,y) be given by (3.10). Recall also that the mixing condition Assumption (A) is 
satisfied. Then there is a universal constant C such that for any 7 > 0 we have the 
following estimate on the eigenvalue 

sup spec 

provided 

e-1Av\x\<ilh - 7e-2At;6GA£ (-£&) - CVi(h, y) < 0 (5.2) 

£<1,    £>1    and    £e^<C0. (5.3) 

Furthermore, 
Vi(h,y) < C£d+2E^y^ [ {Av^^^h)2 } . (5.4) 

Proof. From [LY], the spectral gap of the operator e-2Avb^\i{—Cb) is of order 
e~2£~2~d. It is easy to verify that (5.3) implies the condition (5.1). Hence the sup- 
norm of the first term in (5.2) which is of order e_1 is much smaller than the spectral 
gap of the operator appearing as the second term in (5.2) provided (5.3) is satisfied. 
Hence (5.2) is just a simple consequence of Lemma 5.1. The bound (5.4) just restates 
that the spectral gap is of order £-2. 

The following theorem combines Lemma 5.2 with multi-scale analysis and provides 
a key estimate needed in estimating eigenvalues in connection with Theorem 3.9 and 
the energy estimate Lemma 3.2. 
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Let us recall that Ae-i is the periodic lattice of side e~1 and /i£ is the Gibbs 
measure on it. For any k, Fk is the cr-field generated by the configuration in A£ i.e. 
{r)x : x £ A£} and the density fjk = AvAkTjx in A^. The complement A^ is relative to 
the periodic lattice A£-i in this context. Otherwise it could be with respect to Zd. 

THEOREM 5.3   Let h be a local function satisfying 

sup | ft(77) | < Ch 

sup\E^[h\Alf}k]\ < Chk-*/*-1-*" 
(5.5) 

with constants Ch and a > 0 and for all k in the range 1 < k < e   2+d.   Then there 
are positive constants C, K and a function F such that for any h, 7 > 0, 

sup spec e-ift-Te-2   ]r   (-/;6)|&-0|-<*-d 

&€Ae-i 

^C^Cl+eKF^^Ch)    (5.6) 

on L2{ne) where ii£ is the Gibbs measure defined in section 2. Furthermore, (5.5) is 
satisfied for all ft G G, as well as for ft = wXiX+e, ft = Ve^jx and ft = Cg for some local 
function g. 

Let a nonlocal function ft/ be of the special form h'(r)) = Gh, where, for some 
S > 0, G = G(r],fjs£-i) depends only on the configuration 7/|A^ 1 and the density 
Voje-1 and h is a local function satisfying (5.5). Then (5.6) remains valid in a slightly 
modified form 

sup spec e-W -Co7-1G2-7e-2   ^T   (-Cb)\b - 0|-^-d 
<S-F(7,CG) (5.7) 

where Co is a universal constant and CH is the L^ bound for G. 
If we replace ft by hs = £> [ft|^0,5], then for any 7 > 0; 

lim sup lim sup sup spec 
s—>oo        e—vQ 

e-th. - 7£-2 53(-A) \b - x|-«-«' <0 (5.8) 

REMARK.   For the rest of this paper, the constant a will be fixed and can be 
chosen to be any small positive number. 

Proof of Part I. Fix an integer £. Let us denote by Fn the a-field J7^ and by An 

the cube A^n. Define ftn by 
hn = E^[h\Tn] (5.9) 

as the conditional expectation of ft w.r.t.   Fn.   By definition, fto = ft.   Rewrite the 
function ft appearing on the left side of (5.7) as 

M-l 

ft =   /J (ftn - ftn+l) + hu 
n=0 

where M is the largest integer such that lM[(d/2)+1] < (qe)*1, so that 

^M[(d/2)+l]  < (^)-l  < £(M+l)[(d/2)+l] 

(5.10) 

(5.11) 
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with a constant q to be determined later. From the assumption (5.5) we have 

sup | hM(rj) | < C/l£-
M(rf/2+1+2o:). 

With (5.11), 

v 
(5.12) 

where K = 1 + ^ > 1. 
We compare the two sides of (5.13) in operator sense. For some C < oo , 

53 k-<*AvbeAn+1 (-A) < C ^2(-Cb)\b - 0|-«-«' (5.13) 
n b 

where A: = £n+1.   Because each —Cb is a symmetric positive semidefinite operator 
establishing (5.13) amounts to verifying 

][]     k-«-d < C J2 \b - 0\-<*-d (5.14) 
n:An+i36 

for all b. This is easily seen to be true with a constant C < oo, that depends only on £ 
and a. We can clearly estimate the term on the left hand side of (5.6) by decomposing 
both the function h and the operator according to (5.10) and (5.13) to obtain 

supspec e-i/i-76-2   J2   (-A)|6-0|— 
6GAe-i 

< sup spec 

M-l 

e-ift - ^e-2^A;-M^GAn+1(-A) 
n 

< ^2 £n+i + sup | AM fa) | 

(5.15) 

n=0 

where 

£n+i = sup spec   e-ifan - hn+i) - — e-2k-aAvbeAn+1(-£b) I (5.16) 

By limiting the operator to bonds in some An+i we have introduced considerable de- 
generacy. The extremal invariant measures are precisely the canonical Gibbs measures 
^n+i in the box An+i and are parameterized by u, representing the boundary con- 
dition on A^+1 and the average density in An+i. Since the spectrum is calculated in 
each L2(/in+i) we obtain an upper bound for £n+i by estimating it in each Z^fan+i) 
and then taking supremum over UJ. Hence we only need to get bounds on (5.16) in 
£2fan+i) that are uniform in ou. Note that once Fn+i is given, from [LY] the spectral 
gap of ^7 e~2k-aAvbeAn+i{—C>b) is bounded below by ^?e-2k~2-d~a for some c > 0. 
We note in addition that /fan - An+iM/^n+i = 0. For the perturbation theory to 
work, by Lemma 5.1, we need 

1 11 K - hn+1 ||oo< ^l£-2£-(n+l)(2+d+a) 
4C 

(5.17) 
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to hold for all 0 < n < M — 1. From our assumption (5.5) we see that 

S^Whn - ftn+i||oo < 2Che-H-"W2+l+2a) 

so that (5.17) holds provided 

2Ch£-l£-n(d/2+1+2a) < ?-Le-2l-(n+l)(2+d+a) 

which is implied by 
£M(d/2+l) < _^e-i (5.18) 

oCCh 

so that the choice of q = max(l, 8C
c
Ch) will work in (5.11) as well as (5.18). By Lemma 

5.2 one can now bound £n+1 by 

£n+i < C<y-ie-*e*k*+*+" \\ hn - hn+1 1^ 

< Cj-ik-vCl = C7-1Cr^-a(n+1). ^ '    j 

We have denoted by C, a constant that may change from line to line, but will always 
remain independent of the parameters e , 7 and h.. Summing over n, we conclude that 

M-l Rrr 

Y, £n+i + sup \hM(v)\ < C^Cl + CChe*b(1 + 5ll^)(i+afe) 

= C77-1C72+e«F(7,Cfc) 

concluding the proof of part I of Theorem 5.3. 
Proof of Part IL Clearly, (5.5) holds for h G Q. From (4.7) wx,x+e G G and (5.5) 

holds. For any local function g, there is an s large enough such that g is measurable 
w.r.t. the (j-algebra generated by {rjx, \x\ < s}. Let Cs = YlbeA ^h- Then we have 
Cg = Csg and also E^^Csg^s] = 0. In other words, Cg G Q. This proves (5.5) when 
h = >C^. We now establish (5.5) for h = Vetyr, namely, 

£>£[Vc»jo|Ji] < Ck-V2-1-*. (5.20) 

This is clearly a type of mixing condition. Unfortunately, the mixing condition we 
have is for the grand canonical measure (2.5) rather than the canonical one that we 
are interested in here. We shall however prove in Section 10, that (5.20) holds . 

We now prove (5.7) for h' = Gh. Note that in the argument in the part I, G is 
effectively a constant and replacing h by Gh only changes Ch into GCh- Therefore (5.7) 
is not all that different from (5.6). Finally to see (5.8) we can assume for simplicity 
that lno = s and sum (5.17) for n > no. This concludes the proof of Theorem 5.3. 

Lemma 5.3 states that, in an average sense, any hx satisfying (5.5) £/{e-1/^} is 
of order 1 for any probability density / satisfying 

e-2AvbeADb(y/f) < C (5.21) 

We now prove the energy estimate. 
Proof of Lemma 3.2. As we have already established tightness of the empirical 

measure valued process ed J^ 8£ xrjx('), we know that any limit point of Q£ is a measure 
Q on the space C[0, T]; M]] of weakly continuos maps t ->• m(t, 0) of densities on Td 
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that are bounded by 1. The energy estimate is established by proving, for some finite 

EQISUPI [    [ .{DeJ){t,e)m(t,O)dtd0-%- f    [   |J(M)|2 diffl] \ < C (5.22) 

where the supremum is taken over all smooth functions of t and 6. If we ignore the 
supremum, for the approximating processes, this amounts to proving 

limsupEQ. je" j* ^(Ve J){t, ^)^(t) dt - ^e* £ ^ \J(t, ^ dt J < C 

(5.23) 
or 

limsup£0. je'-i ^ 2 ^(*. ^)Ve^(t) dt - ^e
rf ^ £ |J(t, ^)P di} < C 

(5.24) 
In view of Jensen's inequality and the relative entropy bound H(Q£ ;P£) < Ce~d, it 
is sufficient to establish 

limsup£dlog£pJexp L-1 f   Y" J(t, ^-T)Ver)x(t) dt 
e^O I L JO       r ^ 

/TEi^'^)i2^}<0 C   'T 

2 

(5.25) 

or equivalently 

lim sup ed log Epe\ exp z~l jo E^'^^W*!}^^/ J \J(t,e)\2<itd0 
(5.26) 

Since P5 is the equilibrium and the functional inside the expectation is a Feynman- 
Kac functional with a time dependent potential we can estimate (5.26) by estimating 
the largest eigenvalue. If we denote by 

Xe(t) = sup specie-1 ^T J(t,—)VeVx - e-2 ^(-Ct)] 
x b 

it is sufficient to prove 

limsuped f   \e(t)dt<^ [    [   \J(t,6)\2dtd6 
E-+O        Jo 2 J0   JTd 

For estimating the eigenvalue Ae we decompose 

x b 

and, for some 7 > 0, estimate edX£(t) from above by the sum 

(5.27) 

edX£(t) <£d^2snpspec\£-lJ(t,^-)Ver)x - 7^ l&- x\-a-d(-£b) 
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We have in addition the bound 

sup  edXs(t) <   sup  e^y^ sup spec g-1 J(£, —)Ve^ "7^1^- x\-a-d(-Cb) 
0<t<T '       0<t<T N 

<  sup sup sup spec 
\0\<C   ^ 

g-1/? VeTlx -lJ2\b- x\-"-*{-Cb) 

where C is an upper bound on | J(-, •)!. Now (5.6) provides a uniform bound 

sup  edXe(t) < C 
0<t<T 

as well as a bound on the limit 

limg^Y   Xe{t)dt<^- [   \J{t,9)\2dtde £-+0     Jo 2 J0 

concluding our estimate. In order to complete the proof of Lemma 3.2 we only have to 
remark that whenever we use large deviation bounds and Jensen's inequality to pass 
from 

lim sup ed log Ep£ j exp [e-dFa] j < 0 (5.28) 

and 

to 

we actually can obtain 

H(Q£]P£) <Ce-d 

EQ[Fa] <C (5.29) 

EQ[supFa] <C (5.30) 

because, while one cannot sneak the supremum inside the expectation to go from (5.29) 
to (5.30), to do it in (5.28) is trivial and for any finite set of a's yields (5.30) with the 
same constant (7, independently of the finite set. The rest is a routine application of 
the monotone convergence theorem. 

6. Two blocks estimate. In this section, we prove the two block estimate 
Theorem 6.2. It will be used in the next section to prove Theorem 3.9. The first step 
toward proving a two block estimate is to get a bound on the Dirichlet form involving 
"long jumps" in terms of the usual Dirichlet form with only the "nearest-neighbor 
jumps". This was one of the main difficulties in establishing the hydrodynamical limit 
of lattice gas models in dimension greater than 1. If fi is a Gibbs state on the space 
of configurations on a lattice A and z,y are two lattice sites that are a considerable 
distance away from each other, the problem is one of estimating E^{\{Tz^yu){r]) |2} = 
E^{\u{r]z^) - u(rj)|2} in terms of the usual Dirichlet form involving E^{\u{r]x^+e) - 
u(ri)\2}. Let us introduce the notation Sx^rj = r]x^y. The natural way to make this 
estimation is to write 

dz,y   —   ^>ZJXl^Xl,X2   ' ' ' ^Xn-liXn^Xmy^Xn-l^n   ' '  ' ^>Xl ,X2 dz,Xi 

—  ^2n-l   '"Sbi 
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as a product of exchanges over shorter bonds and estimate Tx,yU by a telescoping sum 

2n-l 

nSx,yV) - ufa)I <  Yl \u(SbJ "'SbiV)- uiSt.^ -'Sblr))\ 
i=i 

and conclude that 

2n-l 

Ei'iWSx.vV) - ^fa)l2} < (2n - 1) Y, EHHSbj • • • SblV) - 11(5^ • • • S^^P) 

2n-l 

= (2n - 1) ^ ^{|ti(56i5^) - ii(Si77)|2} 

where 5^' = 56^. • • • 56j is some more complex permutation along the way. If /J, were 
a Bernoulli measure or some other permutation invariant measure like a Bernoulli 
measure conditioned on the value of the sum Y^x Vx then 

2n-l 2n-l 

(2n - 1) £ ^{|u(56i5^) - u(5ii/)P} - (2n - 1) ^ ^{|ti(S6iij) - ^fa)|2} 
j=i i=i 

and, if we choose our intermediary chain of sites to be nearest neighbors, we are done. 
Difficulties arise because, in general, /J, is not invariant under permutation. We will 
pickup a constant factor which is an upper bound on the Radon-Nikodym derivatives 
when /J, is transformed by the permutation 5-?'. We note that if we are able to bound 
the Radon-Nikodym derivatives in both directions then conditioning to a set of the 
form Y^x Vx = m causes no problem. While the factor 2n — 1 which is comparable to 
the distance from x to y is acceptable, if not taken care of, the bound for the Radon 
Nikodym derivative will grow exponentially in n and is unacceptable for our purposes. 
The following theorem therefore requires a careful proof. Without loss of generality 
we will assume that the jump rate Q, = 1 in (2.12). 

THEOREM 6.1 Denote by /i a Gibbs state on a cube A and let Db denote the 
Dirichlet form w.r.t fi for a nearest neighbor bond b G A. For any two sites x,y G A 
let ^xy denote the nearest neighbor path that goes from x to y, moving successively as 
far as it has to in each of the coordinate directions, following the natural order for the 
different coordinate directions. For every function u on {0,1}lAl define the Dirichlet 
form along the path by 

D^y(u) =  ^2 Df>(u) 
be^xy 

Then we have 
EnftTzyu)*] <     cohzylD-r-viu), (6.1) 

where CQ is a constant depending on the dimension d and the Hamiltonian. Here \^zy\ 
is the length of the path. Note that no mixing condition is needed. 

Proof. Step 1. With out loss of generality we can assume that y = z + £ei. The 
general path is just a finite sequence of such straight lines (z, xi), (xi, X2) • • • (xd-i,y) 
along different coordinate directions going through at most d — 1 intermediary corners 
xi,-- - ,Xd-i- We can estimate the left side of (6.1) by a telescoping sum. Although 
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the Radon-Nikodym derivatives could cause trouble here, because the only transfor- 
mations that are involved in the telescoping sum are permutations among the d + 1 
sites z, xi, • • •, Xd-i, y the extra factor is just a constant depending on the Hamiltonian 
and d. 
Step 2. We can assume with out loss of generality that y = z + £kei for some I with 
k fixed at some positive integer so that two sites that are at a distance at least k, do 
not both interact with any third site in the Hamiltonian. This involves again the same 
idea. If z — y = £ei where £ is not a multiple of A;, we can go through an intermediate 
point that is a multiple and the difference is at most a fixed finite distance away. 
Step 3. The choice of k in the previous step guarantees that the conditional distri- 
bution of {rjz+jke! '• 0 < j < £} under the canonical Gibbs measure given the configu- 
ration on the complement of the sites {z + jkei} is a product measure conditioned on 

the sum Ylj=i Vz+jka • Of course the conditional probability Puj(j) = /jLuiVz+jke! — 1] 
is given by the DLR formula, and although different for each j takes only a fixed finite 
number of values depending on the total number of different configurations possible in 
the neighborhood of any one site. If we can establish (6.1) for the conditional distri- 
butions Hu with a uniform constant independent of u;, we can integrate with respect 
to // at the end. 
Step 4. The problem is now reduced to the following. We just have sites 0,1 • • •, £. 
We have a measure ji which is the product measure with Prfr/j = 1] = Pj conditioned 
on the set J2j=0r]j = m. If we assume that {pj} takes only a finite number r of 
distinct values and they all satisfy S < pj < 1 — 5, then with a constant Co depending 
only on r and 5, the analog of (6.1) is satisfied. This problem came up in the context 
of one dimensional lattice gases with random magnetization and the proof given in 
[QY1] is reproduced below. The proof is by induction on r where r is redefined as 
the number of distinct values among {pj} with 1 < j < £ — 1. If r = 1, except for 
the end points all probabilities are the same. In this case the factor produced by the 
Radon-Nikodym derivative is easily seen to be bounded by a constant independent of 
£. Any permutation can only change the probabilities at most four sites. Now let us 
prove the induction step. Assume that if there are r distinct values we have a bound 
with a constant cr independent of £ . Suppose now that there are r +1 distinct values. 
Let 1 < ji < J2 < • • - < js < £ — 1 be an enumeration of all the sites where pj is equal 
to one of these distinct values. If we write 

all but the two endsites have the same probability and therefore, for all the inter- 
mediate permutations, the Radon-Nikodym factor is controlled uniformly in s by a 
constant C. By Schwarz's inequality 

<C i^dToj, uf} + J2 .     \      ^{l?),-^ u|2} + -^-E»{\Tjs,£ u\i} 
31 r=23r~Jr-1 

By the induction hypothesis each summand satisfies the analog of (6.1). We obtain 
Cr+i < Ccr and the theorem is established. 

Using this Theorem, it is not hard to prove the two block estimate. The following 
proof is similar to the one given in [GPV, R]. 
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THEOREM 6.2  (Two BLOCKS ESTIMATE) For any bounded continuous function 
h and any 7 > 0, 

lim sup sup spec <AvxAvy:\y-x\<a£-i [ h(fjXik) - h(fjytk) f - ^e-2Avb(-Cb)\ = 0 
k,a,£ *- J 

(6-2) 
where limsup^. a £ = lim sup^^^ limsupa^.0 limsupe_^0. In particular, 

lim sup sup spec {Avx[h(fjXiae-i) - h(fjXjk)}2 - je-2Avb(-Ch)} = 0        (6.3) 
k,a,e 

Proof. Let Lx,y be the generator associated with the Dirichlet form E^[(TXyu)2], 
namely they are related via (2.12). For every pair x,y of sites in A let us choose 
a canonical path 7^, consisting of d straightlines that lie along the d coordinate 
directions following their natural order. |7x,2/| is of order \x — y\. Recall that R is 
the range of the Hamiltonian defined in section 2. Hence we can rewrite (6.1) as an 
operator inequality 

-Lw,z<C\w-z\ J^ ("A)- 

Taking the average of w with \w — x\ < k and z with \z — y\ < k and then averaging 
over x G A and y with 2R -f k < \y — x\ < ae-1, we have 

AvxAVy:2R+k<\y-x\<ae-lAvw:\w-x\<kAvz:\z_y\<k(-£w,z) < C'c'2d2Avb(-Cb)      (6.4) 

A similar inequality holds if we replace \z — y\ < kby \z — x\ < k or replace |^ — x\ < k 
by |w — 2/| < k. Let A£ denote a cube of width k and centered at x. Hence we have 

AvxAvy:2R^k<\y-x\<ae-^yw,zeAk
xUAk

y(-^w,z) < Ce'2a2Avb{-Cb) (6.5) 

We can replace the average of y in (6.2) by the average over y with 2R + k < 
\y - x\ < ae-1 since the error term is negligible. Together with (6.5), we can bound 
the eigenvalue of (6.2) by 

Avx Avy:2R+k<\y_xl<ae-i supspec{[ h(fjx,k) - M%,AO f 
(6-6) 

-Avw,zeA*uA$Ca 2(-Cw,z)j 

Clearly we obtain an upper bound by replacing the average over x and y with sup 
over x and y and over the boundary conditions of AXU Ay. Denote the configuration 
onU = Ak U Ak by (£, (). Then (6.6) is bounded above by the supremum of 

sup spec | [ h(£k) - h(Ck) ]2 - Ca-2AvWiZeU(-Cw,z) j (6.7) 

as an eigenvalue problem on L2(nu,uj,p) with boundary condition u and density p. 
We now fix a boundary condition UJ and a density p. The operator 

Ca-2Avw,Z(zU{-Cw,z) 
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on L2(/ic/,a;,p) clearly has a gap C(k)a~2 and the ground state is the constant function. 
For any k fixed, and a -> 0, the gap diverges to oo. Since h is bounded, for any k 
fixed from Lemma 5.1 we can bound the limsup of (6.7) as a -> 0 by 

supE^.-.p [M6)-MCjfe)]2 

Taking the limit k —> oo, we have fiu,u,p -* /V x Vpi where /ip denotes the infinite 
volume Gibbs measure on ZS d with density p. Clearly, (6.2) and (6.3) follow from the 
law of large number of Gibbs states. This proves Theorem 6.2. 

7. Eigenvalue estimate. We are now ready to prove Theorem 3.9. 
Proof of Theorem 3.9. Step 1. Let us recall that $f ,e, defined in (3.17), and ^e,c,e 

defined in Theorem 3.9 are given by 

$f,e = ^ly-zl^j [ Wy,y+e+£ge(fjx,£,Tyri) ] 

^s,cAx) = e(2c)-1Av\y_xl<il [r)x+C£-ie - Vx-cs-^e]- 

Here we continue to follow the convention set up after (3.26) in step 3 of the proof 
of Theorem 3.3 that the generator C does not apply to the variable fjxj because the 
error terms were proved to be negligible. We can rewrite 

e' 

where 

$1,1 = A;|y-X|<^;r 

<Px',e'S = [Wy,y+e +£ge(flx,e,Ty'n) + ^ De,e' (Vx^C^e'Vy " Etl[^e'Vy\^y,s])] 
e' 

9l\8
e =Y^De,e>(fjXtae-i)Av\y-x\<i1E»[Ve'Tly\ry,8], 

e' 

Vl* - S[^e,e'fe,ae-0 " ^e,e' (fixtt)][Av\v-*\<ii ( V^% " ^[Ve'^l^y.J  )] 
e' 

^l.c = ^^e^fe^-O^ly-xl^J^e^e'd/) " Ve'%]] 

Hence we can establish the eigenvalue estimate of (3.28) by showing 

si 

(7.1) 

limsup fto < C(7) || J ||§o     sup    supF [  ^ae0e(/3,g)^ ) (7.2) 
s,a,cj,e ST   a^=l   P \    e J 

and for i = 1,2,3, 
limsup fii = 0 (7.3) 
s, a, c, ^ ,e 

where 
fto = sup spec [ e-^J,^'5) - (7/4)e-2^6(-/:6) ] 

H^supspec [e-1(J,^'s)-(7/4)e-2^6(-£6)], i = l,2 (7.4) 

Os = sup spec [ e-^J,^3 ) - (7/4)e-2^6(-£6) ] 
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and the inner product (,) is as defined in Theorem 3.9. 
We first consider fii.  From (5.8), we have (7.3) holds for i = 1. For i = 2, we 

apply (5.7) to reduce the problem to showing 

limsup sup spec [ C(s, 7, J)Avx(D(fjXtae-i) - D(fjx,i))2 - (j/8)e-2Avb(-Cb) ] = 0 

(7.5) 
which is the familiar form of two block estimate. From (6.3) we conclude (7.5). Note 
that we take £ —)• 00 before taking the limit s —> 00. 

To deal with fis we rewrite 

(J,*3) = Y,Avx[Gx,£>(J, ri)Ve'Vx] 

and use (7.6)   to control limsupajC £   ^3.  G is easily seen to satisfy the hypotheses 
needed to apply (7.7) . The problem reduces to one of showing 

lim sup sup spec [ AvxGl,e — (rY/S)e~2Avb(—Cb ] < 0 
a,c,£,e 

which is easily seen to follow from the two block estimate. 
Finally we have to bound QQ. Note that E^f^lTy^] = 0 if \y - x\ < h and 

hence from Lemma 5.2 we have 

fto < C sup spec AvxV£     ^JeM(/>f;?'s, fjXti     - (7/8)c-2Ai;6(-£6) 
e>0 

+ o(l) 

with limS(£]a,£ o(l) = 0. Note we have kept some Dirichlet form. For k > £ let 

Ux,k = E^ 
V e>0 / 

K x,k 

and we can bound fio < ^4 + ^5 + o(l) with 

Q4 = C sup spec 

Os =    SUp   Uxtk 

Avx \
Vt(j2 Me*)<l%Z'a,nxti ] - Ux,k 1 - (7/8)c-2At;6(-/:6) 

Using Lemma 5.2 and noting that the factor e-1 in front of h in (5.2) is not present 
in this calculation, we have 

lim ^4 = 0 . 

It remains to bound 0,4. By the translational invariance, 

n5 ^supjs^fc+i" VtfcMex)^'',*) 
e>0 

^ (7.8) 
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where fiA2k+ljuj,p denote the canonical Gibbs measure on A2A;+i with boundary condi- 
tion u and density p. For every £ fixed, we can take the limit k -)• oo and any limiting 
point of the right hand side of (7.8) is given by 

EM ^£^)C'S^) (7.9) 

where ///? is the unique Gibbs state with density /? given by the limit of fji. Note 
that from our mixing assumption, there is only one Gibbs state for a given density. 
From the law of large number of Gibbs state, we can replace the density fjo^ in the 
definition of </>o'e'S m (7.9) by the total density /3. Recall </>f (/?) is given by (3.13) and 
by definition of <^Q 'e '

s we have 

<%?' = tfm-E»-[tfm\rt] 

for s large enough; where the density 770,^ in ^oV* '1S replaced by (3. We can now take 
the limit £ —> 00 and then s —> 00 to have 

lim sup E^f3 

£-+00 
vt(J2Wex)<l$S'a,m) 

e>0 
<vlj2Mex)tfW,P) (7-10) 

e>0 

where we have used the definition (3.12) of V This proves Theorem 3.9. 

8.  Computation of variance. Let us recall the definition of G 

G = {h: E^hl^s] = 0    for  some  s} 

We would like to define the variance 

V(h,h;(3)= lim E^ [ < hW,Cz] hW >i,„„ ] (8.1) 

as a uniform limit in /?. Since we cannot show the existence of this limit at this time 
we define the upper and lower limits 

V * (h,0) = lim sup £7"/" [ < hW, £7e] hW >i ,„, ,„ ] (8.2) 

and 

Here 

K (h, /?) = lim inf E^' [ < hW, C^] hW >£ ,„ iy ] 
P'^P 

hW 
(24 + 1) zw E T*h 

xSAjj 

with £1 = £ - VI and 

Cw-(2e + i) nyT,c>>- 
bEAi 

(8.3) 
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For any h G (?, for sufficiently large £, E^t,".y[/i(*)] = 0. The following calculation is 
a typical way to estimate (8.2). From E^a^^[h] — 0, we conclude that 

h = C(S)US 

for some us. If we denote by C71 a lower bound on the spectral gap for a box of size 
5, for any function v of the configurations in the box A^ 

\E[h(l)v]\<        * Y, \E^h^ 

Mllkllt 

<Vc:{2s + l)i^+1^d\\h\\2!l<v,Cwv>i 
{2ll  + 1) 2 

providing us the bound 

<hW,C-]hW>u,y<Cs(^-}   (2s + iy 

where E denotes expectation with respect to any canonical Gibbs measure ^ ^ ^ and 

iifcii^=(2/l
1

+1)2g[£ MI2] 

Taking expectations with respect to iiP', letting I —)> oo and (3' ^ f3 we have 

F«(/i,i9)<C7.(2* + l)«'||/»||^ (8.4) 

Because we defined V*(ft,/?) as the limsup, and did not show the existence of the 
limit, it is not quite clear that V*(h,f3) is a quadratic form in /i, and consequently 
it is not possible to generate the inner product from it by the standard polarization 
formula: 

V*(h;g,p) = ±[V*(g + h,p)-V*(g-h,/3)} 

Because Vi(h',uj ,y) is actually a quadratic form, it is possible to polarize it and 
try to calculate directly the quantity 

V{g,h;P)= lim E"? {Ve(g, h;«,y)} (8.5) 
£-+oo 

We will show that the limit exists and calculate it explicitly for a large class of local 
functions g and h. Let us define the shifts rx for x G 2Z d by 

{rxrt)y = rjy-Xl    Txb = b - x,     (rxg)(r]) = g(Txrj) 

on configurations rj, bonds b and functions g. We have the basic exchange operator 
56 defined by S&77 = r]b = r)x>y for a bond b = (x,y) in (2.10). The operator Xi, was 
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already defined as (Tf)g)(7]) = giStrj) — g{rf). The shift operators TX and the exchange 
operators S& satisfy the commutation relations 

TxShr) = Sb+xTxr),     (SbTxg)(r)) = (rxSb+xg)(r]) 

leading to the identities 

(TbTxg)(ri) = (TxTb+xg)(rj) - (^Tr^g)^) 

Suppose g € Q, i.e it is a local functions such that E^{g\!Fs} = 0 for some s, then for 
any other local function ft, E^[gTx ft] = 0 provided Txh does not depend on any of the 
variables {r)z : z G As}. In particular for any ft which is a local function and g € Q 
the series 

5^SA*[pra.h]=<^,/i>o 
X 

is well defined as a finite sum. If it happens that ft G Q as well, then 

< £,ft >o (/?) = ^S^[(/rx ft] = ^E^[^ft] =< ft,£ >o (/?) 

is a continuous function of /? and 

so that for each /?, < , >o is a positive semidefinite inner product. We will also need 
the quantities 

x 

which are again only finite sums for g G Q. Let u be a local function with Cu — g. 
Clearly g G Q and CTXU = Txg for all x € 2Z d. In particular 

If v is now another local function with Cv = ft, a direct calculation yields 

^(p,/i;a;,y) = - E^,y {    ^   r^r^} 

and one can easily show that the limit 

V(g,h;P) = Km EW {Vi(g,h',iJ,y)} = -  ]£ E^{^r^} = - < g,v >o (/8) 

(8.6) 
exists. 

The following calculation is easy to carry out.  For each local function u let us 
define the formal sum 

U = ^TxU 
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Although u is not well defined, 

is well defined for every b and 
Tx€b = Zb-x 

for every x and b. If we denote To,e by Te, and £o,e by ^e, we have 

e 

and by polarization 

< p,/| >o (13) = - < £U,V >o (/?) = ^"'EcefaKe Cc] 
e 

where 
Cc=rev = re^rst; 

We next take g = we = u>o,e. From the definition of the current w^ in (3.4) it is easy 
to establish the following identity, which is essentially an integration by parts formula, 
for any fi which is either /i^ for some /? or any canonical Gibbs measure //J^ on a box 
A that contains the bond (x, x + e). 

If we take any set B C A, it follows that 

i^r [(53«,,) „] |2 < ^- [ 53 c^xv^i^r [ 53 C6[(T6 «)(^)]2] 
6G-B 6e-B 665 

In particular 

< YJ 
wb; £71 Y, Wb >" ,y^ C\B\ 

b£B beB 

Therefore in the definition of V(we ,We' ;/?) on can take 

Vt(We ,We'',U),y) =< Av^We ,[AvKlCb]-lAv\lWe >uj,y 

and because 

x&Ai x€.Ae 

it is easy to calculate that 

V(We , We. 5 0) = ^E^ [Ce(v)(VeTin (W 

and for any local u 

V(we,Cu;/3) = \E^ ^(^(Te 53TxU)Ve77], (8.8) 
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and in fact for any g G Q 
V(we,g;t3) = te(g,l3). (8.9) 

We collect these results as a lemma. 

LEMMA 8.1 If we define the class Go C Q of functions as those which are of the 
form g = Cu + Y^e ^e^e for some local u, then V{g , h ; p), given by (8.6) -(8.9), is a 
well defined, possibly degenerate inner product on QQ. In addition V(g ,h;l3) exists as 
a limit in the sense of (8.5) so long as g, h E G and either g or h is in Go- 

Our next goal is to show that G is not all that much larger than Go- We want to 
show that, for any /?, G is contained in the completion Go of Go relative to the inner 
product V(', •; /?). More precisely with V(h, h; /?) defined as the limsup for h e G we 
want to show that 

inf V*{h-g,h-gil3) =0 (8.10) 
gzGo 

Notice that although V*, defined by(8.2), may not be a quadratic form it is still true 
that for g G Go and h G G 

V*(h-g,h-g',l3) = V*(h,h',l3)-2V(h,g',l3) + V(g,g;l3) 

so that (8.10) reduces to proving the variational formula 

V*(h9h;l3)=8uj>l2V(h,g;l3)-V(g,g',l3)\ (8.11) 
geGo I J 

The variational formula (8.11) also proves that for V* defined by (8.3) 

V*(h,h;0) =V*(h- g ,h- g;?) + 2V(h- g ,g;(3) +V(9,9;/3) 

> sup [2V(h,g;l3)-V(g,g;P)] 
9€Go 

= V*(h,h;/3) 

establishing the equality F* = V* and therefore V* = V* = V(h,h;P) exists as a limit 
and defines a quadratic form for all h G G- Let us remark that from the definition 
V* is upper semicontinuous in /?, while V* is lower semicontinuous. In particular the 
equality implies the continuity in /3. We now state these results as a theorem. Since 
(3 will be fixed from now on, we will drop all references to it. 

THEOREM 8.2   For h G G the variance V(h,h) satisfies the variational formula 

V ( h, 22 aewe — Cu ) — -V (   ^ aeWe — Cu ) 
e>0 e>0 

=       SUp       {  y^^aetejh) + (/l,tx)o 
aeeR,ueG { e>0 

-l/^E*   ce(r))(aeVer) + TeJ2Txu)2 

e>0 »- x 

(8.12) 
The equivalence of the two formulae in (8.12) follows from Lemma 8.1.  Hence we 

only have to prove the first identity in (8.12). This will be the main thrust of the rest 
of this paper. 

-V(h,h)=     sup 
^ ae£R,ueg 
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We now assume Theorem 8.2 and conclude the proof of Theorem 3.4. In general 
VgT? ^ G- However for any e and s, he,s = Very - E^[Ve^ l^] e G and for si < §2, by 
(8.4) and the estimate on the spectral gap 

V(h      - h       h      -h     \ < r<;d+2 Q-(d+2+a) 

This is enough to prove that /ie,s is a Cauchy sequence (uniformly with respect to (3) 
in Q and letting s -> oo, h = lims-^oo he,s gets represented in G- Using (8.6) and (8.9) 
we can explicitly calculate 

V{We ,VC'77) =te(Ve'V) = $e ,e' ^2<r]0]Vx >n=$e,e'X (8-13) 
x 

and 
V(£ti,VeT7) = 0 (8.14) 

Proof of Theorem 3.4- Let 

£(o) = {^aeve77o} (8.15) 
e>0 

We claim that G^ + £>G is also dense in G where CQ denotes the linear space {Cu} 
as u varies over all local functions. From (8.14), <?(0) _L CQ. From (8.13) we see that 
the projection of the space G^ onto £/(0) has rank equal to the dimension of C/M. 
Therefore the dimensions of G^ and C/M are both d. Since ^(^ + £5 is dense in G, 
it follows that G = S^0) 0 757-   

Let £e denote the orthogonal projection of We onto the space CG> Hence there is 
a diffusion matrix D such that 

We = X  ]P £>e,e*Ve*770 + fe, (8.16) 
e*>0 

as an identity in G- Clearly, the projection of ^e 7eWe is ^e 7e^e- By definition, £e can 
be approximated by elements of the form Cge and thus ^e 7e^e can be approximated 
by C Y^e 7e#e- Therefore, (3.14) holds for some diffusion matrix D. Our final task is 
to prove the characterization (2.22). 

Using the current notation, we can rewrite the diffusion coefficient (2.22) as 

^7 • D • 7 = X-1  inf Vft-w- Q (8.17) 

The minimizer is simply the projection of 7 • w onto the space CQ, namely, ^e 7e£e- 
Taking inner product of (8.16) with uv, we have 

V(We,We>) = -^-De,e*V(Vc*r70,Wc') +^(6,^') 
e* 

We can compute V(Ve*7/0j^e/) by (8.13) and thus 
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Hence for any vector 7 we have 

^7 ' D • 7 = X-1 [ V(>y - w) - V(7 • & 7 • w) } (8.18) 

Since 7 • £ is the projection of 7 • it; onto the space ££/, we have 

V{j • f, 7 * f - 7 * *») = 0 

Therefore we can rewrite (8.18) as 

^'D.j = x-1[V(7'w)-2V(7.d-w) + V('yO) = V(~rw-7.0   (8.19) 

establishing the equivalence of (8.19) and (8.17). This proves Theorem 3.4 assuming 
Theorem 8.2. 

We now prove that the diffusion matrix is diagonal if the model is isotropic, i.e., 
the Hamiltonian and the jump rate A in (2.14) are isotropic. 

LEMMA 8.3   Under the previous assumption, the diffusion coefficient is diagonal 
Proof. Fix two coordinate direction e and e'. Taking inner product of (8.16) with 

Ve'^o, we have 

V(We,Vc'77o) = -^£>e,e*^(Ve*770,Ve'77o) 
e* 

We can compute F(Ve*^o, we') by (8.13). Hence we only have to prove that F(Ve*77o, 
Ve'77o) is diagonal. Denote by 0: 2Z -> ZZ the reflection with respect to the origin 
along the e' direction. We may extend 9 to the space of configurations in the natural 
way: (6rj){x) = rj(9(x)) and to the space of continuous functions: {Of)(r]) = f(0rj). 
Clearly, V(f,g) = V(9f,0g) since our model is isotropic. Notice that 

0(Ve'»7(O)) = -T_e,Ve'77(0) ;    0(Ve77(O)) = Ve77(0),    if e # e' 

Hence V(Verjo, ^e'Vo) = —V(Verjo^e,,no) = 0. This proves the Lemma. 
Return to the proof of Theorem 8.2. We shall follow the approach of [VI] and 

[Ql]. We first need the notion of "closed forms". This is some what parallel to the 
usual notion of closed forms in differential calculus. Our goal is to characterize the 
1-form arising from 

ujb = Tbg (8.20) 

for some function g. Clearly, there are compatibility conditions for UJ = {u;&}. One 
can check easily that the following conditions hold: 

Tbuq = Tqujb,  if q H b = 0 . (8.21) 

Unlike in differential calculus, (8.21) fails if q fl b ^ (j) because the operators are not 
local. Hence (8.21) is not enough to characterize the forms arising in this manner. We 
therefore use instead the definition: u = {tut} is "closed" provided for any sequence 
of nearest neighbor bonds {6i, &2, •••, bn} such that Sbn Sbn_1 ... S&2 S^ = / one has 

n 

Y,"bi(Sbi-1Sbi_2...Sbli]) = 0, (8.22) 
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where Str] = r]b. Let Pirj denotes the new configuration obtained by applying the 
permutation Pi = 5&. 561._1 ... 5^! to T]. One can check easily that if u is given by 
(8.20) then (8.22) holds. To prove this, we substitute UJI, = T^g into the equation and 
we only have to check 

n 

YjTbMPi-iri^O, (8.23) 
i=l 

By definition, 

Ti-giPi-w) = g(ShiPi-iTi) - g(Pi-ir]) = giPm) - g(Pi-iv) 

We see that (8.23) is a telescoping sum vanishes because Pn = P0 = I. Conversely, 
if (8.22) holds, we can reconstruct the function g as long as we are in a finite cube A 
with a fixed total number of particles. This can be achieved in a standard way. 

For any two configuration rj and £ with the same total number of particles, i.e., 
M = |CI> we can construct a sequence 3^,1 — l,---,n so that £ = 5^ •••S^ry. 
Starting from a configuration 77, we can define the value of the function g at any 
configuration £ with \r]\ = |C| by 

g{Q = YJuhi(Shi_1Shi_2...Shlr]) 
1=1 

The condition (8.22) is exactly the compatibility condition that two different ways to 
reach £ will yield the same value for g(Q. Note that configurations with different total 
number of particles are completely unrelated. Hence in general we can require that 

£>M^L] = 0 (8.24) 

if the cube A is of width 2L + 1; here TL is the cr-algebra defined in (3.8). This 
procedure can be performed in a finite cube and thus the function g always exists 
locally, i.e., if we condition on the configuration outside a cube A, the condition (8.22) 
implies the existence of a function g such that Sbg — ^6 for all bonds b inside A. 
Therefore, (8.22) implies (8.21). In addition to the existence, we have the following 
bound 

E* [ 92 ] < CL* ]r E» [ ul ] (8.25) 
fcGAz, 

For the whole lattice Zid, it is more subtle and, indeed, the reconstruction is not 
necessarily valid. We shall discuss this in details in the next section. For now, we 
define the space of (translationally covariant) closed forms , Qc, by 

Qc ={& = {ujb} : u is translationally covariant and is closed} (8.26) 

where LU is said to be translationally covariant if it satisfies 

TxUbirj) = Ub(Tx7]) = uj^biv) = Vb-xiv) (8.27) 

The existence of translationally covariant closed 1-forms is not entirely obvious. The 
idea is that, if we start with a local function u and define the formal sum 

11=   ^2 rxu' 
xe2zd 
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as we saw before, although u does not really exist as a translation invariant function, 
its formal "gradients" 

(jb = Tbu 

are well defined local functions and constitute a translationally invariant closed 1-form. 
These are to be thought of as exact forms. On the other hand for each e the form 

is a "closed" 1-form that is not of the exact type. The following Lemma is the first 
step in proving Theorem 8.2 and provides a variational formula for the variance in 
terms of " closed forms". The proof will be completed in the next section where we 
will prove that Go = Gc in a suitable sense. . 

LEMMA 8.4    For h G G the variance F*(/i,/i) satisfies the variational principle 

±V*(h9h) <   SUp E^Ce^me] - «MX>(602], (8.28) 
z CeSc       e>0 *       e>0 

where, for each e, <I>e(-) is a local function depending on h to be defined in (8.30) and 
(8.31). In addition there is also the counterpart 

lv.(h,h) >  SUp £>Ece*£fa)&] " \E»$2ce(Ze)2], (8.29) 
£eSo       e>0 

4       e>0 

with the same functions <f>e (•)• 
Proof. First we prove (8.29), which is the easy part. Clearly 

^Vi(h,h}u,y) = 8uplEv<>»v[[AvxeAllTxh]v] - ^E^y[AvbeAe[cb{rj)(Tbvy]]\ 

By choosing 

v= (2£+i)d E <a'a;>^- E T
*
U 

for some local u, taking expectations with respect //£/, letting £ —> oo while /?' -> /? 
we get 

for the second term, where 

xez£d 

Since h G G we can write 
ft = £s# = ^ ^ff (8.30) 

beA3 

with i? measurable with respect to some ICS+R (see (3.9)), and calculate 

Ei>E»'">v[[AvxeAilTxh]v] =E»[(AvxeAeiTx Y^ £bH)v] 
b£As 

= 'I Yl ^seA£l^[rx[c6(77)(r6ir)](r6-at;)] 
2 

6eA 
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It is now easily seen that the first term reduces to 

e y:TyeeA3 e 

with 

&<n) = -l   E   VZVff (8.3i) 
y:rye€A3 

thereby proving (8.32) . We now turn to the proof of (8.28). 
Stepl. Let 

V* = limsupE^' [Vi(h,h]uj,y)] 

and suppose that I > 1 and (3' ~ (3 have been chosen so that, for some small S > 0, 
with //' = /i^/, 

E»,[Vi{h,h]LU,y)}>V*-5. 

We have the usual variational principle 

-^(/i,/i;^,y) = sup{£^v[u^ 

that is valid for each LJ. Integration with respect to the infinite volume Gibbs measure 
/i' yields 

^'[V/(A,/i;w,y)]^ (8.33) 

Hence, there exists a function u = uW such that 

^'[Vi(/i,/i;a;,y)] < Av^i^^'Kr^H - ^i;|6|<^[ce(^)(r6W)2] + «,    (8.34) 

where £i = £ — \/I. Moreover we can assume without loss of generality that u is a 
function of the configurations on AI+R and satisfies 

Avw^ESftTvtyu] - ^AvmiE^[ce(ri)(Thuy] > 0 (8.35) 

Since h is a local function, it is measurable w.r.t. /Cs for some s large enough. Because 
h e Q (3.7), as we saw earlier, h = Csli for some H that is K,S+R measurable. 
Therefore, there is a constant C(h) such that, for any constant 7 > 0, and x G A^ 

^,[(r_,/iH<(47)-i    Y.   Ei>l[cM(Tbu)*\ + 'lc{h) (8.36) 
|6-x|<s 

Let 7 = 2(2s + l)d. Summing (8.36) over x with |ar| < li and using (8.35), we have 
the following energy bound that holds uniformly in £: 

Av^tEvfaWiTbu)*] <CsC(h) (8.37) 
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Step2. For h G G (3.7), {*£(•)} were defined by (8.30) and (8.31). From 

E^[uh\Jrs]=E^[uCsH\J:
8] 

we deduce that 

661 

(8.38) 
beAs 

and 
Avia-i^B^ [ (Txh)u 

---(2fi + l)-dEM' 5^        ^      ^(^(T^ff)^)^!!)^) 
|a:|<*i b+xeAs 

beAe 

=(2£i + IJ-dJS/*' 

where for b = Tye G A^, 

*6(r,)=    ^   (T()T,Jtf)(7?)=T^(r?) + n6(7?) 
E€A£1 

where fib are boundary terms that satisfy ftb = 0 for 6 G A^_2v^ and |fl61 < C(/i) 
otherwise. Clearly, from Schwarz's inequality, and (8.37) 

J2    E"' [ CbWntWfatyTtu } < Cl-i 

and we can therefore replace 

in (8.33) with 

so that 

Avlxl<£lE»' [ (Txh)u] 

Avw^Ef' [ Tx[ce(r))$%(ri)}TTxeu ] 

AvM<£lE^ [ Tx[Ce(v)^(v)]TrmeU] ] - -Av^E*   [ CftfaXTftli)* ] > F* - 35 

Step 3.  Let us pick k ^> 1 and fix it.  There must be a good box of size k, i.e with 
Aa;,jfc+ii C A^ such that 

AvyzK9tkEl>' [ TylCe^^Tr^u] ] - ^Av^^E*' [ CftfaXTftll)* ] > F* - 45 

If we now replace u = uW by uW = E1^' [ i/W|/Ca;,s+fi ] we still have 

Avys^E*' [ Tv[ce{ri)mri)]TrmeU^) } - \Avm^kE»' [ cb{r,){Tbu(i)y ] > V* - A8 
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by taking conditional expectations first. It is easy to pass to the limit as £ —> oo and 
H' -» //, taking a subsequence if needed. We produce in the limit a function uu such 
that it is fCk measurable and satisfies 

AVy^E* Y^Tv{^)$e{ri)]TTueUk 

or 

E* Y^ Ce {V) $e (Tl) Te [AvyeAk TyUk] 

\AvWeAhEi> [ cMiTbUk)2 } > F* - 46 

- ±AvWeAkEi> { cb(ri)(Tbuk)* } > F* - 46 

If we define ££ = TeAvyeAk [ry Uk] then 

e 

=E»[Ylce(T]) [Avy€AkTTyeuk]^ < En[Y,Ce(v) [^t;y€Afc(TT,eufc)2]] 
e e 

=AvW€AhE»[cb(Ti)(Tbuk)*] 

We conclude that 

While ^e is not a covariant gradient it is routine to show that any limit point of £e as 
k —> oo is one. This concludes the proof. 

It remains to establish that Go is dense in G in a suitable sense, and this will be 
taken up in the next section. 

9. Structure of closed forms. Our goal is to prove that any translationally 
covariant closed form £ — {£>} can be approximated in L2(fj,) by forms of the type 
{aeVe?? + Te J2X Txg} with suitable scalars {ae : e > 0}. 

More precisely, let 

GE - {£ : 6 = Th  J^ Txg , g is a local function} (9.1) 

be the space of translationally covariant exact forms and G^ be the d-dimensional 
space of translationally covariant closed forms given by 

£(1) = {£* :£? = ]£ (xe5b,eVhTi    for some    ae € #} (9.2) 
e>0 

where 6bje = 1 if the bond is in the same direction as e, and 0 otherwise. Formally 
one can think of 

tb=-Tb  S   <<*>x>Vx 
x£ZSd 



DIFFUSIVE LIMIT OF LATTICE GAS WITH MIXING CONDITIONS 663 

Clearly, these two spaces are subspaces of Qc • Define the L2 norm of a closed form by 

£||£=-E> E^2 :2 

e>0 

To simplify notation we use £e to denote £& with b = (0,e).  Then our goal is prove 
the main Theorem of this section. 

THEOREM 9.1   The following decomposition holds in 1,2(11): 

GC = GE + G^ (9.3) 

Together with Lemma 8.4 this proves Theorem 8.2. Theorem 9.1 has a paral- 
lel version if the conservative (Kawasaki) dynamics is replaced by a nonconservative 
(Glauber) one. For any configuration 77 and x E 2S d we define 

Vy 
= f rjy if    x ^ y 

\ 1 - rix    if    x = y 

i.e the spin is flipped at the site x. The Glauber gradient ax at site x of a function u 
is defined as 

{cTxu)(r]) =u(r)x) -u(7]) 

For any local function g, although the formal sum 

u=   ]r Tzg 
ze2zd 

does not exist, the Glauber gradients 

UJX = axu 

exist and are in fact local functions. Moreover we have the translational covariance 

uje = TXUJX (9.4) 

along with the obvious identities 

Gx(jjy = GyUx     for all     x / y (9.5) 

and 
(jxUx = -2UJX     for all    x G Zd (9.6) 

Let QQ be space of covariant closed forms (in the Glauber sense), i.e. {a^} that satisfy 
• (9.4) , (9.5) and (9.6). Equip £g with the L2 norm defined by 

IMI!=£>K] 
Let GE be the space of translationally covariant exact forms, namely 

GE 
=
 {

UJ:UJ
X= VX  2^ r^' 9 is & local function }. (9.7) 

zez;d 
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We have the following approximation Theorem. 
THEOREM 9.2  In L2(/i): 

GS = G% (9-8) 

Our interest in the Glauber dynamics arises from the observation that the spin flip 
and the spin exchange are related in the following manner. Given a pair of functions 
u and v let Q denote the function 

Qx,x+e(u,v) = [rix(l - Vx+e) + Tlx+eO- " Vx^x+eU + U + v] (9.9) 

Then for any function F, 

TXiX+eF = QxiX+ei&xF ,ax+eF). (9.10) 

We now prove Theorems 9.1 and 9.2. The first few steps of the proofs are very 
similar and the steps leading to Theorem 9.1 are harder. We shall provide the details 
for this case and just sketch the proofs for the easier version. 

Proof. In general, given functions £& defined for bonds in a box A^ satisfying the 
compatibility conditions for being a closed (Kawasaki) form, we can "integrate" it, 
and find a function g such that 

& = Tbg     for all    b e At 

The function g is not unique, but can be determined uniquely by imposing a mean 0 
condition 

E^-v [ g ] = 0 

that makes the solution depend on the external boundary condition u and the particle 
density y in A^. For such a choice we have the estimate 

£/*£.«.» [ Ipp ] < CPE^^y [ Y^ %] (9.11) 
bekt 

as a consequence of the estimate on the spectral gap. The constant C is of course 
independent of t,Lj and y. We can perform this step even if g depends on the external 
boundary condition a;, so long as the compatibility is satisfied for each such UJ. There 
is a similar result on integrating Glauber forms {£x : x £ A^} with the normalization 
i£M£,u,,A [ g ] = 0 along with the estimate 

EtAt'u'x [ \9\2 ] < CEu^ [ Y &] (9-12) 
xeAi 

again based on the spectral estimate, but now for the Glauber dynamics. 
Let us recall that R is the range of interaction in the Gibbs measure. For each 

box AM let <9AM denote the "boundary" of AM, consisting of sites in AM that are 
within a distance R from some site in AC

M ( the complement of AM) as well sites in 
A^ that are within a distance R of some site in AM- Let A^ = AM\<9AM denote the 
"interior" of AM- Given a (Kawasaki) closed form {£&} we can try to truncate it over 
a finite volume AM by defining 

#* = -E>[&|/CAf ]    for each     b G AM (9.13) 
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While the conditioning interferes with the gradient near the boundary, if we restrict 
^ to b G A^-, it does in fact define a (Kawasaki) closed form and in particular if 
lb = Tbg for some g, then 4M = Tbg

M where gM = E» [ #|/CM ] so long as b G A^. 
The identical statement is valid for Glauber forms as well. 

Suppose we are given a translationally covariant (Kawasaki) form {£&}. For some 
L > 1 we define the truncations £^L according to (9.13) for a box of size 3L. We 
can use these to construct a function g^L measurable with respect to JCSL such that 
Tbg3L = ^lL for b G A§L. We then define 

hL=E»{gZL\1CL} 

and finally an approximation that is translationally covariant and exact by 

v J z€2Zd 

In the Glauber context the approximation takes the form 

with a different but similarly constructed hi- 
LEMMA 9.3 The Kawasaki form £e can be decomposed as the sum £e = H^ ^-f &L e 

coming respectively from the interior terms and the boundary terms. For each e > 0; 

they satisfy 

limi5"[|&-ni1il2l=0 (9.14) 

and 
supE» [ |n^2)

e|
2 ] <oo (9.15) 

The Glauber form QQ admits a similar decomposition as QQ — f^o + ^L,O coming 
from the interior terms and the boundary terms and they satisfy 

lim E^\\uJo-n{^o\2} =0 (9.16) 

and the stronger estimate 

supL£> [ |ni2)o|2 1 < oo (9.17) 
L L '       J 

REMARK. In the Glauber case, from (9.16) and (9.17) it follows that OQ -> ^o as 
L —> oo, and this proves Theorem 9.2 . In the Kawasaki case we will take a weak limit 
of WL0 which will again be a covariant Kawasaki closed form and analyze it further 
and show that it is made up of density gradients. This will complete the proof of 
Theorem 9.1. 

Proof. Denote by f^1) the "interior part" and fK2) the "boundary part", namely, 

n a) = i 
y:y,y+eeAu

L 

;Te ^ TyhL 
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fiS = (2LTWTe S ^ y:{y,2/+e}naAi#^0 

It is important to note at this point that, if y, y + e G A^ then 

TeTytlL    =   TyTy,y + e  tlL   =   TyE^   [   £</, y + e |/CjT,    ] 

Since ^ € I/2(A0, for large ^J ^ [ 16 - ^ [ fel^fc ] |2 ] is small. By translational 
invariance Ev [ {t;Tye — Ev [ ^Tye\ICy,k ]}2 ] is independent of y and is therefore uni- 
formly small for large A;.   For most y G AL, A^fc C A^ and consequently for most 

bonds b (with density close to 1 for large M), E/* [ ( & - JE> [ £&|/CL ] )2 1 is small. 

This proves (9.14). The proof of (9.16) is identical. The following lemma provides a 
key estimate. 

LEMMA 9.4 Let h be a function in the cube A31,. Suppose AL is the centered 
subcube of width 2L +1, h — ^[/I|/CL] and z is a site in A/,. Denote the configuration 
by V — (iiflz, 0 where ( denote the configuration on AL \ {z} and £ denote the config- 
uration on ASL\AL. Denote by Avy — Avyeh3L-R\KL+R- Let p be a Gibbs measure on 
ASL or an infinite volume Gibbs state such that for any local function F the following 
mixing property holds: 

En [ Avy Fy; Avy Fy ] < CFL-d (9.18) 

Then 

E^ [ (aMrjzX))2 ] < CL-dEn [ h^rj) ] + CAvyE* [ (Tz,yh)*{Ti) ] (9.19) 

where the constant C may depend on the density of the Gibbs measure. 
We will defer the proof of the lemma to the end of the section and proceed with 

our main goal. We first consider the Glauber case. 
 (2) 

By definition, f^ 0 has contribution from the boundary consisting of 

^ - (2ZTTF *> x: ^=(2LW £ T'a'hL i<2) 1       _    sp r h        L 

yedAL 
v /    yedAL 

and (9.17) will follow provided we show that 

sup sup E»[\ayhL\2] < C < 00 (9.20) 
L   yeAL 

Clearly, (9.20) follows readily from (9.19) with the choice of h = gsi- We only have 
to note that in the Glauber case we have from the spectral gap bounds (9.12) 

E'>[glL{Ti)]<CL* (9.21) 

and 
E» [ (Tz,yg3L)Z(r,) }<CE^{ (az ^(r?) + (*„ 93L)HV) ] < C (9.22) 

so long as z and y remain in A^. This concludes the proof of Theorem 9.2 
We now turn to the Kawasaki case. We observe that instead of (9.21) and (9.22) 

we obtain from (9.11) 
E»[9IL(V)}<CL*+I (9.23) 
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and 
E»[(Tz,yg3Lnr])]<CV (9.24) 

so long as z and y remain in A^L. This provides the estimate 

sup E» [ (ay hL)2(rj) ] < CL2 (9.25) 
2/EAL 

with a constant C independent of L. Because the boundary terms are only O^-1) 
in number, from the definition of ft^^ the estimate (9.25) is sufficient to establish 
(9.15). This concludes the proof of Lemma 9.3. 

Return to the proof of Theorem 9.1. The proof is broken up into several steps. 
Step 1. The boundary in d dimensions comes in 2d faces with some overlap at the 
corners. The overlap involves only 0(Ld~2) sites and hence negligible in view of the 
bound (9.25). We can therefore analyze the contribution from each face by itself. Since 
they are all similar we will just consider one of them. Depending on the range of the 
interaction, for some integer q > 1, the face consists of points z — (zi, • • •, Zd) G Z d 

satisfying — L < zi < —L + q and —L<Zi < L for 2 < i < d. The face consists 
naturally of layers 

BJ
L — {z = (zi, • • •, Zd) : zi = —L 4- j ; —L < zi < L for  2 < i < d} 

indexed by 0 < j < q. We need to analyze the terms 

^L= (2L + iy   E TzTz,z+ehL= {2L + 1)dTe £ rzhL 

where BL is the slightly thickened boundary 

BL = ^-l<j<qB3
L 

We can rewrite 

-l<j<q 

where 

^
=
(2LTIF ^0

TzhL 
)
   zeBl 

and rj = Tjei is the translation by j steps in the xi direction. For each site in 
x = (xi, • • •, Xd) G 2Z d let us consider 

B,L 7 

Since a;x ' is bounded in L2 (/x), we can take a weak limit as L —>> 00, with one 
subsequence working simultaneously for all #, and call the limt u§. 
Step 2. By construction, as a weak limit of Glauber gradients, {uJx} is again a 
Glauber gradient although it may not be covariant. Because averaging is done in 
all directions except in the first coordinate direction, it is covariant, in all directions 
except possibly in that direction. Moreover UJ§ = 0 if xi < 0, because none of the 
functions depend on the configuration at any site x with xi < 0. Let b be a bond that 
does not intersect the infinite strip Boo = {y = (2/1 > * * * iVd) • 0 < Vi < (?}, as well as 
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the site x. Then TbhL —> 0, and ax commutes with 7),. Therefore TbUx — 0. This 
implies that u§ can only depend on the configuration in I?oo U {x}. In particular for 
y $. Boo U {x}, ayUx =0. As a Glauber gradient ayUx = crxu>y for all x, y and hence 
we also have crxLUy = 0 for such pairs x and y. It is easy to arrive at the following 
conclusion: for each x G i?oo, v§ depends only on the configuration in I?oo. On the 
other hand for x with xi > q, u§ can only depend on r)x and as a gradient must equal 
c{x){2r)x — 1) for some constant c(x). Covariance in all directions except the first 
coordinate means that c(x) is a function of the first coordinate only i.e c(x) — c(xi) 
Step 3. If we denote by ££ the weak limit of £e '  , then 

^ =  lim [7/0(1 - r/e) + T7c(l - 770)] 
L—)-oo 

=    lim  [r7o(l - T/e) + r?e(l - T/o)] 
L-^-oo 

(crocre + CTQ + tJe) (    ^    rj- /IL) 

-l<3<q 

(7o(    X^    ^-^e+iciftLj + C    ^    rjajeihL) 

-l<j<q -l<3<q 

= ^o(l-r/e)+r/e(l-r7o)] 

+ (      ^      TjCTe+je1hL) 

-i<3<q 

M     E     ^f+ieJ + C     E     rKB+iei) 
-i<i<9 -l<j<q 

-I<J<9 

If UJX is a Glauber gradient then 

^x =    E   Tz^x+z 
ze2Zd 

is a covariant Glauber gradient. If LJX is covariant in all directions except the first, we 
can redefine 

and get a covariant Glauber gradient. Let us define a new Glauber gradient 

(jjx   — Uj, c(a;i)(2ife - 1) 

where c(xi) is defined in Step 2 for zi > q and is taken to be 0 otherwise. Then 

£ = £^B 
x+jei 

is a covariant Glauber gradient and so can be approximated by exact Glauber gradients 
according to Theorem 9.2. Therefore the Kawasaki gradient 

£f = Ml " Tie) + *7e(l - VO)] [cTeUJo   + ^ + ^] 

is covariant and can also be approximated by exact forms.   We now calculate the 
difference 

£eB-£e   = Ml -7/e)+7/e(l-r/o)] <70(u£ - U*) + (ti* - UJ*) + (vB - SJ?) 
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V
B
 = yj TJW e+jei 

-l<j<q 

"e  =^T][u)?+jei - Cj+s^ (2rje+jei - 1)] 

j 

A straight forward calculation reveals that uB = LJQ and if e ^ ei we also have 

t;B = cJ^. However \i e — ei,vB — LJ^ — Cj+i(2rjei — 1) and then £|[ - fei is seen to 
equal cVe^o, a multiple of the density gradient. This completes the proof of Theorem 
9.2. 

Proof of Lemma 9.4- By definition, 

fcfo*, 0 = *> [ h | ifc, C ] = Zfo*, C)"1 E fcW exP[-^W] 

where Z(r]z,Q = ^ exp[—if(^,77zjC)] is the partition function. Let 

f = ^y6A3L_fl\AL + R^y 

and denote E^ [ £ \rjz,C ] by p{r)z,Q' From the definition of truncated correlation 
function, we have h(r)z,C) = B2(r)z,() — BiiWziO where 

Bi{T,z,Q=p(Tiz,Q-1E»[h;Z\riz,{] 

B2(vz,0 = p(vz,0-1E»[hz\71z,<;} 

Explicitly, 

B2(0,C) = P(0,0-^(0,C)E ^(^0,0 exp[-^,0,C)] 

Replacing /i(£, 0, C) by Avy ^ h((Ty€, 1, C), we have ^2(0, C) = Bs + B4 where 

£3(C) = P(0,0-^(0, C)"1 E ^ & t ft(^ 0> 0 - Hoyt, 1,0 ] exp[-tf (£, 0, C)] 

BA(0 = p(0,0-^(0, C)"1 E ^ & A(^^ ^ 0 exphlTK, 0,0] 

(9.26) 
By definition, 

( Zy [ h{z, 0,0 - h(vy£, 1,0 ] )2 < (rz,v/i)(e, 0,02 

Hence we can bound #3 by 

E" [ ( S3(C) )2 ] < CA^EM [ (Tt,yhM* } (9.27) 
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By changing the variable ay£ -> £, B4 equals to 

54(0 = P(O,0-^(1,C)-1 EI (Avy F«"> htt>!'0 ] expt-ff^, 1,0] 
€ (9.28) 

= p(0>C)-1^[(^t;Bfy)A|l,C] 

where Fy is the local function 

Fy = exp[H(t;,l,0 - H(ayZA0]- 

and Because the sites y and z are sufficiently apart G does not depend on y. By 
definition of the corrected correlation function, 

Ei'[{AvyFy)h\l,S] = Ei>[(AvyFy);h\l,C] + Ei>[(AvyFy)\l,S]Ei>[h\l,C] 
(9.29) 

To compute Ef [ (Avy Fy) 11,C ], consider h independent of £. From (9.26), B^) = 
h{l,0- From (9.28) and (9.29), B4(0 = p^.C)-1^" [ {Avy Fy) \ l,C]h(l,Q. Hence 
p(0, C)-1^ [ (Avy Fy) 11, C ] = 1 and thus 

B4(O=p(0,O-1E»[(AvyFy);h\lX} + h(l,O 

We have thus proved that 

MO, C) - h(l, C) = -#1(0,0 + B3(0 + p(0, C)-1^ [ (Avy Fy); h 11, C ] 

From the mixing assumption (9.18) the last term on the right hand side satisfies the 
bound 

E*{Ei>[{AvyFy)',h\l,C]2} 

< CE» {E»[(AvyFy)aAvyFy)\lX}2} E»{E»[hi\(l, Q]} 
< CL-dE»[h2] 

Also, Bi satisfies a similar bound. Together with (9.27), this concludes Lemma 9.4. 

10. Mixing properties of grand canonical and canonical gibbs mea- 
sures. Let us recall our basic mixing condition. 

ASSUMPTION A. Let //A^A denote a Gibbs measure on A with boundary condition 
u and chemical potential A. Denote the corresponding density by p = p(L, A, u). Then 
there are constants 71,72 and 73 > R +1 such that for any two functions f and g with 
supports Sf and Sg we have 

\EAt„,x[f',9]\ < 7ip(l -P) exp[-72 ^(S/A)]ll/lloo|M|oo (10.1) 

provided that the diameters of Sf and Sg are bounded by 73. Note that the constants 
are independent of the size L of the cube A, the value of A of the chemical potential 
and the boundary condition u. 

REMARK. The term p(l — p) is effective only for densities p that are close to 0 or 
1. The effect of L and LU is minimal. In fact for any local interaction, by low density 
cluster expansion, (10.1) is seen to be always satisfied provided |A| is sufficiently large. 
The factor p(l — p) in (10.1) is therefore available for free. 

From this assumption, one immediately obtains the following lemma. 
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LEMMA 10.1 There is a positive function C on Z such that the following holds. 
Suppose LJ is a boundary conditions on dA and z G <9A. For any g in A, 

\EA^X[9} - EA^M < C(\Sg\) exp[-72 dist(z,S9)}\\g\\oo . (10.2) 

where azuj denote the boundary condition obtained by changing the configuration at 
the site z and \Sg\ denotes the number of the sites in Sg. 

Furthermore, there is a universal function C(|5/|, \Sg\) such that (10.1) holds with 
no restriction on the diameter of 5/ or Sg provided that the constant 71 is replaced by 

C(\Sj\,\S9\) ■ 
We now sketch a proof of this lemma. By definition, I^A^A^] — #A,<7ZU;,A[<7]| can 

be estimated by correlation between g and a local function around the site z. Hence 
(10.2) follows from (10.1) provided that the diameter of the support g is bounded by 73. 
Next, we prove (10.1) if the diameter of 5^ is bounded by 73. Let Vt C A\5/ be a cube 
of size smaller than 2 dist(5/,5p) and containing Sg such that dist(9f] \ <9A,5/) > 
dist(5/,5p)-2. Then 

£A,U,,A[/;£] = £A,U;,A[/; EA^AUI^^ e A\ft ]] 
Since the diameter of Sg is bounded by 73, we can apply the estimate (10.2). Hence 
EA,UJ,\ [ glVx^x G A \ fi ] is independent of the boundary condition r]x,x G A \ O, up 
to exponentially small error. This proves (10.1). Repeating the argument in the 
beginning of the sketch, we have (10.2) holds without restriction on the diameter 
of the support Sg. It follows that (10.1) holds without restriction on 5/ or Sg by 
repeating the previous argument. 

We now recall some of the notation that will be used in this section. We denote 
by AL a cube of width 2L +1. The (grand canonical) Gibbs measure with the chemical 
potential A and boundary condition LU is denoted by //L^A- If? instead of fixing the 
chemical potential A, we fix the number of particles iV in AL or equivalently the 
density y = fj = NL~d in A^, the resulting canonical measure is denoted by iiL^.y 
We denote by M — (2L + l)d = [Az,!- Using the elementary Fourier analysis the 
canonical measure l^L,u,y can be represented as 

dfiL^y = —{2^        exp [ieM^ ~ y>> 1 dlbLL^^ de \ (10-3) 

where 
Py = /^,u,,A [ f} = y ]. (10.4) 

By definition, Mf] is an integer and thus My has to be an integer for HL.u.y to be 
meaningful. We shall always assume this to be the case. The chemical potential A is 
usually chosen such that 

E^* [fj] = y + o(l), (10.5) 

where limsupL_>00 o(l) = 0. We shall make the choice of A so that the right hand side 
is actually equal to y. 

The boundary conditions will be fixed in this section and we will drop the sub- 
script u. The main result of this section is the following Lemma. 

LEMMA 10.1 Suppose AL is a cube of width 2L -f 1 centered at 0. Let the mixing 
condition (10.1) hold.. Then for any s > 0; there is a constant Cs such that the 
following estimate holds 

sup sup I EP*"*'* [770 -r)e}\< CsL-s (10.6) 
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for any e > 0. 
A version of Lemmas 10.1 was proved in [Y2] using expansion techniques in local 

limit theorems, for s < 3/2. Our proof, although partly based on this approach, is 
somewhat simpler and yields a stronger result in the special case considered here. 
Since a local limit theorem is proved in [Y2], we have in particular 

Py > C(y)L-^ (10.7) 

under the mixing assumption (10.1) . Here the chemical potential A is chosen such 
that (10.5) holds without the error term o(l) . We will need a lower bound that holds 
uniformly in the range 1 — L£-d > y > L£-d. Since, in principle, the lower bound 
should get better at the edges we will provide a simple proof of a uniform version of 
this estimate while proving Lemma 10.1 below. 

Proof of Lemma 10.1. Case 1: 1 - L£-d >y> L£-d. 
Step 1: Cutoff. 

By definition, the expectation w.r.t. the canonical measure is given by 

£^[(770-^)] = — ^- /   £^{(77o-77e)exp[2 0M(7/-s/)]}d0 
Py ZTT J_7T 

We first prove that the contribution to the integral from the range {6 : |0| > L-5} 
is exponentially small, provided 45 < e. Let F be such that it contains 0 as well as 
e, and for some positive constant c, A \ F consists of cM widely separated sites that 
become independent when conditioned on F U A£. Since 

|£^{(77o - 77e)exp[i0M(fj - y)]}\ = \E^{(rjo -r)e)exp[iQ  ^T r]x]}\ 
xeAL 

xer xeA\r 

^supl^r.AJexp^   ^2  r)x}\ 
" xeA\r 

it is enough to prove that 

|£>r,A{exp[2!9   J2  r)x}\ <exp(-CI/*) (10.8) 
xGA\r 

for the expectation with respect //r,Aj the distribution obtained by conditioning on 
the configuration in the domain F. Let px = E^r^[rjx]. Since the interaction between 
rix and its neighbors is uniformly bounded for each fixed x, there is a constant C such 
that 

r i _   r 
C-i < ?! < C       and       C-1 < -^ < C, (10.9) 

~   V   ~ 1-2/ 

where y is the total density. Note that this bound is independent of the shape of F. 
Since under ^r,A ? {Vx} are independent random variables one has 

£xr,x[exp[ J2  itoh]]= H [^^ + (1-^)]. 
a:EA\r xA\r 
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For any 0 < a < 1 and —TT < 6 < TT we have the elementary bound 

\aeie + 1 - a|2 = 1 - 2a(l - a)(l - cosd) < exp(-a(l - a)(92). 

We have thus proved 

|£;/*^{(^)-7/e)exp[iflM(?j-y)]}| < exp [-C-lL"-dcML-^] = exp [-cC'1 &-**] 

Step 2. We can now assume that 
\0\ < L-* (10.10) 

Choose a cube / of width La with a to be chosen depending on e and centered at 0. 
Hence 

E^x{(no - Ve) exp [i0^2 (r]x - y)]} 
xeAL (10.11) 

= Ev^i exp [iO Y, (Vx - y)]U(r))} 
xeic 

where 
Ukn) = Et»»* [(m - rje) exp (iOj^iVx -y))\Vx,xe Ic] 

xei 

From the Taylor expansion and the bound (10.10) on 9 , for any integer £, we have 

i=o 

where 

w UM=y—r       E       E^[{r,Xl-y)...{r]xj-y){r]o-r}e)\l<}        (10.12) 

We claim that 
sup |E7ifa)| < Cexpf-L-^] (10.13) 

for some /? > 0. 
Sfep ^. We now prove this bound, e.g., for j = I. Given a box AL, we pick an integer 
7 such that L > (£ 4- 1)7 and consider boxes A-? = {x : |a:| < jj} for 1 < j < I, and 
A^1 = AL . We have (£+1) annuli of width at least 7. Given £ sites xi, • • •, X£ at least 
one annuli Aj = A-? \ A-?'-1 is empty. Let us write the set of all possible configurations 
as a disjoint union of Bi, • • •, Bt+i where Bj is all configurations with Aj having no 
points and each Ai for i > j having at least one site from among xi, • • • ,X£. We fix 
the boundary condition u and denote by 

f£(x,xi,-',xi) = EL^[{7]X -y){7]Xl -y)"'(vxe -y)] 

for x = 0, e and #1, • • •, X£ G A^. Our goal is to estimate the sum 

A(u;,L)=       2       [/-(l^i,--.,^)-/-^,^!,.-.,^)] 
XI,'-',X££AL 
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and show that it decays uniformly in u faster than a stretched exponential in L. It is 
clearly sufficient to show that every j < l + 1 

Ai(a;,L)=       J]       [/£(l,*i, • • • ,**) - /£(0,si, • • • ,rc/)] 

has the same property. The set JBJ has no sites in the jth annulus and can further be 
split up in to t + 1 sets depending on how many sites are inside and how many are 
outside. We denote the infinite volume expectations by 

f{x,x\,"^xi) = E[r)xr)Xl --"nXl] 

If there are m inside sites yi — - ,ym and n outside variables zi, • • •, zn with £ = m -f n 
and (#1, • • •, xi) — (yi, • • •, ym, zi, • • •, zn), from the mixing conditions it follows that 

/£ (x, xx, • • •, xi) - fix, 2/1 • • •, 2/m)/£ (zi,-', zn) 

is exponentially small. Hence up to exponential small error we have 

Aj(a>,L) -        ^        [/U'J/i' * ',yrn)-f(0,yi ■ • • ,ym)]        J2       fti^r ">**) 
yi,'-',ym€Aj-i z1,—,zneA\Aj 

Since the number of terms is only polynomial in L, it follows that our task can be 
achieved if show that for every L the sum 

A(L) =       J2       W1' xu--,xi)- /(0, X!, • • •, xi)] 
XI,~',XI€AL 

is exponentially small. We prove this by induction on £ and we use the completely 
corrected correlation functions. 

Recall that the definition of the completely corrected correlation function can be 
defined inductively by 

0*0*1, ■ ~,Xk) = fk(xir -,Xk) -^2g\A\(A)g\B\(B) 
A,B 

where A, B is a proper partition of the variables xi, • • • ,Xk into two disjoint subsets 
with A and B nonempty. It is well-known that under the mixing assumption A the 
function g decays in all directions, i.e., 

\gk(xi,~-,Xk)\<Ce-c\**-*i\ 

for all i,j. Since / is expressed in terms of #, it suffices to prove that A(L) is exponen- 
tially small if / is replaced by gk for k < £ +1. Since gk(x, xi, • • •, Xk) is exponentially 
small unless \XJ\ < Le for some e > 0, we can drop the restriction that Xi G A/, because 
the added terms are exponentially small. But from the translational invariance of the 
Gibbs state, we have 

^T    [gk(l,xir-,xk) -gk(0,xi,"',xk)] =0 
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This concludes the proof. 
Step 4- Lower bound. 

Let y be given in the range 1 — L£~d > y > L£~d and A = X(L, y, LU) be picked 
to satisfy 

£MA,A,U,{M-I ]r 7]x} =y. 
XEAL 

Let find a set F such that conditioning on F U Ac makes {rjx : x € A \ F} mutually 
independent. The cardinality of A \ F is about cM for some c > 0. Let us denote 
by nr and nr^ the number of particles in F and rc respectively and for x G Tc by 
Px the conditional probability that T]X = 1, given the configuration in F U Ac. By a 
conditioning argument 

/M,A,U,{^ = V} = £MA*A'"{/M,A,u,{nr<= =My-nr\TuAc}} 

The quantity nr^ is a sum of independent Bernoulli random variables with expecta- 
tions px that satisfy cy < px < Cy, one can easily derive the standard local limit 
theorem that provides the lower bound 

^x.Anr^My-nrWUIic} >     «     exp[-(^Z^Z^Ml!] 

provided 
(My-nT-ixL{uj)y<CGl{u) 

where 

a;EA\r 

and 

^M= E J£(I-P£) 
x€A\r 

Since CTKCJ) ~ CMy uniformly in UJ, it is sufficient to obtain a uniform lower bound 

fiA,x,u;{(My - nr - wM)2 ^CyM} > - 

for some fixed C. By our choice of A 

£:MA,A,U, {nr +^L(a;)} = M?/ 

and by orthogonality 

^MA.A.U, {(nr + ^(^ _ My)2} < E»^« {M2(f) -y)2} < CMy 

An application of Chbechev's inequality completes the proof of Lemma 10.1 for the 
case 1 - L£-d >y> L£-d. 
Case 2. y < L£-d. [Case 3. y > 1 - L£-d is similar. ] 

We will actually prove the much stronger assertion 

E^y^[rio-rie] = 0 (10.14) 
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which is of course a purely combinatorial fact. It is convenient to normalize the 
energy H = X^eAi, ^X7*7?) by assuming that the local function H(rj) is 0 for the 
empty configuration. For any boundary condition cu and particle density y = NL~d

1 

we define the canonical partition function 

ZS= £ rtaOexppfa)] 
77:77=1/ 

and prove that for large enough L, Zfi = Z£. 
We shall construct a graph with vertices in AL, connecting every site with a 

particle to all the sites in a cube of width 2R +1 centered at the site with the particle. 
Since the total number of particles is small, the cube will split up into several connected 
clusters, each cluster has a protective layer of empty sites preventing any site outside 
the union of all the clusters with interacting with any other site. Denoting the interior 
clusters by Ci, • • •, Cq and the clusters that interact with the boundary by Di • • •, Dp 

the Hamiltonian takes the form 

Hfa) =  £ Hid) +  £ H^Di) 
0<i<q 0<i<p 

The clusters are actually slightly more complicated animals, because one has to keep 
in mind that inside each cluster there are some occupied sites and some empty sites. 
We shall fix the boundary clusters, but translate the interior clusters by arbitrary 
translations. For fixed C = Ci, • • •, Cg, Di, • • •, Dp we define 

ZS =      Yl     exP [ E Hfaid) +  E HM)] 

where Ax is the set of (xi • • • ,xq) such that {rXiCi, 1 < i < q} and {Dj, 1 < j < p} 
are all mutually disjoint and x E Ui<i<qCi. It is clearly sufficient to prove that for 
large L, and for any C and boundary condition CJ, 

ZQ = Ze 

Since the energy depends only on the class C it is sufficient to prove that 

|Ao| = |Ac| 

This will be carried out by careful counting, using the inclusion exclusion formula. 
First, we note that the number of particles in any cluster must be at least a fixed 

fraction of its diameter. Since the total number of particles is of the order Le with 
e < 1, we can never connect any boundary cluster to the sites 0 or e by a chain of 
overlapping clusters that are translates of d. To simplify the notation let us think 
of a graph G with p + q vertices corresponding to d and Dj. We will have bonds 
connecting two vertices that correspond to two different C's or between C-vertex and 
D-vertex but not between two D-vertices. A bond represents the intersection of the 
corresponding clusters after arbitrary translations of the C's. For each z = (xi, • • •, xq) 
we have the corresponding collection of bonds T(z). If z = (#1, • • •, xq) is to be counted 
in Ax, r(2:) must be empty and x € Ui<i<qTXiCi. Therefore 

\AX\ = #{z : r(z) = 0,x e Ui<i<gTx,Ci} =  Yl *{z: r(z) = 0'x e T*iCi} 
l<i<q 
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because x cannot belong to different C's without creating an intersection. For each 
summand 

\Ail\ = H:{z:r{z) = 9,xGTXiCi} 

by inclusion exclusion formula 

|Ai| = 5](-l)r   E   *{z:T(z)Dr,xeTXiCi} 
r r:|r|=r 

= E(-1)r E iA*ri 
r r:|r|=r 

It is now a simple matter to complete the proof by establishing 

|Af| = |Ai'r| 

for all i and F. The bonds F divide the graph G into connected components and the 
vertex i is in some component GQ. GO cannot contain any of the D vertices due to 
the absence of long chains. If we shift by e all the clusters that correspond to vertices 
in Go, this establishes a one to one map between AQ    and Ag   , and we are done. 

[DV 

[EMY; 

[GPV 

[KLS 

[LOY1 

[LOY2 

[LY; 

[MOS; 

[N: 
[OVY 

[QI; 

[Q2; 

[QRV; 

[QYI; 
[QY2; 
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