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RETICULAR LAGRANGIAN SINGULARITIES* 

TAKAHARU TSUKADA* 

1. Introduction. Lagrangian singularity can be found in many problems of 
differential geometry, calculus of variations and mathematical physics. One of the 
most successful their applications is the study of singularity of caustics. For example, 
the light rays incident along geodesies from a smooth hypersurface in a Riemannian 
manifold to conormal directions define a lagrangian submanifold at a point in the 
cotangent bundle. The caustic generated by the hypersurface is regarded as the 
caustic of the lagrangian map defined by the restriction of the cotangent bundle 
projection to the lagrangian submanifold. Therefore the study of the caustic generated 
by the smooth hypersurface is reduced to the study of Lagrangian singularity. In 
[13], I.G.Scherbak studied the case when the hypersurface has a boundary and she 
explained the caustic generated by the hypersurface with a boundary corresponds to 
a generalized notion of caustic (i.e., the boundary caustics). 

In this paper we investigate the more general situation when the hypersurface 
has an r-corner. In this case the incident rays from each edges of the hypersurface 
to conormal directions gives a regular r-cubic configuration (cf., Section 3) at a point 
of the cotangent bundle which is a generalized notion of Lagrangian submanifolds. 
The caustic generated by the hypersurface with an r-corner is given by the caustic 
of the regular r-cubic configurations (cf., Section 3) which is a generalization of the 
notion of quasicaustics given by S.Janeszko (cf., [7]). In complex analytic category, 
the theory of regular r-cubic configurations has been developed by Nguyen Huu Due, 
Nguyen Tien Dai and F.Pham (cf., [3], [6]). But their method does not work well for 
C00 -category. 

The main purpose of this paper is the investigation of the stability of smooth 
regular r-cubic configurations and the classification of stable caustics given by stable 
regular r-cubic configurations in C^-category. In order to realize this purpose we 
shall define the notion of reticular lagrangian maps in Section 3 which is a general- 
ization of the notion of lagrangian maps for our situations. We shall also prove that 
the equivalence relation among reticular lagrangian maps is equivalent to a certain 
equivalence relation of corresponding generating families. In Section 5 we shall de- 
fine the notion of stability, homotopically stability, infinitesimal stability of reticular 
lagrangian maps and prove that these and the stability of corresponding generating 
families are all equivalent. 

By the above results the classification of stable caustics is reduced to the clas- 
sifications of function germs. In section 7 we classify unimodal function germs with 
respect to reticular R-equivalence. This gives the classification of stable caustics in 
manifolds of dimension< 6. In [14], D.Siersma classified singularities with bundle 
codimension(=R-codimension—modality) < 4 under the same equivalence relation. 
Hence a part of his classification list is the same as the part of our list. We shall draw 
the pictures of stable caustics in manifolds of dimension< 4 at the last part of this 
paper. 
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2. Preliminaries. The propagation mechanism of light rays incident from a 
hypersurface germ with an r-corner in a smooth manifold is described as follows 
(Cf., [8]): Let M be an n(= r + k + l)-dimensional differentiable manifold and H : 
T*M\0 -» R be a C00-function, called a Hamiltonian function, which we suppose to 
be everywhere positive and positively homogeneous of degree one, that is H(X^) = 
AiJ(f) for all A > 0 and f G T*M\0, where TT : T*M -> M is the cotangent bundle. 
Let XH denote the corresponding Hamiltonian vector field on T*M\0, given locally 
by the Hamiltonian equations: 

.  _ OH    . dH 

dpi dqi 

where (g,p) are local canonical coordinates of T*M. 
We set E = i^~1(l) and consider the following canonical projections TT : T*M -> 

M, TTE : R x £; -> E, TTR : R x E -> R. We denote Eg the fiber of the spherical 
cotangent bundle TT^ at q G M. 

Let qo € M, to > 0, £o ^ ^o an(^ ^o be the image of the phase flow of XJJ at 
{to^o)- Since the phase flow of XH preserves values of H, the local phase flow \I/ : 
(Rxr*M\0,(£o,£o)) -> (T*M\0,r/o)ofXif induces the map $ : (Rx E, (*o,&)) —^ 
(R x E^to^o)) given by $(t,0 = (*,*(*,0). 

We set exp = TTM O $ : (R x E, (to, Co)) ->• (M,ixo), expgo = exp|RXjE;go, exp" = 
TTM o $-! : (R x E, (to,rio)) -> (M,^), exPu0 = exp-lRx^, 0i = {irE^exp) : 
(R x £,(*<>,&)) -> (Af x M,(go,wo)), <t>2 = (exp-^M) '• (R x E,(to,^)) -^ (Af x 
M, (^OJ^O))? where ^o = ^{vo)- Then the following diagram is commutative: 

(R x £7,(to,&)) A (R x E^to^m)) 
y/ exp <t>i\    \/ <t>2 exp~ \ 

(M,iio) ^ (MxM,((7o,wo)) -^ (M,(/o) 

By [8, 2.2] we have the following proposition 
PROPOSITION 2.1. If expqo is regular then </>i and 02 are diffeomorphisms. 
Let eicpg0 be regular, we can define the function germ 

r = TTR o (j)'1 = TTR o 0-1 : (Af x M, (go, UQ)) -)► (R, to). 

We call r the ray length function associated with the regular point (to, ^o) of expqo. Set 
f = TTWI

-1
 : (Mx Af, (go,^o)) ^ (S,&), ^ = TT^O^

1
 : (Mx Af, (20,^0)) ^ (S,^)), 

By [8, Lemma 2] we have 

dqT(q,u) = -€(q,u), duT{q,u) = r)(q,u)    for (g,u) G (Af x Af, (^0,^0)). 

EXAMPLE. Let Af be a Riemannian manifold and H be the length of covectors. 
Then $ maps each covector in time t a distance t along the geodesic and hence 
T(q,u)i (Qiu) € (^f x Af, ((ZOJ^O)), is the length of geodesic which connects q and 
-u. In particular if Af be a Euclidean space Rn, then <$>(t,q,p) = (q 4- fit,p) and 
T(q,u) = \q - u\, where (^,p) are canonical coordinate of T*Rn and q,u G R. 

Let Hr = {(xi, • • • ,av) G Rr|^i > 0, • • • ,xr > 0} be an r-corner. Let V0 be the 
hypersurface germ in (Af, go) satisfying £o|Tq v0 — 0 with an r-corner defined as the 
image of an immersion L : (Hr x R*, 0) -» (Af, ^o)- We parameterize V0 by L. For each 
a C /r = {1, • • •, r} we define A^ by the set of conormal vectors of V^ := V0r\{xa = 0} 
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in (E,€o) as the initial rays incident from V®. Then we regard the set La the image 
of covectors in A£ by TTE O $ around time £o 5 that is 

Lff = {irEO*(t,0 G (E,%)|(t,0 G (R,*o) x A^}, 

as the set of rays incident from V^ at time to- We also regard the union of La for all 
a C Ir as the set of rays incident from the hypersurface V0 at time £0 • 

Let C^ be the critical values of TTIL^ for a C Ir and Q^r = ^(L^ fl Lr) for 
a ^ r C Ir- We define the caustic of the light rays incident from V0 around #0 by 

U   Or U  IJ Q,lT. 

The meaning of the caustic is the following: For example, consider the case r = 2, k = 
0. Then Vb = {(^1,^2, ^3)^1 > 0,^2 > 0,^3 = 0} for coordinates (#1,92,93) of (M,go)- 
By the remark of the definition of the caustic in Section 3 we have IJo-^r Q<r,T ~ 
Q®,i U Q0,2 U Qi,{i,2} U Q2,{i,2}- The bright points generated by incident rays from 
V0\ V0 n'fai -'O}, V0 H {92 = 0} and V0 n {91 - 92 = 0} are CQ, d, C2 and 
Ci52 respectively. On the other hand the light rays incident from the boundary of 
V0, V0n{qi = 0} and V0n{q2 = 0} are (50,1^(50,2, 0i,{i,2} and ^2,(1,2} respectively. 
They appear as the boundary of the shadow defined by the boundary of light rays 
incident from V0, V0 D {qi = 0} and V0 fl {92 = 0} respectively. This definition is a 
natural extension of quasicaustic defined in [7]. 

The family of lagrangian submanifolds {L(T}aCir is 'generated' by the ray length 
function r as the following: 

PROPOSITION 2.2. Let V0 be the hypersurface germ in (M, q^) satisfying £O|T V
0 

= 0 defined as the image of an immersion t : (Hr x Rfc,0) -> (M,go). Let La be the 
set of rays incident from V® := V0 fl {xa — 0} at time to for a d Ir- Define 
F := r o (1 x idu) — to G m(r; A; + m).  T/ien ^fte following hold: 

(i) 

d2.F \ 
dxdu 

d2F 
\ dydu J 0 

(2) 

La = {duF(x,y,u) E (T*M\0,T]o)\xa = dXlr_„F(x,y,u) = dvF{x,y,u) = 0} 

for a C Ir, where we identify (M,uo) and (Rn,0) by coordinates (ui,---,u„) of 
(M,«o). 

Proof. By [8, Sublemma] we have 

du
d
d

uf ) :TU0M^T*0V
0®Il 

is an isomorphism. This means (1). 
Let a C Ir and r)u G (E,rjo).   Then r]u G io- if and only if r)u = TTE 

0 $(t,€q) 
for some ^ G Eq and t G (R,£o) satisfying q E V® and ^1^1^° = 0 if and only if 

/ 
rank = r + k. 
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r]u = dur(q, u) for some qtV® and u G (M,uo) satisfying dqT(q,u)\Tqyo = 0 and this 
holds if and only if rju = duF(x,y,u) for some (x,y:u) E (Hr x R&','m,0) satisfying 
Xo- = 0 and  dXlr_(TF(x,y,u) = dyF(x,y,u) = 0. D 

The stability of the caustic of VQ under perturbations of t with respect to the 
fixed Hamiltonian function is studied in [15]. Otherwise let H = {(#1, • ■ • j#n) € 
(Rn, 0)|gi > 0, • • •, qr > 0, qr+i = • • • = qn = 0} be an r-corner and L£ be the conor- 
mal bundle of H D {x^ = 0} for a C /r. By theorem 3.2(2), proposition 2.2 implies 
that the family of lagrangian submanifold {^o-jo-c/r- is a regular r-cubic configuration, 
that is there exists a symplectomorphism 5 : (T*Rn,0) -> (T*M\0,ryo) such that 

La = S(L0
a)     for      a C Jr. 

Hence in this paper we investigate the stability of the caustic under perturbations 
of the corresponding symplectomorphism. Generally the stability of the caustic under 
perturbations of the symplectomorphism is more stronger one of the perturbations 
of the immersion. Because a small perturbation of the immersion implies a small 
perturbation of the symplectomorphism, but for any perturbation of the immersion 
the corresponding lagrangian submanifold La is included in E for all a C Ir- The 
stability of the caustic under perturbations of the immersion is studied in [15]. 

In order to realize our investigation we shall define reticular lagrangian maps in 
more general situation. 

3. Reticular lagrangian maps. Here we shall define reticular lagrangian maps, 
their caustics and equivalence relations. 

Let (q,p) be canonical coordinates of (T*Rn,0) and TT : (T*Rn,0) -► (Rn,0) be 
the cotangent bundle. Let H = {(qi, •" ■> Qn) € (Rn

5 Q)\qi > 0j'*'>(Zr ^ Ojtfr+i = 
.. • = qn = 0} be an r-corner and Ha- = {(qx, • • • ,gn) G i^l&r = 0} be an edge of H 
for a C Ir- We define L^ the conormal bundle of Ha, that is 

L0
a = {(q,p) e (T*Rn,0)\qa=pIr-a = qr+1 - ••• = qn = 0,qIr-a > 0}. 

We define a representative of the union of L® for all a C /r by 

L0 - {{q,p) G T*Rn|g1p1 = ■ • • = qrpr = qr+1 = • • • = qn = 0, qIr > 0}. 

DEFINITION 3.1. We call the map germ 

(Lo,0) A (r*Rn,0) -^ (Rn,0) 

a reticular lagrangian map if there exists a symplectomorphism 5 on (T*Rn,0) such 
that i = S\i,o. We call S an extension of i and call {i(L®)}aCjr the (symplectic) 
regular r-cubic configuration associated with TT O i. 

REMARK. The definition of symplectic regular r-cubic configurations in the com- 
plex analytic category by N.H.Duc [6, p. 631] is as follows: If there exists a symplec- 
tomorphism S such that La- — 5({^ — pir-(T = gr+i = • • • = qn = 0}) for a C Ir 

then {LajacU is called a symplectic regular r-cubic configuration. 

Caustics: Let TT O i be a reticular lagrangian map. Let Ca be the caustic of the 
lagrangian map TT O i\Lo for a C Ir (i.e., the critical value set of TT O il^o) and let 
Qa T — TT o z(Z,£ fl Lj) for cr 7^ r C /r. We define the caustic of TT O i by 

U a u U <2ff,r. 



(Lo,0)    -i ̂     (T*Rn,0) 
<j>l 0| 

(Lo,0)    -^    (T*R",0) 
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We remark that for Ti, T2 C ir (ri ^ T2) we have Qri,r2 C Q0-,o-u{i}: where a = ri nr2 
and z be any element of (ri — cr) U (T2 — cr). This means that LWr 0o-,r is equal to 
the union of Q^r for cr C r C /r, #(/7' — cr) = 1- For example, in the case r — 2 we 
have 

(J  <2<T,T    =   ^0,1 U<50,2 UQl,{l,2} UQ2,{1,2}- 

Equivalence relations: We call a homeomorphism germ (f> : (L0,0) —> {tLo,0) a 
reticular diffeomorphism if there exists a diffeomorphism $ on (T*Rn,0) such that 
</> = ^|LO and (t>(L®) — L® for a C /r. We say that reticular lagrangian maps 
TT o zx, TT o i2 : (L0,0) -^ (r*Rn, 0) -> (Rn, 0) are lagrangian equivalent if there exist a 
reticular diffeomorphism 0 and a lagrangian equivalence © of TT such that the following 
diagram is commutative: 

^    (Rn,0) 
9 i 

^    (Rn,0), 

where g is the diffeomorphism of the base space of TT induced from 0. 
We remark that if reticular lagrangian maps TT O i1, TT O 2*2 are lagrangian equivalent 

then all lagrangian maps TT O ii|^o ,7r o 22II
0
 

are lagrangian equivalent. 
Here we shall define generating families of reticular lagrangian maps and study 

the relations between reticular lagrangian maps and their generating families. At first, 
we define several notations of function germs which are used as generating families of 
reticular lagrangian maps. 

Let Hr = {(#1, • • • ,£r) € Rr|xi > 0, • • • ,xr > 0} be an r-corner. Let S(r;l) be 
the set of smooth function germs on (Hr x Rz, 0) and m(r; /) = {/ E £(r; 01/(0) — 0} 
be its maximal ideal. We denote simply £(l) for £(0; /) and m(/) for m(0; /) and denote 
B(r]l) the set of diffeomorphism germs on (Hr x R^O) which preserve (Hr fl {xa = 
0}) x R* for all a C Ir. We remark that a diffeomorphism germ 0 on (Hr x R*, 0) is 
an element of /3(r; /) if and only if 0 is written in the form: 

0(x,2/) = faaiixty),- - ,xrar(x,y),bi(x,y),' - ,bi(x,y)) for (x,y) G (Hr x R',0), 

where ai, • • • ,ar5&i, • • • ,6r ^ £(r;l) and ai(0) > 0, • • • ,ar(0) > 0. 
We say that function germs /, g G m(r; /) are reticular R-equivalent if there exists 

(j) G B(r; 1) such that g = / o (j). 
We say that function germs F(x, y, u), G(x, y, u) G m(r; fc+ra), where x G Hr, y G 

Rfc and i; G Rn, are reticular IV~-equivalent (as n-dimensional unfoldings) if there 
exist $ G B(r; k + n) and a G m(n) satisfying the following: 
(1) $ = (0,VO, where 0 : (W x Rfc+n,0) -> (Hr x R*,0) and ^ : (Rn,0) -> (Rn,0). 
(2) G(x,JMX) - F{(l>{x,y,u)^{u)) + a(w) for (a;,y,iz) G (Hr x R*+»,0). 
We say ($,«) a reticular R+-isomorphism from G to F and if a = 0 we say that F 
and G are reticular R-equivalent. 

We say that function germs F{x12/1, • *' > 2/fci > ^ G m(r; &i +n) and F(a:, 2/1, • • •, 2/&2, 
tx) G m(r;A;2 4- n) are stably reticular R+ -equivalent if F and G are reticular R+- 
equivalent after additions of non-degenerate quadratic forms in the variables y. 

A function germ F(x,y,u) G m2(r; k + n) is called non-degenerate if 

dF dF_  dF_ dF_ 
r'9xi'      ' dxr'dyi"      ' dyu 
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are independent on (H* x R^+^jO), that is 

rank 

/   d2F 
dxdy 
d2F 

d2F   \ 
dxdu 
d2F 

= r -f k. 

V  dydy     dydu J 0 

We remark that F(x, y, u) G m2(r; k + n) is non-degenerate only if r < n. 
Let TT o i be a reticular lagrangian map and F(x,y,q) G m(r; k + n)2 be a non- 

degenerate function germ. We call F a generating family of TT O i if F\X(T=Q is a 
generating family of i(l£) for a C Iri that is 

^°) = {(9,^-(^2/,9))6(T*Rn,0)K = ^—- = —=0}  for  <T C Jr. 

We also call F a generating family of {^(^^jo-c/r 
In the case r = 0, this definition is the same as that of the generating family of a 

lagrangian map(cf., [1]). 
THEOREM 3.2. (1) For any reticular lagrangian map troi, there exists a function 

germ F G m(r; k + n)2 which is a generating family of TT O i. 
(2) For any non-degenerate function germ F G m(r; k + n)2; there exists a reticular 
lagrangian map of which F is a generating family. 
(3) Two reticular lagrangian maps are lagrangian equivalent if and only if their gen- 
erating families are stably reticular R+ -equivalent. 

We remark that there exists an analogous result of this theorem for complex 
analytic categoly in [3, P. 13 Theoreme]. But its proof does not work well for C00- 
categoly because Ft in 'Preuve du lemme i' may be degenerate for some t G [0,1]. 
Our proof is available for complex analytic and real analytic categoly. 

Proof (1) Let TT O i be a reticular lagrangian map and 5 an extension of i. Let 
Ps be the canonical relation associated with 5, that is 

Ps = {(Q,P;q,p) G (T*Rn x T*Rn,o)\(q,p) = S(Q,P)}, 

where (Q,P) is canonical coordinates of the domain. By considering a lagrangian 
equivalence of TT o z, we may assume that there exists a generating function T(Q,p) of 
Ps, that is 

PS = {(Q,~(Q,P);~(Q,P),P)}. 

Define F G m(r; n 4- n)2 by 

n 

F(x, y, q) = r(xi, • • •, xr, 0, • • •, 0; yi, • • •, yn) + ^ 2/^. 
i=l 

Since T is a generating function of Ps, rank ^-(0) = r. Hence 

/   &F_ ^F_ \        (   d2T 

dxdy dxdq 
d2F d2F                      

V    dy2 dydq /0      \   dy2 

dxdy 
d2T 

0 

En Jo 
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has rank r + n. This means that F is non-degenerate. 
Otherwise, we have 

r/    dF,         .... dF        OF     rt- 

= {(^2/)k(T = ^ (^0,2/) = ^-(a:,0,2/) + (jf = 0} 

= {{q,p)\Q* = 
dT 

dQlr-a 
(Q,P) = Qr+1 = '•• = On 9p 

(0,p) + 9 = 0,Q/r_(7  >0} 

9T <9r 

op oQir-<T 

= S(L°) = *(Z°) 

for a C Ir- Hence F is a generating family of TT O i. 
(2) Let F e m(r; A:-|-n)2 be an non-degenerate function germ. Choose an (n—r)xk 

matrix A and an (n — r) x n matrix B such that 

/   <cPF_     &F_ \ 
dxdy     dxdq 
d2F      d2F 

dy2      dydq 
V     * B     )0 

is invertible. Let F'{x,y,q) G m(r + k + n)2 be an extension of F and define 
G G m(A; H- n + ri)2 by G{y1x,x',q) = F'(x,y,q) + ^'^^ + x'Bq1, where ?/ G R^, 
(a;i, • • •, xr, #1, • • •, a4_r) G Rn and ^ G Rn. Since |^, ^-, -^ are independent, 

P={(x,a'>-_,-_;g,_)|_==0} 

is the canonical relation associated with a symplectomorphism 5. Hence F is a gen- 
erating family of the reticular lagrangian map TT O 5|LO. 

(3) By using analogous methods of the proof of [1, p.304 Theorem], it is enough 
to prove the following assertion: 

Let Fo(x,y,q), Fi(x,y,q) G m(r;A;-|-n)2 be non-degenerate function germs. If FQ 

and Fi are generating families of the same reticular lagrangian map, then FQ and Fi 
are reticular R-equivalent. 

We suppose Lemma 3.3 and Lemma 3.4 and begin to prove this assertion. By 
using analogous methods of the proof of D.(a) ~ (d) in [1, p.304 Theorem], we may 
assume that 

(i) F(v,q):=Fo(0,y,q)=F1(0,v,q), 

(2) 
d2F d2F 

^(0) = 0'%^(0)"jEJfc'JC{1'2'"',n}'|JNfc- 

We may assume by (1), (2) and Lemma 3.3 that 

(3) fF0(0)=fF1(Q). 
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We may assume by (2), (3) and Lemma 3.4 that 

(4) X" := ££o = E?., -^ - -^k* = 0 for all a C Jr, 

where E^ - { (a;,y,g) G (IT x R*+»,0) | ^ = ^^ = ^ = 0}, i = 1,2. 

Define the function germ F on (Hr x Rfe+n+1,0 x [0,1]) by F(x,y,q,t) = (1 - 
t)Fo(x,y,q) + tFi(x,y,q), t E [0,1] and set F* G m(r; A; + n)2 by Ft(x,y,q) = 
F(x,y1q,t) for each t G [0,1]. Since <;

2Fo(0) = j2Fi(0), Ft is non-degenerate and 
hence E^ = T,a for all t G [0,1] and a C Ir because EJ, = EJ, . Hence we have by 
hypothesis that 

(x,y,q) € £' =* ^(i.tf.g) = ^(x,y,3) (ViG [0,1] ,V<7 C 7r ). 

We now claim that ^ is written in the form: 

dF     ^^     dF     JU     QF 

for some smooth function germs £i, • • •, £r, r]i, • • •, rjk on (Hr x Rfc+ri+1
) Q x [0,1]). 

Fix cr C /r, {x,y,q) G E^ and let c : [0,1] -> Eff, t H-> (x(t),y(t),q(t)), be a 
smooth path connects 0 and (x,y,q). Then 

(Fi - FoJ^.y.g) = |   |(Fi - Fo)(c(i))dt 

_  f1    ^   a(F1 - F0) dxj ^ djFx - Fp) dyj ^ djF, - Fp) dqi 

'hik1-.   dxi   dt    h   dyi   dt    h   o*   dt 

Since ^7 = W = 0 (*' = L2).  ^a/^  = 0 on S- by (4), we have (Fi - 

Fo)(x,y,q) = 0. Therefore (Fi - Fo)|| i       s<r = 0. This means that ^ = 0 on the 

{(X,y,q,t)\Xl— = ... = Xr— = — =Q}. 

Since n, ■ ■ ■ ,xr, §^, ■ ■ ■, §§-, %L, ■ ■ ■, $£■ are independent on (W x Kk+n+1, {0} x 

[0,1]), we obtain the claim.   Moreover since j2^f(0) = 0, we have r)(0,t) — 0 for 
tG[0,l]. 

Since the time dependent vector field 

X = E^^: + E^ 
i=l U'** 

vanishes on {x = y = q — 0}, the flow ^t(x,y,q) of X with the initial condition 
$o(x,y,q) = (x,y,q) exists for all t G [0,1]. By the uniqueness of the flow, $t is 
written in the following form: 

*t(a:, 2/, 9) = {xia](x, y, q), • • •, xra[(x, y, g), /it(x, y, g), g), 
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for each t G [0,1]. Then $i defines a reticular right equivalence from FQ to Fi, that 
is ^10$!= FQ. D 

LEMMA 3.3. LetFi1F2 Gm(r;A;+n)2 be non-degenerate function germs. Suppose 
that the following conditions hold: 

La := L"Fl = L"F2 fora = /r-{l},-..,Ir-{r},0, 

F '-— Fi\x-o — F2|a;=0j 

d2F d2F 

where {£^.}o-c/r ^e ^e symplectic regular r-cubic configuration defined by Fi. Then 
there exist positive numbers ai,---,ar anc? an r x k-matrix B such that Fs(x,y,q) 
= -£2(^1X1, • • • ,arxr, y + xB,q) satisfies j2Fi(0) = ^^(O). 

As a result, Fi and F3 are generating families of the same reticular lagrangian 
map and the conditions (1) and (2) in the proof of Theorem 3.2 (3) hold for Fi and 

Proof  Let I = /n — J.  We denote ^f-KO) by F^ and denote other notations 
analogously. By hypothesis we have 

La = { ^-^-{x.y^q)) I av = ^   '    {x,y,q) = -^{x,y,q) = 0}, 

for cr c /r, i = 1,2. Therefore for any vector T; in ToLa, there exists (a5.,62,c2) G 
R|r|+&+n (1=1^) such that aT > 0, 

and 

(6) v = c'-lo + (FgV4 + Fnb* + F^) j-\0, 

where r = Ir — a and (q, K) are the canonical coordinates of T*Ill. Since 

/ Fi       Fi     \ 
rank     ^^     ^^      = |r| + k, 

\   *y2      *yq   ) 

we can arbitrarily choose al
r. 

Fix (a^^jC1), (a2,b2,c2) which define the same vector in T*Rn. By comparing 
the coefficients of JMQ, ^fjlo, afyl0 0^ ^)' we ^ave 

c1 - c2 ( = c ) 

(7) F^T^ + i^ft1 = F2 ^a2 + F,/2/6
2 

(8) FlXra
1

T + b1=FlXra
2

T + ^. 

By (5), we have F^a]. + F^^c = F^a2 -j- Fyqc. Hence 
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By (7)-Fqiy(8), we have 

(10) {F}lXr - F^F^al = (FIXT - FqiyFlXT)a
2

T. 

By ( (9)*,(10)* ), we have 

(11) ar   X^Xry^XrQ! ~ ^ xTqj ^yqj ) — aT   \^xTyT^Xrqi ~ ^xTqj^yqi)' 

Otherwise, since F; is non-degenerate, we have 

/pi        pi      \ /pi        pi pi        \ 
rank I       ^^^        x'rq    1  — rank I       XTy        x^qi     ± xTqj    \  _ i   i   ,   JL rank^  ^      ^   J - rank ^    0       ^       ^    j - |r| + A. 

By multiplying the invertible matrix I      'rl *Tqj   j on the left hand side of the 

above, we have 

(rpi rpi    rpi        zp 0     \ 

Hence 

(12) rank^.F^ - FlqjFyq,) = |r|. 

Consider the case r = {s} and a^ = 1. By (11) and (12) we have a2 > 0. 
Therefore if we denote ^(afrci, • • •, a^r, y, q) instead of i^, then we have 

(1^) X-^xy^xqi  ~ ^xqj^yqi)  ~ K^xyi ** xqi  ~ ** xqj ^VQl )• 

Hence a1 = a2(=- a). Set B = Fxqj - Fx and define Fz{x,y,q) — F2(x,y + xB,q). 
Then we need only to check that Flx = Fxx,Fxq = F^ in order to complete the proof. 
We have 

^3      _ p2      _i_ or p2        >   JD _ p2        .pi      _ p2      —pi 
x xqj        J- xqj    '   ■t^-L 2/gj        't xgj ^ -^        ■*■ xqj    '   x xgj       x xgj        ■*■ xgj J 

jF3      _  77.2       ,    op        _ p2       ,   pi     p       _  77.2     77- 
■* xgj  ~~ * xqi ~ ■LJX yqi  — J- xqi    '   ^ xqj * VQl        •L xqj x yqi 1 

= \^xqI ~ Fxqj-Fyqi) + ^xqj-Fyqi  =\^xqI ~ ^xqj^yqi) "*" ^xqj^yqi  =^xqr 

Therefore F^ = F^. 
Finally repeat this proof between Fi and F3. In the case a = 0 let (a1,^1,^), 

(a3, fr3, c3) G Rr+A;+n define the same vector. Then we have a1 — a3(= a) by (11) and 
have b1 — bs by (8) and have (Fxx — Fxx)a = 0 by (5). Since a is an arbitrary real 
number, we have Fxx — Fxx. U 

LEMMA 3.4. LetFi,F2 Em(r;A:H-n)2 be non-degenerate function germs. Suppose 
that the following conditions hold: 

La := L°Fl = L'F2 ( Vcr C Ir ) 

fftiO) = j2F2(O),0(O) =0,^-(0) = Eft    ( JC /P,|J| =fc ). 
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Set 
flip fljp 

Efc - { {x,v,q) E (Hr x R*+»,0) | xa = j^- = ^ = 0 }, 
oxIr-a      ay 

for each a C h-    Then there exists G G B(r;k + n) 5wc/i ^/ia^ G preserves q and 
G*0 = ^|ToHT'xRfc+n and for each a C Ir the following diagram is commutative: 

G|SF1 
ljF1 

y ^F2 

Pl\ iP2 

As a result F3 = F20G is reticular R-equivalent to F2 and S^ = S^3 (= E0 y, -^— 

£<T = 0 for each cr C Ir- 
Proof For each cr C /r, we set 

Since LJ.  = L^2 for each cr C /r, we have 

G^no-' := Go-Lo- nv<T' =Ga/|v<T p,™'  (V(j,cr c/r ). 

Since ^^(O) = ^^(O) and i7!,^ are non-degenerate, there exist function germs 
wi, - - •, wn-r on (Hr x R^"1"71,0) such that 

Xi, • • • , Xr, , • • • , , , • • • , , U?! , • • • , Wn—r      \ I — 1, Z ) 
0x1 axr   dyi oyu 

define coordinates of (Hr x R*"*-71^).   By using analogous methods of [3, lemme 
i], there exists a diffeomorphism G on (Hr x RA;+n,0) for which the diagrams are 
commutative.   By ^^(O) = ^^(O), we have G*0 = ^|ToHT'xRA:+n-   We have to 
modify G such that G G B(r\ k + n) and G preserves q. 

Since 

Xl   0G\ dFjL__ aFL_££L-0=Xl  OGU   I 2*      =0, 

xi o G can be written in the form: 

^ 1     v^    9i^i      1     \~^ dFi     -, 
x1oG = x1-a1 + ^xi—: .ai+}^ — . bp 

1=2        OXl j=l   ^ 

where b\, — -,b\ are independent on xi. By G*o = id, we have a\(0) = 1. For each 
i = 2, • • •, r, take aj, • • •, al

r, b\, • • •, 6J, which have the similar properties. Otherwise 
since 

Qi0G\dF1_dFL_dFL__0 = qioG\y^        ^   = Qi for i = 1, • • •,n , 

each qi o G can be written in the following form: 

Define G'(x,y,q) = (xia\, • • •, xra^, yoG', q), then the diagrams are also commutative 
for G' and G*0 — id, so that G' G B(r; A; + n) and G' preserves q. D 
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4. Stability of unfoldings. In order to study the stabilities of reticular la- 
grangian maps, we shall prepare the results of the singularity theory of function 
germs with respect to reticular IV~-equivalence. Basic techniques for the character- 
ization of the stabilities we use in this paper depend heavily on the results in this 
section, however the all arguments are the almost parallel along the ordinary theory 
of the right-equivalence (cf., [18]), so that we omit the detail. 

We denote Jl(r+k, 1) the set of/-jets at 0 of germs in m(r; k) and let TTI : m(r; k) -> 
Jl(r + k, 1) be the natural projection. We denote jl/(0) the /-jet of f e m(r; k). 

LEMMA 4.1. Let f e m(r; k) and Ol
rR{jlf(0)) be the submanifold of Jl(r + k, 1) 

consist of the image by TT/ of the orbit of reticular R-equivalence of f. Put z — jlf(0). 
Then 

TMnW = Mi^r ■ ■, xr§L)£[rik) + m(r; k){°Lt.., ^)). 

We say that a function germ / G m(r; k) is reticular R-l-determined if all function 
germ which has same /-jet of / is reticular R-equivalent to /. 

LEMMA 4.2. Let f e m(r;*;) and let 

m(r;A;)'+1Cm(r;AO(<si^^ oxi oxr dyi oyk 

then f is reticular R-l-determined. Conversely let f G m(r; k) be reticular R-l- 
determined, then 

m(r]k)lJrl C {xi^— ,---,xr^— )s(r-1k) + m(r;A;)(^—, • • •, ^—). 
oxi dxr    

v    ' dyi dyu 

Let F G m(r;A; + ni), G G m(r; k + n2) be unfoldings of / G m(r;A:). We 
say that F is reticular R+-f-induced from G if there exist smooth map germs 0 : 
(Hr x R*+n2,0) -> (Hr x R*,0), ^ : (Rn2,0) -> (Rni,0) and a G m(0;n2) satisfying 
the following conditions: 
(1) <K(Hr H {xff = 0}) x R*+^) c (Hr H {x* = 0}) x Rk for a C Jr. 
(2) G{x,y,v) = F(<l>(x,y,v),il>{v)) + a(v) for x G Hr, y G R^ and v G R712. 

DEFINITION 4.3. Here we define several stabilities of unfoldings. Let / G m(r;ft) 
and F G m(r; k + n) be an unfolding of /. 

We define a smooth map germ 

jiF : (Rr+*+B,0) —»• (J'(r + k, 1),//(0)) 

as follow: Let F : U -> R be a representative of F. For each (x, y, u) G [/, We define 
F(x,y,u) £ m(r;fc) by F(^,2/,u)(x,,?/,) = F(a; + x',y + ^Z7,^) - F(x,y,u). Now define 
jl1F(x,y,u) =the /-jet of i7^,^). JiF depends only on the germ at 0 of F. We say 
that F is reticular R+ -I-transversalii jl

1F\x=o is transversal to Ol
rR{jl/(0)). It is easy 

to check that F is reticular R+-/-transversal if and only if 

where VF = LR(1, |^-|W=O, • • •, ^l^o). 
We say that F is reticular R+-stable if the following condition holds: For any 

neighborhood U of 0 in Rr+A:+n and any representative F G C00(C/,R) of F, there 
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exists a neighborhood Np of F such that for any element G G Np the germ G|H^ xRfc+" 
at (O^o^o) is reticular R+-equivalent to F for some (0,2/05^0) ^ U. 

We say that F is reticular R+ -versa! if F is reticular R+-/-induced from all 
unfolding of /. 

We say that F is reticular i?+ -infinitesimal versa! if 

f (,.; fc) = (a:i_>...>Sr __,...,-_)g(r!4)+Vp. 

We say that F is reticular R+ -infinitesimal stable if 

£(r;k +n) 
_ ,    dF_ dF_  dF_ dF_ dF_ ^F 
~ ^ dX! ' " " ' ^ dXr'dV!''"' dyk ^('••fc+"» + {1'du1'"'' dun )£{n)- 

We say that F is reticular IV~ -homotopically stable if for any smooth path-germ 
(R, 0) -> £(rik + ri),t *-+ Ft with FQ — F, there exists a smooth path-germ (R, 0) -» 
S(r;A: -h n) x £(n),t i-> (*i,at) with ($0,^0) = («rf,0) such that each (<!>£, c^) is a 
reticular R+-isomorphism and FQ = Ft o $t + at. 

THEOREM 4.4 (Transversality lemma). Let U be a neighborhood of 0 in 0 G 
Rj+fc+n wztfi ^/ie coordinates (xi, — - ,xr,yi, — - ,yk,ui,' — ,un) and A be a submani- 
fold of Jl(r + k, 1).  T/ien *Ae sei 

T^ = {F G C^Cl/jR) I J
1
IF\X=Q is transversal to A} 

is dense in C00([/, R) with respect to C00 -topology, where jl
1F(x,y,u) is the I-jet of 

the map (x1 ,y') i-> F{x -f x',y 4- 2/', w) a^ 0. The transversality we used is a slightly 
different for the ordinary one [18], however we can also prove this theorem by the 
method which is the same as the ordinary method. 

THEOREM 4.5. Let F G m(r; k + n) be an unfolding of f G m(r; k). Then the 
following are equivalent. 
(1) F is reticular R^-stable. 
(2) F is reticular R^-versal. 
(3) F is reticular R+-infinitesimal versal. 
(4) F is reticular R+-infinitesimal stable. 
(5) F is reticular R+-homotopically stable. For / G m(r;&) we define the reticular 
R-codimension of f by the R-dimension of the vector space 

_.  ....   df df  df       df. 
^fc)/^ —,...,a;r —,—,•■•,—)f(r;fc). 

By the above theorem if l,ai, • • • ,an G £(r; k) is a representative of a basis of the 
vector space, then / + aiVi -\ CLnvn G m(r; k + n) is a reticular R+-stable unfolding 
of/. 

5. Stability of reticular lagrangian maps. In this section we shall define 
several notions of stabilities for reticular lagrangian maps and prove that they and 
the notion of stabilities for corresponding generating families are all equivalent. 

In order to consider symplectomorphisms and symplectomorphism germs on 
T*Rn, we introduce canonical coordinates (Q,P) and (q^p) of r*Rn, where (Q,P) 
are the coordinates of the source and (q^p) are the coordinates of the target. 
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Stability: For any open set U in T*Rn we denote S(U, T*Rn) the space of symplectic 
embeddings from U to T*Rn with (7°°-topology. We say that a reticular lagrangian 
map Troi : (Lo,0) -> (T*Rn,0) ->- (Rn,0) is stable if the following holds: For any 
extension 5 of i and any representative S G S(U, T*Rn) of 5, there exists a neighbor- 
hood Ng of S such that for any T £ N§ the reticular lagrangian maps TTO (T|LO at XQ) 

and Troi are lagrangian equivalent for some XQ = (0, • • •, 0; 0, • • •, 0, P^+1, • • •, P^) G U. 

Homotopical Stability: Let TT O i : (Lo,0) -> (T*Rn,0) -> (Rn,0) be a retic- 
ular lagrangian map. A map germ i : (L0 x R, (0,0)) -> (r*Rn,0)((Q,P,t) i->- 
it(Q,P)) is called a reticular lagrangian deformation of i if io = i and there exists 
a one-parameter family of symplectomorphisms 5 : (T*Rn x R, (0,0)) -> (T*Rn,0) 
((Q,P,t) M> St(Q,P)) such that it = S^IL

0
 for t around 0. We call S an exten- 

sion of i. Let 0 : (Lo,0) ->> (Lo,0) be a reticular diffeomorphism. A map germ 
0 : (L0 x R, (0,0)) -» (L0,0)(((3,P,t) H> (j)t(Q,P)) is called a one-parameter defor- 
mation of reticular diffeomorphisms of 0 if 00 = 0 and there exists a one-parameter 
family of diffeomorphisms <£ : (T*Rn x R,(0,0)) -> (T*Rn,0)((Q,P,£) ^ *t(Q,P)) 
such that 0^ is a reticular diffeomorphism defined by fa = $t\L0 for ^ around 0. We 
call # an extension of 0. We say that a reticular lagrangian map TT O i : (Lo,0) —>• 
(T*Rn, 0) -> (Rn, 0) is homotopically stable if for any reticular lagrangian deformation 
i = {it} of z there exists a one-parameter deformation of reticular diffeomorphisms 
0 = {fa} of Z^LO and a one-parameter family of lagrangian equivalences 0 = {@t} 
with ©o — idr+ii™ such that it = Qt oi o fa for t around 0. 

Infinitesimal Stability: A vector field v on (T*Rn,0) is said to be tangent to L0 

if V\LO is tangent to L^ for all a C Ir- A function germ H on (T*Rn,0) is said 
to be fiber preserving if there exist function germs /io, • • •, hn on the base of TT such 
that H(q,p) = XlILi hi(Q)Pi + ^0(9) for (9,p) G (T*Rn,0). We say that a reticular 
lagrangian map TT O i : (Lo,0) —> (T*Rn,0) —)• (Rn,0) is infinitesimal stable if for 
any function germ / on (T*Rn,0) there exists a fiber preserving function germ H 
on (r*Rn,0) and a vector field v on (T*Rn,0) such that v is tangent to L0 and 
Xf o i = XH oi + i*v, where Xf and X^ are the Hamiltonian vector fields of / and 
H respectively and i*v is defined by i*v = (S*?;) o i for an extension S of i. 

At first we prepare some lemmas to construct continuous maps between mapping 
spaces. Let U,V be open sets in Rn,Rm respectively. We define 

Nf{l,e,K) = {ge C^^V) \ \D«(g - f)x\ < e Vx G K, \a\ < I } 

for each / G C00([/, V), / G N, s > 0 and compact set K in U. Then the family of sets 
Nf(l,e,K) forms a basis for the C00-topology on C00(L/,y). 

LEMMA 5.1. Let U be an open ball around 0 in Rn.  Then the map 

I : C^^R) —> C^C^R)    (f^(x^f  f(tx)dt) ) 

is continuous. 
Proof. Let / G C00 ([/, R) and a neighborhood Ar of f f be given. We may assume 

that N = Nr ,(l,e,K) for some l:e,K. Choose a closed ball K' around 0 in U such 

that K C K' and set N' = Nfil.e.K'). Then for any ge N',xe K, 

\D%j g- j f)x\ = \D"{j\g(tx) - f(tx))dt)\ 
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= \ [\tMD"(g{tx)-f(tx)))dt\ 
Jo 

< f tM\Da(g(tx)-f(tx))\dt 
Jo 

<f Jo 
1 • edt = s 

for any |a| < /. It follows that /(iV') C N. Hence / is continuous. □ 
PROPOSITION 5.2. Let U,V be open sets in Rn satisfying 0 £ U C V and 

i : U -* V be the inclusion map. Choose e > 0 such that Us£(0) C U and set 
Ui = ^(O), Vi = C4(0). T/ien there exists a neighborhood NQ of i in C00(?7, V) 5wc/i 
f/ia^ ^(c/j w embedding and Vi C ^(E/i) /or g € NQ. Moreover 

No-+C™{VuU)    (/^(^k)-1!^) 

25 continuous. 
Proof. We define the neighborhood JVQ of i by 

g GNQO < det|f(^)^0 
|^(a;) - x\ < e 

< 2n (i^j) 

for x e Ui. 

Let g £ NQ and a, b G C/i (a 7^ 6) be given, we may assume that \ai — 611 > |aj — 6j|(i = 
2, • • •, n). Set c(*) = (1 - t)a H- ^6,^ G [0,1]. Since Ui is convex, we have c([0,1]) C Ui. 

\9i(b) - g^a)] = 

> 

> 

d foft9^cm\ 
n      r 1d91 

dxi 
oc(t){bi - ai)dt\ 

bi 

h -ai|o _ (n~ ^l61 

2=2 

Oll^=^l61-Oll>0- 

It follows that glu! is an injective. Hence g]^ is an embedding. It is easy to prove 
that Vi C g(Ui) because of the definition of Ui,Vi and the fact that \g(x) - x\ < s. 

Let /o G iVb and a neighborhood N of go = (fo\u1)~1\v1 be given. We may 
assume that iV = Ng0{l,e',K) for a l,e'\K. Since the /-jet extension of {f\ui)~1\vi is 
written as a continuous map of the /-jet extension of f\jj- for each f € No, it follows 

that there exists e" > 0 such that (/It/J-1!^ G JV for any / G Nf0(l,e",U^). D 
We have the following lemma as a corollary of Proposition 5.2. 
LEMMA 5.3. Let U, V be open sets in Rn such that 0 G U and let fo : U —> V be a 

embedding. Then there exist a neighborhood Ui of 0 in U and an open ball V around 
/o(0) in V and a neighborhood Ni of fo in C00^, V) such that /If/j is embedding and 
Vi C f(Ui) for all f 6 Ni. Moreover 

m c^iVuU)   (/^(/k)"1!^) 
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is continuous. 
LEMMA 5.4. For any one-parameter family of lagrangian equivalences 0 : (T*Rn 

xR,(0,0 )) -> (T*Rn,0)(((3,F^) H-> Qt(Q,P)) with QQ = id, there exists a fiber 
preserving function germ H on (T*Rn, 0) such that XH = ^|Ht=o- Conversely for 
any fiber preserving function germ H on (T*Rn,0), the flow 0 = {0^} of XH with 
the initial condition 0o = id : (T*Rn,0) —> (T*Rn,0) is a one-parameter family of 
lagrangian equivalences. 

THEOREM 5.5. Letiroi : (Lo,0) ->• (r*Rn,0) ->■ (Rn,0) 6e a reticular lagrangian 
map with the generating family F(x,y,q) G m(r + k + n)2. T/ien ifte following are 
equivalent. 
(1) JF Z5 a reticular R^-stable unfolding of F\q=o. 
(2) TT o i is homotopically stable. 
(3) TT o z zs infinitesimal stable. 
(4) For any function germ f on (T*Rn,0), there exists a fiber preserving function 
germ H on   (T*Rn, 0) such that f o i = H o i. 
(5) TT o i is stable. 

Proof. We shall prove (1)^(5), (1)=>(2)=^(3)=»(4)=>(1). 
(1)=>(5). Let 5o be an extension of i and So € S(U, T*Rn) be a representative of 

So- We shall construct the map (14) which maps a symplectic embedding around So 
to a function around a representative of F. Define 

Trsrtf—►R2"    {(Q,P)*(Q,Ps(Q,P))) 

for each S = (QS^PS) ^ S(t/, T*Rn). By taking some lagrangian equivalence of TT O i 
and shrinking U if necessary, we may assume that TT^ is embedding. By Lemma 5.3, 

there exist a neighborhood iV^ of So and a neighborhood Ui of 0 in U and a convex 
neighborhood V of 0 in R2n with the coordinates (Q,p) such that the map 

% -> C°°(V,U) ( S H- fokrV - (ido.Ps) ) 

is well defined and continuous. Let S G A^^o. Then the set 

where qg(Q,p) := qgiQiPsiQiP)) ^or (QJP) G F, is a canonical relation associated 
S. Therefore there exists a smooth function iiTg on V such that ^(0,0) = 0 and 

f)TT f)H 

But 

r1 d 
H§(Q,p) = J   —H§(tQ,tp)dt 

= YlQi      -^{tQMdt + Y^Pi      -^(tQ,tP)dt 
i=l •'0        y* i=l       ''0 Pi 
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and the maps 

BH~ f)T-f 
N§o ^ c~{V,K)    ( S » ^(= -Pis)^(= -4) ) ( < = l,-,n ) 

are continuous, we have by Lemma 5.1 that the map 

is continuous. Let V = V D { Qr+i = • • • = Qn — 0 }. Now we define the following 
continuous map 

(14)   <{>: Ns-o —► C00^' x R»,R) ( 5 M- ^(ar.y,?) = Hs{x,0;y)+ <y,q>). 

Since F^ IH^ XR
2TI
 at 0 is a generating family of TT o z, we may assume that FQ = F^ is 

a representative of F. Since F is a reticular stable unfolding of F|g=o, there exists a 
neighborhood iV^ of FQ such that for any G G iV^ the function germ G at (0, y0, q0) 
and F are reticular i?+-equivalent for some (0, y0, q0) G V xRn. Set N'-  = (f)-1 (iV>o). 

Let S e N'x .   Take (0,2/0,g0) G V x Rn such that the above condition holds for 
OQ 

Fg. If we denote {L^0}(7Cir the symplectic regular r-cubic configuration defined by 
^s — ^SIH^XR

2
" 

at (O,?/0,^0), then for each a C /r 

^f0 - { (9o + 9, -jr^foj/o + y,go + (Z))!^ = 5—— = "^ = 0,^-^ > 0} ag ax^-o-       ay 
dH- 

= { (9o + 9,2/0+ y)|a:<r = ^ — (a:,0;2/o + 2/) = 

^ (x, 0; 2/0 + 2/) + 9o + 9 = 0, xj^ > 0} 

BH~ Bff- 
= {(-^(Q;yo +p),yo +P)\Q<, = ^ s (<3;J/O+P) = 

OP OQlv-cr 

dy 

Qlr-C 

Qr+l = --- = Qn = 0,QIr-(r>0} 

= S((L»+(0;0,Po))), 

where (0;0,Fo) = S~1(qo,yo). This implies the reticular lagrangian maps 

KO (5|L0   at   (0;0,Po)) 

and TT o i are lagrangian equivalent. 
(5)^(1). Let So be an extension of i. By taking some lagrangian equivalence of 

TT o i, we may assume that there exists a generating function To(Q,p) of the canonical 
relation Ps0 associated with So- Then Fo(x, y, q) = To(x, 0; 2/)+ < 2/5 9 >£ m2(r; n+n) 
is a generating family of TT O i. We prove that FQ is reticular .R^-stable unfolding of 
Fo|g=o- Let FQ G C00(C/,R) be a representative of FQ. We construct the map (15) 
which maps a function around FQ to a symplectic embedding around a representative 
of So- The following construction is summarized in the diagram after the proof. 

By shrinking U if necessary, we may assume that there exist a neighborhood Ui 
of 0 in Rn with the coordinates Q, U2 of 0 in Rn with the coordinates y, C/3 of 0 in 
Rn with the coordinates q and To(Q:y) G C^CUi x L^R) such that the following 
conditions hold: 
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(a) To is a representative of To 
(b) The map U = {U1n {Qr+i = • • • = Qn = 0}) x U2 x U3 

(c) Ui x U2 x C/3 -> Ui x C72 x Rn given by (Q,2/,g) •-> (0,2/, ^f{Q,y) + 9) is an 
embedding. 

(d) The map U\ x U2 -> f/i x Rn given by (0,2/) »->• (0, -fg (0,2/) is an embedding. 

Define the representative FQ G C^^R) of FQ by F{x,y,q) = f(x,0',y) + (y,q) 
and define FQ G C00^ X C/2 x J73,R) by Fo(Q,y,q) = f (0,2/) + (2/,9).  Since the 
map 

C^RMC^t/iXC/aX^R) (FH> ^(Q.j/.g) = FoCQ.y.^+^-FoKQ'.y,?)), 

where 0' — (Oi, * * *, Or), is continuous, the map 

dF 
C^R) -> C00^! x C72 x 1/3,^1 x C/2 x Rn)   ( F H> <l>p(Q,y,q) = (0,2/, ^-) ) 

is also continuous.  Since (f)pQ is embedding by (c), there exist a neighborhood Np 

of FQ and a neighborhood U' of 0 in Ui x C/2 x C/3 and a open ball V around 0 in 
Ui x U2 x Rn such that 

N1
Po^C00(V,U1xU2xU,)   ( F *+MpW^v ) 

is well defined and continuous. Let Vi = V fl (C/i x U2 x {0}). Then 

JV^-^C^^i.t/ix^x^)   (^^(^FI^)"
1
!^) 

is also continuous. We denote {(frplu'^WAQiy) by {Q,y,qp(Q,y)) for (0,2/) ^ ^i- 
Then the map 

BF 
Arlo -> C00^!,^ x Rn)  (F^ 1>p(Q,y) = {Q,-^{Q,y,qp{Q,y)) ) ) 

is also continuous. Since T/^ is embedding by (d), there exists a neighborhood N'p 

of FQ in Np and a neighborhood V2 of 0 in Vi and a neighborhood W of 0 in U\ x Rn 

such that the map 

Nlo^C»(W,Vi)    {F^^p\v2)-
l\w) 

is well defined and continuous. We denote {^pW^^WiQ.P) by (Q,yp{Q,P))- Then 
the map 

JV|o -»■ C^iW,^ x U2 x t/3)   ( F H> ( (Q,P) ^ {Q,yr(Q,P),qp.(Q,yp(Q,P))) ) ) 

is also continuous. Hence the map 

BF 
(15) iV|o _> S(W,T*Kn)   ( F H>. 5^(Q,P) = (g#, —(Q,yp,qp) ) ) 

is well defined and continuous. Since 5p is a representative of So, there exists a 

neighborhood iVj; of To in Np, such that for any F e Np the reticular lagrangian 

maps TT o (SP|LO at (Q
0
,P

0
)) and TT O i are lagrangian equivalent for some (00,T0) = 



590 TAKAHARU TSUKADA 

(0,--.50;0,--:)0,Pr
o
+1,---^nO)eW. Let(0,2/0^0)-(0,^(Q0,P0),^(g0,^(Q0, 

P0))). Since F at (O,/,^0) is a generating family of TTO (5^|Lo at (go^o)), F|H-XR
2
- 

at (0,2/°,^°) and FQ is reticular i?+-equivalent. 

Ux x U2 x C/3    =    Ux x C/2 x [/"a t/i x Rn D        W 

(«,»,«) (Q,y,QF) ->•   (Qr -%(Q,y,<iF))   =   (Q,P) 
^4. t Stp isp 

W.w.S) (Q.y.o) {qp^iQ^F^p)) 
t/i x [72 x R"    D V! r*Rn 

(1)=>(2). Let i : (L0 x R, (0,0)) -»• (r*R")0)((<5,P,i) •-»• it(Q,P)) be a reticular 
lagrangian deformation of i. Take a one-parameter family of symplectomorphisms 
5 : (T*R" x R,(0,0) ) ^ (T*Rn,0)((Q,P,t) H- 5t(g,P) = te(Q,P),ft(Q,P))) 
such that it = Stl^o for t around 0. We may assume that there exists a function germ 
f : (R2/ xR, (0,0)) -> (R, Q)((Q,p, t) *->Tt(Q,p)) such that Tt is a generating function 
of the canonical relation associated with 5^ for t around 0. Define F(x,y,qJt) G 
£(r;n + n + l) by F(x,y,q,t) = Ft(x,y,q) =Tt(x,Q;y) + (y,q), then Ft is a generating 
family of iroit for all t. By hypothesis, there exists a one-parameter family of reticular 
R+-equivalences of the form 

Ft(x, y, q) = F(a;iaJ (a;, y,q),-', xra
r

t(x, y, q), ht(x, y, q),gt(q)) + MQ)- 

Set a one-parameter family of lagrangian equivalences 0 = {0^} by 0^ = gf + 
datlnog*- Then we have it(L^) = Qt 0 i(L^) for all a C Ir,t around 0. Therefore 
we may define the one-parameter family of reticular diffeomorphisms 0 = {^} by 
(fit — (So)-1 0 ©r1 0 ^II

0
- Then we have it — Qt 0 i 0 <f>t for t around 0. 

(2)=>(3). Take an extension S of i. Let a function germ / on (T*Rn,0) be 
given. Let 5 = {St} be the flow of Xf with the initial condition 5o = S. Because 
2 = {it — ^|LO} is a reticular lagrangian deformation of i, there exists a one-parameter 
family of lagrangian equivalences 0 = {0^} with ©o = id and a one-parameter 
deformation of reticular diffeomorphisms 0 = {&} of id such that it = Qt 0 i 0 fit for 
t around 0. Let * = {$t} : (T*Rn x R,(0,0)) -> (T*Rn,0) be an extension of 0. 
Then we have 

v       ■      d^\       i d®*i -  i   to d®t\      \     '       v        •  ,   • Xf oi - — |t=o|LO = -^-|*=o 0« + (^*-^rk=o) 0* = XH Ol + i*V. 

This implies that TT O Z is infinitesimal stable. 
(3)=>(4). Let a function germ / on (T*Rn, 0) be given. By hypothesis, there exists 

a fiber preserving function germ H on (T*Rn,0) and a vector field v on (T*Rn,0) 
such that v is tangent to L0 and Xf o i = XH 

0 i + i*v- Set v = z'l^o ,va = v^o 
for each a C /r, then it is easy to prove that (/ — H) o ^ = constant because 
Xfoip — XH0i(T + (ia)*v<T. Since L0 is connected, we have that (f — H)oi = constant. 
By replacing H + constant by i? if necessary, we have f oi = H oi. 

(4)=>(1). Take an extension 5 = (q,p) of z. We may assume that there exists a 
generating function T = T(Q,p) of the canonical relation associated with S. We define 
a generating family F(x, y, q) G m(r; n + n)2 of TT O Z by F{x^ y, q) — T(x, 0; y) + (?/, q). 
Since (Q,P) ^ (q(Q,P),P) is invertible, there exists / C {1, • • • ,n}(|/| = r) such 
that (f) : (x,y) \-> (qi(x,0;y),y),x = (xi, • • • ,xr), is also invertible. Otherwise since 
(Q,p) *-> (Q,P{Q,p)) is invertible, tj) : (a:,?/) M- (x,P(x,0;y)) is also invertible. We 
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define S' = (j)o xp"1. 

{Q:P)      ->      (q,p) (x,y)       ->      (g/,p) 
|/5 It/)     SS' 

(Q,P) {x,P) 

Let / G £(r;k) be given. Set g{q,y) = f o o~l(qi,y). Since 

5(X, 0; P)|a;iPi=...=irPr=0,x>0 = ^ 

there exists a fiber preserving function germ H(q,p)   =  YlZ^i hiioftPi  +^o(^)  on 
(T*Rn,0) such that 

g o S(x, 0; P)|xiP1=...=xrpr=o,a:>o = Ho S(x, 0; P). 

Therefore there exist function germs ai, • • •, ar G £(r; n) such that 

r 

goS(x,0;P) = H o S{x,0',P) + YlxJPJaj(xiP) for (X'P) G (Hr xRn,0). 

Hence 

= (/0 (t>~1)o W>o V7"1)o ^(^5 y) = goS' o ip(x, y) 

= go S(x, 0; P(a;, 0; 2/)) = g(q(x, 0,2/), 2/) 
n r 

= ^ /ii(g(a:, 0; 2/))^ + ho(q(x, 0; 2/)) + ^ ^Pj(^5 
0; S/)^^, 2/) 

i=l j=zl 

= ^ /ii(0)2/i 4- /io(0) mod(^i — (rr, 0; y), • ■ •, ^^-(a:, 0; y), gj-(^, 0; y))e(r;n), 

where a'Ax^y) — ai(x,P(x,0,y)) for j = 1,- • • ,r. This implies that F is a reticular 
R+ infinitesimal versal unfolding of /. D 

6. Adjacencies of singularities. We shall study the structure of the caustics 
of stable regular r-cubic configurations. Firstly we investigate the adjacencies of sin- 
gularities classified in Section 7 because the investigation of caustics means that of 
adjacencies of corresponding functions germs. The following list is the classification 
list of simple or unimodal singularities. This includes the classification list of singular- 
ities of R-codimension< 7. Therefore the stable caustics in manifolds of dimension< 6 
are classified. 

The classification list of simple or unimodal singularities 



592 TAKAHARU TSUKADA 

r     k    Normal form rR-codim Conditions Notation 
1     0     ±xn n n> 2 5n 

1     1     xy ±yn n n> 3 C7n 

±x2+y3 4 F, 
±x3 -f ax2y + y3 6 4a2 4- 9 ^ 0 Fi,o 
axn+3 ± xy2 + y3 n + 6 n> l,a^0 F^ 
±x4 + y3 + aa;3?/ 8 Fs 
±x3?/ + y3 + aa:2!/2 9 F9 

±x5 + 2/3 + ax4?/ 10 Fxo 
±2/4 + axy2 ± x2 6 a2 7^ ± ± 4 ^4,2 

±y4 ± xy2 + axn n + 4 n> 2,a^0 K4,n 

eyn ± x?/2 + aa;m n + m n > 4,m > 2, 
ew = l,a^0 &n,m 

±(x±2/2)2+axn2/ 2n + 3 n > l,a > 0 ^1,271-3 

±(x±y2)2+axn 2n + 2 n>2,a^0 ■"■1,271-4 
±y4 + x2?/ + ax3 8 i^l 
±y4±x3+ax2y2 9 ^9 
y5 ± x2 4- a^3 8 KT 

1     2     2/^2 ± 2/2 + ^2/1 + a:c2/2 6 ie = £»4,i 
2/^2/2 ± 2/?-1 + a^2/r ± ^2/2 n + m 4-1 am >0 i'n.m 
2/? ± 2/2 + a^2/i + ^2/2 8 -£■6,0 

2/i +yiyl + a>xy1 ±xy2 9 Eifi 
yf 4- 2/1 + aa;2/i ± ^2/2 10 Es,o 
2/i2/2 ± 2/4 + a;2/i + ^2/2 8 Dl 
2/? ± 2/2 =*= ^2/1 + a*2/2 9 Ee,i 
2/i 2/2 ± 2/1 ± x2 4- ax?/? 8 Dl 

2     0     exl 4- fe| 4 ^2,2 

ex2 + 0x1^2 4- ^2 4 a2 < 4, 5 = <J, a 7^ 0 ^2,2 

^x2 -\-ax1X2 4-&C2 4 a2 > 4, e = (J ^2,2 

ex2 -\-ax1X2 +8x2 4 e^^ ^2,2 

e{xi H- fe2)2 + axj n + 2 rz > 3,a^0 ^2,2,7! 

e^j1 +axiX2 -\-5x21 n + m ri + m>5,a7^0 Be,8,oc 
■^71,171 

ex2 4- axixl 4- fe3 6 r>£,8,a 
#2,3' 

earf 4- arcf £2 + &&! 6 #3,2' 
2     1     eyn + xxy + 5x2y + ax™ n + m n>3,m>2,a^0 0n,m 

ey3 + X12/ + aa;22/2 + ^2 6 03,2,1 

£2/3 + #22/ + axi2/2 + 5xf 6 ^3,2,2 

In the case L6 a2 ± 1 7^ 0, while in the case Dn,m a 7^ 0, n > 4, m > 1, n 4- m > 5. 
In the case r = 2, e = ±1, 5 = 4:1 and if a = 0 then a = 0 and if a 7^ 0 then a is the 
sign of a. 

The cases r = 0 and r = 1 were already studied as ordinary singularity and 
boundary singularity (for example, see [2],[9],[10]). Hence we study the case r = 2. 
From the view point of caustics, we must investigate three type of adjacencies of 
singularities: the first is the oridinary adjacencies, the second is the adjacency given 
by forgeting a boundary of the corner. For example, consider B^'* singularity 
which is the orbit of x2 4- ax 1X2 4- x3 G m(2; 0)2. If we forget the boundary defined 
by X2 — 0, this function is reticular R-qeuivalent to y3 4- xiy E m(l; 1).  Therefore 
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we regard JE?^"1"'01 is adjacent to 0$. This adjacency appears as the union of the 
caustic (70 and the quasicaustic QQ^ of the regular r-cubic configuration defined by a 
versal unfolding of xf + axiX2 + x^- The third is the adjacency given by restruction 
singularities to xi = 0 or X2 = 0. For example, consider C^,a singularity which 
is the orbit of —y3 + xiy + X2y 4- ax^ E m(2; 1). If we restruct this to X2 = 0, then 
whis is equal to — y3 + xy E m(l; 1). Hence we regard C^^'a is adjacent to C^ . This 
adjacency appears as the union of the caustic Co and the quasicaustic Q2,{i,2} of the 
regular r-cubic configuration defined by a versal unfolding of — y3 + xii/ + X2y + a^. 

We shall draw the pictures of stable caustics in manifolds of dimension< 4 at the 
last part of this paper. The caustics of #2,2,3, #2.3 and Cs^ are diffeomorphic to (the 
pictures) x (R, 0) and the caustics of .83y* are diffeomorphic to one of B^l'"- 

The adjacencies of unimodal singularities on the 2-corner: 
r)S3,52,OC32 
^3,2' 

; 
#2,2 <  #3,2 <        #4,2 <        "• 

t t t 
r>£'2,<53,«23  v pff2 5^3)0!   D^3^35» .  ]D^4^3,OC   

■D2,3'                           *"       x:>2,3                ^                ^3,3                  ^              ^4,3                ^ 

t                                          t                                          t 
^2,4 ^  ^3,4 ^        ^4,4 <        ••' 

82,2     <- 

t 
1162,6,(33            , 
^2,2,3             ^~ 

t 
•^2,2,4 

t 
rS3,P2,P' 
03,2,1  )« 

t t 

^3,(5,/?4 
—       03,4 

t 
03,2,2 

t t 

t 

~ 04,4 

t 
— 05,4 

t 

^3,^2,0   OTn   1    o     _   ,        0^2,^3,a The adjacencies £2,2 <- -B^       and ^2,2 ^ ^^s       means that 
73 — ^2^2 ji 
^2,2 

D^2,-^2,± 
#2,2 

\ \ 
> > 

#2,2 <-    Bl*** ST.2                  ^ ^2,3 

The adjacency #2,2 *~ B22,2,fZ means that 

r>+, + ,± 
#2,2 J57.r^ 

\ \ 
< < 

#2,2 
7                   0+,±,/53 
<              ^2,2,3 82,2* <— -D2,2,3      • 

The adjacency B2,2 <— Gg3^    2 means that 
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£+•+•+ #2,2 

\ 
> 

B2<r~ i— U3,2 

< 
0+,+,- 
#2,2 

\ 
> 

#2,2 
icies from 

<      '       03,2 
singularities on t 

Bl H-      sf3 

t t 
#2,2 

if 

\ 

■D2,3 

1 1 
Bi «—           ^3 

^2,2 

\ 
r>-,-,- ,         rr±,+,- 

-02,2 ^ 03,2 

> 

#2,2 

< 
\ 

^2,2 ^ ^3,2 

^4 

t 
03,2,1 ci3 

t 
u3,2 

^£3,a,a" 
03,2,2 a*5 

#4,2 

#2,4 

£f4 

t t t 
C £4,^,0;   ^^5,(5^   ^£6,^,0: 

4,2 ^ 05,2 ^ 06,2 
4-4-4- 

o4 ^ o5 ^—       o6 

The adjacencies of singularities on the 2-corner given by forgeting a boundary. 
The adjacency \ is given by forgeting the boundary xi  = 0 and «— is given by 
forgeting #2 = 0. 
#2,2 

C2 ci ct 

C2 

\ 

<  #2,2 a 
\ 

i  p+,+,± 
#2,2 a 

\ 

i— 
o-,-,±(0) 
^2,2 

c2- 
\ 

ct 
\ 

C2 
\ 

C2 
^2,2,n 

<  
> 

p- -,± 
#2,2 C2 <  #2,2 ct i— p-,+,± 

#2,2        > 

Bn,m 

Bg 
\ 

B;Sa   <- r>±,5,a 
n2,2,3 Blr»na 

\ 
i— #2,2,n 5 

ci c- 
\ \ 

3 ^ -02,3 ^m ^ ^n.m  i 
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I?2,3' and £3,2' 

Bl 
\ 

^ 
\ 

Ft ^        ^2,3' Bl i  r>e,d,a 
^3,2' 

Cn,m 

cr C™Q 

\ \ 
C^a      -5— /o±,(5,a 03,2 r-(-'5)"' la ^-       ^d^ 

C3,2,i and (73,2,2 
^-(5 £ 

^2 ^3 

\ \ 
03 ^ ^3,2,1 02 ^ u3,2,2- 

The adjacencies of singularities on the 2-coner given by restruction to xi = 0 or 
X2 — 0. The adjacency \ is given by restruction to X2 — 0 and «— is given by 
restruction to Xi = 0. 

\ \ \ 
nm * J:>n,m r>2       * ^2,2,71 02n       ^ n2n,m 

U2n+1 03 ^4 
\ \ \ 

02n+l       ^ 02n+l,m r A        * 03,2,1 03        ^ 03,2,2' 

7. Classification of function germs. In order to classify function germs we 
prepare the following lemmas. 

LEMMA 7.1. Let f e m(r; k) be a function germ. If §^(0) ^ 0 then f is reticular 
R-equivalent to yi G m(r;k). 

LEMMA 7.2. Let f G m(r; &) be a function germ satisfying ^-(0) = 0 and I be the 
corank of f. ' Then there exist a subset a C /r and a non-degenerate quadratic form 
Q(yi,''' iVi-i) and a function germ g(x' ,y') € m((r — |<T|); I)2 such that the following 
conditions hold: 
(1) g\X'=oem(0;l)3 

(2) / is reticular R-equivalent to fo G m(r; k) defined by 

fo(xi,y) = ^2±Xi + g{xIr-a,yi, • • •,yi) + Q(^+ir'^Vk)- 
iGcr 

We say a function germ f(x, y) E m(r; &) {x 6 Hr, y 6 Rfc) is residual if / G m(r; A;)2 

and /l^o G m(0;A;)3. 
Let £(r]k,l) be the set of smooth map germs (Hr x R/^O) —> Rz and m(r;A:,/) 

be the set of map germs (Hr x R^, 0) -> (R*, 0). 
To each ^ = (:EI£I, • • • ,:Er£r,£r-t_i, • • • ,^r+A:) £ m(r; A:,r + k) we define the linear 

map £ : £(r; fe). -> £(r; &) by 

^—i j—J- 

To each 0 G B{r\k) we define the linear map 0* : E(r\k) -> E{r\k) by 0*(/) = 
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We have the following four lemma's which are analogous to lemma 1.21 ~ corollary 
1.23 in [16]. 

LEMMA 7.3. Let A be a real vector subspace of 8{r\ k). Let [0,1] ->> m(r; k,r + 
&)) t y-t & = (xi€ti''' ixrtiti€t+1i " ' i£t+k) be a smooth homotopy. Suppose that 
6(A) C A for all t e [0,1] and f G £(r;Jfc). Let $ : (Hr x R* x R,0 x [0,1]) -> 
(Hr x R^jO), (x,y,t) H-* (j)t{x,y), be the solution of the differential equation: 

(16) —(j)t{x,y)   =  £to<i)t{x,y), fafay) = (x,y). 

Then this solution satisfies the following conditions: 
(1) fa GB^fyforallte [0,1]. 
(2) 0t*(i4) C A + m(r; A;)' for all t G [0,1], I > 0. 

Proof (1) We denote $ = ($i, • • • ,$,.+*) and & = (0t,---,0?+*:). Since (& o 
0t)i — ftt ' Q, 0 ^t for ^i = Ij * * • 5^5 by the uniqueness of the solution of (16) we have 
that $i|xi=o = 0 for i — 1, • • • ,r. This means (1). 
(2) Let / > 0 be given. For each t G [0,1] consider the map 8(r; k) —> £(r; &) given by 
/ •-> 6(/); this map is linear and since & G m(r; &, r + k) this map maps m(r; k)1 into 
itself. Hence this map induces the linear map & : J^^r + fc, 1) -> J/~1(r + A;, 1). This 
map depends differentiably on t. Similarly, the maps (/>£ : £(r; k) —> £(r] k), t G [0,1], 
are linear and map m(r; k)1 to itself, so they induce the linear maps fa : Jl~l(r + 
A;, 1) —> Jz_1(r + A:, 1) and 0£   depends differentiably on t. 

Now choose a basis ai, • • •, ap for 7r/_i(^4) C Jl~l(r + A:, 1) and extend this to a 
basis ai, • • •, aq of J7-1 (r + fe, 1). For t G [0,1] let Qt be the matrix of ^ with respect 
to the basis ai, • • •, aq and let Ct be the matrix of fa . Then because & (A) C ^4 we 
have that Qt has the form: 

P     Q-P 
P (   Rt        St 

q-p       \    0 Tt 

If we divide Ct into submatrices in the same way it will have some form: 

Wt    Xt 
Yt     Zt 

What we wish to prove is that Yt = 0 for all t G [0,1]. 
Now let / G £(r; k) be given. Then for t G [0,1] we have 

|(& V-VW)) = j'-H^fifm = J'-V?(6(/))(O) 

= 0Vte(i'-1/(o))). 

Hence we have that 4^   = <£t   o ^ for i € [0,1]. Therefore 

dCt 
M   =C,tgt fort €[0,1]. 
at 

Because of the form of Qt this implies 

dt  =YtRt forte [0,1]. 
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But Co is the identity matrix because 0o = idsfak) so ^o = 0. Hence Yt = 0 for all 
t€[0,l]. D 

LEMMA 7.4. Let A be a vector subspace of £(r; k) and [0,1] -> £(r; fc) (t i-> /4) 6e 
a smooth homotopy. Suppose that there exists a smooth homotopy [0,1] —» m(r; A:,r + 
fc), 11-> ^ = (#1^, ■ • •, xrt;l, ^[+1, • • •, ^r^) satisfying the following conditions: 
(1) 6(A) C A + m(r; fc)/ /or a//1 G [0,1], / > 0. 
(2) ^ - ^(/t) € A + m(r; fc)1 /or a//1 G [0,1], J > 0. 

T/ien for any I > 0 there exist (j) € B(r; fe) and ft, E A + m(r; k)1 such that 
$* (A + m(r; k)1) C A + m(r; fe)z and fa = /i o 0 + ft. 

Proo/. Let Z > 0 be given. Consider the solution $ : (Hr x R^ x R, 0 x [0,1]) -* 
(Hr x Rfc,0), {x,y,i) •-> ^(a;,y), of the following differential equation: 

-foMxiy) = -€t°Mx>y), M^y) = (^2/)- 

we denote $ = ($i, • ■ ■, $r+fc), 0t = (^, • • •, 0J+fc) and define H : (Hr x R^ x R, 0 x 
[0,1]) -> R by H(x,y,t) = /* o fafay)- Then 

= (- E ^o ^^o ^ - E ^o ^+i o ^ + ^ro ^(^») 
2=1 * j = l        ^ 

= 0t*(-4t(/t) + ^)(a;.2/) € MA + mtofc)')    by (2). 

Now by lemma 7.3 (with A + m(r; k)1 for A and — & for & we have 

(17) 0J(i4 + m(r; k)1) C A + m(r; fc)1 for all  t £ [0,1], 

so WlR.r+fcx{t} £ -4 + m(r; fc)' for all t € [0,1]. Therefore for to € [0,1] we have 

||t=to0',-1(^/i)(0)) = J'-^^IR^X^O})^) € TT,.!^ + m(r;*)') = TT,-!^). 

But since 7r/_i(A) is a linear subspace of Jz_1(r + &, 1) we have j'~1(0i/i — </>o/o) ^ 
7r/_i(A). Hence -ft := 0J/i - /o E A + m(r; A:)z, so that /o = /i o fa + ft. D 

LEMMA 7.5. Le^ / E £(r;fc). Let I > 0 be an integer and set fa — jlf(0) 
(consider as a polynomial germ in £(r]k)). Suppose that there exist ft E m(r;k)q for 
some q > Z + l and ^ = (xi^i, • • • ,a:r£r,£r+i7 • • • Ar+k) € m(r; k)p~l£(r; k,r 4- fc), 
p > q + 1 s-acft that £(/o) — ft E m(r; fc)p. 

Tften there exists hi E m(r; k)p such that f + h ~ / + fti  (or in other words, 
jp-^f+hmeo&w-ifm). 

Proof Define the smooth homotopy [0,1] -* £(r; fc), t i-> ft = / + (1 — t)ft and 
define the smooth homotopy [0,1] —> m(r; fc)£(r; fc, r + fc), t »->> £t = — ^. Then 

^ - 6(/t) - -/i+«/ + (i - m = -h+aio)+ai - fo + a - t)ft)) 
E m(r; Jb)p + m(r; fc)(p-/)+/ = m(r; k)p. 

Hence the hypotheses of lemma 7.4 are fulfilled for A = m(r;fc)p. Therefore there 
exist fa E B(r, fc) and ft' E A + m(r; k)p = m(r; fc)p such that fa = f°fa+ti. Set 
hi — h'o 0~1. Then we have /o 0 0 = / + fti and fti E m(r; fc)p D 
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LEMMA 7.6. Let f E m(r;ky and set fo = jlf(0) (so fo is a homogeneous 
polynomial of degree I).  Let h be a homogeneous polynomial of degree q > I -f- 1 and 

suppose h E JrR(fo)- Then there exists hi E m(r; k)q+1 such that f + h ~ / + hi (or 
in other words, jq(f + h)(0) E 0^R(jl f(0))), where JrR(fo) is the Jacobi ideal of fo 
defined by 

T   (t \ _ /    5/o 5/o   dfo dfo 

Proof By h E JrR(/o) there exists ^ = (xifr, • • • ,a:r^r,^r+i, • • • ,€r+k) 6 m(r; 
k, r + k) such that £(/o) = ^- We may assume that ^ E m(r; k)q~lJrl£{r; k,r + k) and 
, for if not we replace f by ^ defined by £' = £ — jq~l^(0). Since /o is homogeneous 
polynomial of degree / we have (£ — ^f)(fo) is a polynomial of degree g — 1 and 
^(/o) e m(r; *)«. Since A = (£ - 0(/o) + ^(/o) € m(r; A:)^ we have (£ - £')(/o) = 0 
and ^(/o) = A. 

Hence the conditions of lemma 7.5 are fulfilled with p = q -f-1, and the conclusion 
follows immediately from lemma 7.5. D 

We now start the classification of unimodal residual singularities in m(r; A;)2 (r > 
1) under reticular R-equivalence. We shall prove that this classification includes the 
classification of residual singularities whose reticular R-codimension is lower than 8. 
Firstly we introduce the following notations: a;, bj, a,b, c, • • • are real numbers. We 
say that z E Jl(r + k, 1) has modality n if the following condition holds: For any 
neighborhood of z there exists an element z' in this neighborhood and there exists 
an n-parameter family of /-jets z'fa) (a in some neighborhood of 0 in Rn) such that 
^(O) = z' and z'ia) £ Ol

rR{z'{b)) if a ^ b. Remark that for / E m(r + k)2 if //(0) 
has modality n then / also has modality n. 

Let / E m(r; A:)2 be a function germ with reticular R-finite-codimension. In the 
procedure of the classification, we adopt the following notations: 
'=>' means 'see'. 
'/ ~ #' means '/ is reticular R-equivalent to g' (g E £(r; k)). 

1 vR 
'(-> g1 means '/ ~ g by lemma 7.6 by the analogous method of (2)'. 

2 rR 
'H-» g1 means lf~gby lemma 7.5 by the analogous method in (6)'. 

3 TR 
'!-)• g1 means '/ ~ # because g is (degree of #)-determined by Lemma 4.2'. 

'i-> g' means '/ ~ g by a linear coordinate change'. 

The case r — 1. The classification is reduced to V.I. Arnold [2] and V.I. Matov [9]. 

The case r — 2, k — 0. Let /2/(0) = ax\ + bxiX2 + cx^. 
a/0,c^0 =>     (1) 
6 ^ 0, c = 0 =»     (3) 
a = 0,M0,c^0 => (4) 
a^0,& = 0,c = 0 => (5) 
a=:0,6 = 0,c^0 => (7) 
a = 0, 6 = 0, c = 0     =>     (8) 

(1) j2f(0) has the normal form ztxf 4- axiX2 ± x2 by a linear coordinate change. 

a2 ^ ± ±4     M-     ±xl + 0x1X2 ^x2. 
a2 = db ± 4     =»     (2) 

(2) A   ±(x? ± 2x1x2 + x2) + ^^3 a^l (3i s.t.   a* ^ 0) : Let /o = i2/(0).   Since 
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xi^- = ±2(xl ± X1X2) and a^ff^ = ±2(±xiX2 + x^), we may replace any term of 
degree > 3 involving xi in / by terms involving less rci's and more a^'s and terms 
of higher degree by lemma 7.6. As a result we have the normal form. If a^ = 0 for 
all i, then we have codimension / = 00. Therefore there exists an integer i such that 

Oi / 0. A  ±(xf ± 2x1X2 4- x^) + ax^ (n > 3, a ^ 0). 
(3) j2/(0) has the normal form ±xf ± X1X2 or ±xiX2 by a linear coordinate change. 

^    Ei>2 aixi + X1X2 + Ej>3 ^^2   (3^i  S-t-    ai"  # 0; bJ  / 0)     = 03? ^ ^l^ + ^2* 
(where g,h are units in 5(2; 0) and n > 2,m > 3 be the minimum integer satisfying 

rR 3 
an ^ 0,6m 7^ 0 respectively) ~ ix^ + X1X2 + gx™ (n > 2,m > 3,# :unit) H- 
±x? ± X1X2 4- ax^ (n > 2, m > 3, a ^ 0). 

(4) By using the analogous method of (3), we have / ~ ±x^ ± X1X2 4-ax| (n > 3, a ^ 
0). 
(5) j2/(0) has the normal form ibxf by a linear coordinate change. Hence j3/(0) has 
the normal form dzxf + axix^ -f bx^ by lemma 7.6. 

b^0    A     ±x2
1+ axixl H- bxl (b ^ 0) 

i->       ±x\ + aXiX'2 ix^. 
6 = 0     =>     (6) 

(6) j3/(0) has the normal form /o = ±x2 + axix2. Then j5f(0) has modality 2 
in J5(2 + 1;1): For any neighborhood of j5f(0) there exists an element /1 in the 
neighborhood such that 712(2) = iarf + 6xix| (b ^ 0). Then /1 has the normal form 
±Xi±xiX2+cx2+dx2 by lemma 7.5 (since xi^- = ±2xi±xiX2 andx2ffQ- = ±2x1X3, 
we may replace any term of degree > 3 involving xi in /1 by terms of higher degree). 
It is enough to prove that fi has modality 2. Suppose that /2 = dbrcf ± xix^ + c'x^ H- 
d'xl G OrR(/i). Then there exists 0 = (xi(/>i,X2</>2) G 5(2; 0) such that f2 = fiO(f) 
mod m(2;0)6, where /1 and /2 are considered as polynomial function germs. Let 
j202(O) = 02(0) + 02i£1 + 022^2 (021, 022 G R). By the coefficient of xf in /2 we have 
0i (0) = 1. By the coefficient of xix^ we have 02(0) = 1. By the coefficient of X1X2 
we have 022 = 0. These imply that a = a' by the coefficient of x^ and b = b' by the 
coefficient of xix^. 
On the other hand, reticular R-codimension /    > 8:   It is enough to prove that 
codimension of OrR(/i) in J5(2 + 0,1) > 8. Set A = (x\,x\x2iX\X2,X2)e{2',Q)' Since 
m6(2;0) C A andxif^- = ±2x\±x1xl,X2^r = ±2xix^+4ax|+ 56x|, we have that 

*?!£ = Wllfri = x^l^ =x2l£;^0 ™d A' Therefore 

codimension of OfR(/i) in J5(2 + 0,1) 

- dim £(2;0)/((xi|^,X2|£) +m(2;0)6) 

>dim£(2;0)/((x1f^,xix2f^:x2^,x^)R + A) 
axi dxi      0x2      0x2 

= dim £(2; 0)/A - 4 = 12 - 4 > 8. 

(7) By using the analogous method of (5), we have / ~ ±xf -f ax\x2 ± x^ or / has 
modality 2 and codimension / > 8. 
(8) /Gm(2;0)3. Hence 

reticular-R-codimension / > dim £(2;0)/((xi-^,X9 7-MR + m(2;0)4) > 10-2 = 8. 
axi       ax2 

On the other hand, we can show that j3/(0) has modality 2 by analogous methods of 
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(6): In this case, if we consider an element z G 7r3(m(2; 0)3) such that the coefficients 
of x\,x\ are not zero. Then z has the normal form ±.x\ + ax\x2 -f bx\x\ ±x\ by a 
linear coordinate change. Hence z has modality 2. 
The case r = 2, k — 1.   Let j2f(0) = axiy + ^22/ + cxf + c/xi^ + ex^. 
a^O.b^O =»     (9) 
a ^0,& = 0,e ^0    =»     (10) 
a^ 0,6 = 0,6 = 0    =>     (12) 
a = 0,6^0 =>     (13) 
a = 0,6 = 0 =*     (14) 

(9) j2f(0) has the normal form xiy ± X2y + ax2 by a linear coordinate change 

*-* Ei>3 aiyi + x1y± X2y + Ei>2 ^2 (3^is.t. a,- ^0,6^-^0) r~ ±2/n + ^i2/±^22/ + 
aa:^ (n > 3, m > 2, a 7^ 0) (here we used the analogous method of (3)). 
(10) j2f{0) has the normal form xiy±X2 by a linear coordinate change. Hence j3/(0) 
has the normal form ay3 -f xiy -f 6a;22/2 i #1 by lemma 7.6. 

a 7^ 0     H*     a?/3 + a;i2/ + 6X22/2 ^ ^i (a 7^ 0) 

»->     ±y3 + a;i2/ + a^22/2 ± x^ (a £ R). 
a = 0    =>     (11) 

(11) We can prove that j5/(0) has modality 2 and reticular R-codimension of / 
> 8 by analogous methods of (6): Consider an element /o G J5(2 + 1,1) satis- 
fying TTK/O) = xiy + ax2y2 ± xl (a ^ 0). Then /o has the normal form ayb -f 
6?/4 + XIT/ ± a:22/2 ± a:2 an(^ hence /o has modality 2. On the other hand, set A — 
(xl,xixl,xl,xiy,xly2,X2yA

:y
6)s{2',i)' Since m(2; I)6 C A andxif^- = x1y,X2§^ = 

±X2y2 ± 2x11& = ^y4 + 46i/3 + x1 ± 2x22/, we have x1 §& = gx2§g = h^- = 0 
mod A for ^ = xi,^2,2/2 and h = xi,x2,X2y,yz. Hence 

codimension of OrR(/o) in J5(2 + 0,1) 

ZSatMl^^fy + A) 

= dim,(2il,/(teg,x2^,f,,2f,^,^f)R + ^ 
> dim £{2\ I)/A - 6 = 14 - 6 > 8. 

(12) j2f(0) has the normal form xiy by a linear coordinate change *-> xi^/ + h(x2,y) 
lhem(x2,y)3) 
mod A Hence 
(ft G m(a;2,2/)3). Set A = (a:it/,a:?,a;ia;|) + m(2; I)4. Then we have xi §^ = X2§^ = 

reticular -codimension / 

^.m^D/^-^.-^.-^-^-f^) 

> dim 5(2; l)/i4 - 4 = 12 - 4 = 8. 

On the other hand, we have j3f(0) has modality 2 by the analogous method of (6): 
Consider an element fo G J3(2 -h 1,1) which has the form xiy + h{x2)y) (ft is a homo- 
geneous polynomial of degree 3) and the coefficients of x^ and y3 in ft are not zero, 
then /o has the normal form xiy ± x^ + aa^ + ^22/2 ^ 2/3 and hence /o has modality 
2. 
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(13) By using the analogous method of (10) and (12), we have / ~ ±y3 + X2y + 
axiy2 ± x\ or / has modality 2 and codimension / > 8. 
(14) i3/(0) has the form h(x\,X2) + g(xi,X2,y), where h,g are homogeneous polyno- 
mials of degree 2,3 respectively. Hence 

reticular R-codimension / 

> dim S(2; l)/«:ri J^, x2^ g) + m(2; I)4 + m(2; 0)3) 

,.     ^/« ,M//     
5/        9/   df dh dh       dg      dg    dgK = dim£(2]m(x1 — ,x2 — ^^iy — ,x2y — 9Xl-X2-y-)K 

+m(2;l)4 + m(2;0)3) 

> dim £{2] l)/m(2; I)4  - 4 - 8 = 20 - 4 - 8 = 8. 

On the other hand, j3f(0) has modality 2 in J3 (2 + 1,1) by analogous method of (6): 
Consider an element /o £ J3(2-f-l, 1) which has the form axf+6^10:2 -\-cx2H-g'^i, #2»2/) 
(^f' is homogeneous polynomial of degree 3) and all of the coefficients of x^x^ y3 are 
not zero and b2 ^ 4ac. Then /o has the normal form dbxf + 0x1^2 db ^2 ± 2/3 + bxiX2y 
and hence has /o modality 2. 
The case r = 2, fc > 2. We prove that codimension / > 8 and j3/(0) has modality 
2. To do this, we only need to prove in the case k — 2 because codimension / > 
codimension f\yz-...=yk=Q and if f\yz=...=yh=Q has modality 2 then / also has modality 
2. 

Set A = m(2; 0)2 4- m(2; 0)m(0; 2)2 + m(2; 2)4. Since / G m(0; 2)3 + m(2; 0)m(0; 2) -f 
m(2;0)2 we have that x2% = arj/fi = xy^ = y2^ = 0. Hence 

reticular R-codimension / 

>dim£(2;2)/((zg,g>+A) 

>dim£{2]2)/A-S 

= dim £(2; 0)/m(2; 0)2 + dim m(0; 2)/m(0; 2)4+ 4-8 = 3 + 9 + 4-8 = 8. 

On the other hand, j3/(0) has modality 2 by an analogous method of (6): Consider 
an element f0 in J3(2 + 2,1) in which all of the coefficients of xiyi, #22/252/1?2/1 are 

not zero. Then /o has the normal form xiyi + #22/2 i i/3 + a2/22/2 + &2/12/2 ^ 2/1 an(i 
hence /o has modality 2. 
The case r > 3. We only need to prove in the case r — 3, k — 0 that codimension 
/ > 8 and j2/(0) has modality 2. 

reticular R-codimension / 

> dim £(3;0)/((a;§£) +m(3;0)4) 
ax 

> dim 5(3;0)/((a;^,x2^)R + m(3;0)4) 

> dim £(3; 0)/m(3; 0)4  - 3 - 9 = 20 - 3 - 9 = 8. 

On the other hand j2/(0) has modality 2 in J2(3 + 0,1) by the analogous method of 
(6): Consider an element /o in J3(3 + 0,1) in which all of the coefficients of x^x^xl 
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are not zero. Then /o has the normal form ixf ± xj ± xl 4- ax1X2 + ^2^3 + c^s^i 
and hence /o has modality 3 in J2(3 + 0,1). D 
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The ,62,2 caustics II 
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The B22 caustics III 
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The ^2,2 caustics IV 
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The B22 caustics V 
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The Boo caustics VI 
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The B22 caustics VII 
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The £2,2 caustics VIII 
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The sections of £2,2,3 caustics I 
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The sections of -62,2,3 caustics II 
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The sections of 52,2,3 caustics III 
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The sections of B2 3 caustics I 
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The sections of 82$ caustics II 
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The sections of £2,3 caustics III 
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The sections of £2,3 caustics IV 
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The sections of C32 caustics I 
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The sections of C^2 caustics II 

619 



620 TAKAHARU TSUKADA 

The sections of C3 2 caustics III 
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The sections of C32 caustics IV 
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