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RETICULAR LAGRANGIAN SINGULARITIES*

TAKAHARU TSUKADA'

1. Introduction. Lagrangian singularity can be found in many problems of
differential geometry, calculus of variations and mathematical physics. One of the
most successful their applications is the study of singularity of caustics. For example,
the light rays incident along geodesics from a smooth hypersurface in a Riemannian
manifold to conormal directions define a lagrangian submanifold at a point in the
cotangent bundle. The caustic generated by the hypersurface is regarded as the
caustic of the lagrangian map defined by the restriction of the cotangent bundle
projection to the lagrangian submanifold. Therefore the study of the caustic generated
by the smooth hypersurface is reduced to the study of Lagrangian singularity. In
[13], I.G.Scherbak studied the case when the hypersurface has a boundary and she
explained the caustic generated by the hypersurface with a boundary corresponds to
a generalized notion of caustic (i.e., the boundary caustics).

In this paper we investigate the more general situation when the hypersurface
has an r-corner. In this case the incident rays from each edges of the hypersurface
to conormal directions gives a regular r-cubic configuration (cf., Section 3) at a point
of the cotangent bundle which is a generalized notion of Lagrangian submanifolds.
The caustic generated by the hypersurface with an r-corner is given by the caustic
of the regular r-cubic configurations (cf., Section 3) which is a generalization of the
notion of quasicaustics given by S.Janeszko (cf., [7]). In complex analytic category,
the theory of regular r-cubic configurations has been developed by Nguyen Huu Duc,
Nguyen Tien Dai and F.Pham (cf., [3], [6]). But their method does not work well for
C>-category.

The main purpose of this paper is the investigation of the stability of smooth
regular r-cubic configurations and the classification of stable caustics given by stable
regular r-cubic configurations in C'*°-category. In order to realize this purpose we
shall define the notion of reticular lagrangian maps in Section 3 which is a general-
ization of the notion of lagrangian maps for our situations. We shall also prove that
the equivalence relation among reticular lagrangian maps is equivalent to a certain
equivalence relation of corresponding generating families. In Section 5 we shall de-
fine the notion of stability, homotopically stability, infinitesimal stability of reticular
lagrangian maps and prove that these and the stability of corresponding generating
families are all equivalent.

By the above results the classification of stable caustics is reduced to the clas-
sifications of function germs. In section 7 we classify unimodal function germs with
respect to reticular R-equivalence. This gives the classification of stable caustics in
manifolds of dimension< 6. In [14], D.Siersma classified singularities with bundle
codimension(=R-codimension—modality) < 4 under the same equivalence relation.
Hence a part of his classification list is the same as the part of our list. We shall draw
the pictures of stable caustics in manifolds of dimension< 4 at the last part of this

paper.
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2. Preliminaries. The propagation mechanism of light rays incident from a
hypersurface germ with an r-corner in a smooth manifold is described as follows
(Cf., [8]): Let M be an n(= r + k + 1)-dimensional differentiable manifold and H :
T*M\0 — R be a C*™-function, called a Hamiltonian function, which we suppose to
be everywhere positive and positively homogeneous of degree one, that is H(A{) =
AH (&) for all A > 0 and £ € T*M\0, where m : T*M — M is the cotangent bundle.
Let Xy denote the corresponding Hamiltonian vector field on 7% M\0, given locally
by the Hamiltonian equations:

0H 0H

'i =3 bi=— )
%= o 0q;

where (g,p) are local canonical coordinates of T* M.

We set E = H~!(1) and consider the following canonical projections 7 : T*M —
M, ng :RxE = E, mr : Rx E - R. We denote E; the fiber of the spherical
cotangent bundle 7|g at ¢ € M.

Let go € M, to > 0, & € E4, and 1o be the image of the phase flow of Xy at
(to, o). Since the phase flow of Xy preserves values of H, the local phase flow ¥ :
(RxT*M\O, (to,&)) = (T*M\0,n0) of X induces the map ® : (R x E, (to,%)) —
(R x E, (to,m0)) given by ®(t,¢) = (¢, ¥(¢,£)).

We set exp = mpr 0 @ @ (R x E, (to, &) = (M, u0), expg, = eTp|rxE,,, TP~ =
g 0@ (R x E,(to,n0)) = (M,q), exp,, = exp” |RxE.,, $1 = (Tg,exp) :
(R X E7 (t07§0)) - (M X M; (QO7U‘0))7 ¢2 = (6.’17])_,7TM) : (R X E7 (t07770)) - (M X
M, (go,uo)), where ug = m(n9). Then the following diagram is commutative:

(R x E, (to, %)) = (R x E, (to,m0))
v exp 1N\ P2 erp” Ny
(M7 uO) ('E_ (M X Ma (QOaUO)) 2} (Ma QO)

By [8, 2.2] we have the following proposition
PROPOSITION 2.1. If exp,, is regular then ¢1 and ¢» are diffeomorphisms.
Let expy, be regular, we can define the function germ

T:ﬂlRoqsl—l :WRO¢;1 : (M X M7 (QO7UO)) — (thO)

We call T the ray length function associated with the regular point (to, &) of expy,. Set
5 = ﬂ-Eod)l—l : (MXM7 (QO;UO)) — (E7£0)7 n= 7TE'°¢)2_:l : (M XM7 (q07u0)) — (E7T]0)
By [8, Lemma 2] we have

qu(Q7 u) = ‘6(‘17”)7 duT(Q7 u) = 77((1,“) for (‘LU) € (M X M7 (QO7UO))'

EXAMPLE. Let M be a Riemannian manifold and H be the length of covectors.
Then ® maps each covector in time ¢ a distance ¢ along the geodesic and hence
7(q,u), (g,u) € (M x M,(qgo,up)), is the length of geodesic which connects ¢ and

u. In particular if M be a Euclidean space R", then ®(t,q,p) = (¢ + ﬁt,p) and

7(q,u) = |q — u|, where (g,p) are canonical coordinate of T*R™ and q,u € R.

Let H" = {(z1,---,2,) € R"|z1 > 0,---,z, > 0} be an r-corner. Let V° be the
hypersurface germ in (M, o) satisfying &o|z, vo = 0 with an r-corner defined as the
image of an immersion ¢ : (H” x R¥,0) — (M, go). We parameterize V° by ¢. For each
o C I, ={1,---,r} we define A2 by the set of conormal vectors of V.0 := Vn{z, = 0}
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in (E,&) as the initial rays incident from V2. Then we regard the set L, the image
of covectors in A2 by mg o ® around time %o, that is

La = {7TE o <I>(t,§) € (E,UO)I(t,f) € (R7 tO) X Ag}’

as the set of rays incident from V? at time 5. We also regard the union of L, for all
o C I, as the set of rays incident from the hypersurface V0 at time to.

Let C, be the critical values of n|r, for ¢ C I, and Q, . = (L, N L,) for
o # 1 C I,. We define the caustic of the light rays incident from V° around ¢o by

U ¢u U Qo

oClI, oFT

The meaning of the caustic is the following: For example, consider the case r = 2,k =
0. Then Vo = {(q1,42,93)|q1 > 0,g2 > 0,93 = 0} for coordinates (¢1, g2, g3) of (M, qo)-
By the remark of the definition of the caustic in Section 3 we have U‘,#T Qor =
Qo,1 U Qo2 UQ1 12} UQ21,2)- The bright points generated by incident rays from
VO vVon{g =0}, V°n{g =0} and V°N {1 = ¢ = 0} are Cy, C;, Cs and
C 2 respectively. On the other hand the light rays incident from the boundary of
VO, Von{q =0} and V°n{go = 0} are Qg1 UQp 2, Q1,{1,2} and Q> {1 2} respectively.
They appear as the boundary of the shadow defined by the boundary of light rays
incident from V°, V0N {q; = 0} and V°N {g2 = 0} respectively. This definition is a
natural extension of quasicaustic defined in [7].

The family of lagrangian submanifolds {L,},cr, is ‘generated’ by the ray length
function 7 as the following;:

PROPOSITION 2.2. Let VO be the hypersurface germ in (M, qo) satisfying §0|qu Vo
= 0 defined as the image of an immersion ¢ : (H™ x R¥ 0) — (M,qo). Let L, be the
set of rays incident from V2 := VOn {z, = 0} at time ty for 0 C I.. Define
F:=71o0(txidy) —to € m(r;k +m). Then the following hold:

(1)
O’F
Ozdu
rank =r+k.
0’F
Oyou /
(2)

Lo = {d,F(z,y,u) € (T"M\0,m0)|zs = dy, _, F(z,y,u) = dyF(z,y,u) = 0}

for o C I., where we identify (M,uo) and (R"™,0) by coordinates (uy,---,u,) of
(M, ’U,o).
Proof. By [8, Sublemma] we have

dud:F '\ | *
( d,F ) :TueM = T; VO ® R
is an isomorphism. This means (1).

Let o C I and 7, € (E,no). Then n, € L, if and only if n, = 7g o ®(¢,&,)
for some & € E, and t € (R, to) satisfying ¢ € V? and &|z,vo = 0 if and only if
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Ny = dy7(q,u) for some ¢ € V2 and u € (M, uy) satisfying dy7(g,u)|T,ve = 0 and this
holds if and only if 7, = d,F(z,y,u) for some (z,y,u) € (H" x R¥*™ 0) satisfying
T, =0and d;, _, F(z,y,u) =dyF(z,y,u)=0.0

The stability of the caustic of Vg under perturbations of ¢ with respect to the
fixed Hamiltonian function is studied in [15]. Otherwise let H = {(q1,---,qn) €
(R™,0)]q1 >0,--+,¢» > 0,g,+1 = - -+ = g, = 0} be an r-corner and L2 be the conor-
mal bundle of H N {z, = 0} for ¢ C I.. By theorem 3.2(2), proposition 2.2 implies
that the family of lagrangian submanifold {L,},cr. is a regular r-cubic configuration,
that is there exists a symplectomorphism S : (T"R",0) — (T*M\0, 7o) such that

Ly =S(LY) for ocCI,.

Hence in this paper we investigate the stability of the caustic under perturbations
of the corresponding symplectomorphism. Generally the stability of the caustic under
perturbations of the symplectomorphism is more stronger one of the perturbations
of the immersion. Because a small perturbation of the immersion implies a small
perturbation of the symplectomorphism, but for any perturbation of the immersion
the corresponding lagrangian submanifold L, is included in E for all ¢ C I,. The
stability of the caustic under perturbations of the immersion is studied in [15].

In order to realize our investigation we shall define reticular lagrangian maps in
more general situation.

3. Reticular lagrangian maps. Here we shall define reticular lagrangian maps,
their caustics and equivalence relations.
Let (g,p) be canonical coordinates of (T*R™,0) and 7 : (T*R",0) — (R",0) be
the cotangent bundle. Let H = {(q1,---,¢,) € (R™,0)|¢g1 > 0,---,¢ > 0,¢r+1 =
- = ¢p, = 0} be an r-corner and H, = {(q1,-*,¢s) € H|g, = 0} be an edge of H
for 0 C I,. We define LY the conormal bundle of H,, that is

L(c)r ={(q,p) € (T*ano)'qa =pL—o=G+1="""=qn=0,q1,—¢ > O}'

We define a representative of the union of L2 for all o C I, by

L= {(¢,p) ET'R"|g1p1 = - = ¢vPr = g1 = - = g = 0, q1, > 0}.

DEFINITION 3.1. We call the map germ
(L°,0) = (T*R",0) = (R",0)

a reticular lagrangian map if there exists a symplectomorphism S on (T*R",0) such
that ¢ = S|po. We call S an extension of i and call {i(L%)},cs, the (symplectic)
regular r-cubic configuration associated with 7 o 3.

REMARK. The definition of symplectic regular r-cubic configurations in the com-
plex analytic category by N.H.Duc [6, p. 631] is as follows: If there exists a symplec-
tomorphism S such that L, = S{¢s = pr.—¢ = @r+1 = -+ = g = 0}) for ¢ C I,
then {L,},cr. is called a symplectic regular r-cubic configuration.

Caustics: Let 7 o1 be a reticular lagrangian map. Let C, be the caustic of the
lagrangian map m o i|ro for ¢ C I, (i.e., the critical value set of m 0 4|z0) and let
Qor =m0 i(LONLY) for o # 7 C I,. We define the caustic of o i by

U c-ul Qo

oClI,. oF#T
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We remark that for 71,72 C I, (11 # 72) we have Qr,,, C Qs oupi}, Where o = N7
and ¢ be any element of (1, — ¢) U (72 — 0). This means that |,, Qo is equal to
the union of Q, , for ¢ C 7 C I, #(7 — o) = 1. For example, in the case r = 2 we
have

U Qoyr = Qp1UQo2UQ1 112y U Q2 (12}
OET

Equivalence relations: We call a homeomorphism germ ¢ : (L°,0) — (fL°,0) a
reticular diffeomorphism if there exists a diffeomorphism @ on (T*R",0) such that
¢ = ®|po and H(L%) = L2 for ¢ C I,. We say that reticular lagrangian maps
moiy,moiy: (L°,0) — (T*R"™,0) — (R™,0) are lagrangian equivalent if there exist a
reticular diffeomorphism ¢ and a lagrangian equivalence © of w such that the following
diagram is commutative:

(L°,0) % (T*R",0) = (R",0)
oL 0l gl
(L°0) 2 (T*R™,0) = (R",0),

where g is the diffeomorphism of the base space of 7 induced from ©.

We remark that if reticular lagrangian maps 7 041, w04y are lagrangian equivalent
then all lagrangian maps 7 o4|Lo, 7 0 42| are lagrangian equivalent.

Here we shall define generating families of reticular lagrangian maps and study
the relations between reticular lagrangian maps and their generating families. At first,
we define several notations of function germs which are used as generating families of
reticular lagrangian maps.

Let H" = {(21,---,2,) € R"|z1 > 0,---,z, > 0} be an r-corner. Let £(r;1) be
the set of smooth function germs on (H" x R!,0) and m(r;1) = {f € £(r;1)|£(0) = 0}
be its maximal ideal. We denote simply £(1) for £(0;1) and m(!) for m(0;!) and denote
B(r;1) the set of diffeomorphism germs on (H" x R',0) which preserve (H" N {z, =
0}) x R! for all ¢ C I,. We remark that a diffeomorphism germ ¢ on (H" x R!,0) is
an element of B(r;!) if and only if ¢ is written in the form:

¢(x’y) = (wlal(may)y‘ e ,w,ar(z,y),bl(z,y),~ e 7bl($ay)) for (m,y) € (HT X Rl70)a

where a1,--+,a,b1,--+,b, € E(r;1) and a1(0) > 0,---,a,-(0) > 0.

We say that function germs f, g € m(r;!l) are reticular R-equivalent if there exists
¢ € B(r;1l) such that g = f o ¢.

We say that function germs F(z,y,u), G(z,y,u) € m(r;k+n), wherez € H", y €
R* and v € R", are reticular RT-equivalent (as n-dimensional unfoldings) if there
exist ® € B(r;k + n) and o € m(n) satisfying the following:
(1) @ = (¢, %), where ¢ : (H" x RF" 0) — (H" x R*,0) and ¢ : (R",0) — (R",0).
(2) Gz, y,u) = F(¢(z,y,u),$(w)) + a(u) for (z,y,u) € (H" x R*",0).
We say (®,a) a reticular R*-isomorphism from G to F and if & = 0 we say that F
and @ are reticular R-equivalent.

We say that function germs F'(z,y1,- -, Yr,,¢) € m(r; k1 +n) and F(z, 41, -, Yks,
u) € m(r;ke + n) are stably reticular R -equivalent if F and G are reticular R*-
equivalent after additions of non-degenerate quadratic forms in the variables y.

A function germ F(z,y,u) € m?(r;k + n) is called non-degenerate if

OF OF OF oF

L1y Lpy oy "y oy "y
) 1Ty ax17 7a$rYay17 ’8yk
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are independent on (H* x R*¥*™ 0), that is

O*F  O’F
rank E)axz%y %@%‘ =r+k.

Oydy Oydu /

We remark that F(z,y,u) € m?(r; k + n) is non-degenerate only if 7 < n.

Let m o i be a reticular lagrangian map and F(z,y,q) € m(r;k + n)? be a non-
degenerate function germ. We call F' a generating family of mw o4 if F|;,—o is a
generating family of i(L%) for o C I, that is

OF oF oF
i([°) = i *R™ = = — =
i(Ly) = {(g, 9 (z,9,9) € (T"R",0)|z, i 0} for o C I,.

We also call F a generating family of {i(L%)},c1.

In the case r = 0, this definition is the same as that of the generating family of a
lagrangian map(cf., [1]).

THEOREM 3.2. (1) For any reticular lagrangian map © o4, there ezists a function
germ F € m(r; k + n)? which is a generating family of woi.

(2) For any non-degenerate function germ F € m(r;k + n)?, there exists a reticular
lagrangian map of which F is a generating family.
(3) Two reticular lagrangian maps are lagrangian equivalent if and only if their gen-
erating families are stably reticular R -equivalent.

We remark that there exists an analogous result of this theorem for complex
analytic categoly in [3, P. 13 Théoréme]. But its proof does not work well for C°°-
categoly because F; in ‘Preuve du lemme i’ may be degenerate for some ¢t € [0,1].
Our proof is available for complex analytic and real analytic categoly.

Proof. (1) Let o4 be a reticular lagrangian map and S an extension of i. Let
Ps be the canonical relation associated with S, that is

Ps = {(Q, P;q,p) € (T*R" x T*R",0)|(¢g,p) = S(Q, P)},

where (Q, P) is canonical coordinates of the domain. By considering a lagrangian
equivalence of 7 04, we may assume that there exists a generating function T'(Q, p) of
Pg, that is

or

PS={(Q’_6Q

(Q,p);—%%(Q,p),p) }.

Define F € m(r;n +n)? by

n
F(xyyyq) :T(l'l:"':xT:Oa'“aO;yl:'"7yn) +Zqu1
=1

Since T is a generating function of Ps, rank T (0) = r. Hence

dzdy
0*F 9°F o°T 0
0zdy 0xdq _ | 0Ozoy
8*F  9%F - o*T E

dy*  dydq /, dy? 0
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has rank 7 + n. This means that F' is non-degenerate.
Otherwise, we have

(0 G @ lar = g = 5 =0)
={(e,9)lzs = 5;3%( 0,y) = 62 (,0,y) + g = 0}
= (@)@, = 55 —(@D) = Qrir =+ = Qn = Z(Qu1) +4=0,Q1,—s >0}
(-G @D)PIQ = 55 —(Qp) = Qraa = = Qn =0,Q1— 20}

= S(Lg) =i(L7)

for ¢ C I,. Hence F' is a generating family of 7 o 4.
(2) Let F € m(r; k+n)? be an non-degenerate function germ. Choose an (n—r)xk
matrix A and an (n —r) X n matrix B such that

0*°F O*F

TR

By Byaq
A B

0

is invertible. Let F'(z,y,q) € m(r + k + n)? be an extension of F' and define
Gemk+n+ n) by G(y,z,z',q) = F'(z,y,q) + 2' Ayt + 2'Bqt, where y € R¥,
(z1,--,zp, 2, _,) € R" and ¢ € R™. Since g’;, gﬁ, ‘gI; are independent,

, 060G 0G 0G, 0G
P = { (ZIJ,ZL' 7_8_{1:’-%’%8_‘]) | a_y - }
is the canonical relation associated with a symplectomorphism S. Hence F is a gen-
erating family of the reticular lagrangian map 7 o S|po.

(3) By using analogous methods of the proof of [1, p.304 Theorem], it is enough
to prove the following assertion:

Let Fo(z,y,q), Fi(z,y,q9) € m(r;k +n)? be non-degenerate function germs. If Fy
and Fy are generating families of the same reticular lagrangian map, then Fy and Fy
are reticular R-equivalent.

We suppose Lemma 3.3 and Lemma 3.4 and begin to prove this assertion. By
using analogous methods of the proof of D.(a) ~ (d) in [1, p.304 Theorem], we may
assume that

(1) F(y7Q) = FO(O’yy Q) =F (anaQ)y
0*F 8’F
(2) 8_3/2(0)=0’6 (0) Ek’JC{172aan}’lJ|=k

We may assume by (1), (2) and Lemma 3.3 that

3) 72 Fo(0) = 52 F1(0).
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We may assume by (2), (3) and Lemma 3.4 that

, OFy OF
(4) X7 :=%F = Fl’a—qo !

Igcr =0foralleoCl,

where £ = { (z,y,q) € (H" x R¥*",0) | z, = % = %I;i =0},i=1,2.

Define the function germ F on (H” x R*¥*+"+1 0 x [0,1])) by F(z,y,q,t) = (1 —
t)Fo(z,y,q) + tFi(z,y,q), t € [0,1] and set F; € m(r;k + n)? by Fi(z,y,q) =
F(z,y,q,t) for each t € [0,1]. Since j2F,(0) = j2F1(0), F; is non-degenerate and
hence £, = X7 for all t € [0,1] and o C I, because £, = X% . Hence we have by
hypothesis that

OF; OF
($,97Q) € 27 = E—t(z,y,Q) = f‘(xayaQ) (Vt € [Oa 1] ,VO' - IT )
q q
We now claim that % is written in the form:
OF & OF <. OF
yr ;Eiwia—xi + j;m%

for some smooth function germs &, ---,&.,m1, -+, n on (H™ x RF+"+1 0 x [0,1]).
Fix o C I, (z,y,q9) € 7 and let ¢ : [0,1] = 7, t — (z(t),y(t),q(t)), be a
smooth path connects 0 and (z,y, ¢). Then

(R - )@ = [ S

Fy — Fo)(c(t))dt
O(F — Fy) dw, i
/( Z 8:1: - dt zz:

OB ) dy ) 5~ O o) do

jel.—o y i=1 aq dt
Since 83F = %I;" =0(@¢ =1,2), M = 0 on X7 by (4), we have (F} —
Fy)(z,y,q) = 0. Therefore (F} — Fp) |U = 0. This means that 83—1: = 0 on the
set et
oF oF OF
t —— e e e = —_— = ——— = 0 .
{(wayaqa ) | T1 Bwl wraxr 3:1/ }
Since z1,- -, T, gfl . ,g}, % --~,g—5— are independent on (H" x R*¥+n+1 {0} x

[0,1]), we obtain the claim. Moreover since j2°5+ 9F: (0) = 0, we have n(0,t) = 0 for
t€0,1].
Since the time dependent vector field

X = ém + n
>+ X

vanishes on {z = y = ¢ = 0}, the flow ®;(z,y,q) of X with the initial condition
®o(z,y,9) = (x,y,q) exists for all ¢ € [0,1]. By the uniqueness of the flow, ®; is
written in the following form:

ét(:uyaq) (xlat( T, Y, Q) ) axrat(x Y, q) h’t( z,Y,q )7 )a
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for each ¢t € [0,1]. Then ®; defines a reticular right equivalence from Fy to Fi, that
is Flo®; = Fy. 0

LEMMA 3.3. Let F1, Fy € m(r; k+n)? be non-degenerate function germs. Suppose
that the following conditions hold:

Loi=L§ = I, fora = I, — {1}, I — {r},,
F := Fi|z=0 = F3|z=o0,

0*F 0*F
570 =05
9y? 0y0qs

where {L%, }oc1, be the symplectic regular r-cubic configuration defined by F;. Then

there exist positive numbers ai,---,a, and an r X k-matriz B such that F3(z,y,q)
= F2(alx17 AT, Y + .’EB, Q) Satisﬁes .72F1(0) = j2F3(0)'

As a result, Fi and F3 are generating families of the same reticular lagrangian
map and the conditions (1) and (2) in the proof of Theorem 3.2 (3) hold for F; and
F;.

Proof. Let I = I, — J. We denote 325; (0) by F!, and denote other notations
analogously. By hypothesis we have

0)=E (Jcl,|J[=k),

OF; OF; OF;
L, = -_ = — = — =
o { (qv aq (x7y7 Q)) l :1"0 8"1;1,.—0' ($7y7q) (9y (J"?ya Q) 0}’
for o0 C I, i = 1,2. Therefore for any vector v in TpL,, there exists (ai,b,c!) €
RI7ITk+7 (1=1.2) such that a, > 0,

J Fi Fi ag-
5 =3 ey i ) ¥ | =0
(5) ( F;z,. Fy2(: 0) Fyq ( o )
and
(6) v:c"—a—|0+(Fi al + Fy, b + F, ci)ﬁ|0
6(] qT+ T qy qq 6& ’

where 7 = I, — o and (g, k) are the canonical coordinates of T*R'. Since
i i
rank ( Fary Farg ) =|7| + &,
Fp  Fy

we can arbitrarily choose ai.
Fix (al,b',c!), (a2, b?, c?) which define the same vector in T*R™. By comparing
the coefficients of 3%|0, %{—b, %b of (6), we have

cd=c(=c)

(7) Fql]z.,.a:' +quybl =Ff,z,af +qub2
(8) F} .ar+b =F a+b.

By (5), we have F}, a} + Fy,c=F,, a}+ Fy,c. Hence

9) F,, a.=F a.

YT+ T
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By (7)—Fg,4(8), we have

(10) (Fl - FtIIyFl )a‘lr = (F2 - FQIsz )az

qrxTr qiTr qrzr qiTr

By ( (9)%,(10)! ), we have
(11) al'(FL  FY . —F! F,)=a (F2,,F2 —F2_  Fy,).

Try?= Trqr Trqy Y’ Trqr TrqJ

Otherwise, since F; is non-degenerate, we have

i i i i i
rank( F‘”{y in*q ) =rank( Fiy Frq Frg ) = || + k.

F., Fy, 0 Fyq, Ey
c . . . E|T| —Fé .
By multiplying the invertible matrix Ekf‘“ on the left hand side of the

above, we have

TryY Trq Trq yar —
rank ( 0 I F»yql 7 Ek > I1 I k.

Hence
(12) rank(infy, FLW — F;qu Fyg) =7

Consider the case 7 = {s} and al = 1. By (11) and (12) we have a2 > 0.

Therefore if we denote Fz(a?z:,---,a%z,,y,q) instead of F, then we have
(13) (F;y’Fa}ql - F:BIQJFyQI) = (ny’Fa?qI - Fz2qJFy111)'

Hence o' = a*(=a). Set B =F,, — ngj and define F3(z,y,q) = F>(z,y + 2B, q).
Then we need only to check that F, = F; , F}, = F3 in order to complete the proof.
We have

+F —F2 =F!

zqy zqy zqJ?

F3 =F! +BF,, =F: +B=F;

zqy zqy zqJ zqJ

F} =F2 +BF,, =F. +F Fy, —F2 Fyu,,

xqr zqr xqr zqy xqg
(2 2 1 _ (o 1 _
- (qul - F:EQJFqu) + quJFth - (FIEQJ quJFyQJ) + quJFytu - F:z:q;'

Therefore F,, = F3,.

Finally repeat this proof between F; and F3. In the case o = 0 let (a!,b!,c!),
(a®,b%,¢®) € R4+ define the same vector. Then we have a' = a®(= a) by (11) and
have b! = b® by (8) and have (F, — F )a = 0 by (5). Since a is an arbitrary real
number, we have F., = F3,. 0

LEMMA 3.4. Let F1, F» € m(r;k+n)? be non-degenerate function germs. Suppose
that the following conditions hold:

Ly:=L% =L% (YoClI,)

o*F O*F

) _ 2 9 ) =

0)=E, (JCIL,|J=k).
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Set
OF; _ OF;

g _ T k+n — _
Fo={ @.0) € (' xRH7,0) |2, = 7ot = 05

=O}7
~ OF;
pg: %’; _—)La' ( (xayaQ) = (%%‘) )

for each 0 C I.. Then there exists G € B(r;k + n) such that G preserves q and
Gro = td|1,m-xrr+~ ond for each o C I, the following diagram is commutative:

Glge

F1
R Py
JZERN 1 p3
L,
Asaresult F3 = F>0( isreticular R-equivalent to F3 and X%, = X% (= X9), %%l—-

%|Ea = for each o C I,.
Proof. For each o C I, we set
Go = (p5)~" op : B, = B,
Since L%, = L, for each o C I, we have
Gongr == Galz;lnz;’l = Ga’lz;lmz;'l (Vo, o CI, ).
Since j2F;(0) = j2F»(0) and Fy, F, are non-degenerate, there exist function germs
wy,-++, Wp_r on (H" x R¥*7 0) such that
- - OF; OF; OF; OF; w

1, ’ T’awl’ ’61'7‘78:1/1, aayka 1,
define coordinates of (H" x RF*" 0). By using analogous methods of [3, lemme
i], there exists a diffeomorphism G on (H" x R**" 0) for which the diagrams are

commutative. By j2F;(0) = j2F3(0), we have G.q = id|p,g-xRrr+n. We have to
modify G such that G € B(r; k + n) and G preserves g.

cyWn—p (i=172)

Since
G = o G = 0
210Gl gy 8, 200 g = 710Gy 5y =0,
1 o G can be written in the form:
T
OF, 6F1
— 1 1
$10G—$1'01+Z$ia—zi' Z bj’
=2
where bl,---,b} are independent on z;. By Gio = zd, we have al(0) = 1. For each
i =2,---,r, take a},---,ak, b}, -+, b}, which have the similar properties. Otherwise

since
qu aF OF OF _—q~oG ——q-fori——l--~n
g | 1 _x,&-rL_Tyl_—o T IE eCIy E;l ? ’ LA

each ¢; o G can be written in the following form:

QzOG—ql-i-ZZ‘z ' ZaFl. i

Define G'(z,y,q) = (z1a},---,zra%,yoG', q), then the diagrams are also commutative
for G’ and G, = id, so that G' € B(r; k + n) and G’ preserves g. O
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4. Stability of unfoldings. In order to study the stabilities of reticular la-
grangian maps, we shall prepare the results of the singularity theory of function
germs with respect to reticular R'-equivalence. Basic techniques for the character-
ization of the stabilities we use in this paper depend heavily on the results in this
section, however the all arguments are the almost parallel along the ordinary theory
of the right-equivalence (cf., [18]), so that we omit the detail.

We denote J!(r+k, 1) the set of I-jets at 0 of germs in m(r; k) and let m; : m(r; k) —
J'(r + k, 1) be the natural projection. We denote j'f(0) the I-jet of f € m(r; k).

LEMMA 4.1. Let f € m(r;k) and Olz(j' £(0)) be the submanifold of J'(r + k,1)
consist of the image by m of the orbit of reticular R-equivalence of f. Put z = j' £(0).
Then

of

of
Tz(Oer(Z)) = 7'!'1((2131 6—171’ et 75177‘8_1,7‘)5(7';]»’) + I'Il(’l'; k)(

o . of
5'1/1’ ’5yk ’

We say that a function germ f € m(r; k) is reticular R-l-determined if all function
germ which has same [-jet of f is reticular R-equivalent to f.
LEMMA 4.2. Let f € m(r;k) and let

of of

—_— DECERY l‘ — 8f af
81‘1 ’ o 81’,

then f is reticular R-l-determined. Conversely let f € m(r;k) be reticular R-l-
determined, then

m(r; k)1 € m(r; k)((z1 )+ m(r; k) )) +m(r; k)2,

m(r;k)l+1 C (21 51,11»---,%8_;:)8@*) +m(r;k)(6_yf1"”’£>'

Let F € m(r;k + n1), G € m(r;k + na) be unfoldings of f € m(r;k). We
say that F is reticular RV-f-induced from G if there exist smooth map germs ¢ :
(H™ x R¥t72 0) » (H” x R¥,0), ¥ : (R™2,0) — (R™,0) and a € m(0;ns) satisfying
the following conditions:

(1) ¢((H" N {z, = 0}) x RF*"2) ¢ (H" N {z, = 0}) x R* for o C I,.
(2) G(z,y,v) = F(é(z,y,v),¥(v)) + a(v) for z € H", y € R and v € R™.

DEFINITION 4.3. Here we define several stabilities of unfoldings. Let f € m(r;k)
and F € m(r; k + n) be an unfolding of f.

We define a smooth map germ

JF : R7TE0) — (J'(r + £, 1),5'£(0))

as follow: Let F': U — R be a representative of F. For each (z,y,u) € U, We define
Flayu) € m(r;k) by Fig ) (2',y') = F(z+2',y +y',u) — F(z,y,u). Now define
JiF(z,y,u) =the l-jet of F{, ). jiF depends only on the germ at 0 of F. We say
that F is reticular R -I-transversal if ji F|,—o is transversal to Ol 5 (5! £(0)). 1t is easy
to check that F is reticular R*-I-transversal if and only if

E(rsk) = (01 2L of of . o1

— e, T, ok V; ;kl+1
B2 % 5er B 5‘yk>€( &) + Ve +m(r; k)T,

where Vi = L (1, 2 [u=o, ", 2L [u=o).
We say that F is reticular Rt -stable if the following condition holds: For any
neighborhood U of 0 in R™%*" and any representative F' € C*®(U,R) of F, there
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exists a neighborhood Ny of F such that for any element G € N 7 the germ Gler xrb+n
at (0, yo,ug) is reticular R*-equivalent to F for some (0, yo,up) € U.

We say that F is reticular R*-versal if F is reticular R*-f-induced from all
unfolding of f.

We say that F is reticular RT -infinitesimal versal if

of ... .9 9f  Oof
oz, Taivr a1’ Oy

E(rik) = (z1 57— ey + VE.

We say that F is reticular R -infinitesimal stable if

E(r;k +n)
@ OF L OF OF R, | OF  OF
= laxla ) Tﬁxr’ayl’ ,ayk E(r;ik+n) ’Bul’ 7BUn E(n)-

We say that F' is reticular R -homotopically stable if for any smooth path-germ
(R,0) = E(r; k + n),t — F, with Fy = F, there exists a smooth path-germ (R, 0) —
B(r;k +n) x E(n),t — (P4, a¢) with (89, a9) = (id,0) such that each (P4,0q4) is a
reticular R -isomorphism and Fy = F; o ®; + a4.

THEOREM 4.4 (Transversality lemma). Let U be a neighborhood of 0 in 0 €
R4+ with the coordinates (Ty,- -+, Tr, Y1, Yk, UL, -+, Upn) and A be a submani-
fold of J'(r + k,1). Then the set

Ta = {F € C®°(U,R) | 5. F|s=0 is transversal to A}

is dense in C°°(U,R) with respect to C*-topology, where jiF(z,y,u) is the l-jet of
the map (z',y') — F(z + ',y +y',u) at 0. The transversality we used is a slightly
different for the ordinary one [18], however we can also prove this theorem by the
method which is the same as the ordinary method.

THEOREM 4.5. Let F' € m(r;k + n) be an unfolding of f € m(r;k). Then the
following are equivalent.
(1) F is reticular R -stable.
(2) F is reticular RY -versal.
(3) F is reticular R -infinitesimal versal.
(4) F is reticular RT-infinitesimal stable.
(5) F is reticular R*-homotopically stable. For f € m(r;k) we define the reticular
R-codimension of f by the R-dimension of the vector space

. of ., 9f of  Of
5(T,k)/($1azl, T e B B =) e(rik)-

By the above theorem if 1,a1,---,a, € £(r;k) is a representative of a basis of the
vector space, then f +ajv; + -+ - apv, € m(r;k +n) is a reticular R*-stable unfolding

of f.

5. Stability of reticular lagrangian maps. In this section we shall define
several notions of stabilities for reticular lagrangian maps and prove that they and
the notion of stabilities for corresponding generating families are all equivalent.

In order to consider symplectomorphisms and symplectomorphism germs on
T*R™, we introduce canonical coordinates (@, P) and (¢,p) of T*R", where (Q, P)
are the coordinates of the source and (g, p) are the coordinates of the target.



RETICULAR LAGRANGIAN SINGULARITIES 585

Stability: For any open set U in T*R" we denote S(U, T*R™) the space of symplectic
embeddings from U to T*R™ with C°°-topology. We say that a reticular lagrangian
map 7o : (L°0) = (T*R",0) — (R",0) is stable if the following holds: For any
extension S of 7 and any representative S € S(U, T*R™) of S, there exists a neighbor-
hood Ng of S such that for any T € N the reticular lagranglan maps mo (TILo at )
and moi are lagrangian equivalent for some zo = (0,---,0;0,---,0,P?,,,---,P?) € U.

Homotopical Stability: Let 7 o : (L°,0) — (T*R",0) — (R",0) be a retic-
ular lagrangian map. A map germ ; : (L° x R,(0,0)) — (T*R",0)((Q, P,t) —
1:(Q, P)) is called a reticular lagrangian deformation of i if 10 = ¢ and there exists
a one-parameter family of symplectomorphisms S : (T*R" x R, (0,0)) = (T*R",0)
((Q,P,t) ~ Si(Q,P)) such that i; = Si|po for ¢t around 0. We call S an exten-
sion of i. Let ¢ : (L% 0) — (L°0) be a reticular diffcomorphism. A map germ
¢ : (L° x R, (0,0)) = (L°,0)((Q, P,t) = ¢:(Q, P)) is called a one-parameter defor-
mation of reticular diffeomorphisms of ¢ if ¢9 = ¢ and there exists a one-parameter
family of diffeomorphisms & : (T*R" x R, (0,0)) = (T*R",0)((Q, P,t) — &:(Q, P))
such that ¢; is a reticular diffeomorphism defined by ¢; = ®;|r0 for ¢t around 0. We
call ® an extension of ¢. We say that a reticular lagrangian map woi : (L°,0) —
(T*R™,0) — (R™,0) is homotopically stable if for any reticular lagrangian deformation
i = {i;} of i there exists a one-parameter deformation of reticular diffeomorphisms
¢ = {¢:} of idpo and a one-parameter family of lagrangian equivalences © = {0;}
with ©g = id7+r~ such that i; = ©; o i o ¢, for ¢t around 0.

Infinitesimal Stability: A vector field v on (T*R",0) is said to be tangent to L°
if v|go is tangent to L) for all ¢ C I.. A function germ H on (T*R",0) is said
to be fiber preserving if there exist function germs hg,- -, h, on the base of 7 such
that H(g,p) = Y., hi(q)p: + ho(g) for (¢,p) € (T*R",0). We say that a reticular
lagrangian map 7o i : (L°,0) — (T*R",0) — (R™,0) is infinitesimal stable if for
any function germ f on (T*R",0) there exists a fiber preserving function germ H

n (T*R",0) and a vector field v on (T*R™,0) such that v is tangent to L° and
Xjot=Xpgoi+i,.v, where Xy and Xy are the Hamiltonian vector fields of f and
H respectively and i,v is defined by i.v = (S«v) o4 for an extension S of i.

At first we prepare some lemmas to construct continuous maps between mapping
spaces. Let U,V be open sets in R™ R™ respectively. We define

Ni(l,e, K) ={ g€ C*(U,V) | ID*(9 — f)a| <eVz € K,|o| <1}

for each f € C*°(U,V),l € N,e > 0 and compact set K in U. Then the family of sets
N¢(l,e, K) forms a basis for the C*°-topology on C*°(U, V).
LEMMA 5.1. Let U be an open ball around 0 in R™. Then the map

/:C’°°(U,R) — C*(U,R) (fr—(z v—)/o f(tz)dt) )
18 continuous.

Proof. Let f € C*°(U,R) and a neighborhood N of [ f be given. We may assume
that N = fo(l,e,K) for some I,e, K. Choose a closed ball K’ around 0 in U such

that K C K’ and set N' = N¢(l,e,K"). Then for any g € N,z € K,

([ 9~ [ 1121 =D / (a(tz) - F(tx))do)
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1
= / (te1 D (g(t) — £ (t)))ad|
0
1
< / tel|De (g (tz) — f(t))|dt
0

1
</ 1l-edt=c¢
0

for any |a| < 1. It follows that [(N') C N. Hence [ is continuous. O

PROPOSITION 5.2. Let U,V be open sets in R™ satisfying 0 € U C V and
i : U —= V be the inclusion map. Choose € > 0 such that Us.(0) C U and set
U; = Us:(0),Vh = U:(0). Then there exists a neighborhood Ny of ¢ in C*°(U, V) such
that glu, is embedding and Vi C g(Us) for g € Ny. Moreover

No — C*(Vi,U)  (f = (gltn) ™ wa)

1§ continuous.
Proof. We define the neighborhood Ny of i by
3w (#7)

99:
B >27|6z,

g€ No & det—i(z) #0
|g()—z|<6 for z € U5.

Let g € No and a,b € Uy (a # b) be given, we may assume that |a; —b1| > |a; —bi|(G =
2,---,n). Set c(t) = (1 —t)a+tbt € [0,1]. Since U; is convex, we have ¢([0, 1]) C U;.

1
) - @)l =1 [ G octiat
|Z/ @loc a;)dt|
>|/ Sk o c(t)(by — an)d] - Z;/ @loc (8) (b — @)t

— b — 91 _ o 991
= by — a| /O B2 o clt)at| ng 2

1 1 1
> ]bl —a1|—2- - (n— l)lbl —a1|% = %lbl —(11] > 0.

It follows that g|y, is an injective. Hence g|y, is an embedding. It is easy to prove
that V1 C g(U1) because of the definition of Uy, V4 and the fact that |g(z) — z| < €.

Let fo € Ny and a neighborhood N of go = (folv,) t|v, be given. We may
assume that N = N, (I,¢', K) for al,&', K. Since the I-jet extension of (f|y,) 7]y, is
written as a continuous map of the I-jet extension of f|g for each f € Ny, it follows
that there exists e” > 0 such that (f|y,)"t|w; € N for any f € Ny, (I,",Uy). O

We have the following lemma as a corollary of Proposition 5.2.

LEMMA 5.3. Let U,V be open sets in R™ such that0 € U and let fo : U — V be a
embedding. Then there exist a neighborhood Uy of 0 in U and an open ball V around
f0(0) in V and a neighborhood Ny of fo in C°(U,V) such that f|y, is embedding and
Vi C f(U1) for all f € Nv. Moreover

Ny — C*(W,U)  (f = (flen) ™ w)
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18 continuous.

LEMMA 5.4. For any one-parameter family of lagrangian equivalences © : (T*R"™
xR, (0,0 )) = (T*R™,0)((Q, P,t) = 04(Q, P)) with ©9 = id, there ezxists a fiber
preserving function germ H on (T*R™, 0) such that Xy = dd—@t:[t=0. Conversely for
any fiber preserving function germ H on (T*R™,0), the flow © = {©;} of Xy with
the initial condition ©¢ = id : (T*R"™,0) — (T*R",0) is a one-parameter family of
lagrangian equivalences.

THEOREM 5.5. Let woi : (L°,0) — (T*R",0) — (R",0) be a reticular lagrangian
map with the generating family F(z,y,q) € m(r + k +n)2. Then the following are
equivalent.

(1) F is a reticular R™-stable unfolding of F|y=o.

(2) woi is homotopically stable.

(3) m o1 is infinitesimal stable.

(4) For any function germ f on (T*R",0), there exists a fiber preserving function
germ H on (T*R™,0) such that foi= H o1.

(5) wo1 is stable.

Proof. We shall prove (1)< (5), (1)=(2)=(3)=(4)=(1).

(1)=(5). Let Sy be an extension of i and Sy € S(U, T*R™) be a representative of
So. We shall construct the map (14) which maps a symplectic embedding around So
to a function around a representative of F'. Define

m5:U—R™ ((Q,P)(Q,p5(Q,P)))

for each § = (¢5,p5) € S(U,T*R™). By taking some lagrangian equivalence of w o %
and shrinking U if necessary, we may assume that 7g is embedding. By Lemma 5.3,

there exist a neighborhood N s, of Sy and a neighborhood U; of 0 in U and a convex
neighborhood V of 0 in R?® with the coordinates (Q, p) such that the map

Ng, — C®(V,U) (8§ = (75lv,) " v = (idg, Ps) )
is well defined and continuous. Let S € N So- Then the set

; =1{(Q,P3(Q,p);q5(Q,p),p) €U xT*R" | (Q,p) € V},

where q5(Q,p) := q5(Q, P5(Q,p)) for (Q,p) € V, is a canonical relation associated
S. Therefore there exists a smooth function Hg on V' such that Hz(0,0) = 0 and

~(@-55@n-2E@nn
But
'd
Hg(Q.p) = | G Hs(tQ tp)dt

—ZQZ/ (tQtpdtJerl/ S Q. )it
—ZQ(/aHS)Qp+Zp1(/ S3@.p)
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and the maps

OH g
Qi

are continuous, we have by Lemma 5.1 that the map

OH;

(= -p%), o

Ng, — C®(V,R) (5w S2(=-q3)) (i=1,--,n)

Ng, — C®(V,R) (S~ Hg)

is continuous. Let V! =V N{ Q41 =--- = @, =0 }. Now we define the following
continuous map

(14) ¢:Ng — C®(V' xR™,R) ( S+ Fy(z,y,q) = Hg(z,0;9)+ < y,¢> ).

Since 13’ ]er r2n at 0 is a generating family of 7o, we may assume that Fy = Fs g, Is
a representatlve of F. Since F is a reticular stable unfoldmg of F|4=o, there exists a
neighborhood Ny, of Fj such that for any G € N5 7, the function germ G at (0 4%, ¢°%)
and F are reticular R*-equivalent for some (0, y° qO) € V'xR™. Set N 5 = =¢ YN 7))

Let S € N . Take (0, ¥%,¢°) € V' x R™ such that the above condition holds for

Fs If we denote {LSO}acI the symplectic regular r-cubic configuration defined by
F5 = F3larxren at (0,3°,¢°), then for each o C I,

5 OF; OF5 OF5
LSO — S — S _ S _ >
o { (qO +q7 aq (1’,110 +Z/: qo +q))l.'170» 61:[,.—0' 6y Oa:l:Ir o Z 0}
OH¢
={ (@0 +0,v0 + Y|z = 5—(2,0;50 +y) =
T, -0

OHg
6—($0y0+y)+QO+Q—0 Tr._o >0}

50 (@i +1) =
Qr-{-l == Qn = 07Q1r—0’ > 0}

={ (—%(Q;yo +D),50 +p)|Qs =

= S((L3 + (050, o)),
where (0;0, Py) = S~(qo, ¥o)- This implies the reticular lagrangian maps
° (5|L0 at (0;0,F))

and 7 o 1 are lagrangian equivalent.

(5)=(1). Let So be an extension of i. By taking some lagrangian equivalence of
7 o1, we may assume that there exists a generating function 75(Q, p) of the canonical
relation Ps, associated with Sy. Then Fy(z,y,q) = To(z,0;¥)+ < y,q >€ m?(r;n+n)
is a generating family of m o . We prove that Fj is reticular R™-stable unfolding of
Fplg=0- Let Fy € C®(U,R) be a representative of Fp. We construct the map (15)
which maps a function around Fytoa symplectic embedding around a representative
of Sgp. The following construction is summarized in the diagram after the proof.

By shrinking U if necessary, we may assume that there exist a neighborhood U
of 0 in R™ with the coordinates @, Uz of 0 in R™ with the coordinates y, Us of 0 in
R™ with the coordinates g and Tp(Q,y) € C®(U; x Uy, R) such that the following
conditions hold:
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(a) Ty is a representative of Ty

(b) The map U = (U1 N{Qry1 =" =Qn =0}) xUa x Us

(c) U x Uy x Us = Uy x Uy x R™ given by (Q,9,9) = (.3, 5 (Q,y) +4q) is an
embedding.

(d) The map U; x Us — Uy x R™ given by (Q,y) — (Q, QE(Q y) is an embedding.

Define the representative Fy € C®(U,R) of Fy by F(:c v,q) = T(z,0;9) + (y,q)
and define Fy € C®(U; x Uy x U3, R) by Fo(Q,y,q9) = T(Q,y) + (y,q). Since the
map

C®(U,R) = C®(UixUsxUs,R) (F = F(Q,y,9) = Fo(Q,y, ) +(F-Fo)(Q',9,9) ),
where Q' = (Q1,- -+, @), is continuous, the map

. oF
C®(U,R) = C®(U; xUs x U3, Uy x Us x R™) (F — ¢5(Q,y,9) = (Q,v, 55) )

is also continuous. Since ¢ is embedding by (c), there exist a neighborhood N};O

of Fy and a neighborhood U’ of 0 in U; x Us x Uz and a open ball V around 0 in
U; x Uy x R™ such that

NY = C®(V,Us x Uy x Us) (F = (97lu) ™Iy )
is well defined and continuous. Let V3 =V N (U; x U2 x {0}). Then
L = C®(W,UL x Uy xUs) (Fv (dplo) v )

is also continuous. We denote (¢z]v) "' (Q,y) by (Q,¥,97(Q,y)) for (Q,y) € V.
Then the map

. - F
Nh = COAUXRY) (F o $p(@0) = (@ - 55(@a@u)))

is also continuous. Since 95, is embedding by (d), there exists a neighborhood N:;o

of Fy in N}O and a neighborhood V3 of 0 in V; and a neighborhood W of 0 in U; x R™
such that the map

Nz = C(W, ) (F e ($plv) " Hw)

is well defined and continuous. We denote (v'z|v,) ™} |lw(Q, P) by (Q,yz(Q, P)). Then
the map

N = CO(W,Uy x U x Us) (F = ((Q,P) = (Q,y5(Q,P),a5(Qy5(@Q, P)))))

is also continuous. Hence the map
2 * n - o aF
(15) Nz = S(W,T*R") (Fw— Sp(Q,P)= (qp,a—q(Q,yp,qp) ))

is well defined and continuous. Since Sz 7, 18 a representative of So, there exists a
neighborhood N3 3- of Fy in N 2 such that for any F € NE 2 the reticular lagrangian
maps 7 o (SzlLo ar (go,p0)) and m o1 are lagrangian equlvalent for some (Q°, P°) =



590 TAKAHARU TSUKADA

(Oa Tty Oa 07 T 0: Prt')-}-l: T 7P1?) € W. Let (0’ y07 q0) = (Oa y}:“(QOa PO)’ QF(Qoyyﬁ‘(Qoy
P?))). Since F at (0,3°,4°) is a generating family of 7o (Sg|ro at (@o,P0)); Fla-xr2n
at (0,7°,4¢°) and Fj is reticular RT-equivalent.

Uy xUy xUs = U; xUs xUs Ui xR" D w
(@,,9) @y.95) - @-55@Quy.e) = (@QP)
dr 4 T . Ry
@9 %) (@:,0) (27, % (Q.v5,97)
Uy xU; xR* D Vi T*R"™

(1)=(2). Let i : (L° x R, (0,0)) = (T*R"™,0)((Q, P,t) — i:(Q, P)) be a reticular
lagrangian deformation of i. Take a one-parameter family of symplectomorphisms

S (T*R™ x R, (0,0) ) = (T*R™0)((Q, P, t) — S:(Q,P) = (¢:(Q, P),p:(Q, P)))
such that i; = St|po for ¢ around 0. We may assume that there exists a function germ
T:(R¥xR,(0,0)) = (R,0)((Q,p,t) — T:(Q,p)) such that T} is a generating function
of the canonical relation associated with S; for ¢ around 0. Define F(z,y,q,t) €
E(r;n+n+1) by F(z,y,q,t) = Fy(z,y,q) = Ti(z,0;y)+ (y,q), then F; is a generating
family of wo1; for all t. By hypothesis, there exists a one-parameter family of reticular
RT-equivalences of the form

Ft(a"7y)(I) = F(Zla% (Za Y, Q); e azTa;‘(zayy Q)’ ht(ma Y, Q)a gt(q)) + at(q)'

Set a one-parameter family of lagrangian equivalences ® = {©;} by ©; = g; +
dat|rogr. Then we have i;(LY) = ©; 0 i(LY) for all ¢ C I,,t around 0. Therefore
we may define the one-parameter family of reticular diffeomorphisms ¢ = {4:} by
é: = (Sp)1 0 ©; ! 0 St|ro. Then we have i; = ©; 0 i o ¢ for t around 0.

(2)=(3). Take an extension S of i. Let a function germ f on (I™*R™,0) be
given. Let S = {S;} be the flow of X; with the initial condition Sy = S. Because
i = {it = St|po} is a reticular lagrangian deformation of 7, there exists a one-parameter
family of lagrangian equivalences ® = {6;} with ©y = id and a one-parameter
deformation of reticular diffeomorphisms ¢ = {q-ﬁt} of id such that ¢y = ©; 04 o ¢ for
t around 0. Let & = {®;} : (T*R™ x R, (0,0)) — (T*R™,0) be an extension of ¢.
Then we have

. dS do . dd . .
Xf 01 = _d?t|t=O|L° = —Et—t‘|t=0 o1+ (S*#It_—_o) 01 = XH 01+ 7,.

This implies that « o4 is infinitesimal stable.

(3)=(4). Let a function germ f on (T*R"™,0) be given. By hypothesis, there exists
a fiber preserving function germ H on (T*R"™,0) and a vector field v on (T*R™,0)
such that v is tangent to L® and Xj oi = Xy o i +4.v. Set iy = i|p0,v5 = v|p0
for each ¢ C I, then it is easy to prove that (f — H) o i, = constant because
Xyoi, = Xpois+(is)svs. Since L is connected, we have that (f —H)oi = constant.
By replacing H + constant by H if necessary, we have f o1 = H o.

(4)=(1). Take an extension S = (gq,p) of .. We may assume that there exists a
generating function T' = T'(Q, p) of the canonical relation associated with S. We define
a generating family F(z,y,q) € m(r;n+n)? of 7oi by F(x,y,q) = T(z,0;y) + (y,q)-
Since (@, P) — (q(Q, P), P) is invertible, there exists I C {1,---,n}(|I| = r) such
that ¢ : (z,y) — (a1(z,0;v),y),z = (z1,---,z,), is also invertible. Otherwise since
(Q,p) — (Q, P(Q,p)) is invertible, ¥ : (z,y) — (z,P(z,0;y)) is also invertible. We
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define §' = poypL.

@p - (&p) @y 5 (a0
{ ) ly 8
(Q,P) (z,P)

Let f € £(r; k) be given. Set g(q,y) = f o 6~ *(qr,y). Since
S(IE, 0; P)|11P1=~~~=z,.P,.=0,IZO = 7:,

there exists a fiber preserving function germ H(g,p) = > i, hi(q)pi +ho(q) on
(T*R"™,0) such that

gO S(ma O; P)la:lpl.:u-:x,.P,.:O,a:ZO = H [¢] S(:E, 0, P).

Therefore there exist function germs aq,---,a, € £(r;n) such that

goS(x,0;P)=HoS(z,0;P) + ijPjaj(z,P) for (z,P) € (H" x R"™,0).

=1

Hence

f(z,y)
=(fogp " )o(poy ™) ot(z,y) =goS oy(z,y)
=goS(z,0; P(z,0;y)) = g(q(z,0,9),9)

= hi(g(z,0;9))y: + ho(a(z,059)) + D _ z; P(,0;y)a)(z, y)

i=1 j=1

oT
—Zh x0y>>yl+ho< 5 xOy)+Zx1(— (xo.y))a (,y)
oT oT
= Zh yz +h0 ) mOd(xl'a"’E(xyoyy)y"'7-’177'8_:1:7‘(2:10,1/)7 a_y(x’oay»(‘:(r;n):

where a(z,y) = ai(z, P(z,0,y)) for j = 1,---,r. This implies that F is a reticular
R infinitesimal versal unfolding of f. O

6. Adjacencies of singularities. We shall study the structure of the caustics
of stable regular r-cubic configurations. Firstly we investigate the adjacencies of sin-
gularities classified in Section 7 because the investigation of caustics means that of
adjacencies of corresponding functions germs. The following list is the classification
list of simple or unimodal singularities. This includes the classification list of singular-
ities of R-codimension< 7. Therefore the stable caustics in manifolds of dimension< 6
are classified.

The classification list of simple or unimodal singularities
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r k Normal form rR-codim  Conditions Notation
1 0 =+z" n n>2 B,
1 1 zyxy™ n n>3 Cn
+2?2 4+ 93 4 Fy
+23 +az?y + 97 6 40> +9#0 Fip
az™t3 £ zy? + 98 n+6 n>1,a#0 Fin
+zt 4+ 3 + azdy 8 Fy
+23y + 3 + az?y? 9 Fy
+25 + y° + azly 10 Fio
+y* + azy? + 22 6 a’?#++4 Ko
+y* £ 2y + az” n+4 n>2a#0 Ky,
ey™ £ zy? + az™ n+m n>4,m>2,
e"=1,a#0 Kom
+(z £y%)? + az"y 2n+ 3 n>1a>0 Kfp s
+(z £ 9y?)? + az™ 2n + 2 n>2a#0 Kf2n_4
+y* + 2%y + ax? ' 8 K3
+yt £+ 23 + ax?y? 9 K3
Y + 22 + axy?® 8 Ky
1 2 ylys +ys +zy1 +azys 6 Le =Dy,
viyo 2yt tazyP tazy, n+m+1 a™ >0 Dpm
Y} £ s +azys +ays 8 Eeo
Yi +y193 + azyr £ zys 9 Erp
y3 +y5 + azy, £ Tyo 10 Esp
yiys £ y* + Ty + azy3 8 D}
Y3 + 5 £ zy1 + azy; 9 Es 1
yiys £ y3 £ 2° + azy} 8 Dj
2 0 ex?+ 0z 4 B33
<
ez} + az1 T2 + 073 4 a®*<4,e=4,a#0 By>°
>
ez} + az1T2 + 073 4 a’?>4,e=6 Bg;‘;‘*
ex? + az T2 + 073 4 eE£6 B3>”
e(z1 + 6z2) + azl n+2 n>3,a#0 Bg:g’,g
ezl + az1 T2 + 0T n+m n+m>5a#0 Bge
ex? + az 173 + 073 6 B;:g}a
ez} + axzy + 6732 6 Byo®
2 1 ey +z1y+dz2y +az n+m n>3m>2a#0 Cf,’,"fna
ey® + z1y + azay® + 623 6 C’;gf

ey® + zoy +azy® + 627 6 Cyey

In the case Lg a® =1 # 0, while in the case D, m a #0,n > 4,m > 1,n+m > 5.
In the case r =2, = +1, § = +1 and if a = 0 then @ = 0 and if a # 0 then « is the
sign of a.

The cases r = 0 and r = 1 were already studied as ordinary singularity and
boundary singularity (for example, see [2],[9],[10]). Hence we study the case r = 2.
From the view point of caustics, we must investigate three type of adjacencies of
singularities: the first is the oridinary adjacencies, the second is the adjacency given
by forgeting a boundary of the corner. For example, consider B;f :’f’o‘ singularity
which is the orbit of 3 + az1z2 + z3 € m(2;0)2. If we forget the boundary defined
by z2 = 0, this function is reticular R-qeuivalent to y® + 21y € m(1;1). Therefore
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we regard B; §+’°’ is adjacent to C3. This adjacency appears as the union of the
caustic Cp and the quasicaustic Qg ; of the regular r-cubic configuration defined by a
versal unfolding of z? + azizs + z3. The third is the adjacency given by restruction
singularities to x; = 0 or z2 = 0. For example, consider Cj §+’°‘ singularity which
is the orbit of —y3 + 21y + z2y + az3 € m(2;1). If we restruct this to z, = 0, then
whis is equal to —y* 4+ zy € m(1;1). Hence we regard C5;" * is adjacent to Cg . This
adjacency appears as the union of the caustic C> and the quasicaustic @3 {12} of the
regular r-cubic configuration defined by a versal unfolding of —y® + 71y + z2y + ax3.
We shall draw the pictures of stable caustics in manifolds of dimension< 4 at the
last part of this paper. The caustics of B; 53, B2 3 and C 5 are diffeomorphic to (the
pictures)x (R, 0) and the caustics of B3’y 2 are diffeomorphic to one of B5 A

The adjacencies of unimodal smgularltles on the 2-corner:
82,032
B

32’2 A B53,52, ¢ Bi?ééz’a :
) t )
B;zs,fs,aza , B;?é&"a . BE3’53’ : BE4’63’ :
) T T
B;ii&‘ha : B63,54, A B€4‘i¢547 :
) T )
Byy ¢ BRE® o B
, t t t
ngﬁz,ﬁ s ng&ﬁz ; 06?55,& ¢ Cgiié’ﬁ" ¢
. a t T )
€,B82,0 €4,0,082 €4,0,03 €4,0,84
3,2,2 Cils — O3 — Oy —
Cg?é&ﬁz : C;?éé’ﬁs ¢ C;z&ﬁ‘l .
) ) )
:7
The adjacencies By 2 B€3’52’ and By <+ B;ffs"’ means that
—02,02,% €2,—€2,%
B, By
62,0 :T: b2,+ :T: 3,=
2,02, £3,02, £2.52 2,03,
By +— B B5%s — Byt
The adjacency Bj o + Bgféféﬁ ® means that
a2 >
By B,y T
N N
+,+ i +,+,8 :<F +,8:
+, 3 -, —,%,83
B;; «— B33 B, «— By537.

The adjacency Bz s < C5%”"* means that
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+4 T ot
Bys™ By 5"
N N
-2 +,+,+ — +,4,—
29— (33" 22— C357
>
B+ 4.2 B;;’—
N N
<
Bt o S o
The ad3acenc1es from smgularltles on the 2-corner to one on the boundary
Bj — B3® — B —
T T T
B;:g,* 363,5 o7 B€4,5 «
| N
| By« Byt
\ \) 3
B « B « B} — ..
Fy
T ’
035’3270; fled Cgs ] 024 ¢ Cgs ¢ ' Cgs
N T ) T t
063,(5 NeY 084,5 « 065,5 , 055,6 ,a
e 1 1 1 1
C53:% o 053(5 Cee 0656 css
3,2,2 — 4 — — 6
i
Ff

The adjacencies of singularities on the 2-corner given by forgeting a boundary.
The adjacency '\ is given by forgeting the boundary z; = 0 and ¢ is given by

forgeting z2 = 0.

Bs»
Cy Cy
N
<
Cy « BP0 cof
Cy Cy
N
>
Cy «— Byjy* oy
Bson
Bg
N
By’ — Bzi,étha
Bn,m
s
N
Cl* «+— Byy*®

(_

Cy
i 1)
ot + -—
Bz,z 02 — B2,2
Cy
N
-+, —+,+
B2,2 C; — Bz, )
o4
Bn
N
(=) +,6,a
n «— 22,n
Csa”
n
ci" — B
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B2’3/ and B3,2l
J [
BS F4
N N
e BE#S,O! B Bs,&,a
4 2,3/ 3 3,2/
C’I’l m
cs” Cre
N
- +,9, —(=6)"a
Cy® — Cipe CRlm0™ e CEge
03,2,1 and 03,2,2
-4 €
02 C3
N N
3 €,0,0 ) €,0,0
C +— C C +— C
3 3,2,1 2 3,2,2"

The adjacencies of singularities on the 2-coner given by restruction to z; = 0 or
z2 = 0. The adjacency ~\ is given by restruction to zo = 0 and < is given by
restruction to z; = 0.

By B; Csn
N N s N s
1 A ,0, ¢ €,0,0 ¢ €,0,x
Bm stz,m* BS B2,2,n an B2n,m
€ Cs F6
2n+1 3 4
€6 €,0,0 5 €,0,a € €,0,c
CZn—l—l — Czn+1,m Fy <+ 03,2,1 C; 03,2,2 .

7. Classification of function germs. In order to classify function germs we
prepare the following lemmas.

LEMMA 7.1. Let f € m(r; k) be a function germ. If %5(0) # 0 then f is reticular
R-equivalent to y; € m(r; k).

LEMMA 7.2. Let f € m(r; k) be a function germ satisfying g—i—(O) =0 and !l be the
corank of f. ¢ Then there exist a subset 0 C I, and a non-degenerate quadratic form
Qy1,--,y1—1) and a function germ g(z',y') € m((r — |o|);1)? such that the following
conditions hold:

(1) glor=0 € m(0;1)°
(2) f is reticular R-equivalent to fo € m(r; k) defined by

folz1,y) =Y+ + 9(@1,—0,y1, Y1) + Qis1,++ Ur)-

i€o

We say a function germ f(z,y) € m(r;k) (z € H”,y € R*) is residual if f € m(r; k)?
and f|z;=o0 € m(0;k)3.

Let &£(r;k,1) be the set of smooth map germs (H” x R*,0) — R and m(r; k,1)
be the set of map germs (H” x R¥,0) — (R',0).

To each & = (z1&1,- -+, 2+&r, &1, -+, Ertr) € M(r; k7 + k) we define the linear
map § : E(r; k) — E(r; k) by

r k
£(f) = Zmzfz%‘ + Z£r+j¥.
i=1 tog=1 Yi

To each ¢ € B(r; k) we define the linear map ¢* : E(r; k) — E(r;k) by ¢*(f) =
fod.
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We have the following four lemma’s which are analogous to lemma 1.21 ~ corollary

1.23 in [16].
LEMMA 7.3. Let A be a real vector subspace of E(r;k). Let [0,1] = m(r;k,7 +
k), t = & = (z16},--,x,. &0, &1, - E7T%) be a smooth homotopy. Suppose that

&(A) C A for allt € [0,1] and f € E(r;k). Let ® : (H" x R¥F x R,0 x [0,1]) =
(H” x R*,0), (z,y,t) = ¢¢(z,y), be the solution of the differential equation.:

(16) Louy) = Godn), bolzy) = @)

Then this solution satisfies the following conditions:
(1) ¢¢ € B(r; k) for all t € [0,1].
(2) ¢} (A) C A+ m(r;k)! for all t €[0,1],1 > 0.

Proof. (1) We denote & = (®;,--+,®,4%) and ¢ = (¢},---, 4 7%). Since (& o

#t)i = ¢t - & oy for i = 1,---,7, by the uniqueness of the solution of (16) we have
that ®;|;,=0 =0 for i =1,---,r. This means (1).
(2) Let I > 0 be given. For each ¢t € [0, 1] consider the map &£(r; k) — E(r; k) given by
[+ &(f); this map is linear and since £ € m(r; &, + k) this map maps m(r; k)! into
itself. Hence this map induces the linear map & : J'"!(r+k,1) — J'"1(r+,1). This
map depends differentiably on t. Similarly, the maps ¢} : £(r; k) — £(r; k), t € [0,1],
are linear and map m(r;k)! to itself, so they induce the linear maps @ : J'=1(r +
k,1) = J"1(r + k,1) and ¢; depends differentiably on ¢.

Now choose a basis a1, --,a, for m_1(A4) C J'"1(r + k,1) and extend this to a
basis a1, - -+,a, of J*=1(r +k,1). For t € [0,1] let Q; be the matrix of & with respect
to the basis a1, --,a, and let C; be the matrix of ¢ . Then because &(A) C A we
have that Q; has the form:

P g-p
P R St )
q=p 0 . )
If we divide C} into submatrices in the same way it will have some form:
W Xy
Yo Zv )
What we wish to prove is that ¥; = 0 for all ¢ € [0, 1].

Now let f € £(r; k) be given. Then for t € [0,1] we have

LG 100 =77 (2 61(0) = 56 EUNO)

dt
= (&' (0))).
Hence we have that ditgﬁt* =¢ o forte [0,1]. Therefore

dd—C;t = C;Q; for t € [0,1].

Because of the form of @ this implies

% =Y,R, for t € [0,1].
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But Cj is the identity matrix because ¢g = idg(r;x) s0 Yo = 0. Hence Y; = 0 for all
tef0,1].0

LEMMA 7.4. Let A be a vector subspace of E(r;k) and [0,1] — E(r; k) (t — fi) be
a smooth homotopy. Suppose that there exists a smooth homotopy [0,1] = m(r; k,r +
k), t— & = (z1&}, -+ 28], L t’““) satisfying the following conditions:
(1) {t(A) C A+m(r;k)! for all t € 0,1],1> 0.
(2) 't — & (fi) € A+ m(r;k)! for all t € [0,1], 1> 0.

Then for any I > 0 there exist ¢ € B(r;k) and h € A + m(r; k)! such that
¢*(A+m(r;k)) C A+ m(r; k) and fo=fiod+h.

Proof. Let I > 0 be given. Consider the solution @ : (H” x R*F x R,0 x [0,1]) —
(H” x R*,0), (z,y,t) = ¢:(z,y), of the following differential equation:

%d)t(m,y) = =& o dy(z,y), do(z,y) = (z,9).

we denote & = (®;,--- T+k) = (¢ -+, &%) and define H : (H” x R* x R, 0 x
OH _ N~ Ofi a¢t aft it aft
ot (1,‘ Y, ) - ('_ 61'1' ° Z ¢t at ¢t)( )

aft

= (=Y Gt 0 it 00 - Z B o™ 0 1+ o B)(z)

= 6 (—&ulfe) + ft)(w,y>e¢t(A+m(r B by (2).

Now by lemma 7.3 (with A + m(r;k)! for A and —§& for & we have
(17) ¢:(A+m(r;k)') € A+ m(r; k) for all ¢ € [0,1],
o) %—Itier+kx{t} € A+m(r; k) for all t € [0, 1]. Therefore for ¢, € [0, 1] we have

o670 = 37 o i) (0) € mos (A +m(ri R)) = moa (4).

But since m;_1(A) is a linear subspace of J'~!(r + k, 1) we have j' =1 (¢7 f1 — ¢35 fo) €
m—1(A). Hence —h := ¢} fi — fo € A+ m(r;k)!, so that fo = fio¢) +h. O

LEMMA 7.5. Let f € E(r;k). Let! > 0 be an integer and set fo = j'f(0)
(consider as a polynomial germ in E(r;k)). Suppose that there exist h € m(r;k)? for
some q > l+1 and 6 = (.’L’1€1, e 7x7‘£7‘7§1‘+1, B §T+k) € m(r, k.)P—lg(r; k”" + k);
p > g+ 1 such that {(fo) — h € m(r; k)P.

Then there exists hy € m(r; k)P such that f + h 8 f + h1 (or in other words,
5771(F +h)(0) € 0% (571 £(0)) ).

Proof. Define the smooth homotopy [0,1] = £(r;k), t — fi = f + (1 — ¢)h and
define the smooth homotopy [0,1] = m(r; k)E(r; k, 7 + k), t — & = —&. Then

ot ()= —ht €+ (1= h) = ~h+ E(f0) + £ — fo+ (1~ )

€ m(r; k)? + m(r; k) P04 = m(r; k)P.

Hence the hypotheses of lemma 7.4 are fulfilled for A = m(r;k)?. Therefore there
exist ¢; € B(r,k) and h' € A + m(r; k)? = m(r; k)P such that fo = fo ¢ +h'. Set
hi = h o ¢7'. Then we have foo¢ = f+hy and hy € m(r;k)? O
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LEMMA 7.6. Let f € m(r;k)! and set fo = j'f(0) (so fo is a homogeneous
polynomial of degree l). Let h be a homogeneous polynomial of degree ¢ > 1+ 1 and

suppose h € Jir(fo). Then there exists hy € m(r; k)9t such that f + h 7 f+hy (or
in other words, j9(f + h)(0) € O% (' f(0))), where Jer(fo) is the Jacobi ideal of fo
defined by

L0 0k 0k O
JrR(fO) = (1'1 oz, )y Ty oz, ayl, ) Em >€(r;k)'

Proof. By h € Jir(fo) there exists £ = (1&1,- -, %&, &y 5 Erar) € m(r;
k, 7 + k) such that £(fy) = h. We may assume that & € m(r; k)~ E(r; k, 7 + k) and
, for if not we replace & by ¢ defined by £ = £ — j974£(0). Since fo is homogeneous
polynomial of degree ! we have (¢ — £')(fo) is a polynomial of degree ¢ — 1 and
&(fo) € m(r; k)1 Since h = (€ — €)(fo) + £ (fo) € m(r; k)7 we have (€ — €)(fo) = 0
and ¢'(fo) = h.

Hence the conditions of lemma 7.5 are fulfilled with p = ¢+ 1, and the conclusion
follows immediately from lemma 7.5. O

We now start the classification of unimodal residual singularities in m(r; k)? (r >
1) under reticular R-equivalence. We shall prove that this classification includes the
classification of residual singularities whose reticular R-codimension is lower than 8.
Firstly we introduce the following notations: aj;, b;,a,b,c,--- are real numbers. We
say that z € J!(r + k,1) has modality n if the following condition holds: For any
neighborhood of z there exists an element z' in this neighborhood and there exists
an n-parameter family of I-jets 2'(a) (a in some neighborhood of 0 in R™) such that
2'(0) = 2’ and z'(a) & Ol gx(2'(D)) if a # b. Remark that for f € m(r + k)2 if j'£(0)
has modality n then f also has modality n.

Let f € m(r;k)? be a function germ with reticular R-finite-codimension. In the
procedure of the classification, we adopt the following notations:

‘=’ means ‘see’.

‘f B ¢’ means ‘f is reticular R-equivalent to g’ (g € £(r; k)).

RN g’ means ‘f s ¢ by lemma 7.6 by the analogous method of (2)’.

W5 ¢’ means ‘f 5 g by lemma 7.5 by the analogous method in (6)’.

oSy g’ means ‘f & g because g is (degree of g)-determined by Lemma 4.2’.

4 R . .
“% ¢’ means ‘f ~ g by a linear coordinate change’.

The case r = 1. The classification is reduced to V.I. Arnold [2] and V.I. Matov [9].

The case r = 2 k = 0. Let j2f(0) = az? + bzyz2 + c23.

a#0,c#0 = (1)
b#0,c=0 = (3)
a=0,0#£0,c#0 = (4)
a#0,6=0,c=0 = (5
a=0,b=0,c#0 = (7)
a=0,b=0,c=0 = (8

(1) 72£(0) has the normal form +z? + az;z> & z2 by a linear coordinate change.
a’?# ++4 oy +z? + az T2 £ 73
@2=++4 = (2)

(2) & £} £ 201w +23) + Yingairh (Fist. a; #0) : Let fo = 52f(0). Since
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xlgﬂxL +2(z} £ z172) and zy 5% 3f° = +2(+x22 + 23), we may replace any term of
degree > 3 involving z; in f by terms involving less z;’s and more x5’s and terms
of higher degree by lemma 7.6. As a result we have the normal form. If a; = 0 for
all 7, then we have codimension f = co. Therefore there exists an integer ¢ such that
a; #0. Y +(2? £ 2370 +22) + azf (n> 3,0 #0).
(3) i2£(0) has the normal form :l:z1 + 2129 or £x,2> by a linear coordinate change.
N Yivo @i + T2 + 3555025 (31,7 st. a; #0,b; #0) = gal + 129 + hal
(where g, h are units in £(2;0) and n > 2,m > 3 be the minimum integer satisfying
an # 0,b,, # 0 respectively) = +z7 + 2122 + gz (n > 2,m > 3,g :unit) S
2 220 +az (n>2,m >3,a #0).
(4) By using the analogous method of (3), we have f B +z? + 2129 +azd (n > 3,0 #
0).
(5) 72£(0) has the normal form +z? by a linear coordinate change. Hence 53 f(0) has
the normal form +z? + az;23 + b:z:g by lemma 7.6.

b#£0 S  +2? +azad + bz (b #£0)

Y ta? +amal + o

b=0 = (6)
(6) j3f(0) has the normal form fo = #z? + az;z3. Then j°f(0) has modality 2
in J°(2 + 1;1): For any neighborhood of j°£(0) there exists an element f; in the
nelghborhood such that 73(z) = 22 + bxlx% (b # 0). Then f; has the normal form
+22 +x173 +cxi+dzd by lemma 7.5 (since z; 6£ = +20} 43,23 and 2, 322 = +21,13,
we may replace any term of degree > 3 involving z1 in f; by terms of higher degree).
It is enough to prove that f; has modality 2. Suppose that fo = 2?2 + z123 + 24 +

O%: (f1)- Then there exists ¢ = (z141,T2¢2) € B(2;0) such that fo = fio ¢

mod m(2;0)%, where f; and f, are considered as polynomial function germs. Let
j2¢2(0) = ¢2(0) + 2121 + d22x2 (P21, P22 € R). By the coefficient of ZE% in fo we have
#1(0) = 1. By the coefficient of z 23 we have ¢(0) = 1. By the coefficient of z;z3
we have ¢92 = 0. These imply that a = a’ by the coefficient of 2§ and b = b’ by the
coefficient of z;z3.
On the other hand, reticular R-codimension f > 8: It is enough to prove that
codimension of O% (f1) in J5(2 + 0, 1) > 8. Set A = (23,2323, 2123, 25)¢(2,0)- Since

m®(2;0) C A and z; 32- af‘ = 4222 £ 1232, a:zgmL +271 23 + 4az} + 5bz3, we have that

x%—j:—_mﬂ%g%_wl-”’?ggl = 25JZL_0modA Therefore

codimension of O% (f1) in J°(2+0,1)

=dim £(2;0)/((z afi, 2_f_1>+ m(2;0)°)

. 6f1 (9f1 8f1 2 6f1
> dim : N
> dim £(2;0)/({z1 92, ,11713326 , To—— ERECY .
=dim £(2;0)/A — 4=12-4>38.

(7) By using the analogous method of (5), we have f % +23 + az?zy £ 23 or f has
modality 2 and codimension f > 8.
(8) f € m(2;0)3. Hence

af  af
You 2 0z,

On the other hand, we can show that j2f(0) has modality 2 by analogous methods of

reticular-R-codimension f > dim £(2;0)/({z; YR +m(2;0)%) >10-2=38
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(6): In this case, if we consider an element z € 73(m(2;0)3) such that the coefficients
of 23,23 are not zero. Then z has the normal form +z3 + az?zs + bzi73 £ 23 by a
linear coordinate change. Hence z has modality 2.

The case r =2,k = 1. Let j2f(0) = az1y + bzoy + cx? + dz1 72 + ex?.

a#0,b#0 = (9)

a#0,b=0,e£0 = (10)

a#0,b=0e=0 = (12)

a=0,b#0 = (13)

a=0,b=0 = (14)
(9) i2£(0) has the normal form 21y + 22y + az3 by a linear coordinate change
=N Zl>3a,y +T1y T2y + Y50 b z} (34,7 s.t. a; #0,b; #0) B Ty + Ty £ 1oy +
azl (n > 3,m > 2,a # 0) (here we used the analogous method of (3)).
(10) 52 £(0) has the normal form z,y +z3 by a linear coordinate change. Hence j3 f(0)
has the normal form ay® + z1y + bz2y? £ 22 by lemma 7.6.

a0 S ayd 43y +bzay® £22 (a£0)

B kS + 3y +azey? £ 22 (a €R).

a=0 = (11)
(11) We can prove that j°f(0) has modality 2 and reticular R-codimension of f
> 8 by analogous methods of (6): Consider an element fo € J%(2 + 1,1) satis—
fying 73 (fo) = 71y + azay? £ 72 (a # 0). Then fo has the normal form ay® +
byt + 21y £ z09® £ 2 and hence fo has modality 2. On the other hand, set A =
(22, 2123, 23, 1y, T3Y2, 2204,y )5(2 1)- Since m(2; 1) ¢ A and = afo = 11y, T2 32 =

+zoy? + 222, —f— = 5ay + 4by® + z; + 222y, we have z; ggo = gzo gi‘; = h—'g— =0

mod A for g = 111,.’1:2,:1/ and h = z1, 73, z2y,y>. Hence
codimension of O (fo) in J*(2+0,1)

) dfg 8

> dim £(2;1)/((z afl’, 283{2 aJ;())*A)
dfe 0

= dim £(2; 1)/(%‘”0 gf’ %];", 2%f° 6];’ Y aj;o)

>dim £(2;1)/A — 6:14 6 > 8.

+ A)

(12) j2£(0) has the normal form z,y by a linear coordinate change W Ty + h(zs,y)

h € m(z2,y)%). Set A = (z,y,2% 172) + m(2;1)*. Then we have o2l =2,2L =
1 6:B1 3@2
mod A. Hence

reticular -codimension f

> dim £ 1)/ (@01 o2 o, Xy 21y
z1 T2
> dim 5(2;1)/(( h gh, zgh,ygh) A)

> dim £(2;1)/A —4=12 4=38.

On the other hand, we have j3f(0) has modality 2 by the analogous method of (6):
Consider an element fo € J°(2+1,1) which has the form z1y + h(z2,y) (h is a homo-
geneous polynomial of degree 3) and the coefficients of z3 and y3 in h are not zero,
then fo has the normal form z;y % z3 + az2y + bz2y? £ y* and hence f, has modality
2.
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(13) By using the analogous method of (10) and (12), we have f = +y% + Ty +
azr,y? £+ 22 or f has modality 2 and codimension f > 8.

(14) 72 £(0) has the form h(z1,z2) + g(1, 2, y), where h,g are homogeneous polyno-
mials of degree 2,3 respectively. Hence

reticular R-codimension f

0
65 zzgj 3£> +m(21)* +m(2;0)%)

f af of  oh oh 99 99 O
250, 0y Y om T ar M oy T oy ’ya)
+m(2;1)* + m(2;0)%)

> dim £(2;1)/((z

= dim £(2; 1)/((:131

> dim £(2;1)/m(2;1)* —4-8=20-4-8=38.

On the other hand, 53 f(0) has modality 2 in J3(2+1,1) by analogous method of (6):
Consider an element fy € J3(2+41, 1) which has the form az?+bz, T2 +czi+9' (21, T2,7)
(¢’ is homogeneous polynomial of degree 3) and all of the coefficients of z2, 22, y® are
not zero and b? # 4ac. Then fy has the normal form +z? + az; 7o £ 23 + 9% + by 72y
and hence has fp modality 2.
The case 7 = 2,k > 2. We prove that codimension f > 8 and j3f(0) has modality
2. To do this, we only need to prove in the case k£ = 2 because codimension f >
codimension f|y,=...=y,=0 and if f|y,—...=y, =0 has modality 2 then f also has modality
2.

Set A = m(2;0)2 4+ m(2;0)m(0;2)? +m(2;2)%. Since f € m(0;2)% +m(2;0)m(0;2) +
m(2;0)? we have that z2 af = a:ygg =zyz, =V g’; = 0. Hence

reticular R-codimension f

> dim £(2;2)/((z gf gf) + A)
> dim £(2;2)/(z ‘Z.f e+ 4)
> dim £(2;2)/A

= dim £(2;0)/m (2,0)2 + dim m(0;2)/m(0;2)* +4—-8=3+9+4—-8=38.

On the other hand, j3f(0) has modality 2 by an analogous method of (6): Consider
an element fo in J3(2 + 2,1) in which all of the coefficients of z1y1, T2y, y3,y3 are
not zero. Then fo has the normal form z;y; + z2y2 £ y¥ + ay?y> + by1y2 + 95 and
hence fp has modality 2.

The case r > 3. We only need to prove in the case r = 3,k = 0 that codimension
f > 8 and j2f(0) has modality 2.

reticular R-codimension f

> dim £(3,0)/((22) + m(3;0)")

> dim £(3;0)/(z 92 * ) +m(3;0)")
> dim £(3;0)/m(3;0)* —3-9=20-3-9=38.

On the other hand j2 f(0) has modality 2 in J?(3 + 0,1) by the analogous method of
(6): Consider an element fo in J3(3+40,1) in which all of the coefficients of 22, 22, 22
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are not zero. Then fy has the normal form +z? + 22 + 22 + az 22 + broxs + casz;
and hence fo has modality 3 in J2(340,1). O
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The B;3 caustics 111
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The B3 caustics IV
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The B3 caustics V
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The B3 caustics VI
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The B;, caustics VII
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The B;, caustics VIII
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The sections of B, 3 caustics I
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The sections of B;,3 caustics 11
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The sections of B, 3 caustics 111

[a2)
et
()
k)
-t
" \
v [)
N
N [ =N
ey R v e}
[
s 0] S Vo
+ ’I — z’o ’ —
wvi ~ N [ I
4N < CORS N
+ ~ S |
o T /B v/ i«
I \.. W)
Y A
|
+ N Jo
~N | \\ t
<< v ]
llllllllllllllllllllllll 1ot !
'
! t
! 1
[ )
! _~ +
) ; 0a)
~
+
)




613

RETICULAR LAGRANGIAN SINGULARITIES

The sections of B;33 caustics IV
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The sections of B, 3 caustics I
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The sections of B3 caustics III
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The sections of B;3 caustics IV
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The sections of (3, caustics I
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The sections of (35 caustics I
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The sections of (5, caustics III
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The sections of (3, caustics IV
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