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THE WULFF SHAPE AS THE ASYMPTOTIC LIMIT OF A 
GROWING CRYSTALLINE INTERFACE* 

STANLEY OSHERt AND BARRY MERRIMANt 

Abstract. We present a proof of a conjecture made in the field of crystal growth. Namely, for 
an initial state consisting of any number of growing crystals moving outwards with normal velocity 
given to be 7(n), for ft the unit outwards normal, then the asymptotic growth shape is a Wulff 
crystal, appropriately scaled in time. This shape minimizes the surface energy, which is the surface 
integral of j(n), for a given volume. The proof works in any number of dimensions. Additionally, we 
develop a new approach for obtaining the Wulff shape by minimizing the surface energy divided by 
the enclosed volume to the ^ power in Rd. We show that if we evolve a convex surface (not enclosing a 
Wulff shape) under the motion described above, that the quantity to be minimized strictly decreases 
to its minimum as time increases. We have thus discovered a link between this surface evolution 
and this (generally nonconvex) energy minimization. A generalized Huyghen's principle is obtained. 
Finally, given the asymptotic shape we also obtain the associated (unique) convex 7(n). The key 
technical tool is the level set method and the theory and characterization of viscosity solutions to 
Hamilton-Jacobi equations. 

1. Introduction. The study of an anisotropic crystal growing in a melt gives rise 
to an equation relating the normal velocity of the motion to both the orientation of the 
crystal and to its curvature. In this paper we present a very simple and straightforward 
proof of a statement frequently made in the crystal literature - see e.g. Chernov [4], 
p. 215. Namely, in the case when the outwards normal velocity is equal to 7(n), for 
7 the surface tension and n the unit outwards normal, then the asymptotic growth 
shape is precisely the celebrated Wulff crystal, appropriately scaled in time. This 
shape minimizes the surface energy for a given volume. 

The proof, which works in any number of space dimensions, is constructive, giving 
asymptotic in time estimates. Moreover, the initial state can consist of any number 
of growing crystals, some of which may even contain holes. As time increases the 
individuals will merge into a growing crystal whose asymptotic limit is a single Wulff 
shape. 

The associated energy function need not be convex. Thus singularities in the 
shape, i.e. jumps in the normal direction, may develop not only in time but also in 
the asymptotic limit. Facets and other jumps in normal direction can be characterized 
precisely with the help of the theory of viscosity solutions [5,6]. 

Numerical results using the localized level set method [21] and the high order 
essentially nonoscillatory approximations to Hamilton-Jacobi equations developed in 
[14,15] validate our theoretical results. We shall discuss this in future work with D. 
Peng. 

In a parallel work, Osher, Merriman, Zhao and Peng, [13], have developed a 
connection between the static shape of crystalline materials in the plane, and the 
propagation of shock waves. They show that there is a precise sense in which any 
two dimensional crystalline form can be described in terms of rarefaction waves and 
contact discontinuities. 

*Received Oct 25, 1997; accepted for publication November 5, 1997. Research supported by 
DARPA/ONR N00014-92-J-1890, NSF DMS 94-04942 and a DARPA/NSF grant on Thin Films. 

tMathematics Department, University of California, Los Angeles, CA 90095-1555, USA (sjo@ 
math.ucla.edu, barry@math.ucla.edu). 

560 



THE ASYMPTOTIC LIMIT OF A GROWING CRYSTALLINE INTERFACE 561 

We thus believe that there is an intimate and quantifiable link between the theory 
of crystalline shapes and the world of time dependent hyperbolic partial differential 
equations whose solutions develop jumps (or kinks) in finite time. 

Additionally, in section III below, we develop a new approach to obtaining the 
Wulff shape by minimizing the surface energy divided by the enclosed volume to the ^ 
power in Rd. We show that if we evolve a convex surface, (not enclosing a Wulff shape) 
under the motion described above, that the quantity to be minimized strictly decreases 
to its minimum as t —> oo. Thus we have discovered a link between our Hamilton- 
Jacobi level set evolution with this (generally nonconvex) energy minimization. 

Our first asymptotic result seems to have been first conjectured by Gross in 1918, 
[10]. Another important reference is Chernov [3]. There the author formally derives 
the partial differential equation for a closed curve in R2 moving normal to itself with 
velocity v(9), 6 is the angle of the normal. He parameterizes the curve as JR(#, t) where 
R is the vector in R2 connecting the origin to the point on the curve. 

The differential equation for R is: 

(1.1) ^=v{p)n + v'{p)n± 
ot 

where ft is the outwards unit normal. He assumes steady state growth, R(6,t) — 
Ro(6)t. Then (1.1) becomes: 

(1.2) Ro(0) = v{0)n + v'^n-k 

This is the formal Wulff construction when v{6) — 7(0), the associated surface 
tension, see e.g. [11] and the original celebrated paper of Wulff [21]. 

Chernov's argument works only for a single curve and yields multivalued, swallow 
tailed type shapes if the associated energy is not convex. Moreover, he assume the 
existence of an asymptotic limit. The conjecture is valid in much more generality, 
with full rigor, as we shall show below. 

An interesting related paper is by Soner [17]. There he uses the level set method 
of Osher and Sethian [14] as well as the theory of viscosity solutions, e.g. [5,6], both 
of which we also use, to analyze the large time asymptotics of the motion of a set. In 
Soner's work the normal velocity is a linear combination of the form 

(1.3) v = l{fS)[a + bdELl(fi)]. 

Here dELl(n) is the Euler-Lagrange derivative of the surface tension function. The 
constant b is positive and the associated level set based evolution equation is of the 
form (in d dimensions) 

<">       t-iv^) 
d g 

2=1 
.=l W     'ivd 

Here ip is described below as a level set function associated with the interface, and 

7i(^) = ■£:'Y(nii-'ind)- Also we define \u\ = (j2t=i ul)2 for u = (m,...,Ud). 
Convexity of 7 is equivalent to the statement that the term multiplying b is a non- 

decreasing function of the matrix I QX.QX. \•  This means that the viscosity solution 
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criterion is satisfied and this leads to well-posed initial value problems. Convexity 
is thus essential in Soner's work. In this context, convexity means that the function 

M7 (O) 1S convex. Soner shows that if a < 0, any bounded curve has finite extinc- 

tion time, and that if a > 0 and the initial curve is large enough, it asymptotes to the 
Wulff shape. 

Our problem will involve considering (1.4) for general nonconvex 7, with b = 0. 
Nonconvexity means that discontinuities in the normal direction will develop. 

In the next section we state and prove our main theorem. We do this by deriving 
an exact formula for the crystalline motion of a Wulff shape. We prove that such a 
shape moves in a self similar fashion. Then, for any initial shape bounding a region 0, 
we place a Wulff shape inside ft and another, concentric, Wulff shape outside 0. As t 
increases, the two evolving self similar Wulff shapes trap the boundary of ft between 
them. The desired result follows easily. We also provide extinction time estimates for 
inwards motion. 

In section III we develop a new approach for obtaining the minimizing Wulff 
shape. Our procedure consists of starting with an arbitrary convex shape (in Rd) and 
evolving its boundary as above. We prove rigorously that the quantity to be minimized 
in the Wulff problem decreases as time increases to its minimum, achieved as t —> 00, 
which occurs at the Wulff shape, and the quantity strictly decreases to its minimum 
in the event that the initial shape is not the minimizer. Thus we have discovered a 
new approach linking Hamilton-Jacobi level set evolution with (generally nonconvex) 
energy minimization. This technique appears to be applicable elsewhere. 

A key step in the proof is the result that the location of the boundary of a 
set moving by normal velocity equal to a convex (in the sense of energy) 7(n), at 
a later time £, is obtained through a generalized Huyghen's principle with the Wulff 
minimizing shape generalizing the usual spherical shape. 

Moreover, we show that for a given asymptotic shape as t —>• 00, there is a unique 
convex (in the sense of energy) 7 such that this shape is the minimizer of the Wulff 
variational problem, and we give a formula involving a Legendre transform to obtain 
this 7. 

2. Main results. We are considering the evolution of the boundaries of a family 
of hypersurfaces in Rn. Our initial region H C Rn is is the disjoint union of H;, 
compact sets with piecewise smooth boundary F;. Each H* is the closure of a nontrivial 
open set.. At each point at which the boundary is smooth, we move the hypersurface 
normal to itself with positive velocity 7(n), where ft is the unit outwards normal and 
7 is uniformly continuous on the unit sphere. 

Our procedure for analyzing this motion is based on the level set approach of 
Osher and Sethian [14], used also to analyze geometric motion elsewhere, e.g. [2,7,17]. 
We consider a Lipschitz continuous function ipo (x), ipo : Rn —> R chosen so that 

^o(^)<0 xeft-UTi 

(2.1) ipo(x) =0 x e ur* = r. 
ipo(x) > 0      x /t n 

An example is ^o^) = <i(#,r), where d is signed distance to the boundary, 
negative in the interior of the region and positive outside its closure. 

The level set approach [14] applied here is simply to identify the evolution of the 
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boundary at later times through solving the Hamilton-Jacobi equation 

(2.2a) ^ = _7^^)|v^|,    xeR^t>0 

(2.2b) <p(x,0) = <po(x) 

where H(\7(p) = | V^>|7 ( T^T ) is the Hamiltonian, and identifying the zero level set of 

ip(x, t) as Ft, the image of the surface under this motion. This works formally because 
the set of points x(t) satisfying <p(a;, t) = 0 also satisfy 

(2.3) w + x - V(p = 0. 

The normal component of velocity pointing in the outwards direction is 

iW = 7W = 7(l^) 
and thus 2.3) indicates that the zero level set (in fact all level sets) of ip move according 
to (2.2a). 

The theory of such Hamilton-Jacobi equations is included in the theory of viscosity 
solutions - see [6,7]. The solution generally develops kinks (jumps in the gradient) 
in finite time, even for smooth initial data. The viscosity solution criterion tells one 
(among other things) what these admissible jumps are - see e.g. [14]. A simple 
example occurs when 7 = 1 in (2.4). If cp is initially signed distance to F, then the 
zero level set of the viscosity solution at time t > 0 is just the t level set of signed 
distance, e.g. [14]. It is not too hard to see that this generally develops kinks, e.g. 
if F is a paraboloid. The entropy condition for this simple case [16] is just that we 
pick out the distance function, kinks and all. This was rigorized in [14], appealing to 
the analogous theory of shocks and the entropy condition occurring in conservation 
laws. There it was also shown that the motion is the limit obtained by adding a small 
multiple of the curvature of level set of ip to (2.4) and letting this perturbation with 
this tangential dissipation go to zero. This is the type of motion we are generating. 
It agrees with classical motion whenever the hypersurface is smooth. 

We now obtain our key result concerning the motion of a Wulff crystal. Let 
r = \/x\ + x\ + • • • + x2^ — \x\ and v = ^ be the radial and angle variables. The 
minimizing Wulff shape can be written (up to dilation) as 

(2.4) r = W(u) 

where 

(2.5) ^) = ^.(^)=rM 

where v • 0 = J2i=i "iOi, and 7* is the Legendre transform of 7 [8,18,19,20]. Thus, the 
convexification of 7 can be obtained through 

(2.6) 7**(i/) = max(i/ • 0)7*(0). 
m=i 
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Frank's construction [9] associated with this is as follows: One considers the polar 
region 

(2.7) r < R{v) =    1 

7(1/) 

and takes the outer convex envelope. This is the region 

1 
(2.8) r < 

7**(i/)" 

It is clear from (2.5) that the Wulff shape associated with 7** is the same as that 
for 7. 

We now present the main theorem from which our asymptotic results follow. 
THEOREM 1.  Consider (2.2) with initial data 

(2.9) ^o(ar) =     r 

r 
-t 

W(u)' 

The unique viscosity solution is 

(2.10) ^^=[w\V) 

where x+ = max(x,0). 
Proof. We use the second Hopf formula [1,12] which gives the viscosity solution 

to (2.2) for convex tpo(x). 
The formula is: 

(2.11a) ip[x,t) = ™gn [x-y--<Po(y) -tlvh (yi 

where 

(2.11b) <Po(y)=   sup   {x - y - ipo(y)} . 
y e Rn 

In polar coordinates, for our (^o, we have 

1 
(2.12) <p*(r, 1/) = sup R[ r(y • 6) - 

151=1 

.    , I       \ 1 
= 00 11 r > mm 

: 0 if r < 

vox) \W(6)v'6J      j**(v) 
1 

7**(z/) 

Thus 

(2.13) V(r,i/,*) -    mm    R[r(u -6) - t>y(0)]. 
R~{**(e)<i 

\e\=i 

We have, since -4r < -^ 7(0)   -  7**(0) 

(2.14) max  R[r(i/ • 0) - £7(0)] < <p(r, 1/, t). 
|e|=r 
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The quantity on the left is maximized for each <p, either at R = 0 or R = ^y. Thus 
1(0)' 

(2.15) 

or, from (2.5): 

(2.16) 

max 
\8\=1 
v9>0 7W 

t < <p(r, v, t) 

t 
W(v) 

We also have, since —^(6) < —t^**(6) 

(2.17) 

< (p{r,v,t). 

ip(r,v,t)<     max    R[r(v • 0) - *7**(0)1. 
101=1 

Again, the maximum on the right, for each 0, occurs either at R — 0, or R — ^Lgy 
Thus 

(2.18) (pir.v.t) < max 
^ / -  101=1 

i/-0>O 
. 7**(0) 

and, from the fact that the Wulff shape associated with 7**(#) is the same as that for 
7(0), it follows that 

(2.19) <p(r, v, t) < 
W(u) 

This completes the proof. D 
We note that the viscosity solution to (2.2) with (^o(^)  =   wTU) + c' ^or any 

constant c is just 
r 

(p(r, i/, t) = 
W(u) 

t + c. 

Thus we proceed as follows. Place a Wulff shape completely within the interior of H. 
We may shift the origin so that there is a constant a > 0 so that the zero level curve 
of 

(2.20a) ^i(r,i/,0) 
W{u) 

— a 

bounds a region which lies completely within ft. Next, we choose b > 0 so that the 
zero level curve of 

(2.20b) <po(r,i/,0) = 
W(v) 

lies outside ft. Finally we construct a Lipschitz continuous function (pn{r,i/,0) which 
is negative in the interior of H, positive in the exterior of fi, vanishing on the boundary. 

(2.20c) 
T T 

b < fn{r, v, 0) < „T, , - a. 
W{y) W{v) 
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Viscosity solutions to (2.2a) satisfy an ordering principle, so 

(2.21) 
W(u) 

-b< (pn(r,v,t) < 
W(v) 

This means that Ft, the zero level set of yto(fi, z/, t), satisfies the following: 
THEOREM 2. F^ lies in the region 

(2.22) WM(l + y)<J<WM 1 + 

This is our first main result. 
Now we take the same family of hypersurfaces and move their boundaries inwards 

with normal velocity j(n). This motion is not generally reversible, even for Wulff 
shapes. However, it is for a Wulff shape corresponding to a convex 7. 

This time we solve the Hamilton-Jacobi equation 

(2.22) (ft = 7 |Vv?| 

with initial data (2.9) as before. We now have, following the previous argument: 

(2.23) <p(r, z/, t) =     max    R[r(u • 0) + *7(0)]. 
R7**(0)<1 

1*1 = 1 

Following the argument used in (2.15), (2.16), we have 

(2.24) 
W(v) 

Our upper bound for ip follows from 

+ *<^(r,M). 

(2.25) 

where 

<z?(r, v, t) = max 

r 
< 

riv-e) +t/y(6) 

W(v) 

7**(^)       7** (6) 

+ tK 

l(9) 1 < K = max —— < 00. 
- |^|=i 7**(0) 

Note K = 1 iff 7 = 7**. 
Thus, to estimate extinction time, we choose </?i(r, z/, 0), (^0(^,^,0) as above and 

find 

(2.27) ^+t_6<w(rjM)<_I_+te_a. 

This means that Tt lies in the region 

(*-')+>W£)>(«-**)+> 
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which means that the extinction time, te, satisfies 

a 
(2.28) b>te> 

K 

REMARK 2.1. Our results, Theorem 2 and (2.28) are valid for arbitrary initial 
regions having finite perimeter and nonempty interior, from the approximation results 
in [8] and the fact that the theory of viscosity solutions for Hamilton-Jacobi equations 
requires only bounded, uniformly continuous initial data. 

Note added in proof. We have recently become aware of [22] by P. Soravia. In 
section 3 of that paper the author gives a different proof of our Theorem 2. Addition- 
ally, we recently noticed that the work of J. Gravner and D. Griffeath, [23], concerning 
cellular automata contains a result which is related to our Theorem 2, although the 
authors did not explicitly draw this conclusion. 

3. A new approach to obtaining the minimizing Wulff shape. In this 
section we discuss the link between the crystalline motion described above and a new 
approach to minimizing the (generally nonconvex) energy associated with the Wulff 
shape. 

In Rd we obtain the Wulff shape, up to scaling, by minimizing the quantity: 

(3.1) E{T) = yi-i/d 

where Y is the boundary of a convex set H, V is its volume and A is the surface 
integral of 7(n), i.e. the energy. 

We shall show that moving Y normal to itself with velocity 7(n), as described 
in section II, strictly diminishes E(Y(t)) unless Y(t) is a Wulff shape, in which case 
E{Y(i)) is constant in time. We obtain the proof below. Since this is true, then our 
main result, Theorem 2, implies that the Wulff shape is the unique minimizer since 
E(Y(t)) —> E(Yw) as t -> oo. (It is well known that we need only consider convex Y 
in our minimization procedure). 

We compute, for such a motion, ^E(Y(t)). It is a simple observation that ^ = 
A, so we have 

(3-2) jtE(T(t))=d^(V(r(t)^ 

Thus we are trying to prove that, under this motion, (V(Y(t)))d is a strictly concave 
function of £, unless Y(t) bounds a Wulff shape, in which case V(Y(t))d is affine in 
time. 

The second statement follows simply from Theorem 1. If the initial shape r(0) is 
determined by: 

r = W(i/) 

then V(t) is: 
r = W(v)(l + t), 

so 

(3.3) V{r{t)) = i(l + t)d f     W{v)dv. 
d Jr{o) 
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Thus (V(r(t)))i = (1 + t)c, for c constant. 
We wish to show 

with strict inequality holding unless T(t) is a Wulff shape. 
We note that in the special case 7 = 1, when the WulfF shape is a sphere, (3.4) 

reduces to showing 

(3.5) (Volume enclosed in T(t)) (Surface integral of mean curvature) 

< f 1 - - j (surface area r(£))2 

with equality holding iff r(t) is a sphere. This is the well known isoperimetric inequal- 
ity. 

More generally we note that ^^ is the surface integral of 7(n) times the diver- 
gence of [y(n)n-\- tangential gradient of (7(n))]. 

Following the notation of (1.4), with S the Dirac delta function, n = T^T , and 
H the Heaviside function, we must show the following inequality involving volume 
integrals: 

(3.6) J(1 - H(<p)) j 5(<p)\V<p\>y(fi) [V • [DRl(n) - (n • D^n + 7n]] 

<(l-J)(/7M|V^|7(n) 

In words, we must show: 

(Volume enclosed by T(t)) (Surface integral 
over r(t) of 7(n) times dELl{n)) 

<(l-i) (Energy of T{t)Y 
We know that the convexification of 7 satisfies j**(n) < j(n).  Moreover, for a 

fixed convex T(t) 
7**(n) < 7(n) 

means that dEL"f{n) < 0. 
Thus 

l(n)dELl{n) < 7**9^7**(n). 

So we have the following interesting result: 
LEMMA 3.1. Inequality (3.6) is valid if it is valid for 7 replaced by 7**, the con- 

vexified surface tension. 
Thus we need only show that (V(T(t))d is a strictly concave function of t for 

convex non Wulff shapes evolving under a convex velocity 7(n). 
For the evolving shape we solve (2.2) with initial data 

(3.7) <po(x) =(po(ri/) 

The boundary, r(0), is the 1 level set of <PQ{X) 

(3.8) r = V(^). 
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According to the first Hopf formula for convex Hamiltonians [1,12], the solution is 

(3.9) ip(x,t) =   min   {(po(x-tw)+tH*(w)} 
W   £   Rd 

where H*(w) is the Legendre transform of our Hamiltonian H(w) — wj (r^ j 

(3.10) H*(w)=   sup   lyw-twjl^-)} 
w e R* { \\W\J J 

= 0if r < W(i/) 

= oo if r > W(u) 

Thus 

(3.11) ip(x,t) =        min        (po(x — tw) 
With   R<W(9) 

This means that r(^) bounds the convex region Q(t) defined by 

(3.12) n(t) = n{o)®tw 

where tW is the Wulff shape r < tW(i/). 
The sum © in (3.12) means that 

z s Q(t) 4=> z = x + y, x s VL, ye tW. 

We wish to show that the quantity (V(yi(t)))d is concave in £, i.e. 

(3.13) (y(ft(0*i + HI - 0)t2))i > 0(V{n(ti)))i + (1 - 0)(V(n(t2)))i 

for o <e < 1,  ti,t2 > o. 
Now using (3.12), we claim 

(3.14) fi(0*i + (1 - 0)*2) = fi(0) © (flti 4- (1 - 0)t2)W 

- 0(n(o) © hW) © (i - 0)(n(o) © ^v^). 

We need only show that points of the form z + 6tix -f- (1 — 6)t2y for x,y e W{v) and 
z £ 0(0), are exactly of the form: 

0{x + tix) + (l-0)(y + t2y) 

for x,y in fi(0). This follows precisely because 0(0) is convex. 
Thus, we have shown: 

n(0*i + (i - 0)*2) = sfi(ti) e (i - 0)O(*2) 

and (3.13) follows from the Brunn-Minkowski inequality. 
Thus, we have our second main result: 
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THEOREM 3.1. Given an arbitrary initial convex shape O(0) bounded by r(0) 
which is piecewise smooth. Let the boundary move outward normal to itself with ve- 
locity 7(n) in the Hamilton- Jacobi level set sense of section 2.  Then 

E(m)=   A^ 
(v(r(t))y-7 

decreases to that of the minimizing Wulff shape and is strictly decreasing unless the 
initial shape is a Wulff shape. 

COROLLARY 3.1. The Wulff shape is the minimizer of E(Y) for any continuous 
7(n) and the minimum can be taken over bounded measurable sets with finite perimeter. 

The proof of this involves realizing that (1) we need only consider convex sets 
in our minimization procedure and (2) the assumption of piecewise smooth bound- 
ary, which was needed only in the step where we replace 7 by its convexification, is 
adequate, by the approximation results for BV characteristic functions mentioned in 
[8]. 

COROLLARY 3.2. The motion of the boundary of a general set with a finite 
perimeter and nonempty interior for convex 7(72) is given by (3.12). 

Thus the Wulff shape acts as an elemental basis for moving the boundary of a 
set, and conversely given a convex shape 

r < W(y) 

we may find a convex 7 
7(1/) = max(z/.6>)W(<9) 

1*1 = 1 

which is the normal velocity corresponding to the motion generated by (3.12). 
COROLLARY 3.3. Given that the asymptotic motion of an arbitrary family of 

hypersurfaces in the sense of Corollary 3.2, satisfies Theorem 2, then the resulting 
shape r = W(iy) is the minimizer of E(T) in (3.1), where the unique convex surface 
tension function 7(71) is defined by: 

7(1/) = maxW(6). 
\e\ = i 
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