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ON COMPACTNESS AND COMPLETENESS OF CONFORMAL 
METRICS IN i?^* 

CHIUN-CHUAN CHENt  AND CHANG-SHOU LIN* 

Abstract.   For a smooth function K(x) in Rn, we consider the problem of finding a metric g 
4 

conformal to the flat metric \dx\2 such that K(x) is the scalar curvature of g. Let g = un-2 \dx\2. 
Then when n > 3 the problem is equivalent to finding a positive smooth solution of the equation 

(0.1) Au + K(x)u^ =0   inRn. 

A solution u of (0.1) is called of slow decay if the conformal metric g can not be realized as a smooth 
metric on Sn. In this paper, under some conditions on K, we prove that if u is a solution of slow 

4 _ 
decay, then the conformal metric g = un-2 \dx\ ■ is a complete metric in Rn which has bounded 
curvatures. As a corollary of the result, we show that under the same conditions on K as above, the 

4 2 

Kazdan-Warner identity holds for a solution u if and only if the conformal metric g = un-2\dx\ 
can be realized as a smooth metric on Sn. A compactness theorem is also proved. 

1. Introduction. Let (M,go) be a Riemannian manifold of dimension n with 
n > 3. Given a smooth function K(x) defined on M, one would like to find a metric 
g conformal to #0 such that K is the scalar curvature of the new metric g. In the last 
several years, there have been considerable works devoted to studying this problem of 
prescribing scalar curvature. However, most works were only concerned with the case 
when M is a compact manifold; particularly, the standard n-dimensional unit sphere 
Sn.  In this paper, we want to consider the case when (M,go) is the n-dimensional 

4 
Euclidean space Rn. When (M,go) is the Euclidean space and let g = u^^go for 
some positive function w, then the question above is equivalent to finding positive 
smooth solutions of 

(1.1) Au + if(:z)u^ =0    inRn 

after an appropriate scaling, where A is the Laplace operator of Rn.  In the paper, 
we always assume the limit K(oo) — \vtti\x\ >.+00 K{x) exists and is positive. We will 
discuss the case K(00) = 0 in another paper. 

From the viewpoint of geometry, it is natural to ask a solution u of (1.1) such that 
4 

the conformal metric g = un-2go is a complete metric in Rn. Following conventional 
4 

notations, a solution of (1.1) is called of slow decay if the conformal metric un-2go 
can not be realized as a smooth metric on Sn. From the viewpoint of PDE, many 
basic questions about solutions of equation (1.1) remain to be investigated. Three of 
them are listed below. 

Question 1. Is every solution of equation (1.1) bounded in Rn? 
Question 2. Suppose that u is a solution of slow decay. Is the conformal metric 

4 
g = un-2go a complete metric in Rn ? 

Question 3. If the conformal metric g is complete in Rn, does g always have 
bounded curvatures in Rn? 
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The answer of these questions was implicitly contained in the work of Caffarell- 
Gidas-Spruck [CGS], when the curvature function K(x) is identically a positive con- 
stant for |a;| large. In [CGS], they proved that if u is a solution of slow decay, then 
there exists an entire singular solution ^o of 

(1.2) Auo(x)+K{oo)uS^ =0  in  Rn\{0} 

such that 

(1.3) u(x)=uo(x)(l + o(l)) 

as \x\ —> +oo. Since singular solutions of (1.2) can be completely classified, an 
immediate consequence of (1.3) is that there exist two positive constants ci and C2 
such that 

(1.4) ci|a;|   "2    <u(x)<C2\x\ 
q-2 

2 

holds for I a; I large. Thus, the completeness of the conformal metric g follows immedi- 
ately and it is not difficult to show that g has bounded curvatures. 

Another insteresting implication of (1.3) is the followings. A result of Kazdan- 
Warner states that if g = i/^^ \dx\2 can be realized as a smooth metric on 5n, then 
the identity 

L (1.5) /    (re • S7K(x))u^ (x)dx = 0 

always holds. An immediate consequence of (1.3) says that when K(x) is a positive 
constant for |x\ large, then the Kazdan-Warner identity holds for a solution u is 
sufficient and necessary for the conformal metric g — u^^^ldx^ to be realized as a 
smooth metric on S'n. Therefore, it should be an interesting question to ask whether 
these results can be extended to functions K which are not constant near 00. 

Actually, the work of [CGS] was extended in [CLn3] to a more general class of 
curvature functions K. To state the result in [CLn3], we suppose that K satisfies 

{K(00) = limia-i ^00 K{x) > 0  and 

ci < I V if (#)||£|z+1 < C2   for |^| large and for some / > 0. 

n - 2 
In [CLn3], we proved that if (1.6) is satisfied with / > —-—, then (1.3) holds for any 

solution u of slow decay. In particular, we answer Question 1 through 3 affirmatively. 
n - 2 

On the other hand, when / < —-— we have constructed a solution u such that the 

conformal metric g is a complete metric, but, with unbounded curvatures. In this 
example, it is easy to see that the curvature function K(|x|) has a local maximum at 
00.   In this paper, we want to consider the case when K{x) has its local minimum 

n - 2 
at 00.  In this case, the condition / > —-— will be removed. Instead, we need the 

following assumption: 

(1.7) There exists a constant Co > 1 such that K(y) < K(x) whenever 

\y\ > coM for |a;| large. 
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THEOREM 1.1. Assume K satisfies both (1.6) and (1.7). Then there exist c > 0 
and R > 0 such that for any solution u of equation (1.1), 

(1.8) u(x) < c M"^ 

holds for \x\ > R. In addition, if we assume x • \/K(x) < 0 for large \x\ and u(x) is 
a solution of slow decay, then there exists a constant ci — ci (u) > 0 such that 

(1.9) u{x) ^cil^l-1^ 

holds for \x\ large. Therefore the conformal metric g = u:^z:^\dx\2 is complete in Rn 

We have to emphasize the constant c in (1.8) is independent of u, an improvement 
n — 2 

of our previous result in [CLnl] even under the condition / > —-—. Inequality (1.8) 

is very important because it enables us to apply the Harnack inequality to the solution 
u for |a:| > R. As in [CLnl], inequality (1.8) will be proved through the application 
of the method of moving planes. The method of moving planes was first invented 
by A.D. Alexandrov, and has been developed further to study the radial symmetry 
of solutions of elliptic equations by Serrin [S], Gidas-Ni-Nirenberg [GNN], Caffarelli- 
Gidas-Spruck [CGS] and Chen-Li [CL]. Here, we use a modified version which was 
developed in [CLnl]. 

It is easy to see that by the Kazdan-Warner identity, if K(x) ^constant is nonin- 
creasing along any ray issuing from the origin, then any solution of (1.1) must be of 
slow decay. Hence, we have the following consequence of Theorem 1.1. 

COROLLARY 1.2.  Suppose K ^ a positive constant satisfies (1.6),(1.7) and x • 
n— 2 

\/K{x) < 0 for x G Rn.   Then for any solution u(x), u(x)\x\^~ is bounded by two 
4 

positive constants for \x\ large. Furthermore, the conformal metric g = un-2go is 
complete and of bounded curvature on Rn. 

Corollary 1.2 answers a question which was arised in [DN]. In [DN], Ding-Ni 
proved the existence of infinitely many solutions of (1.1) when K is almost symmetry 
and nonincreasing along any ray from the origin. But, they did not establish the 
completeness of their solutions. Thus, from Corollary 1.2, the existence of complete 
metrics is obtained for such class of K considered in [DN]. 

It is easy to see the upper bound (1.8) implies that |:r|| vK(x)\u:^ e L1(Rn) if 
| v K(x)\ decays like \x\~l at oo for / > 0. 

COROLLARY 1.3. Suppose that K satisfies (1.6), (1.7) and x • \/K{x) < 0 for 
\x\ large. Then the Kazdan-Warner identity (1.5) holds if and only if the conformal 

metric g = w^^^ld^l can be realized as a smooth metric on Sn. In the case when g 
is complete in Rn

; the quantity 

(1.10) P = [   (x - \jK(x))u^ < 0. 

The quantity P defined above is called the Pohozaev number because it comes 
from the Pohozaev identity. It is quite intersting to note that a negative upper bound 
of the Pohozaev number can guarantee the compactness of conformal metrics. To see 
it, we assume that K has only a finite number of critical points {Pi,..., P/v} in Rn. 
At each critical point P^, K satisfies the nondegenerate conditions : 

(1.11) Iv^aOMs-ftl*"1 
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in a neighborhood of Pi for some constant pi > 1, where two functions f(x) ~ g(x) 
means that the ratio f(x)/g(x) is bounded by two positive constants. 

THEOREM 1.4. Suppose the assumptions of Corollary 1.3 hold and K has a finite 
number of critical points {Pi,..., P/v}. At each critical point Pi of K, assume (1-11) 

n-2 
holds for some & > —-—. Let SQ > 0 be fixed.  Then there exists a constant c = c(eo) 

such that for any x € Rn; the inequality 

(1.12) u(x) <c (l + lxl)-1^ 

holds for x G Rn and for any positive solution u satisfying 

(1.13) /    (x - S7K{x))u^{x)dx < -CQ. 

We remark that for the case of two dimension, the conformal metric of a pres- 
bcribed Gaussian curvature might be neither a complete metric on R2, nor a smooth 
metric on S2. Thus, the conclusions of both Theorem 1.1 and Corollary 1.2 on the 
completeness of conformal metrics do not hold in two dimension. 

The paper is organized as follows. In Section 2, the first part of Theorem 1.1 is 
proved via the method of moving planes. The inequality (1.9) and Theorem 1.4 will 
be proved in Section 3. 

2. The method of moving planes. To prove Theorem 1.1, we will apply a 
modified version of the well-known reflection method, as developed in [CLnl]. Follow- 
ing conventional notations, we let for any A < 0, T\ = {x = (xi,... ,xn) | xi = A}, 
SA = {x | xi > A} and xx denote the reflection point of x with respect to T\. Let u 
be a positive C2 solution of 

(2.1) Au + K(x)u^ =0   in Rn\A, 

where A is a finite set of singular points.   Assume A C SA0 for some AQ < 0.   Let 
w\(x) — u(x) — u(xx) for x e SA\A and A < AQ. Then w\ satisfies 

(2.2) Awx + bxwx = Q\(x)    in SA\A, 

where 

bx(x) = K(x)——— j-^    and 

Qx(x) = (K(xx) - K(x))u^(xx). 

Suppose u(x) = 0(|x|2~n) at oo. Then for A < AQ, bx(y) satisfies 

(2.3) 0 < bx(x) < C\x\-4 

for large |a:| and a positive constant C > 0. 
To apply the method of moving planes, we want to construct a family of compar- 

ison functions hx € C1
(EA) satisfying the following conditions. 

/24N f Ahx(x)>Qx(x)  inEA 
1     ; 1   hx(x) > 0   in EA and hx(x) = 0 on TA, 
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(2.5) h\1(x) < w\1(x) holds for x £ Yl\ \A and for some Ai < AQ- 

(2.6) h\(x) = 0(|a;|_r) at oo for some r > 0.   Both h\ and V^A 
are continu- 

ous in A, # variables. 

LEMMA 2.1 Suppose u(x) satisfies (2.1) and u(x) — 0(\x\2~n) at oo. Assume 
there exists a family of functions h\ satisfying (2.4), (2.5) and (2.6). Then w\(x) > 0 
in EA for Ai < A < AQ. 

We refer the reader to [CLnl] for the proof of Lemma 2.1 (See Lemma 2.1 in 
[CLnl].) To apply Lemma 2.1, we need the following lemma about the Green function 
Gx(x,ri) of A on EA with zero boundary value. The Green function has the form of 

(2.7) Gx(x,ri)=cn' 
1 

|7? - x\n-2      |ry - xx\n-2 

for x,r] G EA? where cn is a positive constant depending on n only. 
LEMMA 2.2. Let A < 0.  Then the followings hold. 

(i) For \x\ < ^-1G
x(x,0) > ci|:rrn+2. 

(ii) For\x\ > ^,GA(x,0) >ci|A|(a:i-A)|xrn. 

(Hi) For x,r) G EA, we have 

Gx(x, rj) < c2 min(|x - ryl2"^, \x - ^"(xi - A), \V - x^^ - X)(Vl - A)) 

where Ci and C2 are two positive constants depending on n only. 
Now we are in the position to prove Theorem 1.1. 
Proof of Theorem 1.1.  The upper bound. Without loss of generality, K is assumed 

to satisfy 

(2.8) 0 < ci < | V K{x)\\x\l+l < C2    for \x\ > 1. 

Let u be a positive smooth solution of equation (1.1), and let u*(x) = \x\2~nu(-^—-r) 
Fr 

be the Kelvin transformation of u. Then u* satisfies 

(2.9) Au*{x) +K*{x)u*:^(x) =0   in Rn\{0}, 

x 
where K*(x) = K(-r-r^). Inequality (1.8) is equivalent to the following 

Fr 

(2.10) u*(x) ^Clxl^r    for \x\ < 1/2. 

Suppose that (2.10) does not hold. By applying a blowing-up argument due to R. 
Schoen [P], there exist a sequence of solutions u* and a sequence of local maximum 
points £* of u* such that 

(2.11) ut^lsJI^—n-oo 

and the rescaled function 

(2.12) v*(y) = M-'u^x* + Mf^y) 
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converges to UQ (y) in C(
2
oc(R"), where Mi = «*(a;*) and UQ (y) is the positive solution 

of 

(2 13) / AI7J + K(oo)U^ = 0   in R", 
V " I [/o*(0) = l=maxR„[/0*(2/). 

For a proof of the statement above, we refer the readers to [P] and [CLnl]. Since 
K* has no critical points in 0 < \x\ < 1. Hence by Corollary 1.4 in [CLnl], we have 
x* —> 0 as i —> +oo. 

Obviously, v* satisfies 

(2.14) Av* + K*(y)v*^(y) = 0 in R^-Mr'xt}, 
2 2 

where iirt*(y) = i^*« + Mi 
n~2y) and limi—^+oo M/1"2 |a;*| = -f-oo. Without loss of 

generality, we may assume 

(2.i5)        ei = (i,o,...,o) = .iim iv^nrwino- 
i—►+oo 

For any S > 0, set 

(2.16) vj(y) = \y\*-"\JL-6e1\
2-nv:(Is(y)), 

and 

(2-17) ^) = (oa-'«i)loj-*«i M2      lj|l2/l2 

Obviously, Is{y) is a composition of two inversions and vf is a composition of two 
Kelvin transformations. Since equation (2.14) is invariant under the Kelvin transfor- 
mation, vf(y) satisfies 

Avf + KsivHvfrlS = 0 in Rn\{fc}, 

where K5{y) = K*^ + M~^Is(y)) and ^ satisfies 7,5(6) = -Mf^x*. It is not 
difficult to see 

(2.18) lim  & = fi 
i—>-oo d 

Let £7^(2/) = \y\2~n\T^ - ^ei|2"n/7o*(/^(j/)). By a straightforward calculation, [^(2/) 
\y\ 

has a nondegenerate maximum point es such that e^ —> 0 as J —> 0. Hence, vf 
has a local maximum at yi with    lim    yi = e§. In the followings, £0 will be chosen 

i—>--f-oo 

sufficiently small so that yi is contained in the strip {y — (2/1,... ,2/n) I —1/2 < y\ < 
1/2} for all z and (J < Jo- 

Let w\(y) = ^(2/) — vf(yx). (For simplicity of notations, indices 2 and J are 
dropped.) Then U>A(2/) satisfies 

(2.19) AWA + bx(y)wx(y) = Qx(y)  in SA\{6}, 

where b\(y)w\(y) = ^(^{^(y)^ _ vf (2/A)^} and 

QA(y) - [^(2/A) -^(2/)](^(2/A))^. 
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First, we claim that there exist constants AQ < 0 and SQ > 0 such that for all 
0 < 5 < Jo 5 we have 

(2.20) WA„(2/)>ci(l + M)-n(2/i-Ao) 

for y G EA0\{^}, where ci is a positive constant independent of S and i. 
The proof of (2.20) goes similarly as the proof of Lemma 3.1 in [CLnl]. However, 

the lower bound of u is not assumed here. For the sake of completeness, we present 
the proof here. 

Since Vi{y) converges to UQ (y) in C/2
oc(R

n), for any e > 0 there exists a sequence 

ofiZi—>+oo such that ^(^-C/o^y)! < eR2^71 for \y\ < ifc. Let B - {y \ \\y-j\ < 

1}. Since vf is superharmonic in 5\{^}, by the maximum principle, 

(2.21) vito^wgv'i    iovyeB. 

(e.g., see Lemma 2.1 in [CLn4]). Since the right-hand side of (2.21) tends to inf Us{y) 
B 

as i —)■ +oo and U$(y) > (1 + ciS)Us(zx) for A < —2 and for y,z G B where Ci is a 
constant depending on n only, we have by (2.21), 

(2.22) WAM > ^CKF
1
-

1
    fovyeB 

By a direct computation, we have 

(2.23) I5(y) + ejr - 6-2\y - ^"V + (i - y1)e1), 

and by (2.23), 

(2.24) \I5(y) - 7,(/)| < 2S-2[1 + (2|A| + |)|y - ^l"1]^ - ^\~\y1 - A) 

for 2/1 > A, where y' = (0,2/2? ■• • ^l/n)- By the uniform convergence of v*, we have 

(2.25) S1-^ v vUz)\ = (n - ^^-"^ W|(l + 0(1) + 0(5)) 

= c„(l + 0(l) + 0(J)) 

holds for \z+^\< 1. Applying (2.23) through (2.25), we have for \y-^-\> -pz, 

vfiy) - vi(yx) = s2-n{(\y - ||2-" - \y* - ^|2-nK(J,(i/)) 

+K(/5(2/))-<(7,(^))]|2/
A-^|2-"} 

^Cnl^-^-l^^-A), 

provided that |A| is sufficiently large, S is small and i is large. Thus, let |Ao| be large 
ei        1 

enough so that (2.20) holds for \y -| > —. 
o        oz 

For 1 < \y —— | < S~2, (2.20) follows immediately from the C2 convergence of 

vf to Us as i —> +oo. Therefore, the proof of (2.20) is complete. 
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Let 

(2.26) Bi = {V\\y-%\< J^M^MF1}, 

where Co is the positive constant in (1.7). Since 1/5(2/)! — 12/1(^12/ rl)-1' we have 
0 

(2.27) \Is(y)\>3coMri\x*i\ 

3 1 
for y G Bj and large i. Since |/<5(?/A)| < - for y E Bi and AQ < A < -, we have 

\x* + M'^ls(y
x)\ < \x*\ + M7^\Is(y*)\ 

KM, "-2(M/-2k*| + ^) 

Kco'^ + M, n-2Is(y)\ 

for large i. Thus, by (1.7) ? 

(2.28) K5(y) > Ks(y
x) 

for y £ Bi. 
Let 

(2.29) o+(v)-f Q^ *ytBi' 

and 

(2.30) hx(y) = - [   Gx{y^)QX{r])d7], 

for y e SA where Gx(y,rj) is the Green function (2.7). Clearly, h\(y) G C^EA). By 
(2.28), we have Ah\(y) > Q\(y) for y G EA- In order to apply Lemma 2.1, it suffices 
for us to prove 

(2.31) hx(y)>0   in Ex 

for AQ < A < 1/2, and 

(2.32) hx0(y) < wx0(y)  foiyeXxQ. 

To estimate hx(y), we follow the computations in [CLnl]. For the details of compu- 
tations, we refer the readers to [CLnl], Note that by (2.15), we have 

(2.33) Ks(y)-Ks(y
x) > Mf^lzJl'-1^ - A) - 0(l)|j,*|) 

for Iy I < R = —, where S « SQ « 1 and o(l) denotes a positive constant which 
0 

tends to 0 as i —> +00. 
For y $ Bi, we have 

(2.34) \Ks(y) - Ks(y
x)\ < c, M;^\x\\l-\\Is{y)\ + \Is{yx)\). 
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Thus, by applying the same computations as in Step 2 of the proof of Theorem 1.1 in 
[CLnl], we have for small 5, 

(2.35) hx(y) > C2 (logiJ)Mf ^Kl'^O/i - A)(l + \y\)-n 

for y G TiX and AQ < A < -. By the same computation, we have the upper bound 

also, i.e., 

(2.36) hx(y) <C3 (6)M;^\xt\l-1(y1-X)(l + \y\)-n 

where cs(5) is a positive constant independent of i. Hence, if S is chosen sufficiently 
small such that both (2.20) and (2.35) hold, then for large i, we have h\(y) > 0 for 
y e SA and AQ < A < 1/2, and h\0(y) < w\0(y) for y € E^. Thus, conditions (2.4) 
through (2.6) are proved. Applying Lemma 2.1, we have w\(y) > 0 for y G SA and 
A < 1/2, which yields a contradiction to the fact that vf (y) has a local maximum at 
yi which is contained in the strip {y \ —1/2 < yi < 1/2}. Therefore, the proof of (1.8) 
is finished.    □ 

3. Lower bound and compactness theorem. 
Proof of Theorem 1.1 The lower bound. To prove the lower bound (1.9), we note 

that (1.1) can be written as Au(x) + c(x)u = 0, where c(x) = K{x)u^z^ — 0(|x|~2) 
by (1.8). Thus, the Harnack inequality and the gradient estimates imply that there 
exists a constant c such that 

(3.1) max'u(x) < c min u(x) 
\x\=r |a;|=r 

and 

(3.2) | \7u(x)\ < cl^l-1^) 

hold for large |x|. By the Pohozaev identity, we have for r > s, 

(3.3) / x - S7K(x)u^ (x)dx = P(r; u) - P(s; u), 
r\Bs 

where 

(3-4) P(r;tt) = !|j_u(s)_-LI|Vtt|a 

.   ..du.9     n — 2 __,  Nl   .   _2r^. , 
+ |:C|1^1   + -^K(x)\x\u-2)da. 

By (1.8), we have (x • ^/K(x))u'^(x) G ^(R71). Hence P =    lim    P(r]u) always 
r—>+oo 

exists and by the assumption on K, we have 

(3.5) P<P(r;u) 

n—2 f 
for large r.   Let w(t) = u(r)r~^~ with t = logr, where u(r) = -h^^uda is the 

average of u over the sphere \x\ = r.  Assume that (1.9) fails, i.e., \imt >+00w(t) = 

0.   Since g — u;rir2|c?a;|2 can not be realized as a smooth metric on 5n, we have 
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limt y+oowtt) > 0. Thus, there exists a sequence of U —> +00 such that w^U) = 0 
and    lim    w(ti) = 0. By using (3.1) and (3.2), we have 

i—H-oo 

+[w,(ti)
2+w2(ti)}o(l)} 

= -(l + 0(l))f^.(!Lz2)W(t4)<0, 

where U = logn, ^(i) = 4dBrK and crn is the volume of 5n_1.  But by (3.5), we 

have 

0 =    lim    P(ri; u) = P < P^; u) < 0 
i—^H-oo 

which obviously yields a contradiction. Therefore (1.9) is proved.     D 
Proof of Corollary 1.3. Suppose that u is a solution of slow decay. By (3.3), we 

have 

(3.6) /    (a? • \7K{x))u:^{x)dx = _ lim    P(r;u). 
r—>"+-oo 

For any sequence r* —> +00, we let Ui(x) =ri
2  ufcx). Then Ui satisfies 

Aui + Kinx^f^ =0 in  Rn. 

By (1.8) and (1.9), we have 

(3.7) cil^l-1^ < Ui(x) < C2\x\~1^1 

for x e Rn\{0}. By elliptic estimates, there exists a subsequence of Ui ( still denoted 
by Ui) such that Ui converges in (7/

2
oc(R

n\{0}) to v, where v is a singular solution of 

Av + K(oo)v^ =0  in  Rn\{0}. 

By a simple scaling, we hve 

lim    P(ri',ui)=P(l',v). 
i—>-\-oo 

By the result of Caffarelli-Gidas-Spruck, v(x) is radially symmetric with respect to 
the origin. Thus, P(r; v) is always a negative constant independent of r. Hence, the 
proof of Corollary 1.3 is finished.    D 

Proof of Theorem 1.4- Let RQ be large such that for any solution u of (1.1), one 
has 

u(x) < Co\x\     ~ 

for \x\ > RQ. Assume also that all critical points of K are contained in {x \ \x\ < RQ}. 

Now suppose that there exists a sequence of solutions Ui of (1.1) such that Mi = 
max Ui —> +00 and 

\x\<Ro 

/    (x • S7K(x))u?-2 (x)dx < -so. 
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Let mi =    inf   ui. Then by Theorem 1.3 of [CLn2] (also see Lemma 3.3 in [CLn2]), 
\x\<Ro 

we have ra; —> 0. Moreover, Ui satisfies 

Ui(x)  < Ci\x - Pi|~~2~ 

for |x - Pj\ < do with some small SQ. By the Harnack inequality, we have 

Ui(x) < C2 mi 

for |a;| < i?o and \x — Pj\ > So with 1 < j < N, where C2 = C2(Ro,8o) is independent 
of i. Let 6o =   min {BA > 1. Then 

l<j<Nl  JJ 

^o < | /    (x - \/K(x))Ui   2 {x)dx\ 

N 

< C3[ f \x\-n-ldx + V / |x - P/'-^dz + m/-2^] 

< C4(i?o"/ + ^o0"1 + fomO^ift), 

which yields a contradiction when i —> +oo if both P^"1 and £o are chosen sufficiently 
small.     D 
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