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GLOBAL EXISTENCE OF SOLUTIONS OF THE YANG-MILLS 
EQUATIONS ON GLOBALLY HYPERBOLIC FOUR DIMENSIONAL 

LORENTZIAN MANIFOLDS* 

PIOTR T. CHRUSCIELt  AND JALAL SHATAH* 

Abstract. We prove global solvability of the Cauchy problem for the Yang-Mills equations on 
smooth globally hyperbolic four dimensional Lorentzian manifolds. 

1. Introduction. In a classical paper [9], Eardley and Moncrief have shown 
that solutions of the Yang-Mills equations on Minkowski space-time (with a compact 
gauge group) do not develop singularities in finite time, provided the initial data are 
sufficiently regular. This result has been generalized1 to the Einstein cylinder R x S3 

in [6, 8, 4], and to anti-de-Sitter space-time in [1], making use of the conformal 
invariance of the Yang-Mills equations. It is of interest to enquire whether or not 
this result remains true for general globally hyperbolic Lorentzian manifolds; such a 
result in dimensions 1-1-1 and 2 + 1 has been established, for quite a large class of 
manifolds, via direct energy methods, in [3]. It is the purpose of this paper to show 
that global existence holds true in 3 + 1 dimensions: we show global solvability of the 
Cauchy problem for the Yang-Mills equations on any globally hyperbolic Lorentzian 
manifold2 (M,g). 

It is convenient to start with a description of the geometric context. Recall that 
a Lorentzian manifold is globally hyperbolic if it admits a Cauchy surface E, i.e. a 
hypersurface S C M that is intersected precisely once by every inextendible causal 
curve. For such manifolds there exists a smooth time function t on M such that 
E = {t = 0}, with each level set E* of t being a Cauchy surface [11, 16]. Moreover, 
flowing along the gradient of t one obtains a diffeomorphism between M and E x E. 

Let G be any connected Lie group with Lie algebra g. Throughout we shall assume 
that 1) g is compact, that is, g admits an Ad-invariant positive scalar product &(-, •) 
(that will be the case if, e.g., G is compact). 2) g has a faithful representation as 
a subalgebra of the algebra of matrices over some finite dimensional vector space V, 
so that the bracket operation corresponds to the commutator of matrices, with the 
adjoint representation of G acting on g as an appropriate product of matrices. Let 
P be a G-principal bundle over M and let PE be the pull-back of P to a Cauchy 
surface E Choose any smooth connection on P, let X denote the horizontal lift of the 
gradient of t to P, we can identify P with E x PE by flowing along the integral curves 
of X. This leads to the commutative diagram: 
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530 



GLOBAL EXISTENCE OF SOLUTIONS OF THE YANG-MILLS EQUATIONS        531 

XE 

Given a trivialisation of P over a coordinate patch U of M, a connection A on P 
can be expressed as a g-valued one form on U, 

A = A^x) dx^,        AM(a:)Gfl, 

and the curvature F as the g-valued two form given by 

A connection A is a Yang-Mills connection if it satisfies 

(1.1) V^v = F»vw + [A^F^] =0. 

Here and everywhere the symbol V denotes a space-time and gauge covariant deriva- 
tive, while V^ or the addition of a sub- or superscript ";//' denotes a space-time 
covariant derivative. 

The Cauchy problem for the Yang-Mills equations on M consists in prescribing 
on PE a connection field A*1 together with an Ad-equivariant g-valued one form E. 
(Loosely speaking, E represents the time-derivative of the connection form on S.) 
Moreover AE and E are assumed to satisfy the Yang-Mills constraint3 equation, 

(1.2) ViE1 = 0. 

We shall say that a connection field is of differentiability class H^oc(T,) if there exists a 
covering of E by coordinate balls ZYQ together with trivialisations of Ps | ua such that 
in local coordinates the components Af of A^ are in H\0C(Ua). A similar definition is 
used for E. A connection A on P will be called a Yang-Mills development of (AP^E) 
if A is a solution of the Yang-Mills equations (1.1), such that the pull-back of A to 
Ps coincides with A^, and such that the pull-back of n V F to PE coincides with 
E. (We also impose some differentiability conditions on A, which are made precise 
in Section 4.) Here n is the horizontal lift to P of the field of future directed unit 
normals to E, and V denotes contraction of a vector with a form. In this paper we 
prove the following: 

THEOREM 1.1. Let P be a principal bundle over a smooth globally hyperbolic four 
dimensional Lorentzian manifold (M, g) with structure group G, whose Lie algebra g 
is compact. Let E be a Cauchy surface in M and let PE be the pull-back of P to E. 
Let As G fl'loJ"1(E) be a connection on Ps and let E £ Hf^^T.) be an Ad-equivariant 
g-valued one form on PE

; k > 2, satisfying the constraint (1.2). Then there exists 
a unique Yang-Mills development A of (A?,E) on P. (If the initial data are smooth 
then the Yang-Mills development is smooth.) 

To establish theorem 1.1 we adapt several of the Eardley-Moncrief ideas to the 
curved space-time setting. Let us highlight some elements of our proof: 

3Some results concerning existence of solutions of the constraint equation (1.2) can be found in 
[4, 2]. 
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• One of the key ingredients of the Eardley-Moncrief proof is the use of the 
Cronstrom gauge. We also use this gauge, and this carries over to curved 
space-time without introducing any difficulties. 

• Eardley and Moncrief's strategy is to establish an L00 a priori estimate on 
the Yang-Mills curvature field JF, using the spherical means representation 
of solutions of the wave equation. We follow a similar strategy, replacing 
the spherical means integral by a representation formula of Friedlander [10]. 
There are two differences between those formulae and the Minkowski space- 
time ones: First, there are more terms to deal with, because of a solid-cone 
integral in a generic curved space-time which is absent in Minkowski space- 
time. This introduces some tediousness to the proof but does not lead to any 
difficulties because the solid-cone integral terms that arise can be estimated 
in a rather straightforward way. Next, the formulae of Friedlander are valid 
only in causal domains (as defined in [10]), while the spherical means are 
valid in the whole of Minkowski space-time. To handle that issue, roughly 
speaking we first obtain an H-FH^    a priori estimate in causal domains, and 

loc 
use a globalisation argument essentially due to Choquet-Bruhat and Geroch 
[5] to obtain global existence on any globally hyperbolic manifold. This is 
here that the condition of global hyperbolicity of the space-time enters in 
our argument. 

• It turns out that the arguments used by Eardley-Moncrief to control all the 
terms that arise in the light cone integral carry over to the curved space-time 
case, except for the term [^4a;a7 F^A- To take care of that term we have to use 
a completely different argument, requiring simultaneous control of ||F||Loo 

loc 
and of a Hfoc semi-norm of F. The observation that this term can be handled 
in this way is the main new idea of this paper. 

• We note, finally, that a slight difficulty is introduced by the constraint part 
of the Yang-Mills equations. While there are several ways to handle this 
problem, we use here the observation of Kapitanskii and Goganov [12] that 
one can obtain Eardley-Moncrief type estimates for appropriately modified 
Yang-Mills equations, in which the constraint part of the equations is only 
partially satisfied. 

This paper is organized as follows: In Section 2 we review Friedlander's represen- 
tation formulae. In Section 3 we derive various integral a priori estimates, including 
the mixed H-FH^oo   and Hfoc estimates. The proof of Theorem 1.1 is given in Section 

loc 
4. 

NOTATIONS. Given a time oriented four dimensional Lorentzian manifold (M, g), 
we denote local coordinates by x = (x0,x1,x2,x3) = (x0,x), r = |x|, and the volume 
element by /i = ^/\g\dx. Given a hypersurface S = {x] f(x) = 0}, /i/ will denote 
the Leray form associated with 5, i.e. fi = df A fif. We use the following notations 
for functions and tensors: 

X(f) — Xadaf the derivative of / in the direction of a vector X, 
V/ = {g^duf} the gradient of a function /, 
VaTs

r = Ts
r
;a the covariant derivative of a tensor field T of type {r, s}, 

VxTg = XaTga the derivative of T in the direction of a vector X, 
(T, S) = the inner product of T and S with respect to the metric g. 

We will assume that M is globally hyperbolic, which implies that M is foliated by 
space-like hypersurfaces £$, which are the level surfaces of a smooth time function t, 
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and denote by t =    .  dt On TM, the tangent space of M, we introduce basis 
A/ — (dt,dt) 

vectors {i, zi, £2, £3} where i is a unit vector in the direction of — V*, and 

(i, i) = -1,        (i, Si) = 0,        (zi, Zj) = Sij . 

For any vector field X, let 

(1-3) |X|2 = |M|2 + £l<^>|2, 

and for a tensor T, |T| is defined in a similar fashion. 
Acknowledgements: The first author acknowledges an enlightening collabora- 

tion with J. Baez during an early attempt to prove Theorem 1.1. 

2. The wave equation on M. In this section we will state some basic results 
about the wave equation on a four dimensional Lorentzian manifold (M,g). We 
review the explicit formula for the fundamental solution of the wave equation on 
M of [10]. All of our statements and results are restricted to a geodesically convex 
neighbourhood Q C M. The derivation of the fundamental solution formula can be 
found in Friedlander [10]. 

On a geodesically convex neighbourhood Ct we denote by 
j(Pi Q) — square of the geodesic distance between p, q E H, 
C~(p) = past null semicone with vertex p G ft, 
J- (p) = the closure of the causal past of p, 
D(to) = {q G J~{p)\    t(q) = to < t(p)} a cross section of J~(p), 
K{ti,t2) = {q £ J~(p)',     h < t(q) < £2 < t(p)} a truncated cone, 
M(ti,t2) = {q G C~(p);    ti < t(q) < t2 < t(p)} the mantle of the truncated cone 

K(tut2), 
with similar definitions for C+ (p), J+ (p). 

DEFINITION 2.1. Given a point p G M define null basis vectors on the tangent 
space TPM, as basis vectors {1,171,61,62}, that satisfy 

(t, l) = (m, m) = (£, Si) = (m, e,) = 0 , 

(£,m) = 2    and   (e^ej) = Sij . 

The forms dual to {£,171,61,62} are denoted by {£, m, ei, 62}. We will always work 
with the following null basis on C~~ (p) \ p. For any q G C~~ (p) \ p, let h denote the 
unit vector orthogonal to i such that 

V7 — at -\-bn . 

Here the gradient of 7 is taken with respect to the q variable, p being held fixed. 
Define £ = t — h, and m = —(t + n); then for any orthonormal basis {n, 61,62} of the 
tangent space Tqllt^, we obtain a null basis {£,111,61,62}. 

The representation formula. The fundamental solution of the wave equation 
G-(p,q), 

no- := -Vada G- = 6(p), 

whose support is contained in J~(p), can be computed inside a causal domain fio: 

G-(p,q) = U(p,q)6-('Y) + V-{p,q), 
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where, in a coordinate chart (7r(p) = x and 7r(q) = y), 

|det7^2/i|^ 
U(x9y) = 

87r|det(^(x))det(^(2/))| 
I    5 
4 

d- (7) = lim 5- (7 — e). 

Here 5- (7 — e) is the Dirac measure supported on the lower branch of the hyperboloid 
7 = e, and, following [10, p. 146], we say that a connected open set ft is a causal 
domain when it is globally hyperbolic and contained in a geodesically convex set. V~ 
is a solution to the characteristic problem 

nV-=0       in    J"(p), 

1 r1 nu 
V~\c-(p)=Vo\c_{p):=--U(x,y) ^   _cfc|c_(p) , 

where the integral is over a geodesic c(s) joining p = c(0) to q = c(l). In a small 
causal domain HQ the above problem has a solution V~(p, q) such that supp V_ C 
A", V- eC00^-), where 

A" = {(p,9):     g€ J-(p)} 

is the closure of one component of {(p, q)] ^{p.q) > 0}. The function q ->- ^_(p, g) is 
supported in J~(p) and is C00 at the boundary of its support. 

Using this fundamental solution we can find a representation for solutions of the 
Cauchy problem, 

□w = /, 
(2.2) U\D = ^0 , 

VU\D = ui, 

where D C Sa fl fto is a space-like hypersurface, and X(i/o) = (X,ixi) for any vector 
field X tangent to D. 

For p G flo let if (p) be the cone of vertex p and whose base lies on D, that 
is, K(p) = J~(p) D J+(D), where J+(D) denotes the set of points which lie to the 
causal future of D. Let C{p) = C~(p) fl if (p) be the mantle of this cone, and let 
S = X)a fl C~(p) be the topological boundary of C(p). Then it is given by 

(2.3) u(p) = uh(p) + /      U(p,q)f(q)^ + /      V-(p,q)f(q)n, 
Jc(p) JK(p) 

where /i7 = the Leray form associated with C(p), i.e., // = c?7 A //7, and izft(p) is 
the solution of the homogenous wave equation with the same initial data. To express 
Uh{p) explicitly in terms of the initial data we need to define the following. Let C"f(5) 
be the null hypersurface whose normal on 5 is given by m, and S£ the intersection 
of C+(S) and the set {g;7(p, q) = e}. Denote by fis and fj,s£ the volume elements 
induced by the the metric g on the surface 5 and Ss respectively. On 5 define the 
functions p and 8 

/*=<m,-V7)/2, 

4 d 

e=0 
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then 

uh(p) = [ [-U[(m, Vu) + Ou)] -f V-u] dS + [     (V-taVau - utaVaV-)^a . 
JS P JD(a) 

If we parametrize the cone C{p) by (C?^) G M+ x §2, the solution u can be expressed 
in the following way. Let £ be a unit vector orthogonal to £(p), parameterized by 
u G §2. For any past directed null vector v of the form v = —i + t;, and £ G E+ 

let Q — expp((v). Since we are in a geodesically convex set, the expp map is a 
diffeomorphism from C(p) \p into (0,Co(^)] x §2

5 where expp(Co(^)^) G 5. In these 
coordinates 

C 

^5 =x(Co(^),^)CoH2dw, 

p = «(C,a;)C, 

UfJ-f = —j.— He = K(C) 'i;)C d(, Adu, 

6 = 
c 

where tt, £, x? X? an(l ^ are smooth positive functions, and where m denotes the Leray 
form on C~{p) \p. Equation (2.3) can be written as 

u(P)=uh(p)+[     f(C,Lj)^^-nt+ f      V-fp, 
Jc(p) (> JK(P) C(P) «. JK(p) 

«ft(p) = f (jUUrii, Vu) + j6u] + V-u) fis + f     (V-taVau - ueVaV-)^ , 
JS VC C / JD(a) 

(2.4) 
where U is a smooth function. 

Energy estimates. Given a space-like hypersurface D C £<*> local energy esti- 
mates for solutions of the Cauchy problem can be derived in a region 

A(a,6) — {(/ G Domain of dependence of.D; a < t(q) < b} . 

For any vector field V, using the notation introduced earlier, we define energy norms 
on D(t) and on M(ti,t2) as 

mmhiDW) = \\ViV\\k(D(t)) + E II
V
^II w)) + II^IU^DW) , 

ll^an||i,2(M(ti,t2)) = IKA^IIL^M^I,^)) + / A\(^V)\\L2(M(U.t->)) > 

||Vtan^||iy2(M(i1,i2)) = ll^i^ll^CM^i,^)) + Z^ 11^,- ^| lL2(M(ii ,*2)) > 

ll^llL~.2(K(tljt2)) =     SUp     \\V(t)\\L2{Dit)) , 

where Lp and iJ^ denote the standard Lebesgue and Sobolev spaces on D(t) and 
M(ti,t2), with measure fit and ^ respectively. In a similar manner we define ||T||#i, 
||2«an||L2, and ||V^nr||L2, for any tensor T. 

To derive energy estimates for equation (2.2), multiply the equation by X(u) to 
obtain 

Va[X0(u.,au.,0 - Igapu.^")] - Xa^[(u;au]0 - ^9a0U;l/un] = fX(u). 
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The above equation can be expressed as 

(2.5) Wa(X^Ta(3) - Xa'>0Ta0 = fX(u), 

where the energy-momentum tensor Ta(3 is defined as 

(2.6) Taf3 = daudpu - -QapWdnudvu) . 

For any p G A(a, b) integrate equation (2.5) on the truncated cone K(a,t) C K(p) to 
obtain 

(2.7) /   'T(X,i)vLt+ [        T(Xj)^ 
JD(t) JM{a,t) 

= /      T(X, i)iia + /       {X^Ta(5 + fX(u))n. 
JD(a) JK(a,t) 

Substituting X — i, the terms in equation (2.8) can be written as 

E(u,D(t)) :=+ f     ta^Tam = f      \l\i(u)\2 + IY, l^(«)l2 

JD(t) JD(t)   ll 1 

flux (u, Af (a, €)) := \        la^Tam = \\        ta {!? + m?) Tam , 
JM(a,t) l JM{a,t) 

Ht, 

\!    [tei2+Eig'(u)i 1 JM(a,t) L 
VI: 

where we used the decomposition of Vu 

Vu = i(u)i+ y^Zi(u)zi on D(t), 

Vu = -rh(u)l + -i(u)rh + ^ ei(u)ei    on M(a, ^). 

Thus the conservation of energy can be writtten as 

(2.8)      JS7(ii, D(t)) 4- flux (M, M(a, *)) = £(ii, l?(a)) + /* [^;/?Ta^ + /i»] fi. 
JK(a,t) 

We have 

f        ta^Ta(3 fi < C [ E(u,D(s))ds , 
JK{a,t) Ja /K(a,t) 

so that (2.8) together with Gronwall's lemma implies 

||Vw(t)||L2(£>W) + \\VtanU\\L*(M(a,t)) < C \\V u\\ L2 {D {a)) +   /    ||/(s)| |L2(^(s))C?S . 
-/a 

Here ||Vi/(i)||L2(jD(i)) is defined as ^E(u,D(t)). On K{p) = {q G J"(p); a < t(q) < 
t(p)} the above equation can be written as 

(2.9) 

||Vu||L=o,2(/sr(p)) + ||Vton«||z,2(c(p)) < C (||Vu(a)||L2(D) + \t(p) - a\\\f\\L°°-*(K(p))) ■ 
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We can derive similar estimates on A (a, b) 

||Vu(£)||L2(AW) + ||VtanU|U2(A(a,i))  < C|| Vu(a)||L2(A(a)) +   /    | |/(s)| |Z/2(A(s))ds , 
J a 

where 

A(r) = {geA(a,6); t(q) = r} , 

A(a,r) = {^ G null boundary of A(a, 6); a < i(^) < r} . 

The estimate on A(a, b) combined with the estimate on C(p) implies 

(2.10) ||VTx||z,oo,2(A(aj6))+      SUp      W^tanUW^^ip)) 
pGA(a,6) 

< C {\\Vu(a)\\L2{D) + \b - a|||/||Lcof2(A(fl>6))) . 

where ||Vix||Loo,2(A(0)6)) := supa<t<6 ||Vw(t)||L2(A(t)). 

3. The Yang-Mills Equations. Recall that a connection A on P, a G-principal 
bundle over M, can be expressed in a coordinate patch as 

A = A^x)dx*1,        A^(x) eg , 

and the curvature F as 

(3.1) F^ - a^A,, - dvAp + K,^]. 

We shall assume for simplicity that the elements of Q are matrices, and that the adjoint 
action Ad of G on g corresponds to an appropriate multiplication by matrices. Then 
the gauge transformations are given by a smooth map Q G G 

A^g-'A^g + g-'dg, 

and gauge covariant derivative by V^   = VM   H- [A^  ]. This implies 

The Yang-Mills equations and the Bianchi identity are given by 

(3.3a) V^F^ = F^w + [A^F^] =0, 

(3.3b) VaF^ + ^F,a + D^F^ = 0  . 

From this first order system, we can derive a covariant wave equation for F by dif- 
ferentiating (3.3b) with respect to Pa and using (3.3a) and the commutation relation 
of covariant derivatives 

(3.4) VvVpF^ = VpVaF^ - R\apF^ - R\af3F^ + [Fa0, F^], 

where R is the curvature tensor, to obtain 

(3.5) -BF^ + 2[F/, F0V] - 2Ra^pF^ - R^F^ - RuaF^ = 0, 
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where the covariant wave operator is given by 

(3.6) 
-UF^ := VaVaF^ = g^F^aff + [Aa,F^],a + [Aa,F^a] + [Aa, [Aa,F^}}. 

In a manner similar to the wave equation, we can derive estimates for solutions 
of the Cauchy problem for the Yang-Mills equations, in a geodesically convex neigh- 
bourhood, with data given on a space-like hypersurface D C Sa. As before, define 
A(a,6) and Kip), 

A(a, b) = {q G Domain of dependence of D; a < t(q) < b} , 

K(p) = {qe J-(p); a<t(q)<t(p)}, 

with 5 = b — a > 0 small; and denote by A(a, b) and C(p) the null boundaries of A (a, b) 
and if (p) respectively. In what follows, we derive a priori estimates for solutions of 
the Yang-Mills equations in the region A (a, b) . 

L2 estimates. As for the wave equation, we can define an energy-momentum 
tensor for the Yang-Mills equations, 

Tap := Fa/j, ■ Fp   — -QotpFpu • F^u 

where A • B — k(A,B), a positive definite Ad-invariant metric on g. This tensor 
satisfies V^Tap — 0, which implies an a priori L2 bound on F. To derive this bound 
integrate taTaf3 on a truncated cone K(a,t) C K(p), to obtain 

f     T(MV+ f        T(iJ)in  = [      T(MK+ /        ia^Ta^. 
JD(t) JM(a,t) JD(a) J K(a,t) 

We note that 

/     t«fTam = f      \lF2ii • J2 Put + 7 E F*<*s ■ F^ At «ll ^W lli=(c(t))» 

/        rtPTam = I        \W Fgii ■ FSii + \ J2 Fiitj ■ Ftit. + \FlAi ■ F|A 
JM(a,t) JM(a,t)  lZ 4 o 

« ll^an|lL2(M(a,t)) • 

It follows that we have the a priori estimate 

\\F(t)\\LHDit)) + \\Ftan\\L2ma,t)) < C\\F(a)\\L2iD(a)). 

If we denote the square root of energy on D by 

Eo = \\F(a)\\LHD), 

the above energy estimate can be written as 

(3.7) \\F\\Loo,2^K^ + ||i7ian||jL2(C(p)) < CEQ . 

Similarly we derive the following estimate on A (a, 6) 

(3.8) \\F\\Loo,2(A{atb)) +    sup    ||Ftfln||L2(c(p)) < CEQ . 
peA(a,b) 

M 
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H1 estimates. Derivative estimates for F can be derived from equation (3.5) in 
a manner similar to that of the wave equation: Let t, zi be an ON basis as described 
at the end of the introduction, and let ha(3 be the Riemannian metric on M defined by 
haP — iaiP + X^i==i ^f^f • Consider the new "energy-momentum tensor" Ta(3 defined 
as 

(3.9) T^ = h^h^{k{VaF^V0Fvl7) - ^k^F^VxF^)^} . 

We have 

Va(:ra%) - V^h^h^t^ik^F^^F^) - ±k(VxFttl>,V
xFl,<r)g

a0} + 

h'"'h^il3{k{VaV
aF^,V0Fl,a) + KlTFn,, (VaV0 - V0Va)Fva)} . 

Integrating this equation over K{a, t) and using (3.4) and (3.5) to get rid of second 
derivatives of F we obtain 

II VF^) ||i2(£)(t)) + || T>tanF |IL2(M(O,4)) 

< II VFia) \\l,(D(a)) +C /        \VF\{\F\2 + |F| + \DF\), 
JK(a,t) 

where VF denotes the gauge covariant gradient of F, and 

\'DtanF\ = \DlF\ + Yt \VuF\- 

From Gronwall's lemma it then follows 

(3.10) \\VF{t)\\LHD(t)) + ||I)t„„F||L2(M(0it)) 

< c\\DF{a)\\L,{D(a)) + C [ (IIF^IIi*^,)) + \\F(s)\\L2lD(t)))d8. 
Ja 

This implies 

II^WIU'^W) + \\VtanF\\L2matt)) 

<c(\\VF(a)\\L2{D{a)) + \\F(a)\\L2{D{a)) + \t-a\   sup   \F(q)\)   , 

where C depends on the energy i£o = H-^WHL
2
^)- The above equation is equivalent 

to 

(3.11) 
\\DF\\Loo.2iK(p)) + \\VtanF\\L2{cip)) <C(\\DF(a)\\L2{D{a))+S\\F\\LOo{Kip))) . 

Here, as before, 5 = \b — a\. Repeating the same argument on A(a, b) we obtain 

H^WIIz^AW) + \\VtanF\\L2iA{att)) < Ci||2?F(a)||L2(jD) + C2\t - a\    sup    \F(q)\, 
qeA(a,b) 

where A(T) = {q G A;   t(q) = r}. Combining the above with equation (3.11) gives 

(3.12) 

||2^IU~.2(A(a,6)) +      SUp     \\VtanF\\LHc(p)) < C (||Z?F(0)||L2(D) + <J||F||L~(A(«,6))  • 
p6A(a,6) 
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Cronstrom gauge estimates. To obtain bounds on higher energy norms of F, 
we see from equation (3.12) that we need a pointwise estimate on F. This will be 
done, as in [9], by using the Cronstrom gauge, 

{d'r(p,q),A{q))=0       A(p) = 0. 

This choice of gauge has the advantage of allowing us to express A in terms of F 
in a simple manner. Using coordinates that are normal and Minkowskian at p the 
Cronstrom gauge is written as 

ya(x)Aa(x) = 2xaAa(x) = 0,        Aa(0) = 0. 

From equation (3.1) we obtain 

xaFa0(x)= xa(daAf3 - d0Aa) 

= xadaAp + Ap. 

The above equation has the solution 

(3.13) Ap(x)=       xaFap(sx)sds. 
Jo 

Estimates of A on C(p). On C(p), A can be estimated in terms of F in the 
following manner. As before, parameterize C(p)\p by (C,^) G M+ x §2 where any 
q G C~(p)\p can be represented by q = expp{—(£). From (3.13) we obtain 

(3.14) 
Aa(x) 

< f  \Fai(sx)\sds<\\F\\L~{Kip)). 
Jo c 

By integrating the above equation on C(p), we obtain 

(3.15) c i2(C(p)) 
<C f s-3/2\\Fai\\L2{cip))sds < C\\Ftan\\L2{c{p)) < CEo . 

Jo 

By integrating equation (3.14) over 5 = D(a) n C(p), we have 

(3.16) / \Aa\vs < CCi I     -AFaM < C(;l,2\\Ftan\\L*{c{p)) < CC^Eo , 
Js Jc(p) s 

where Ci = max{C(<7); q G C(p)}. 

Estimates on D(t). The following estimates are obtained from equation (3.13) 
and (3.14) in a straightforward manner. 

(3.17) \\A(t)\\L2{D{t)) < CCi\\F\\Loo,2(K{p)) < CdEo , 

(3.18) \\VA(t)\\L2{D{t))< C {Ci\\VF\\Loo,2{Klp)) + CI
2
||^||L-(K(P))^O + Eb) , 

where in the above inequality we used equation (3.14) to substitute VF for VJF. 



GLOBAL EXISTENCE OF SOLUTIONS OF THE YANG-MILLS EQUATIONS        541 

Pointwise estimates on F. Since F satisfies equation (3.5), we have from 
the tensorial equivalent of equation (2.3) (cf. [10], Section 5.5, together with the 
arguments of the proof of Theorem 5.3.3 there) the following representation for F 

(3.19) F,„(p) = [     H«^f± &+ [      HV-v + Fl;?(p) 
Jc(v) S, JK(v) 

where Fl™ is a solution of the homogeneous covariant wave equation (3.6), and where 

+[Att,F/ll/];a + [Aa,F^a] + [A«, [Aa,F^]]. 

Here K and V~ are smooth tensor fields; for notational convenience we have suppressed 
indices on H, K, and V~. If A and F are given in the Cronstrom gauge, so that A 
is tangential to C(p), we can integrate by parts on the term [Aa, F^]^ to rewrite 
equation (3.19) as 

(3.20) 

F,AP) = I 
Jc 

HK(C,U) 

c(p)      C 
fit + f      HV-fi + Fl™(p) + / jm« [A^F^]^s 

JK(P) JS S 

where 5 = C(p) fl JD(O), and 

H — 2[F^P, Fpv] — 2Rafjil,pFa^ — R^F^ + Rl,aFfx
a 

-K]a[Aa,F^] + [Aa,Fwa] + [Aa, [Aa,F^}]. 

The integral on the surface of the cone in equation (3.20) can be bounded using 
equation (3.13), 

[Aa,F, HV\ <C 
LHC(p)) 

Aa 

C LHC(p)) 
II^IU-^p)) < cVs \\F\\L~{Kip)] , 

Aa   F 

LHC(p)) 
< C\\VtanF\\L2(C(p)) 

[A^IA^F^]} 

^[F/iFp*] 

Li(C(p)) 
< C8\\F\\L00(K(P)) , 

LHC(p)) 
< CUFll^oo^p)) 

Li(C(p)) 
<CV5\\F\\L~{K(P)) , 

where in the last inequality we used the observation of Eardley and Moncrief [9], 
that [F^^^Fpjy] consists of tangential terms only (i.e. [Ffe.,Ffe] and [^^,1^.^]). 
Similarly the integral over the solid cone can be estimated using (3.17) and (3.18) to 
obtain 

/ 
JK(p) 

V-Hfx <C(\\A\\L2iKip))\\VF\\L2{Kip)) 

+M\L-{K(P))\\A\\LHK(P))\\F\\L2{K(P))+8E0) 

< C {5\\VF\\L^K(P) + ^IIFHi-Wp)) + SEo) . 
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Since the curvature is bounded on bounded sets, then the first two terms in equation 
(3.20) can be bounded by a constant times 

(3.21) Eo + \\VF\\Loo.2{K(p)) + \\VtanF\\L2{cip)) + VS ||F||Loo{K{p)). 

The remaining terms, Fl^(p) together with the last term from eq. (3.20), consist of 
the following expressions 

(3.22a) f     {V-taVaF^ - F^V")^ 
JD(a) 

= [     (V-taVaF^ - F^V- - F-[Att,FMI/])/ia , 
JD(a) 

(3.22b) f ^U (rnaVaF^ + ^OF^J) fis 

(3.22c) [ V-F^ns, 
Js 

(3.22d) [ ^ma[AaiF^]fis. 
Js s 

Here U and 9 are smooth tensor fields (with indices suppressed).   The terms in 
(3.22b) and (3.22c) can be bounded by a constant by 

\\VF(a)\\L2iD{a)) + \\F(a)\\L2(D{a)). 

By the divergence theorem, the terms in (3.22c) and (3.22d) can be bounded by a 
constant times 

(3.23) - f     (\VVF(a)\ + k\VF(a)\ + \VF(a)\) 
rl JD(a) r 

+ ^\F(a)\)fia + l||ir||Loo(|C(p)) I \A\dfis , 

where in normal coordinates centered at p, r = |x|, ri  = min{C(#);  q G S} and 
r2 = max{C(^); ^ G 5}. The ratio — is bounded by a constant depending on p. 

The first term in equation (3.24) can be bounded by a constant times 

- /      |VPF(a)|/i0 <- [     (\WF(a)\ + C\A\\VF\)^a < CE2{a), 
n  JD(a) rl JD(a) 

where we have used /^/^ A^a ^ CVIJ and where we have defined 

(3.24) E2{T) = ||2>PF(t)|U»(A(r)) + l|Pn*)IU*(A(r)) + II^WIU^AM) ■ 
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The second term in equation (3.24) can be bounded by a constant times 

If      I(|VF| + |PF|K 
ri JD(a) r 

<— f     -\VF(a)\^a + CEo 
n JD(a) r 

< — [     (|V2?F(a)| + C\VF{a)\)na + CE0 
n JD(a) 

<cl— f     (\VVF(a)\ + \AVF{a)\ + \VF(a)\)^a + Eo 
lD(a) 

<CE2(a). 

The third term in equation (3.24) can be bounded by a constant times 

- /      ^\F(a)\fia <- f      -\VF(a)^a + CE0 < CE2(a). 
ri JD(a) r2 n JD{a) r 

From equation (3.16) the last term in equation (3.24) can be bounded by 

C{r2)lEo\\F\\L-(K(p)). 

Equations (3.21) and (3.24) imply 

\F(p)\ < C (E2{a) + \\VtanF\\L*(c(v)) + S^WFU-w)) ■ 

Since all of the terms in the above estimate are gauge invariant, by (3.2) the above 
inequality remains valid in any gauge. By taking sup over A (a, b) we obtain 

l|irl|Loo(A(a,6))<c(£72(a)+    sup    11VtanF\|L2(C(P)) + ^1/211*1 U~(A(flf6)) ) • 
V p€A(a,6) J 

By choosing 8 small, depending on the energy EQ and a only, we obtain from the 
above equation 

(3.25) ||i?||Loc(A(a,6)) <c[E2{a)+    sup    \\VtanF\\L2{c{p)) ) . 
\ pGA(a,6) J 

H2 bound on F. From the energy inequality (3.12) and inequality (3.25) we 
have 

\\^F\\Loo,2iAi^b)) +    sup    \\VtanF\\L2{c{p)) 

peA{a,b) 

< C {\\VF(a)\\LHD{a)) + 6(E2(a) + \\VtanF\\L2ic{p)))) . 

By taking S small enough, depending on the energy EQ and a only, we obtain 

(3.26) ||^||L-3(A(a,6))H-    sup    \\VtanF\\L2{c{p))<CE2(a). 
pGA(a,6) 



544 PIOTR T. CHRUSCIEL AND JALAL SHATAH 

Taking a space-time and gauge covariant derivative of equation (3.5) we obtain 

VaVaVaF^ = -Va {2[F/,F0V] - 2Rallv0F^ - R^F% - R„aF^} 

(3.27) +[PaPa,PCT]F^. 

The right-hand-side of this equation can be estimated as 

(3.28) C(\F\ + \VF\ + \F\\VF\) . 

We can now repeat the argument leading to (3.10) with the energy-momentum tensor 
(3.9) replaced by 

(3.29) 

Ta0 = h^h^h^ik^V^F^V^F^) - ^{V^F^VxV^F^g^} , 

to obtain 

E2(t) < C (E2(a) + 5\\VF\\Loo,2(Aiath)) (l + ||F||Loo(A(flf6)))) . 

From equations (3.25)-(3.26) we conclude 

E2(t)<C(a,E2(a)), 

for all a < t < b. Since the size of the cone S depends only on a and EQ, which 
is bounded in terms of the intial data we conclude that for any point p G M and 
compact hypersurface S(p) C {q G M; t(q) = t(p) } 

(3.30) \\VVF\\L,{s(p)) + \\VF\\LHS(P)) < C{S{p))\\Fini\\H, , 

where Fini corresponds to the initial data for F. 

4. Global existence. Let O be a coordinate patch on £$, using the flow of V£ 
on M we can extend the coordinates xl on O to coordinates (t, xl) = (x0,xl) on Ex O. 
In this coordinate system the metric takes the form 

(4.1) g^dx^dx" = -a2dt2 +gijdxidxj , 

with some function a > 0. In all our considerations below we shall only use coordinate 
systems of this type. While this is clearly not necessary for our analysis, it simplifies 
some of the calculations involved. 

Let Q C M be an open set. We shall consider connections on P\tt with the 
following differentiability properties: We shall assume that ft can be covered by co- 
ordinate patches f^ with coordinates (t,xl) G / x Ui together with local trivialisa- 
tions of P over fi;, such that the coordinate components A^ of the connection are in 
C{I]Hk+1(Ui))nC1{I\Hk(Ui))i for some k > 2. 

Consider a trivialisation of P over a coordinate patch U of the form I x O, where 
/ is a time interval, such that the hypersurfaces Ej are given by the equation x0 = t. 
For the purposes of this section it will be convenient to impose the temporal gauge 
condition 

(4.2) .40 = 0 , 
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and to define 

(4.3a) G^ = Fp,, - d^Av + dvA^ - [A^AV) , 

(4.3b) Bx = e^^VaF^ , 

(4.3c) Cx = VaF
aX . 

In the temporal gauge, the FQI component of eq. (3.1) reduces to 

(4.4) dtAi = Foi. 

To establish local in time existence of solutions of the Cauchy problem we shall be 
solving for Ai,Fij, and FQI using equation (4.4) together with the equations obtained 
by setting B* = C* = 0: 

(4.5) VtFij = VjFio - ViFjo , 

(4.6) VtFoi = VjFji . 

Let us note, that when eqs. (4.4)-(4.6) hold throughout U, and when G^u defined 
in eq. (4.3a) vanishes at one value of £, then G^u will vanish throughout U (and 
consequently we shall have Ba = 0 throughout U). Indeed, the time derivative of the 
right-hand-side of eq. (4.3a) with nv = ij vanishes when eqs. (4.4)-(4.5) hold. It 
then follows that F^v is the curvature field of the connection A^. The vanishing of 
jBa is then simply the Bianchi identity. It is important to note that this will be true 
regardless of whether or not the Yang-Mills constraint equation (7° = 0 holds. 

Let us start with a result that involves Lorentzian metrics on M = E3+1. In that 
case every principal bundle is trivial so that both the connection and its curvature 
can be considered as fields defined on M. We have the following (which, again, holds 
irrespective of the vanishing of C0): 

PROPOSITION 4.1. Let g^v be a smooth Lorentzian metric on M3+1 such that the 
level sets of t = x0 are Cauchy surfaces. Consider two Q-valued one-forms Af* and 
Ei defined on E3 « {* = 0} C R3+1, with {A^Ei) e Hf*1^) x #£C(E

3).  Then 
1. Suppose that k > 4. There exists a g-valued one form A^ defined on 1R3+1 

such that the field F^ defined by eq. (4.3a) with4 G^v = 0 is the unique 
solution of equations (4'4)~(4'6)> satisfying Foi|^o = Ei, Ai\t=o = Af, and 
^o = 0. 

2. Suppose that k > 2 and that T>jEJ = 0 on a neighbourhood of a coordinate 
ball D = B(R) C {t = 0}. Assume moreover that the interior of the future 
domain of dependence intA+(D) of D has the property that for all r its 
sections intA+(D) D {t = r} are diffeomorphic (as manifolds with boundary) 
to coordinate balls, when not empty. Then there exists a Q-valued one form A^ 
defined on a neighbourhood of A+(D) and satisfying the Yang-Mills equations 
in intA+(D). 

Proof. The proof of the first assertion is a straightforward consequence of the a 
priori estimates of Section 3, we shall give some details for completeness5. Let B(R) 
be a coordinate ball of radius R in {t = 0}, multiplying the initial data (A^Ei) by 
a cut-off function we obtain initial data (Ai ' ,£/*) which coincide with (A^Ei) on 
B(R) and which vanish outside B(2R). Modifying the metric in an appropriate way 

4Missing condition inserted. 
5The idea of allowing a source term cMy in eq. (4.12) below is due to [12]. 
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we also obtain a metric g^ which coincides with g^ in the domain of dependence 
A(B(R)) of B(R) and is the standard flat Minkowski metric outside of I x B(2R): 

where / C M is a compact time interval. 
Now the system of equations (4.4)-(4.6) is symmetric hyperbolic, which is easily 

checked as follows: Introduce Ei = Fw, Hi = eijkFjk/2, where e^ = yMetg^c^ V 
dj V dk V dx1 A dx2 A dx3. Eqs. (4.4)-(4.6) can be rewritten as 

(4.7) gVdtAj^Lo., 

(4.8) a-ig^dtEj = e^djHk + lo. , 

(4.9) ^ftfl^ = -e^djEk + /.o. , 

where a is the "lapse" function appearing in (4.1), and "Z.o." denotes terms which 
do not involve derivatives of Ai, Ei and Hi. Set u = (Ai,Ei,Hi) and 

5U 0 0 
0 a-2gv 0 
0 0 g'3 

It follows that (4.7)-(4.9) is of the form 

(4.10) L0(t, x)dtu + L^t, x)diu = M(t, x, u) , 

with symmetric matrices 1/ (cf. e.g. [15, p. 199]). 
Since equations (4.4)-(4.6) form a semilinear symmetric hyperbolic system, we 

have from standard energy estimates that the modified Cauchy problem has a local 
solution in C([-TuT2],Hk(W1)), provided k > f. (See, for example6, Volume III, 
Theorem 1.2, p. 362 and Proposition 2.1, page 370 of [17].) 

Consider the field Cx defined by eq. (4.3c). We have from equation (4.6) Cl = 0, 
and from the identity VaCa = 0 we have 

(4.11) dtiV^deigC0) = 0=>CX= 5^a,        a = C0{t = 0)/V^d^g . 

This shows that a is uniformly bounded on E3+1. The modified curvature tensor FR 

of AR satisfies the equation 

(4.12) -DF^ + 2[F/,F0V] - 2Ra^FafJ - R^F\ - RVCiF^ = c^ , 

where cMI/ ^V^CV— VVC^ is globally controlled in the L00 norm (all the Ck norms if 
the initial data are smooth). Equation (4.12) differs from eq. (3.5) of Section 3 only by 
the c^ term. Moreover, under the gauge transformation A^ ->• Q~ld^Q + Q~1A^Q: 

F/iu -> G~1FfiuG, eq. (4.12) will be transformed to the same equation with c^ 
replaced by G'^^c^G- The a priori estimates derived in Section 3 carry over to 
the above equation when k > 4 (and, hence, c^ G L^c) and thus imply global 
existence of solutions for the modified problem. Point 1 follows now from the fact 
that the solutions of equations (4.4)-(4.6) on A(B(R)) are uniquely determined by 
their initial data on B(R), so that for Ri > R we have (i71jRl|A(J5(JR))5^jRl|A(jB(JR))) = 
(F

R
\A(B(R))TA

R
\&(B(R^). One can therefore patch together all the (F^,^) 's to 

obtain a globally defined solution on M3+1. 

6 Since equations (4.4)-(4.6) are semilinear it is easy to see, by a simple modification of the 
arguments given in [17], that the differentiability threshold k > n/2 + 1 imposed in [17] can be 
lowered, in our setting, to k > n/2. 
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To prove point 2, note that to obtain the H2 estimates of Section 3, one has to 
be able to perform a gauge transformation to the Cronstrom gauge. This requires 
some sufficient degree of differentiability of the fields, which might not be satisfied 
for k = 2. Further, the estimates used in the proof of point 1 fail to hold globally 
with k — 2, because of the potential lack of uniform boundedness of the c^ term. To 
overcome those problems, consider a sequence of smooth initial data (^ ' ,n,i^ 'n) 
supported in the ball B(2R) which converge to {A^R,E^) in Hk+1{^) x Hk(Rs). 
By point 1 we have a corresponding sequence of solutions of eqs. (4.4)-(4.6) defined 
on E3+1. Because the H2 estimates of Section 3 in A(B(R)), as adapted to include a 
supplementary c^ term in eq. (3.5), involve only the H2(B(R)) norm of F^^ — 0) 
and the L00(B(R)) norm of c^, they will continue to hold in A(B(R)) when passing 
to the limit if we show that we can choose an approximating sequence for which the 
norms ||cMl/||^oo(5(fi)) < 2\\ViE'l\\ci(B(R)) have a bound independent of n. To obtain 
such a sequence, let the g-algebra valued field ^R,n be obtained as a solution of the 
equation 

(4.13) V^Vi^71 + JSf 'n) = ^1/n * P^f . 

Here ^i/n * / denotes the convolution of a function / with a Friedrichs mollifier. As 
discussed in [2, Section 5], eq. (4.13) has a unique solution in an appropriate weighted 
Sobolev space. Note that '01/n * VlEf- converges to VlER = 0 on B(R) in the 
C1(B(R)) norm, since Ei coincides with Ef1 in a neighbourhood of B(R). Moreover 
both P^fn and ^i/n * WE* converge to £>*£/* on M3 in the iJ^-^E3) norm. It 
follows that (t)R>n converges to zero in Hk+l{B(2R)). Setting E^n = V^71 + E?'n, 
the sequence {Ai ' ,n, Ei 

,n) will have all the desired properties. To finish the proof of 
point 2, note that from eq. (4.11) one has that C = 0 on Mx D. Since A(£>) C Ex D 
the result follows. □ 

Proof of Theorem 1.1. Consider the collection V of open subsets f2 of M with 
the following properties: 

1. H is globally hyperbolic with Cauchy surface S; 
2. P\Q carries a connection which is a Yang-Mills development of the initial 

data (AE,E); 
3. H is covered by coordinate patches f^ with coordinates (£, x1) G IxUi together 

with local trivialisations of P over fij, such that the coordinate components 
Ap of the connection are in C(/;iJ*+1(Wi)) n C1 (/;#*(%)), with AQ = 0. 

By Proposition 4.1 together with a standard patching procedure V is not empty. 
V is directed by inclusion, and by the Kuratowski-Zorn lemma there exists a maximal 
element fJ in V. Suppose that dCt is not empty, by global hyperbolicity of M and of fi, 
changing time orientation if necessary, there exists a point p G dVt with the property 
that J~(p) fl dd — {p) (cf. e.g. [5, 7]; here we follow the standard notation [13] in 
which J~ (p) consists of the set of points causally related to p, and lying to the past of 
p). Choose e small enough so that the set K = J~(p) fl Tlt^_e is covered by a single 

coordinate system. Since <9fi is closed we can find a cover of K by open sets Opi p G K, 

such that dQ D Op = 0. (Here O denotes the closure of the set O.) By compactness of 
K a finite number of the Op's can be chosen, p = Pi, i = 1,..., N. Set O = U^C^. 
Without loss of generality we can assume that the domain of dependence A(O) of O 
is conditionally compact and lies within a single coordinate patch. It should be clear 
that p lies in the interior of A(O). Let q be any point in the interior of A(O) D J+(p), 
where J+(p) is the set of points in the causal future of p. Let O be the interior (relative 
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to the topology of ^t(p)-e) of J~(q) fl Zt{p)_€. We have O C (5, hence O fl dft = 0. 
Now the interior of the future domain of dependence A+((9) of O coincides with the 
interior of J~{q) fl J+(£i(p)_e), so that (decreasing e if necessary) A+((9) fl Et is 
diffeomorphic to a three-dimensional coordinate ball for t G (t(p) — e,t(q)) . We can 
extend the metric g^\A(o) ftom A((9) to a smooth globally hyperbolic metric defined 
on M3+1 in any way. Similarly^ we can extend the Yang-Mills initial data induced on 
O by the Yang-Mills field on fi in any way. By point 2 of Proposition 4.1 there exists 
a global solution A of equations (4.4)-(4.6) on E3+1. By uniqueness of solutions of 
equations (4.4)-(4.6) in domains of dependence, the connection A coincides with A 
on A(0)n £1. Therefore one can extend the connection A from P|^ to a connection 

field on A(0) uti , the extended connection being a Yang-Mills development of the 
initial data (As,i£). This, however, contradicts maximality of 0 so that ft — M, and 
Theorem 1.1 is proved. D 
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