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K-THEORY FOR TRIANGULATED CATEGORIES 1(B): 
HOMOLOGICAL FUNCTORS* 

AMNON NEEMANt 

7.  The beginning of the proof. The following theorems are true: 

THEOREM 7.1. Let T be a t-category. Let C be its heart. Then the inclusion 

induces a homotopy equivalence. 
THEOREM 4.8. Let A be an abelian category.  The natural inclusion 

induces a homotopy equivalence. 
In this article, we will give a complete proof of Theorem 4.8. In K-theory for 

triangulated categories II we will prove Theorem 7.1, in the special case T = Db(A) 
with the usual t-structure. The general proof of Theorem 7.1 will have to wait until K- 
theory for triangulated categories III. Conceptually, the general proof of Theorem 7.1 is 
no harder; but the details are complicated. The proof involves many more homotopies, 
hence we leave it for a subsequent article. 

The proof given for Theorem 7.1 (in the special case) will also provide a proof for 
Theorem 4.8. But first we will present another, simpler proof of Theorem 4.8. The 
simpler proof has two virtues. Firstly, it is simpler. Secondly, all but the very last 
step works for Construction 4.6, and the last step pinpoints just where we need the 
coherent choice of differentials. This second point is important. Because most of the 
proof is valid for Construction 4.6, we will be able to make certain deductions about 
the homotopy type of that construction. 

The proofs of our two theorems begin the same way. In this section we will give 
the common beginning. Everything in this section is valid for all four constructions. 

U 7[mjn], it will suffice to show that for 
m<n 

Beginning of the Proof Because Tb = 

m' < m < n < n', the inclusion 7[mjn] C T[m> ,n>} induces a homotopy equivalence on 
whichever construction we work with. Clearly, it suffices to consider two cases: 

7.1.1. m1 = m - 1, n' — n; 
7.1.2. m1 = m, n' — n + 1. 
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These cases being dual, we will only consider 7.1.1. For convenience of notation, we 
will prove that 7[i>n] C 7[o,n] induces a homotopy equivalence. 

NOTATION 7.2.    An arrow   > *    is a "monoepi"; it stands for a morphism 
which is at once a mono and an epi.  Such a morphism is mono in degree 0, epi in 
degree n. There is now an obvious way to define yet more simplicial sets. The symbol 

stands, of course, for the nerve of the bicategory which is horizontally free and ver- 
tically monoepi. We can also define simplicial sets with coherent differentials, where 
some of the arrows are constrained to be monoepi. 

Motivation for the Remainder of Section 7. Before we go on to more detail 
of the proof, it would perhaps be helpful to summarize briefly what we will do in the 
remainder of this section. The remainder of this section consists of a string of lemmas, 
that identify the homotopy fiber of the map 

More precisely, we will show that the map 

1     T 

is a quasi-fibration, and the simplicial set on the left is a model for 

while the simplicial set on the right is clearly a model for 
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After all, whatever the simplicial set on the left happens to be, by the time we cross 
out enough to obtain the simplicial set on the right, all we are left with is 

together with some cokernels. 

This is true in both Constructions 4.6 and 4.7, i.e. with or without differentials, 
but only for Gr(A). If we want a theorem about the if-theory of a triangulated 
category T, we run into problems already at this early stage. 

We will not identify the homotopy fiber of 

We will not quite succeed in proving that the map 

i   i 

i   i 

is a quasifibration (at least, in this section we will not succeed. Ultimately we will, 
of course, even show that the fibers are contractible.) Instead, we will show here that 
the fiber over the trivial simplex 0 controls the situation. The fiber over a general 
simplex X is the simplicial set 
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The fiber over 0 is obtained by setting the entire box labeled X to be 0; it is the 
simplicial set which we will denote 

What we will show is that, if the fiber over 0 is contractible, all the other fibers must 
also be. Thus to prove Theorems 4.8 and 7.1, it suffices to show that the fiber over 0 
is contractible. 

From now on, we will begin committing the notational crime of letting T stand 
for either a triangulated category T, or Gr(A). Thus 

can either be the if-theory of a triangulated category, or the if-theory of Gr(A) for 
some abelian category A. It can, unless further specified, come either with or without 
coherent differentials. 

End of Motivation. 

We break the proof into steps. 
LEMMA 7.3.  The natural inclusion 

}   } 1     T 
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induces a homotopy equivalence. 

Proof. Consider the trisimplicial set together with the two projections 

Vn] 

>—y 

>—y 

1     !    t     T 

T[l,n} 

T    l ;?    T 

% [0,n] 

+     /        *■  \     /  +■ + 

"^o.^T 

NOTATION 7.4.   The simplicial set 
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is just 

i   i   i 

T[l,n] 

> ► 

% [0,n] 

T     T     T     T 

L 
r\hn) % [0,n] 

In other words, the zero inside a rectangle means simply that the restrictions on the 
objects and morphisms can be deduced from the surrounding data, and the author is 
too lazy to do it explicitly. 

To prove that fi is a homotopy equivalence, it suffices to establish the contractibil- 
ity of 
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/ R 

 v 

 > 
T —*■ 

» 
" 

/ z 

 Y 

 ► 

X 

)—y 

>—y 
'[O.n] 

This is easily done, with the contracting homotopy 

To prove that /2 is a homotopy equivalence, it suffices to establish the contractibility 
of 
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Till 

T, [l,n] 
Y 

This is also easily done, with the contracting homotopy 

ZE 
% [l,n] 

> )■ 

Y 

In other words, both simplicial sets are contractible by the "contraction to the initial 
object". The reader should reflect a little to see that neither homotopy wanders 
outside its simplicial set. This is slightly tricky in the case of /2. The real point is 
that, if Yik >—»•   Yjk is a monoepi in 7[o,n], and we complete it to a triangle 

Zji ^ ik Yjk ^t-i^ji 

then Zji is in fact an object of 7[i}n]. This follows immediately from the long exact 
homology sequence. □ 

Strategy of the remainder of the Section. We study the projections 
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1   1 

In Lemma 7.5 we will show that /i is a homotopy equivalence. In Lemmas 7.6, 7.11 
and 7.15 we will show that /2 is (almost) a quasi-fibration. In particular, to prove it 
a homotopy equivalence, it suffices to establish the fiber over 0 contractible. 

End of Strategic Planning. 

LEMMA 7.5.  The map fi above, that is 
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T     T 

induces a homotopy equivalence. 

Proof. It suffices, by Segal's theorem, to show that the fiber 

" 

/ z 

 Y 

 Y 

Y 

I   I 

is contractible; and this is immediate from the contracting homotopy 
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/ 

-—>■ 

 >■ 

Y 

i   i 

D 

LEMMA 7.6. Suppose T is either Db(A) with the standard t-structure, orGrb(A). 
Let J2 be the map 

T     1 

/    0 

 Y 

 > 
7" > *■ 
'[O.n] 

I   1 

Then the fiber 0//2 in the sense of Segal, i.e. the simplicial set 
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i   i 

is homotopy equivalent to a much smaller-looking simplicial set. Precisely, if the fixed 
data X is given by the diagram 

Xpo > y   • - •   > y X, pq 

Xoo > ► > *   Xoq 

then the fiber /2   (X) is homotopy equivalent to the simplicial set we will denote 

In particular, its homotopy type depends only on Xpo, and not on the entire simplex 
X. The sybmol H0(Xpo) stands for X-0 = X^. It is the bottom homology of Xpo, 
placed in degree 0. From now on we will denote it X^Q, as this is the easiest on the 
eye, having the fewest sub- and superscripts. 

NOTATION 7.7. The object Xpo plays a crucial role in many homotopies. We will 
refer to it as XNW- The notation means that we pick the North-West corner of the 
simplex X. We can, of course, also refer to XNE, XSW and XSE- Naturally enough, 
these stand for the North-East, South-West and South-East corners of X respectively. 
But it turns out that of these X^w and XSE play a disproportionately important role. 
Of course, X^w and XSE are permuted by the duality and transposition symmetries. 
If one plays a major role, so must the other. 
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Proof of Lemma 7.6. Once again, the idea is to use our favorite homotopy. The 
fiber in the sense of Segal is the simplicial set 

i   i 

To this fiber we will apply a homotopy we will denote 

IXNW 

and as the notation is meant to suggest, the homotopy is a slight variation on our old 
friend. Now we need to explicitly describe the homotopy. 

An n-simplex sn in the fiber is a diagram of M — V squares 
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Sn      — 

0    —► 

0       > *     ' • *     > >-    Soq 

0     ► Yno  ) y   -"   ) > Y7 nq 

* Znn   *  Yoo   > *   '"   > >  YQ Oq 

X 

X 

pu   ,        f                ?        f   •**■ PI 

UU   >        >     • • •    >        >   X. Oq 

and to define a homotopy, we need to associate to it n 4-1 (n-\- l)-simplices. The ith 

is given by the now familiar looking diagram 
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0    >—*   •••   > y Soq 

0        ►    ^nO    > >-     *••     > ►    Yr nq 

0     >-   •••    y  Zin   *   Yio   > *   •••   > )•   Yi iiq 

0    »•   •••     >Zoi 

ZuQXpo 
X pO 

ZQJ 0 XpQ 
D-—^<i— >- X pO 

Zine)Xpo  YiojBXpo_ 
<i— y    • - -     y—^<i— >•—Tr<i—> y Y<1       r      Y 

ZontBXpQ Yoo(&Xpo 
->-—370——y—37<T—>—y 

>—y   x<i 
XP0 

YooeXpq 
> )■        y<l 

X pO   > >■ X0 

^oo > >-   •••   > >• X{ Oq 
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The reader should note that this is really nearly the same as the homotopy in the 
proof of Theorem 5.1. If the reader quickly refers back to the diagram defining the 
homotopy **, he will observe it to be identical with the above, except for the triangle 
of S's at the top (which is harmless), and for the fact that in the rectangle surrounded 
by dashes, every term has been divided by X^^ = X^. Now we will explain what 
this means. 

The point is that, in a triangulated category with a ^-structure, there is a functo- 
rial way to divide an object X G T-0 by a subobject A £ 7[o,o]- Precisely, this means 
that if A e 7[o,o] and X G T-0 are given, together with a mono (in the exact category 

T-0, where they both lie) / : A >—tX, then one can form the quotient ^, which 
is unique up to canonical isomorphism. In the above, put A = X^ly. The objects 
Zjk lie in T-1, and hence the only map A -> Zjk is the zero map. But there is a 
canonical inclusion A >—>X]yw, and hence a canonical map A >—tZjk 0X/VVF- The 
map A >—yYok © X^w is defined simply to be the composite 

A >—>Zjk 0 XNW >—tYok 0 XNW- 

The highlighted box in the simplex above contains the quotients by this inclusion of 
A. 

CAUTION 7.8. The reader should note that it is not entirely trivial that all the 
squares in the diagram above give rise to distinguished triangles. Modulo difficulties 
with mapping cones on triangles, it is nevertheless true. We will come back to this 
point in Sections II. 1 and III.l, where we will give a more general discussion of why 
the variants of our favorite homotopy are all well defined. 

The proof that the various squares are M — V can wait until Sections 11.1 and 
III.l, but what cannot wait is a computation of the map 

Zjk 0 XNW >—*Yok © XMW- 

Trivial as the commputation is, it is so important that I will label it a proposition. 
PROPOSITION 7.9.   In the simplex above, which is part of the definition of our 

favorite homotopy, the map 

Zjk 0 XNW >—>Yok 0 XNW 

is the matrix 

a    -13 
0        1 

where a : Zjk —> Ibfc and /3 : XNW —> Yok are the natural structural morphisms of 
the simplex sn. 

Proof. There are several ways to prove this. We will indicate three, and leave the 
details as an exercise to the reader. 

The first way is to remember that the distinguished triangles in the homotopy ** 
were defined in terms of direct summands on mapping cones of triangles. These were 
all very explicit, so we can now get in and compute. 
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The second way is to remember the metatheorem which tells us that, in order to 
compute what maps must arise from all the mapping cones, it is enough to treat the 
special case where the exact category is A C Db(A). But then, the rectangle with the 
frame of dashes around it is determined uniquely, from the rest of the diagram, by 
pullback. This makes the computation somewhat easier. 

The third and easiest way is to observe that we have a commutative square 

0 —f Y0j 

'■'jk X,, pO Yok 0 Xjvw 

The map Zjk 0Xpo —^Yok © ^NW is defined in some universal way out of mapping 
cones on triangles fron sn. In particular, the map itself is a matrix in maps from sn. 
The map is a matrix 

a    b 
c    d 

and there is really no freedom for a, c and d. But the composite 

XNW —> yok © XNW —> Yc Oj 

must be zero, and since this is universally true (=for all choices of simplices) it is easy 
to deduce that b= —/3. □ 

Coming back to the proof of Lemma 7.6, we note that we have so far constructed 
a homotopy which we denoted by 

/XNW 

This homotopy links the identity with a map which we naturally denote 
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IXNW 

And the point is that this map factors through the simplicial set 

Y<1 

which is almost the same as the nerve of the category of monoepis; the difference is 
that we keep track of the kernels, and of a map X^w )—^j- Precisely, an n-simplex 
sn in the simplicial set 

r<1 

is a diagram of M — V squares 
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0     ►   Yn 

0     ► >   Zon     +     ^o 

Once again, we have framed the XNW, as it is fixed. The fact that the map 

NW 

factors through 

Y<1 

is essentially immediate; all the data we need to reconstruct the image of the simplex 
sn is contained in a subsimplex which really lies in 
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^<1 

But we know more. We have really factored the identity quite explicitly. Precisely, 
we have constructed two maps 

z  y 

f 

/ 0 
 ¥ 

T > * 
'[0,n] 

^<1 

The maps 9 and (j) are really quite obvious.   Let us however compute them once 
explicitly. An n-simplex sn in the simplicial set 

i   i 

is a diagram 



Sn      — 

K-THEORY FOR TRIANGULATED CATEGORIES 1(B) 455 

0      ► 

0    > y   ■ • •   > ►  Si Oq 

0     y Yno  > *   •••   > > Yr nq 

Zon   *  Yoo   > ^   *••   > ►   Yoq 

x 

X \          \      - - -     s          s     Y 

P<1 

uu   >       >    • • •    >       >   u\ i)q 

An n-simplex tn in the simplicial set 

% [0,n] 

Y<1 

is a diagram 
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tn     — 

0     ►   Yn 

0     ►   •••    > Zon  y   YQ 

r<1 

The map (f) takes the simplex sn to the simplex 

0      ►  Yr nO 

0       >-     '••      ►   ^On     >-    YQ 

r<1 

whereas the map ip takes tn to the simplex 
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> y    ■ • •    ) >• 

Yn®Xpo 
">• y<l > »• 

JOq 

In 0Apq 
> y       Y<1 

o   —•■ ■+ z, On -»-      Y<i        >—► 
yo9xp(? 

> V v<i 

X 

r\                     S               \          -   -   T         S               V                       ^C 

- 

pg 

uu         >      >    • •■    >      >         A og 

The composites 0 o 6 and 0 o <£ are quite explicit. The beginning of the lemma proved 
that (j)o8 is homotopic to the identity. But 9 o 0 takes the simplex tn to the diagram 
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v    Yri@XNv 

">     Zi On Y<1 

Y<1 

and the point is that this can be viewed as a translation with respect to some iJ-space 
structure. Precisely, there is a map 

action 

This map is induced by forming direct sums, and then dividing by the diagonal in- 
clusion of X^w • The map 6 o (j) is translation by the 0-cell 

0     —►  XNW 

r<1 

with respect to this action.   This action gives a true iJ-space (unlike some other 
actions we will soon be considering on the same space).   In particular, there is a 
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neutral element for the action, the 0-cell 

0      —►   XNW 

i 

459 

Y'<1 

As we will see in the proof of Lemma 7.11, the simplicial set 

is connected. Translation by any 0-cell is homotopic to the identity. That proves that 
0 o (j) is homotopic to the identity. □ 

REMARK 7.10. The reason the author has gone over the argument so carefully 
this time is that arguments like the above seem to be ubiquitous in this theory. One 
is always led to considering translations with respect to i?-space structures, some of 
which are slightly fake. A fine example of this is Lemma 7.11. 

The strategy of the proof of Theorems 4.8 and 7.1 is to show that the simplicial 
set 

Y<1 

is contractible. But there is still the nuisance X^ly hanging off the bottom. We want 
to get rid of it. 

LEMMA 7.11.   Suppose T = Db(A) with the usual t-structure, or T — Grh{A). 
If the simplicial set 

is contractible, then for any A an object o/7[o,o]? the simplicial set 
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T[0,n} 

I 
A 

must also be contractible. 
Proof. First observe that both simplicial sets are connected. (This is the part 

for which we need T = Db(A) with the usual ^-structure, or T — Grb(A).) For 
7~ = Grh(A)i the connectedness is obvious. Suppose therefore T = Db(A). If 

0 X 

i 
A 

is a 0-cell in 

then we write X G Db(A) as a complex 

X -i x0-^x1 

and there is a map from X to its "brutal" truncation 
 v       v"n—1       v       ~V"n       v       "V'n+l       y 

4- 4- -r 
•••    -^    X""1    —>     0     —^       0       —>►••• 

This gives a truncation X —> Xir, which is clearly monoepi if n > 1. But the map 
A —)- X*r is also monoepi. If one keeps track of the kernels in the computation, this 
connects the simplex 

0     —►   X 

i 
A 

to the simplex 

0     —►   A 

1 
A 

and we immediately deduce connectedness. 
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Now the point is that for any A, the realization of 

461 

is a fake #-space, with the operation given by direct sum. The reason it is fake 
is because it is not a priori clear that there is an identity element. Note that this 
is different from the true if-space structure we considered, on the same space, on 
page 458. The true il-space structure was not just direct sum, but direct sum followed 
by division by some inclusion. Anyway, there is a multiplication map 

\ / 

/ 
-f :; 

/o 
-f 

r[0,n] X 
"h 

y 1           ) \ 

Tu [0,n] 

A 

multiplication 
f 

Tu [O.n] 

I 
^ A 

There is also an action of 

on 

again induced by direct sums. The idea of the proof will be to compare these actions. 

The first observation is that the two maps 
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\ / 

action projection 

are homotopic, because by assumption 

is contractible. In particular, we deduce that the composite 
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7[0,n]    ^_ 

1 
A 

\ / 

/ 
-)- 

A 
/§ 

-)- \A X 
*"• 

( )        ) v 

463 

\ 

^O.n] 

I 

action 

is homotopic to the identity.   Here, A is the diagonal map.   But concretely, this 
composite is the simplicial map sending the n-simplex 

Vn     = 

0      ► 

0     >   Yn 

-+   Zon     *     YQ 

to the simplex 
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->"   Yn © Yn 

->    Zon©^On     ^    lo©io 

^2 

where 2*2 : A —> YQ 0 YQ is the inclusion in the second summand. 

Now, up to a canonical automorphism of YQ © YQ, the map 2*2 is equal to the 
diagonal; this immediately shows that the identity is homotopic to the map taking 
the 72-simplex yn to 

-*    Yn © ^n 

-►     *••      *    Z0n®Zon     >    YQ&YQ 

A 

and this map is nothing other than the composite 
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T[0,n]    A_ 

1 
A 

% [0,n] 

1 
A 

465 

T[0,n] 

1 
A 

multiplication 

Next we will make a small computation in the homotopy groups of 

Because the homotopy groups of a space are a based invariant, let us choose a base 
point, 

0     —►   A 

i 
A 

We will show the vanishing of 

(   f , \ \ 

n< 
o A\ 

I 
A) 

A    J 
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for every i > 1. Because we already know the connectedness of the space, this proves 
contractibility. 

REMARK 7.12. Thomason pointed out that it is unnecessary to make this com- 
putation in the homotopy groups; one can argue more directly. This is of course true, 
but I wanted to underline the fact that we are only computing the higher homotopy 
of the space. This argument most definitely does not show the connectedness. 

We need to show that any based map from a sphere into the pair 

/o 

V 

A 

i 
A 

is null homotopic. Let (f) be such a map. Recall that, if fi is the multiplication map 
on 

we know that the composite 
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T%n\    A_ 

i 
A 

\ / 

/ 
-> f 

/§ -> T[0,n) X 
"■ 

A  ) v 

467 

T[0,n} 

1 
A 

is homotopic to the identity, by a homotopy that does not preserve the basepoint. 
Therefore the composite // o A o 0 is homotopic to (/>, by a homotopy which need not 
preserve the base point. We will show that // o A o 0 is null homotopic. This shows 
first that (/) is null homotopic by a homotopy not preserving the basepoint, but this 
homotopy can be adjusted to one preserving basepoints. 

The point is that A o 0 is a map from a sphere into a product. It is therefore 
homotopic to a sum ai 0 a2 of two maps which factor through sections Z'I and ^ of 
the product, respectively. It then suffices to show that // o aj is null homotopic, for 
j = 1,2. Even better, it suffices to prove that /i o ij is null homotopic for j = 1,2. As 
this is symmetric, it suffices to consider ii. 

But the map JJ, O ^ is easy to compute. It takes the simplex 

/ \ 
0 ■+   Yn 

0     >■ ■+   Zon     >•     YQ 

A 
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to the simplex 

0     ►   YneA 

0      ► -> Zon   y   Yo®A 

A 

But once again, up to a canonical automorphism of Yj © A, the diagonal equals the 
inclusion i2 in the second factor. Thus the map /i o i1 factors through 

% [0,n] 

which is contractible. D 

CAUTION 7.13.      Let us elaborate a little on Remark 7.12.   As we said, it is 
essential for the space 

to be connected in the above argument. To illustrate this point, suppose that instead 
of proceeding with the particular simplicial sets we chose, we replaced them with 
others. Precisely, suppose that instead of working with the diagram 
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/   0 

 y 

—* 

T > ^ 
MO.n] 

we decide to look at the diagram 
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y 
—y 

—f 

<Y ) ► 

/ 

 V 

 ^ 

T > >" 

t   t 

To make the difference easier to see, I have highlighted it with a dashbox. The vertical 
morphisms at the bottom of the diagram are no longer restricted to be mono. 

Then most of the argument goes through unaltered. The map /{ is still trivially 
a homotopy equivalence. The homotopy of Lemma 7.6 still works, to show that the 
identity on the Segal fiber factors as §8 below 
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Y<1 

But this is as far as we get unscathed. The space 

Tu [0,n] 

Y<1 

most definitely is not connected. It is still a fake jfiT-space with respect to direct sum, 
and there is still an action of 

on it. The argument of Lemma 7.11 still proves that as long as 

is contractible, so must also be the connected component of 
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at the obvious basepoint. But that is all. 

Lemma 7.11 seems to be a very useful trick in triangulated if-theory, and we 
will have occasion to use it in subsequent papers. Let us therefore formalise as a 
proposition the topological statement we used. 

PROPOSITION 7.14. LetX andY be topological spaces. Suppose X is contractible 
and Y is connected. Suppose X is an H-space, suppose X acts on Y, and suppose Y 
is a fake H-space (i.e. there is a product, but no neutral element). Let the action be 
denoted 

XxY -^Y 

and let the fake H-space structure be denoted 

Y x Y -^ Y. 

Suppose there is a map a : Y —> X such that the two composites 

A' XxY 

Y 

Y 
and 

Y xY 

i 
Y 

are homotopic, and suppose further that for both inclusions of   Y as a section of 
Y x Y, the composites 

YxY 

I 
Y 

Y 
and 

YxY 

I 
Y 

are null homotopic.  Then Y has the weak homotopy type of a contractible space.     □ 

For Constructions 4.6 and 4.7 we can do better; we will prove: 

LEMMA 7.15. For Gr(A), we have that the projection 
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i   T 

I   i 

is a quasi-fibration.  The homotopy fiber is 

REMARK 7.16. This is of value especially in the case of Construction 4.6, 
i.e. without the differentials. We will not be able to show the contractibility of the 
homotopy fiber; but knowing that it is the homotopy fiber will allow us nevertheless 
to make some deductions. 

Since this is the first place in the article in which we prove a map to be a quasi- 
fibration, it seems only right to explain what to do in some detail. All future proofs 
that maps are quasi-fibrations will follow the same pattern. 

The topological fact which we use is 

THEOREM 7.17. (Quillen's Theorem B). Let S. be a simplicial space, T. 
a simplicial set. Suppose F : S. —> T. is a simplicial map (i.e. a simplicial map 
of simplicial spaces, where T. is declared to be a simplicial space with the discrete 
topology). Pick X G Tn , then we call f~l(X) the fiber in S. over the n-simplex 
X. Suppose that for every X and every face map d : Tn —>• Tn_i, the induced map 
f~1(X) —> f~1(dX) is a homotopy equivalence. Then the realization of F is a quasi- 
fibration. 

Proof of Lemma 7.15. We need to show that the map 
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/ 

 V 

 V 

GT^A 

induces a quasifibration. If we realize first the simplicial structure that becomes 
degenerate on the target, we have a map from a bisimplicial space to a bisimplicial 
set, to which we can now apply Quillen's Theorem B, as above. Thus, it would suffice 
to prove that the face maps on the fibers, defined as in Quillen's Theorem B, all 
induce homotopy equivalences. 

But Step 2 established a homotopy equivalence 

[0,n]        ^_ 

X<1 

a 

/> 

t   i 

And because the maps a and /3 are so explicit, we can compute for any face map d 
the composite 
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To prove d a homotopy equivalence, it suffices to prove that the composite (3 o d o a 
is. 

Our argument will run as follows. We will prove that, for any A, the map 

which forgets A induces a homotopy equivalence. There is a candidate inverse 
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namely the map sending the simplex 

0    —y   Yn 

0      ► "►    ^On     y      Yo 

to the simplex 

0      y   Yn®A 

0      ► -+ Zon   y   Y0®A 

^2 

12 being the inclusion into the second summand. It is easy to show that (j) o ip is 
homotopic to 1. 

Let us grant for now that I/J o 0 is also a homotopy equivalence. We will come 
back to proving this before long; for now let us see how this can be used to complete 
the proof of the Lemma 7.15. 

Study the composite fiopodoaoi/;. It is quite explicit and computable; the 
reader will easily verify that it is simply a translation in the iJ-space structure on 
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In particular, it is a homotopy equivalence.  And because so are 0, /?, a, and -0, it 
follows that d is a homotopy equivalence too. 

It therefore remains to prove that 0 and ip are homotopy equivalences, and by 
the remarks above we need only show that I/J o (/> is homotopic to the identity. 

Let yn be an n-simplex in 

The map if; o $ is easily computed to take this simplex 

Vn     = 

0      ► 

0      >   Yn 

->» Zon   y   YQ 

/ 

to the simplex 
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^ ° <P(yn)   - 

-+   Yn<£A 

-»■ Zo„   s-   Foe A 

A 

v / 
This is of course translation in the fake iJ-space structure.  But now write down a 
homotopy whose cells are   

0 

0        ► 

0     ►   ZuQBi     > 

-)- Zin@Cin 

-J-  Zin<$Bi 

->Z{ Oi -^    ZQI^BQ -+ Z^eBo 

>Yn®Y<1 

Yi e K<1 

> y*© A 

> ybe A 

The point about this homotopy is that A —> Y^1 is clearly monoepi. It is mono 
by hypothesis, and epi because Y!> has no higher homology. This makes the right 
hand column a column of monoepis, and anyone can compute the kernels; we have 
disturbed our original simplex by a simplex in the rigid iif-theory of A. 
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So far, this is not special to Gr. But now we observe that the inclusion A >—^^-0 
Y^0 factors canonically through A >—tYj. This is very special to Gr, and we deduce 
a homotopy having cells r -. 

0        ► 

0    ► zh 

-+ Zoi ->   ZoiZ 

—^   ZinZ&Cin 

->   Zin@Ai 

->-  Zon®Ao 

^Yn®Y<1 

> Yi © Y^1 

>       Yi 

Yo 

and with these two homotopies we have connected the map tp o 0 with the identity. □ 
From now on we will deal only with the simplicial sets 

0 

In every case, Lemma 7.11 tells us that their contractibility would establish Theo- 
rem 7.1 or 4.8. In the case of GV[o,n](-4), we have proved the stronger statement that 
this is the homotopy fiber. Henceforth, we will drop the 0 at the bottom; we will 
denote this simplicial set by 

% [0,n] 
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8. First proof of Theorem 4.8.  Motivation.   In broad strokes, the proof 
goes as follows. Let Fn be the homotopy fiber of the map 

Then there is a commutative diagram, whose rows are fibrations 

Fn  

ar 

Fn +i 

In this section, we will prove two main lemmas: 

LEMMA 1. (=Lemma 8.8) an : Fn -> Fn+i induces a homotopy equivalence. 
LEMMA 2. (=Lemma 8.10) an : Fn —)> Fn+i is null homotopic. 

Taken together, the lemmas establish the contractibility of Fn , and hence Theorem 
4.8. 

From Section 7 we already have a simplicial model for Fn , namely the simplicial 
set 

With this simplicial model, Lemma 2 turns out to be trivial, with the one proviso that 
it uses the coherent differentials. To prove Lemma 1, we will need another simplicial 
model for Fn. 

The idea is simple enough. We label an arrow   -£-> if it happens to be an H0 

isomorphism. Consider the simplicial set 

which is of course defined by requiring that the vertical maps be H0-isomorphisms. 
It is very easy to see that the inclusion 
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induces a homotopy equivalence. Clearly, the simplicial map 

i   i 

GW 

—y 

—)> ^[o^r 

also induces a homotopy equivalence. What would be nice is if the map 

$ 

GrM 

 1 

—y 

GW 
induced a quasifibration.  This would give us another model for the homotopy fiber 
Fn , and this model is the simplicial set 

Gr [0,n] 

which is just the fiber over 0. It can easily be shown that the natural inclusion of the 
smaller simplicial set, where the objects along the bottom line are restricted to lie in 
GV[ljn], that is the set 

IT 
Gr\iM 
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induces a homotopy equivalence.   And this last simplicial set is very amenable to 
proving Lemma 1. 

Unfortunately, I have not been able to prove the map 

i  i $ 

GW 

 y 

 1 

GrM 

a quasi-fibration. Actually, even this is not entirely true. I have a proof which works 
for the construction without the differentials, Construction 4.6. I assure the reader 
that he does not want to see that proof. The proof involves homotopies defined on 
the second barycentric subdivision of the fibers. 

What we have in this section instead is a very indirect proof of the existence of a 
homotopy equivalence 

Grfl,nl 

Thus, even without showing that $ is a quasi-fibration, we succeed in proving that 
the fiber over zero is the homotopy fiber. 

The proof occupies Lemmas 8.1-8.7, and it has about it all the feel of a mission 
to the moon; you go very far out, and come back to a result that is not actually far 
removed from the starting point. 

End of Motivation 

The virtue of this proof is that right until the very last step, the argument is valid 
for both Construction 4.6 and Construction 4.7. This will allow us to say some things 
about Construction 4.6, even though we do not know its homotopy type. 

Again, we will break the proof into steps. 

LEMMA 8.1.  The simplicial set 

Gr [0,n] 

is also the homotopy fiber of the map 
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(For the unmotivated reader, that is one who skipped the motivation, we recall what 
an arrow   -5->- is. Such a map is an H0 -isomorphism.) 

More precisely, there is a map 

tr 

which simply replaces the zeroth cohomology group by 0 (the truncation). The reader 
will check that it preserves squares and preserves differentials (if any). Therefore, it 
is a well-defined bisimplicial map.  We are asserting that the composite 

i   T 
tr 

has for its homotopy fiber the simplicial set 

Proof. Consider the trisimplicial set and the two projections: 
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T  , T 

1     1 

T     I 

It is very easy to prove that /2 is a homotopy equivalence; the fiber 

GW 

 y 

 y 

Y 

T     1 

is contractible, the contracting homotopy being 
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Gr, [l,n] 
IW 

I   1 

This is of course the contraction to the terminal object; the homotopy send the cell 

X, pO 

Xoo  >• 

>   Xpq     > 

-> x. Oq 

ZrO     * 

YpO > » • * •     > » Ypr 

H W 

H fH 

ido >—» •'•   >—»• Yor 

■>    0 

to the collection of g + 1 (g + l)-simplices, the (q — i)th of which is 
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Xpo ►   • • •    >■ Xpi —y Y Q 

X{ oo 

(i-\-l)terms 

"^ Xc\i . V>0 
100 

{q—i+l)terms 

(Note that this homotopy will not work in a triangulated category T; the natural map 
to the truncation is Y^ —»• Y^g" )• 

Thus, to prove Lemma 8.1, it suffices to show that /2 is quasifibration (the fiber 
over X — 0 being right). Once again, we use our favorite homotopy. To apply 
Quillen's Theorem B we need to study the Segal fiber of /2. It is the simplicial set 

X 
Gr >—* Gr[0,n] 

and we apply the homotopy 
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ITT! 

The only thing that needs caution is the proof that the cells of the homotopy do not 
depart from their simplicial set. The cells of the homotopy are 
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X pO  >* X v 

\XQQ  ►     • • • ■Xt Oq 

(i+l)terms (q—i+l)terms 

Xpq@Yoo 

Zro{BXsE     ^ 

I 
Xpq®YoJi 

H 

Xoq@Yoll 

I 
rot >—»■ 

->•   ZriQXsE    >"   ^ri   y 

Yor 

■+  0 

^iO©-^SB 

^20 

->-  Zt-i©Xs£; 

and the key point is that the cells of the homotopy are legitimate, because the maps 
inside the dashbox, namely Xiq 0 YQJ -> Yij, are indeed mono. The reason we can be 
certain of this is that H0(Xiq) = 0, and YQJ -> Yij is mono. 

This proves that the identity on the fiber factors, up to homotopy, through the 
simplicial set 

[0,n] 
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and it is easy to check that this factorization induces a homotopy equivalence. The 
point is that we have two maps 

X 

 >- 

—► 

H 

Cjr[0,n] 

t     T 
Gr [0,n] 

We have just proved that the composite (j) o 0 is homotopic to the identity. The 
composite 0 o 0 is easier; it is easily computed to be nothing other than a translation 
in the iJ-space structure of 

Thus the fibers have a homotopy type independent of X. It is easy to verify that 
the face maps on X induce homotopy equivalences of the fibers; see Lemma 7.15. 
Hence fi is a quasi-fibration. □ 

LEMMA 8.2.  The natural projection 

T     T 

25 a homotopy equivalence. 

Proof. The fiber (in the sense of Segal) is the simplicial set 
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which is contracted by the homotopy 

-- 

GW 

SJV 

T     ! 

LEMMA 8.3.  The natural map 
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i   i 

is a homotopy equivalence. 

Proof. Study the quarti-simplicial set and two projections 
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T     T 

T    T:  !    I 

!     1 

" 

GW 

 > 

 )- x 
f  , T 

The map /i is a homotopy equivalence because on the fiber 
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" " 

GW 

 y 

—y 

X 

T     T 

we can apply the contracting homotopy 

H 
Yw 

* 

GW Xw 

 y 

 y 

X 

* 

T     T 

The map /a is slightly trickier. Once again, we must resort to our favorite homotopy. 
The Segal fiber is the simplicial set 
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p 

—y 

—y 

G^ 

T     T 

and we need to show it contractible. By the homotopy 

T     T 

Gr, [l,n] 

T   n   T 

the identity on 
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factors through the simplicial set 

which is trivially contractible, by the contraction to the terminal object. □ 

REMARK 8.4. Note that as the article progresses, the author feels free to 
leave more to the reader to check. For instance, the reader should check that the 
homotopy above is well defined, and does not wander away from its simplicial set of 
definition. In the original version of the article, verifications of this sort were included 
in painstaking detail. A number of people objected. The present article attempts to 
create a notation in which it is clear what the homotopies should be, and they can 
therefore be left to the reader. 

REMARK 8.5. By this time the reader might be getting understandably fidgety 
about our favorite homotopy. As time goes on, we see more and more variants of 
it. First we allowed transposes and duals. Then we permitted kernels. Then we 
allowed ourselves to divide by a fixed subobject. Now we are subdividing the (vertical) 
simplicial structure. Where will it all end? 

The point of Sections II. 1 and III.l is that all the homotopies we have seen, and 
some more to come, can be obtained by deletion and subdivision from one master 
homotopy, together with its transpose and duals. This is why Sections II. 1 and III.l 
were put later rather than earlier in these articles. It is hard to see the point of a 
master blueprint for the homotopy, unless one has first seen examples. 

LEMMA 8.6.  The projection 
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T     T 

is a homotopy equivalence. 
Proof. The Segal fiber is the simplicial set 

X 

 )- 

 >» 
GW 

and it is contracted by the homotopy 

T     T 

X 

—)- 

—)- 

XB 
GrM 

LEMMA 8.7.  The projection 

.. 

GrM 

—y 

—y 

GrM 

is a quasi-fibration. 
Proof. We need to study the fiber 

□ 
\ / 

\ 
—> 

 > ^n^r 
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t 
—y 

z 
SW 

 y 

Once again, we apply our very favorite homotopy. Precisely, there is a homotopy 

T     T T 
Gr [l,n] 

and because this is a slightly new incarnation of our favorite homotopy, we will present 
its cells. The homotopy takes a cell in 

" 

GW 

—► 

 >► 

z 

to lots of cells. Precisely, given a (g, r) cell S(q^ in the bisimplicial set 

 y 

z 
^[l,.]' 

—y 

the cell defines a diagram 
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5(g,r) 

Fr0   > *   ••-   > ►   Yr 

XQO   >* 

rq 

H Hi 

^00    > *     ••*     > ►    Yoq 

Xpo  y   '' •    y Xpq  y 

X, o? 

^pO     y     ' ' '      y    Zps 

Zoo    ^ ->  Zi Os 

The homotopy we will give will be a horizontal homotopy. It is defined by cells 
which increase the integer q, but leave r unchanged. It can be thought of as giving 
a homotopy first on each horizontal realisation, and these homotopies glue to define 
a global homotopy when we also realise the simplicial structure that corresponds to 
varying r. 

To our starting cell S(g,r) we must associate q + 1 (q + l,r) cells. The (q — i)th is 
given by the diagram 
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Yri   > >• Yri®ZNW 
■ Yrq®ZNW 

H 

499 

^G 00 

Xt p0 

X{ 00 

(i+l) terms 

H m 

^Oi   > ^ YoiQZNw 

> yipi  >-  XpiQZpQ    y 

> Xnj  ►  Xpi^Zoo    y 

H 

• Yoq(BZNW 

->■  Xpq@Zpo 

-¥     Xpq(&ZQ0 

(q—i+l) terms 

The notation for the homotopy is meant to be self-explanatory. The part enclosed in 
a dashbox below 

is nothing other than our favorite old homotopy, quite untampered. But what we next 
enclose in a dashbox represents the fact that in the top right hand box, the homotopy 
adds a Z^w 
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The reader should note that in Proposition 7.9 we have already computed the map 

Xpk 0 ZNW >—^Yok © ZNW- 

It is the matrix 

a   0 \ 

-P    1) 
where a : Xpk —> Yok and (3 : Xpk —> ZNW are the natural structural morphisms 
of the simplex S(9jr). This also is reflected in the notation for the homotopy. The 
homotopy connects the identity with a map we might naturally call 

and, as the notation should suggest, this map factors through the simplicial set 

Gr[l,n] 

Another way we have been writing this simplicial set is 

i   i 
Gr 

ZNW 
[l,n] 
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The point is that a simplex in this simplicial set should be thought of as a simplex in 

4—t. 
Gr [l,n] 

together with a map from the bottom line, which I have conveniently highlighted with 
a dashbox, to the fixed object Z^w 

This map to Z^w is a nuisance. We want to prove some map a quasifibration, 
and this means that the homotopy type of the fiber should be independent of Z. We 
have deduced thus far that the identity on 

<w 
 y 

 y 

Z 

factors up to homotopy through the map 

And now we follow by another homotopy, this time vertical, which we denote 
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Gr[l,n] ' 

The cells of this homotopy are 
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Yro > ► 

T 

T 

-^•o > ► 

T 

Yio © ZNW > > 

...   > ►        Yr rq 

> »■ ^ig 

>—► y^ 0 z^iy 

r—z+l 

terms 

i+1 

terms 

YOO © ZNW   > >"     ' ' '     > ►  ^Og © -^iVW 

Xpo 0 Zpo    >■   • • •    >•  ^p^ 0 Zpo    >• 

Xpo 0 ZQO    ►   • • •    >  Xpq 0 Zoo    y 

^pO 

Zoo    * ->  Zt Os 

The last map clearly exhibits that, up to homotopy, the identity on the fiber factors 
through the bisimplicial set 

T     I 

And thus we are rid of the nuisance map to Zjyw- More precisely, there are maps 
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" 

GW 

 >• 

 y 

Z 

</> 

T     T 
Gr[l^f 

We have just proved that ipcxpis homotopic to the identity. But one can easily compute 
</> o ij; and show it to be a translation in the if-space structure of the connected space 

T     t 
Gr [lfn] 

This proves that the homotopy type of the fiber is independent of Z. An easy compu- 
tation, left to the reader, shows that the face maps are homotopy equivalences. See 
also the proof of Lemma 7.15. □ 

Conclusion of Lemmas 8.1—8.7. What we have done so far is establish, in a 
somewhat roundabout way, that there is a homotopy equivalence between realizations 
of 

and 

Grlhn} 

It follows from Lemmas 8.1-8.7 that both are the homotopy fibers of the same map. 
Now we come to the crux of the matter. 

LEMMA 8.8.  The inclusion 

Gr [14] Gr [l,n] 

induces a homotopy equivalence. 

Proof. We factor the inclusion as the composite 
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a. c I . 

T     T I     I 
Gr [l,n] Gr [l,n] 

where a morphism X -* Y in Gr[o,n] is said to be x—v if for all 2 < i < n, it induces 

i^Msomorphisms (of course, a morphism xi-f induces iJz-isomorphisms for i = 0 
anc? 2 < i < n). 

Truncation above dimension 1 clearly gives a homotopy inverse for the map a. 
The homotopy inverse of the map /? is also quite explicit. Take a (p, ^-simplex y(p,q) 
in 

J L 

Such a simplex is a diagram 

> y    •••    > y   YPq 

X0     y 

loo   > ►   •••   > ^   ^ 

-^   Xfl 

and the homotopy inverse of /? sends it to 
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ZpQ   > y   • • •   > )-  Zq pq 

H 

Zoo 

Xo 

Zoq 

xn 

where Zij is defined as follows: 

8.8.1. H0(Zij) = H0(Yij) 

8.8.2. ^(Zij) = ^(Xj) for2<k<n 

8.8.3. ^{Zij) = ImiH^Xj) -> i^1^))- 

The reader will check that the map given above is a bisimplicial map, and that both 
composites are homotopic to the identity. □ 

REMARK 8.9. Perhaps a less mysterious description of this map is as follows. 
Let Fi be the third edge in the "triangle" Fi -> Xj ->• Yij. Then Z^ is the third edge 
of the triangle Hl(Fi) ->- Xj —> Z^ (note that Fi G .D[i,n+i] in general. There is no 
epi-ness hypothesis.) 

It should also be remarked that the category Gr has this property that one can 
define on it strange homotopies that do not fall into the simple categories we will 
discuss in Sections II. 1 and III.l. The triangulated proof is harder, but it is also free 
of "spurious" homotopies. 

Up until this point, everything we have done is valid in both Constructions 4.6 
and 4.7. The next step is not. 

LEMMA 8.10.  The inclusion 

Gr[l,n+1] 

is null homotopic. 

Proof. We leave to the reader the fact that the identification 
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Gr [l,n] 

is natural in n; it suffices therefore to show that 

—¥ 

[0,n] 

is null homotopic. But this inclusion factors as 

Gr [0,n+l] 

Gr 
I     c 
[0,n] Gr 

I    c 
[0,n] Gr [0,n+l] 

(this is just the fact that any morphism in Gr[o,n] is epi5 when viewed in Gr[o,n+i])- 
On the other hand 

(because for the symmetric construction, the one where differentials are kept, kernels 
and cokernels are the same). And the simplicial set on the right is clearly contractible, 
by the contraction to the initial object. □ 

This completes the proof of Theorem 4.8. 

Appendix A. Semi—triangles. We remind the reader that this Appendix con- 
tains only a sketch of an argument the author never checked carefully. Since the 
author has forgotten any detail he may have thought about, when he wrote these 
notes four years ago, he will stick closely to the old notes. It is more probable that 
they are correct than what he might try to write now. 

Let T be a triangulated category. We define 
DEFINITION A.l. In the triangulated category T, a sequence 

U V W      v-, 
x —y y —> z —> L,X 

is called a candidate triangle if the three composites 

vu,        wv, {Eujiu 

all vanish. 
DEFINITION A.2.   A candidate triangle is called contractible if it is isomorphic 

to a sum of three trivial candidate triangles 
i 

X          — ->    X —> 0 —> Ex 

0 -»•  y -U y —» 0 

E-1*    - ->    0  > z 
1 

—> z 
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Having defined candidate triangles, and defined which of them we view as contractible, 
it is now time to define morphisms between them. A morphism of candidate triangles 
is a commutative diagram 

w 
y 

y 

Ex 

S/ 

w 
Ex' 

With this definition, the collection of candidate triangles forms a category. We denote 
this category CT(T). Given a morphism of candidate triangles as above, its mapping 
cone is the diagram 

-v    0 
9   u' 

-w    0 
h   v' 

-En   0 
E/   w' 

y®x' z^y' -*-   Ex 0 z' Ey 0 Ex' 

The mapping cone construction takes a morphism in CT(T) to an object of CT(T). 
DEFINITION A.3.   The subcategory ST{T) C CT(T) is the smallest full subcate- 

gory which 
A.3.1.  Contains all the distingushed triangles. 
A.3.2.  Contains the mapping cone on any map of its objects. 
A.3.3. If C is a candidate triangle in ST{T), and C is isomorphic to a direct sum 

C" © C" with C contractible, then C" e ST(T). 
An object of ST(T) will be called a semi-triangle in T. 

REMARK A.4.      According to my notes, it should be obvious that any semi- 
triangle is a direct summand of a good semi-triangle of height n, n G Z. The semi- 
triangles of height n are defined inductively, as follows 

A.4.1. The semi-triangles of height 0 are the distinguished triangles. 
A.4.2. A semi-triangle of height n -\-1 is the mapping cone on a map of candidate 

triangles C —> C", where C is a distinguished triangle, and C is a semi- 
triangle of height n. 

EXAMPLE A.5.    Let A be an abelian category, T = D(A) its derived category. 
Given any short exact sequence in A, that is a sequence 

0 0 

there is a unique differential making it a triangle; there is a unique morphism w : 
z —> Ex so that 

y Ex 

is a triangle in T. We have a morphism of triangles 

E"1* 
-E"1™ —u 

^w 

w 
Ex 
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and the mapping cone is 

u    0 
0    u 

v    0 
0    v 

w    0 
w    w 

X © x -+-    y®y -*-    z® z -*■    T.x 0 Ex    . 

This is a semi-triangle, being the mapping cone on a map of triangles. However, it is 
not in general a distinguished triangle. The sequence 

/ u   0 \ f v   0 \ 
V 0   u ) V 0    v ) 

0 xkB x ■*■    2/^2/ ^©2; 0 

is a short exact sequence in the abelian category A C ^(^4) = T. The unique way to 
extend it to a triangle is as 

u    0 
0    u 

v    0 
0    v 

( w    0   \ 
V   0    w ) 

-+-   y®y 

But the matrices 

w    0 
0    w 

-*■   ^©z 

w   0 

-^   T.x 0 Ex    . 

will agree only if it; = 0. In other words, the semi-triangle above is a triangle precisely 
if w = 0, that is precisely if the short exact sequence 

0 y 0 

is split. 
DEFINITION A.6. Let T be a triangulated category. The simplicial set 

is a defined as follows.  The (p,q)-simplices are diagrams in T 

Xpo   >■   • • •    y Xn Lpq 

Xoo X( Oq 
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together with a coherent differential d : Xpq —> T.XQQ. Here, a coherent differential 
d : Xpq —> TtXoo is a map such that for any 0 < i < i' < p, 0 < j < f < q, 

Xij —^ Xi'j © Xij/ —)■ Xi'ji —y YjXij 

is a semi-triangle, as in Definition A.3. 
We wish to prove Theorem 7.1.   The idea is that the proof is the same as the 

arguments we have been seeing in this article.  To do this, we need first define the 

simplicial sets for any integers m < n. The definition is as follows 

DEFINITION A.7. Let T be a triangulated category with a t-structure. Let m < n 
be integers.  The simplicial set 

is a subset of .   Its simplices are defined as follows.    The (p, q) - 

simplices are diagrams in 7[m)n] 

XpQ   v Xv 

X{ oo ->"   Xoq 

together with a coherent differential d : Xpq —)■ EXQO- As in Definition A.6, a coherent 
differential d : Xpq -> SXQO is a map such that for any 0 < i < i' < p, 

Q<3<3' <q, 

Xij —y X^j © Xij' —y Xi'j'      > ZjXij 

is a semi-triangle, as in Definition A.3.   This means that it is a direct summand of 
an extension of triangles, as in Remark A.4-  We require that the other summand can 
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be chosen to be a (contractible triangle) 
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Z -> Z' -> Z" -^ EZ 

with Z, Z' and Z" in T^n]. 

Now with the obvious extensions to more elaborate simplicial sets, we can extend 
the constructions we have seen so far, as well as the constructions in Parts II and III 
of this article. My notes tell me that the following Lemma is useful in showing that 
the homotopies that arise are all well-defined 

LEMMA A.8. Suppose we are given a simplex in 

Y •+   Y' _►   Y" 

X    y  X'    ►  X" 

and suppose that the two faces of this simplex 

Y     ►   Y' 

X     ►   X' 

Y'     ►   Y" 

X'    >  X" 

lie in the smaller simplicial set 

smaller simplicial set. 

Then the entire simplex lies in the 

Proof. As part of the structure of a simplex in , the diagram 
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Y 

X 

■*   Y' 

■+   X' 

■+   Y" 

■+  X" 

comes with a coherent differential. This gives us a composite of maps in CT(T) 

X 

X 

X' 

I 
X"®Y 

I 
X" © Y' 

Y' 

i 
Y" 
I 

Y" 

4- 
EX 

SX' 

and it is easy to show that the middle row is a direct summand on the mapping cone 
of an obvious map from the bottom row to a shift of the top. By hypothesis, the 
top and bottom row are direct summands of extensions of triangles in 7[min] • Hence 
so is the middle row. The other summand can be chosen to be contractible, and the 
objects lie in 7[m)n]. This means that the middle row also satisfies the hypothesis of 

membership in the simplicial set D 

REMARK A.9. At this point, my notes are singularly unhelpful. They assert 
that, with the simplicial sets as defined above, the proof of Theorem 7.1 goes through; 
this needs checking, and nothing is said about the details. Anyway, the assertion is 
that, if the i-structure on T is non-degenerate, then the natural inclusion 

induces a homotopy equivalence. 
Let us grant the assertion of Remark A.9.  We are still not done.  The point is 

that the simplicial set is not isomorphic to Quillen's construction 

on the abelian category T^.o] • A simplex in is a diagram 
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X. pO -> xv 

x{ oo x{ Oq 

together with the choice of a differential. The assertion that all the X^s lie in the 
heart 7[o,o] does mean that, if we forget the differential, we have a diagram of bicarte- 
sian squares. But now all we know is that the differentials give us semi-triangles, not 
necessarily distinguished triangles. As long as the triangles were distinguished, the 
differentials were unique. But once we allow semi-triangles, it is sometimes possible 
to complete the diagram of bicartesian squares 

X, p0 X, pq 

XQO x{ Oq 

to a simplex in more than one way. There may be more than one choice of differentials. 
See Example A.5 for a concrete illustration of how this can happen. 

To rephrase our problem another way, by Remark A.9 the simplicial map 

is a homotopy equivalence. The simplicial set without the differentials, 

is homotopy equivalent to Quillen's Q-construction. There is a natural map 
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which forgets the differential. Since the differential is non-unique, this map is not an 
isomorphism. This is our problem. What we need to see is that the map forgetting 
the differentials, although not an isomorphism, is still a homotopy equivalence. Here, 
fortunately, my old notes are more helpful. 

REMARK A. 10.     Before we proceed with the notes I wrote years ago, let me 

make a comment. It is already clear that the simplicial set has a 

homotopy type independent of the category T, and depending only on the heart 7[o,o]- 
After all, a simplex involves only objects Xij G 7^0,0] > morphisms Xij —> -XVj', and 
differentials X^ —> Y,Xi>j', that is extensions of X^ by Xi'j*. This data is completely 
determined by the abelian category 7[o,o]- 

It follows that the homotopy type of the simplicial set depends 

only on the heart 7[O,O]J 
and therefore agrees, for example, with the homotopy type in 

the special case T = JD(7[O,O])5 that is the derived category of the heart. 

We return to the notes.  From now through the rest of this Appendix, all sim- 
plicial sets will be assumed to come with coherent differentials. When we write the 

symbol , we will really mean what we have, until now, been denoting 

.   We will only explicitly write the symbol for the differential in 

the shorthand for the simplicial set when we want to indicate that the differential is 
restricted. Thus, the symbol 

R. 



K-THEORY FOR TRIANGULATED CATEGORIES 1(B) 515 

will stand for the simplicial subset of where the differential yields 

not any semi-triangles, but distinguished triangles. Since this makes the differentials 
unique, this simplicial set is isomorphic to the one without the differentials; that is, 
it is homotopy equivalent to Quillen's Q-construction. 

We wish to show the inclusion 

i?/ ^ / ^ 

R. 

a homotopy equivalence. The idea is to study 

T     T 

^O.O]   ' 

 »- 

 >■ 

^O.O]   ' 

Recall that this means a simplicial set with differentials, and the differentials in the 
top square are restricted. The restricted differentials yield distinguished triangles, not 
only semi-triangles. We have 

LEMMA A. 11.  The natural projection 

R, R. 

i i 

induces a homotopy equivalence. 
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Proof. Trivial. □ 

LEMMA A.12.  The natural projection 

R. R. 

TT 

t     ! 

R. 

is a quasifibration, having the simplicial set for its homotopy 

T     T 
77, [0,0] 

fiber. 

Proof. The Segal fiber of the map TT is the simplicial set 

R. 

The homotopies 
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f ^ 

V, 
T[0fi)   ' 7[0,0]   )®XNW 

i 1 T          T 

T  ► 7 [0,0] 

'[0,0] 

/ X 
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R. 

allow the identity on the Segal fiber to factor through 

R. 

Then 

% [0,0] 

one easily shows this factorisation is a homotopy equivalence, and that the face maps 
in X induce homotopy equivalences on the Segal fibers. □ 

Now we want to study the simplicial set that the author finds difficult to write 
down. By rights, in keeping with our conventions, its symbol should be 
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R, 

T[0,0} 

Tm 

% [0,0] 

R 

R 

In other words, all the differentials are restricted, except the ones involving the line 
on the left. We have a string of easy lemmas. 

LEMMA A.13.  The natural projection 

R. 

Tu [0,0] 

%, [0,0] 

T, [0,0] 

R 

R 

R, 

7[o,o] 

^o.o] 

T, [0,0] 

R 

R 

induces a homotopy equivalence. 

Proof. The Segal fiber is contracted by the homotopy 
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Rs . 

V 

U 

Y 

Ys 

T[o,o] 

♦ t 

R 

X 

R 

LEMMA A.14.   The natural projection 

R^ . R. 

V, 
T  >• 
7 [0.0] 

^\ 

^O.O]    ' 

\ tWi1 
/ ^[0,0] ' 

R 

induces a homotopy equivalence. 

Proof. The Segal fiber is contracted by the homotopy 

R,  

^x 

V 

U 

VE 
r[o,o} 

! T     I 
UE % [0,0] 

R 

519 

D 

D 
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R. 

LEMMA A.15.  The simplicial set is contractible. 

Proof. Trivial. 
Lemmas A.13, A.14 and A.15 combine to show that the simplicial set 

R^ ^ 

Tfo.o] 

VjtM 

T[0fi] 

R 

— R 
is contractible. It therefore suffices to show that the natural projection 

D 

R. R, 

% [0,0] 

Jlo.o] 

T[o,o} 

R 

R 

R 

R 
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induces a homotopy equivalence. After all, it is a map from a contractible set to the 
homotopy fiber we want to show contractible. 

So we will now proceed to study the Segal fiber of the map <j). The Segal fiber is 
the simplicial set 

R. 

Now, the homotopy 

%, [0,0] 

t^Vo] 

T[m 

R 

R 

R 

^       Vo] 
R 

may be followed by a homotopy 
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R. 

7[o,o] ^XNW 
i 

^       TM  T[0-f (BWW 

R 

and the point is that the two homotopies combine to factor the identity on the Segal 

R^ ^ 

fiber of (j> through a space that depends little on the fixed data 

t     T 
W 

The fixed data in particular gives us a (0,l)-cell 

XNW >• XNE 

Ww  ► WE 
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The identity on the Segal fiber of (/> factors, up to homotopy, through a simplicial set 
we will denote 

/   R. 

( \ 
X-NW  > XpfE 

Ww  ► WE 

T[0,0] 

V Tu [0,0] 

r[ofi] 

■+  0 

R 

and I owe the reader a definition of what this means. 

A simplex in 

R, ^ 

is a diagram 

T[0fi] 

T[o,o] 

% [0,0] 

■+  0 

R 

Vpo    >■ -*"  ^pg    ¥   Yp 

VQO    >■ ■+   Voq    1-   Y0 

U0    ►   •••    )■   Uq    y    0 
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together with differentials satisfying some comditions. A simplex in the more compli- 
cated simplicial set 

/ \ 
XNW >• XNE 

Ww  ► WE 

(   R. 

T[Ofi] 

T[Wl 

r[ofi) 

-+  0 

R 

is a diagram 

Vr, pO ->-   •••    y Vpq   ►   Yp 

Voo    > ->  V0q    ►   Yo 

Uo    y -+   Uq     v     0 

/ \ 
XNW * XNE 

as above, together with a map into it from 

v Ww  ► WE 

.   This means 

/ 
the following.  For each U^ we have a map XNE —> TZUi.  For each Vij we have a 
map Ww —> Vij- For each 5^, we have a map XNW —> Yi> If we define the map 
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WE —► Yi to be zero, this gives maps 
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XNW *■ XNE 

Ww  > WE 

(   R. 

T[m 

% [0,0] 

77, [0,0] 

■+  0 

R 

and we require that they commute with all the structure maps. The reader is asked 
to verify that the identity on the Segal fiber factors up to homotopy as we said. 

It suffices therefore to prove the contractibility of the simplicial set 

/ \ 
XNW ► XNE 

Ww  ► WE 

(   R. 

r\m 

\^m_ 

Tu [0,0] 

->  0 

R 

The next point is to reduce to the contractibility in the special case where the simplex 

XNW ► XNE 

Ww  ► WE 
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vanishes. The argument is as in the proof of Lemma 7.11. The simplicial set 

/   R. 

( \ 
XNW *• XNE 

Ww  ► WE 

TM 

% [0,0] 

r[ofi] 

■+  0 

R 

has a fake H-space action, as well as an action by the true H-space 

(   R. 

( \ 
0     »•    0 

0      !-     0 

77, [0,0] 

^^o.Q] 

77, [0,0] 

■+  0 

R 

Playing off the two actions exactly as in the proof of Lemma 7.11, one proves that 
the contractibility of the simplicial set 

/   R. 

( \ 
0     ►    0 

0     ►    0 

T\m 

77, [0,0] 

77, [0,0] 

■+  0 

R 
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implies that 

/   R- 

( x     —+x      X 
-X-NW  *• -X-NE 

Ww  ► WE 

T[o,o] 

\ 
r{o,o} 

Tm 

■+  0 

R 
J 

are also contractible. 

REMARK A. 16.   We actually want a slight refinement of the argument of 
Lemma 7.11. We want the sharper statement that if 

0     ►    0 

0     ►    0 

is n-connected, so is 

/   R. \ 

% [0,0] 

^W] 

^O.O] 

■+  0 

R 

XNW *■ XNE 

Ww  >■ WE 

(   R. 

Tu [0,0] 

V T\w\ 

T{m 

■+ o 

R 
I 

In this case, it would follow that the Segal fibers are all n-connected, and the homo- 
topy sequence then implies that the simplicial set 
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R. 
R. 

t     ! 
% [0,0] 

is (n + l)-connected. 

In other words, if we could show that the natural inclusion 

R. R. 

Tm 

{Jm 

% [0,0] c_ 

■+  0 

— R 

is a homotopy equivalence, we would be done. By Remark A.16 we know that if 

R, ^ Rs ^ 

% [0,0] 

% [0,0] 

% [0,0] 
is n-connected, then 

■+  0 

  R 

is (n + l)-connected. If the inclusion is a homotopy equivalence, then both sets are 
contractible. 

REMARK A. 17.    This is where my notes stop. I have no recollection what idea, 
if any, I had for proving the inclusion 
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 . R,  
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T[0,0] 

% [0,0] 

^O.O] c 

■+  0 

R 
a homotopy equivalence. Let me make the following observation. In both simplicial 
sets, a 0-simplex is nothing other than a semi-triangle; it is a simplex 

V 

U 

■+   Y 

-+•    0 

in other words a semi-triangle 

U V St/. 

The higher-order simplices are morphisms of semi-triangles, with the restriction that 
some induced semi-triangles be true triangles. If one takes an edgewise subdivision, 
then these simplicial sets are actually nerves of categories. I don't know whether this 
helps. 
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