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A MIXED PRODUCT KRYLOV SUBSPACE METHOD FOR 
SOLVING NONSYMMETRIC LINEAR SYSTEMS* 

TONY F. CHANt  AND QIANG YE* 

Abstract. In this paper, a product Krylov subspace method that we call mixed BiCGSTAB- 
CGS is derived. The method is built on the idea of the standard CGS and BiCGSTAB iterations 
but allows switching between the two at each iteration. This flexibility can be used, for example, 
to address the difficulty of excessive increase in residual norm in CGS, which may cause instability. 
In particular, a CGS based implementation will be presented, which can be regarded as another 
way of using the BiCGSTAB idea to improve the stability of CGS. Numerical examples are given to 
demonstrate the stabilizing effect of the mixed algorithm. 

1. Introduction. Iterative methods for solving a large nonsymmetric linear sys- 
tems Ax = b that extract approximate solutions from the Krylov subspace Kn = 
span{6, Abj A2b, • • •, Anb} are usually called Krylov subspace methods. The BiCG 
algorithm [4, 9] is a classical Krylov subspace method that produces an approxima- 
tion xn with a residual reduction rn = b — Axn — Pn(A)ro (7*0 = b) where Pn is a 
polynomial of degree n and called the BiCG polynomial. 

In the past few years, several efficient product Krylov subspace methods such as 
CGS [13] and BiCGSTAB [15] have been developed to accelerate convergence in BiCG 
and to avoid multiplications by the transpose of A (see [1, 8, 10] for a general review 
and comparison). These product type methods are based on constructing the prod- 
uct of the BiCG polynomial and some other accelerating polynomials. In comparison 
with BiCG, which requires 2n matrix-vector multiplications at iteration n, CGS uses 
the same amount of matrix-vector multiplications to produce a reduction with P^, 
i.e., rn = P%(A)ro. This potentially accelerates the convergence by a factor of 2. Un- 
fortunately, during the early stage of iteration, Pn(A) may not be a contraction and 
thus rn may grow substantially or vary significantly in magnitude, causing instability 
or stagnation of the true residual [12]. A remedy to this problem is BiCGSTAB [15] 
(or BiCGSTAB(Z) [7, 11]), which constructs rn = Pn(A)Qn(A)ro with Qn being a 
product of polynomials of degree 1 (or / resp.) constructed locally to minimize the 
residual. Indeed, the BiCGSTAB type methods have proved to be very efficient in 
smoothing and accelerating the convergence and is currently one of the most popular 
methods. However, there are many cases where CGS remains competitive. For ex- 
ample, BiCGSTAB may suffer from a type of near-breakdown that is associated with 
BiCGSTAB only and may result in stagnation of residuals. 

Since the difficulties encountered in CGS and BiCGSTAB are of different type and 
usually occur only at a small subset of the iteration steps, it might be advantageous 
to consider a combination of the two that can choose either of the two kinds of 
construction at each iteration and avoid using the one for which difficulties arise. 
Also local steepest descent is used throughout BiCGSTAB iterations, which may not 
be optimal in exploiting the global information available in the Krylov sequences. 
Therefore, it might still be desirable to construct residual reduction like P%(A)ro but 
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in a way that excessive increase in the residual norm is controlled. In this paper, we 
introduce a general concept of switching product Krylov subspace methods from one 
type to another through appropriately defining the sequence of polynomials. In this 
regard, we shall derive a mixed method that is based on the CGS and BiCGSTAB 
iterations but has the freedom at each iteration to carry out either a CGS step or a 
BiCGSTAB step. This is done without resorting to restart, which would lose all global 
information that has been built up in the iterations. In particular, we present a CGS 
based implementation that takes a BiCGSTAB step only when it is necessary, i.e., 
when there is a large increase in the residual norm. In this way, it can be regarded 
as another way of using the BiCGSTAB idea to improve the stability of CGS. We 
remark that there are two different issues in CGS, namely convergence of computed 
(updated) residuals and convergence of true residuals. While the mixed method can 
be used to deal with both through controlling the residual norm, the present paper 
and the implementation proposed will be focused on the first issue. 

There is a recent work [16] on a general product method that constructs residuals 
of the form rn = Pn(A)Sn(A)ro with 5n being any polynomial sequence satisfying 
a three term recurrence. The mixed methods to be presented here also constructs 
residuals of the form rn = Pn(A)Sn(A)ro but Sn does not satisfy any three term 
recurrence when there is a switching. Therefore, it does not fall into the framework 
of [16]. There are also other works such as those of [2, 6, 12] that address various 
difficulties in CGS. Here, we shall concentrate on the approach of constructing product 
polynomials that are slightly different from CGS. 

The paper is organized as follows. In section 2, we present the derivation of the 
general mixed algorithm. In section 3, we briefly describe a CGS based implementa- 
tion. Then, we give in section 4 some numerical examples to illustrate the stabilizing 
effect of the mixed algorithm and finally in section 5 concluding remarks. 

2. The mixed product algorithm. Consider applying BiCG to the matrix 
A with the initial left and right residuals fo, ro and denote the nth residual vector 
by r^200 and the nth search direction vector by p^lCG. Let Pn be the nth BiCG 
polynomial corresponding to r^lCG , and Tn be the nth polynomial corresponding to 
PnlCG (see [15] for example), i.e., 

Pn(A)r0=CCG,    Tn(A)r0=p^G. 

Then, from the BiCG recurrence, we have 

Pn+1(t) = Pn(t) - antTn{t), 

Tn+1(t) = Pn+1(t) + f3n+1Tn{t), 

where 

(Pn(A
T)fo,Pn(A)ro) (Pn+1(A

T)fo,Pn+1(A)ro) 
an      (Tn(AT)fo,ATn(A)ro)        *   Pn+1 (Pn(AT)f0,Pn(A)ro)    ' 

The choice of an and /3n ensures the following orthogonality properties 

(1) (p(^T)fo,Pn(^)ro)-0   and   (p(^T)fo,^Tn(^)ro) = 0 

where p is any polynomial of degree less than n. 
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To accelerate the convergence in BiCG and to avoid multiplications by the trans- 
pose of A, CGS constructs an approximation xn such that the residual is rn = 
b - Axn = Pn(A)ro, and in BiCGSTAB, it is rn = Pn(A)Qn(A)ro where Qn(t) = 
(1 - UJit) • • • (1 -UJnt). 

We propose a general mixed product method that constructs approximations xn 

such that its residual has the form 

rn = b - Axn = Sn(A)Pn(A)r0, 

where 

Sn(t) - Qk{t)Pn-k(t) and Qk{t) = (1 - wi*) •••(!- w^) 

and A: is an integer parameter that determines what kind of residual reduction is 
used. When constructing rn+i = 5n+i(^4)-Pn+i(^-)^o from rn, we can choose either 
S„+i(£) = Qk(t)Pn+i-k(t) or 5n+i(*) = Qk+i(t)Pn-k(t). We call the fromer a CGS 
step and the latter a BiCGSTAB step. So, essentially, in the first n iterations, we 
take k steps of BiCGSTAB and n — k steps of CGS. With k > 0, this approach avoids 
squaring Pn in the CGS and thus may have a stabilizing effect. We note that Fokkema, 
Sleijpen and van der Vorst [5] have also suggested the use of Pn_i(^4)Pn(^4)ro as a 
possible way to improve the stability of CGS. 

As mentioned in the introduction, [16] gives a general algorithm for constructing 
rn = Sn(A)Pn(A)ro if 5n satisfies a three term recurrence. It is easy to see that, when 
there is switching from a CGS step to a BiCGSTAB step and back, Sn in our case no 
longer satisfies a three term recurrence. Therefore, the general algorithm of [16] does 
not apply. The question now is whether rn defined above can still be constructed 
by some simple recurrence. It turns out that this can be done with a little extra 
cost. We now proceed to derive such a recurrence. The derivation is similar to those 
used in CGS and BiCGSTAB and will be in terms of polynomials, from which the 
corresponding vector recurrence follows. 

Since & is a parameter that may vary from step to step (thus a function of n), we 
denote its value at the nth step by k(n). As in CGS and BiCGSTAB, we define the 
following auxiliary polynomials and the corresponding vectors: 

(2) (f)n(t) - Pn-k(t)Qk(t)Pn(t),    and   rn = 0n(A)ro - Pn-k{A)Qk{A)Pn(A)r0; 

(3) €n(t) = Pn-k(t)Qk(t)Tn(t),    and   un = €n(A)ro = Pn-k(A)Qk(A)Tn(A)r0', 

(4) Cn(t) = Tn-k(t)Qk(t)Pn(t),    and   vn = Cn(A)ro = Tn_k(A)Qk(A)Pn(A)ro; 

(5) Vn(t)=Tn-k(t)Qk(t)Tn(t),    and   pn = r)n(A)ro = Tn.k(A)Qk(A)Tn{A)ro 

where k — k{n). 
Assume the above four polynomials have been constructed for a fixed n with 

k = k(n). In proceeding to step n + 1 from step n, we first choose k(n + l) as either 
k or k 4- 1, and then construct correspondingly either a CGS step 

0n+l (*) = Pn+l-k(n+l)(t)Qk(n+l)(t)Pn+l(t) = Pn+l-& (t)Qk (i)Pn+i (t) 

or a BiCGSTAB step 

<f>n+l(t) =Pn+l-fe(n+l)WQife(n+l)(*)-Pn+l(*) = (I- Uk+l^Pn-k (t)Qk (t)Pn+1 (t). 
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We now derive the recurrence for the construction of the four polynomials for each of 
the two cases. 

Case 1: k(n + 1) = k(n) = k (i.e. a CGS step). In this case, we first generate 
il>n = Tn-k(t)Qk{t)Pn+1(t)by 

VVi = Tn-kQk(Pn - antTn) = Cn - antr]n. 

Then 

(j>n-\-l — Pn+l-kQkPn+1 

= Pn-kQkPn+1 — OLn-ktTn-kQ kPn+l 

= Pn-kQk(Pn — antTn) — an-ktTn-kQ kPn+i 

= 0n - ^(^n^n + OLn-k^n), 

£n+l = Pn+\-kQkTn+l 

= Pn+l-kQkPn+l + Pn+lPn+l-kQkTn 

= Pn+l-kQkPn+1 + fin+l(Pn-k ~ &n-ktTn-k)QkTn 

- 0n+l + /?n+l(£n _ "n-ife^n), 

Cn+1 — Tn+\-kQkPn+l 

— Pn+l-kQkPn+\ + Pn+l-kTn-kQkPn+l 

= 0n+l + Pn+l-k^n, 

Vn+l = T^+i-^Qfe^n+i 
11:1 ^n+l-feQfc^n+l +/?n+l-A;rn-_fcQ*!^n+l 

= -Pn+l-fcQfc^n+l + 0n+l-kTn-kQk(Pn+i + (3n+iTn) 

Immediately, by writing ^n = ?/jn(A)ro, these recurrence can be expressed in the vector 
form 

Qn — vn ~ OtnApm 

^n+i = rn - A(anun + an-kqn), 

un+i = rn+i -{- /3n+i(un - an-kApn), 

Vn+l — ^n+l + fln+l-kQm 

pn+1 = Un+i + pnjrl-k(qn + /3n+lPn). 

Case 2:  fe(n + 1) = fe(n) + 1 = k + 1 (i.e.   a BiCGSTAB step).   In this case, 
Qk+i = (1 — wk+it)Qk. 

0n+l = -Pn+1-(A;+1)QA;+1-Fn+1 

= Pn-kQk+l(Pn — OLntTn) 

- (1 - Luk+1t)(Pn-kQkPn - antPn-kQkTn) 

= (1 - LL)k+it)((j)n - ant£n), 
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£n+l — Pn+l-(k+l)Qk+lTn+l 

— Pn-kQk+lPn+1 + Pn+lPn-kQk+lTn 

= </>n+l + /3n+i(l - Uk+lt)£ni 

Cn+1 = ^n+l-(A;+l)QA;+l^:ri+l 

= Tn-kQk+lPn — OlntTn-kQk+lTn 

= (1 - Wk+lt)(Cn - OLntrin), 

Vn+i = Tn+i-(k+i)Qk+iTn+i 

— Tn-kQk+lPn+l + Pn+lTn-kQ k+lTn 

— Cn+1 + /?n+l(l - Uh+ltyVn- 

Again, we have the corresponding vector recurrence 

rn+i = (/ - uk+1 A)(rn - anAun), 

V-n+l = rn+1  + Pn+l(I " Vk+lA)Un, 

Vn+1  = (7 - Wfc+1 A)(vn - Qln^Pn), 

Pn+1 = ^n+1 + Pn+l(I " CJ^+l^Pn. 

In this case, cjfc+i is determined to minimize rn+i = (/ — Wk+iA){rn — anA^n). 
This completes the recurrence from step n to step n + 1. Of course, a recurrence 

for the approximate solution xn can be easily obtained from that of rn (see Algorithm 
2.1 below). 

To finish the construction, we also need to recover the BiCG coefficients an+i 
and /?n+i- First note that by the orthogonality (1), we have 

(fo,Cn(4)ro) - (fo,0n(4)ro) = /?n-^(Tn_^_1(^
T)g^(^T)ro,Pn(^)ro) = 0 

and 

(fo, A7/n(^)ro) - (fo, Afn(4)ro) = l3n-k{Tn-k-i{AT)Qk{AT)fQ,ATn{A)rQ) = 0. 

Then 

(ro,^n) = (n),rn) and (fo,i4pn) = (fo,i4ifcn). 

Again we need to separate the two cases. 
Case 1: From the definition of gn, we have the following orthogonality 

flqn = (ro^n(A)ro) = (Tn-k(A
T)Qk(A

T)ro,Pn+1(A)ro) = 0, 

where we have used (1). Thus, rfivn — anfQApn = fQqn = 0, i.e., 

(6) an = ^
0^n   = ^o7" , 

Similarly, 

(fo, ATn.k(A)Qk(A)Tn+1(A)ro) - (Tn^k(A
T)Qk(A

T)f0, ATn+1(A)ro) = 0. 
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Using  ij;n(t) + Pn+ir}n(t) = Tn-k(t)Qk(t)Tn+1{i), we obtain 

(fo,i4^„(A)ro) +/Wi(fo, A7M(i4)ro) = 0, 

and thus 

r0 ^-^n   _        ^o ^^n 
(7) /Wi = 

^o ^P^ ^0 ^-^n 

Furthermore, it follows from (6) that f^rn+i = fjfrn - anf^pn - an-^f^^^n = 
—OLn-.kTQ Aqn. Substituting this and (6) into (7), we obtain a second formula for /?n+i 

VOj Pn+1 — —Zf • 
TQ rn    O^n—k 

Case 2: From 

(fo,Pn-ifc(A)gfc(A)Pn+1(A)ro) = (Pn-k(A
T)Qk(A

T)r0,Pn+1(A)ro) = 0, 

and Pn-k{t)Qk(t)Pn+i(t) = 0nW - OLnt^nit), we obtain 

(9) 

On the other hand, noting that 

(r^APn.k{A)Qk{A)Tn+l{A)rQ) = (Pn-k(A
T)Qk(A

T)ro,ATn+1(A)ro)=0. 

and Pn-k(t)Qk(t)Tn+1(t) = v(t) +I3n+1£n(t) with v(t) = Pn.k{t)Qk{t)Pn+l{t) = 
(j)n(t) - ant£n(t), we have 

nm R (fo,Av(A)ro)  _     ffiA(rn - anAun) 
1    j Pn+1~     (fo,^n(A)ro)~ f^Atin 

Furthermore, (fo,v(A)ro) = 0 and hence 

f^rn+i = (fo,0„+i(A)ro) = {ro,v(A)ro) -ujk+1(fo,Av{A)ro) = -a;jfe+i(fo, Au(A)ro). 

Using this and (9), we obtain again a second formula 

n-n R     -   an rorw+1 

We remark that (6, 8, 9, 11) can also be derived by the method of [13, 15]. The 
derivation given here is based on some orthogonality relations among the vectors and 
leads to alternative formulas (7, 10) for /3n. 

Finally, we summarize the above derivation in the following algorithm: 
Mixed-BiCGSTAB-CGS Algorithm: 
Input an initial approximation x® and an auxiliary vector fo ; 
Initialize ro = UQ = VQ = Po = b — AXQ; k = 0; po = r^ro. 

For n = 0,1,2, • • • until convergence 
Determine whether k <- k (CGS step) or k <- k + 1 (BiCGSTAB step); 
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If (CGS),then 
®n = PnlrlApn 

Qn-Vn- OLnApn 

Tn+l = rn - A(anUn + OLn-k<ln) 

■Eri+l — ■En "r OLn1ln T" Q.n—kQn 

Pn+i - rlrn+\\ 
n       _ anPn+i   f^ _     rlAqn 

(Xn-kPn r* Apn 

Un+1 - Tn+l + /?n+l(^n - an-kApn) 
^n+1 = rn+i + 0n+i-kqn 

Pn+l - ^n+1 + Pn+l-kfan + Pn+lPn) 
End if 
If (BiCGSTAB), then 

^n = pn/roAun 

V -rn- OLnAUn 

u) = vT Av / (Av)T Av; 
rn+i =v- UJAV 

xn+i — xn H- Q:nwn + ow 
Pn+i = ^rn+i; 

fnAv pn 1 = 
a^^+1   (or =      fo^   ) 

Wn+l = ^n+1 + Pn+l(un - uAun) 
Vn+x = (/ - a;i4)(vn - anApn) 

Pn+l = ^n+1 + Pn+liPn " ^^Pn) 
End if 

End for 

We present some remarks concerning the algorithm. 
Remark 1: It is easy to see that one iteration of the mixed algorithm requires two 

multiplications by A, if it is a CGS step, and four multiplications, if it is a BiCGSTAB 
step. 

Remark 2: If all iterations are CGS steps, i.e., k(n) = 0 for all n, then the 
recurrence derived is equivalent to the standard CGS. 

Remark 3: If all iterations are BiCGSTAB steps, i.e. k(n) = n for all n, then 
the recurrences for rn and un are identical to BiCGSTAB. Note that the recurrences 
for pn and vn are independent of rn and un and therefore in the case of BiCGSTAB, 
pn and vn need not be constructed. Indeed, pn and vn are generated here solely for 
the use in later CGS steps. This leads to two extra multiplications by A, resulting in 
the four multiplications by A as opposed to two in the standard BiCGSTAB. 

Remark 4: We shall discuss in the next section a criterion for switching between 
the two kinds of steps. However, the algorithm can also be implemented by first 
taking p consecutive steps of BiCGSTAB (k(n) = 0 for n < p) to reduce the residual 
norm to certain level, and then switch to CGS steps completely (k(n) = n — p for 
n > p). In that case, for the first p BiCGSTAB steps, vn = rn and pn = un since 
r0 = UQ — VQ = po. Thus vn and pn need not be constructed, which reduces the 
multiplications by A to two. For example, by taking one BiCGSTAB step and switch 
to CGS, we recover the method of [5]. On the other hand, it is also possible to take 
the first p steps as CGS steps (k(n) = 0 for n < p) and then switch to BiCGSTAB 
steps completely (fe(n) = n — p for n > p).   In this case, again pn and vn in the 
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remaining BiCGSTAB steps need not be constructed. We have examples where a 
complete switching like this achieves better convergence than CGS and BiCGSTAB; 
but at present, we do not see a practical implementation emerging from this approach 
as some a priori information is needed in determining the step at which to carry out 
the switching. 

A preconditioned version of the algorithm can easily be worked out. The following 
is one such form that uses K = K1K2 as a preconditioner, Ki being the left precon- 
ditioner and K2 being the right one. This includes the case that K itself is used as 
the left preconditioner (i.e. K = Kil) or as the right preconditioner (i.e. K — IK2). 
Note that the choice of Ki and K2 plays no explicit role in the algorithm except that 
the left initial vector fo used in the explicitly preconditioned version is replaced by 
{K^l)TrQ. However, if there is no particular choice for fo in the explicitly precondi- 
tioned version, then such a replacement is not necessary. The detailed derivation is 
similar to [15]. 

Preconditioned Mixed-BiCGSTAB-CGS Algorithm: 
Input an initial approximation XQ and an auxiliary vector f0 ; fo «- (iff 1)Tfo; 
Initialize ro = UQ = VQ = po — b — AXQ] k = 0; po = r^ro. 

For n — 0,1,2, • • • until convergence 
Determine whether k «- A; (CGS step) or * 4- k + 1 (BiCGSTAB step); 
If (CGS), then 

OLn = Pn/rfiAK-t-pn 
qn = Vn- anAK-lpn 

rn+1 = rn - AK-^CLnUn + an_fc<?n) 
Xn+i - Xn + K~X{pLnUn + an_fc<?n) 
Pn+1 = nfrn+i 

_  Q^nPn+l 
Pn+1 —   

C^n—kPn 
Un+\ = rn+i + Pn+liUn - ^n-^^^'Vn) 
^n+1 = ?VH + f^n+l-kQn 
Pn+1 = ^n+1 + Pn+l-k(Qn + Pn+lPn) 

End if 
If (BiCGSTAB), then 

®n = Pn/foAK^Un 
v = rn - anAK^Un 
z=AK^v 

rn+1 -V-UJZ 

Xn+i - xn + K~1(anun + oov) 

Pn+i = r$rn+i-} 

Upn 
Un+l = rn+i + /3n+l(^n - (jOAK~lUn) 
i;n+i = (/ - ujAK-l){vn - anAK-lpn) 

Pn+1 = ^n+1 + ^n+l(Pn - CjAif"1^) 
End if 

End for 

We remark that there are two ways for choosing uo in the BiCGSTAB part. The 
one given above is to minimize the preconditioned residual K^ 1rn+i. It can also be 
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chosen as u = zTv/zTz to minimize the original residual rn+i (the two are the same 
when if i =/). See [15]. 

3. Switching criterion. In the mixed method, we can switch between BiCG- 
STAB and CGS at will at every step. Except in some special situations (See Remark 
3 in Section 2), howrever, four matrix-vector multiplications are usually needed at 
each BiCGSTAB step. Therefore, to be cost effective, it is necessary to minimize the 
number of switchings. We shall consider CGS based implementations that switch to 
BiCGSTAB only occasionally. 

A main purpose of introducing the mixed method is to improve the stability of 
CGS (convergence of the computed residual vector rn). While the behaviour of CGS 
in finite precision is not well understood, it is generally believed that large increase in 
the residual is a main factor in causing instability. What is interesting in our numerical 
testing, however, is that a large local variation in the residual norm, i.e. ||rn+i||/||rn||, 
seems to have most significant effects in the convergence and the absolute magnitude 
of the relative residual ||rn+i||/||ro|| has less apparent effect in the convergence, at 
least for the computed (or called updated) residuals. Specifically, there seems to 
be very little correlation between convergence of CGS and maxn ||rn+i||/||ro||. On 
the other hand, the convergence is usually improved by controlling the local residual 
increase (see Section 4). To this end, we advocate an implementation that controls 
the local increase in the residual ||rn+i||/||rn||. Namely, given a tolerance To/, we 
compute rn+i by CGS and test the switching criterion 

(12) ||rn+1||/||rn||<To/. 

If this is satisfied (there is no large local increase in the residual norm), a CGS step 
is taken; otherwise, a BiCGSTAB step will be taken. In order to minimize the extra 
cost (two extra matrix-vector multiplications) associated with each switching, a too 
small Tol should be avoided. It is also sensible in this regard not to implement the 
switching when rn starts to converge ( ||rn+i||/||ro|| < 0.1, say). From our tests, a 
value around Tol = 102 seems to be sufficient in improving stability of CGS yet leads 
to only limited switchings to BiCGSTAB. 

It should be pointed out that a large growth in the absolute magnitude of the 
global residual ||rn||/||ro|| could lead to stagnation of the true residual b — Axn at 
certain level even when the computed residual continues to converge. We note that 
BiCG type recurrences are designed to reduce the computed residual which in turn 
drives the convergence of the true residual (see [14]). In finite precision, however, when 
||rn||/||ro|| is large, there will be large differences between the computed residual rn 

and the true residual b — Axn at the convergence owing to error accumulations. In 
that case, the convergence of rn no longer guarantees the convergence of b — Axn. 
This could happen with the switching criterion proposed above as it does not ensure 
that ||rn||/||ro|| remains bounded. Nevertheless, the magnitude of ||rn||/||ro|| is still 
reduced in general and thus the convergence of the true residuals is still improved for 
those cases where there is significant reduction. 

On the other hand, the mixed method here can be implemented to control the 
global, growth of ||rn|| (by using a switching criterion like ||rn+i||/||ro|| < M) and 
indeed it leads to better convergence of the true residuals. However, it has been found 
that it often requires many switchings to achieve this and the algorithm could become 
less stable. Fortunately, it is possible to deal with the true residual problem separately 
through residual updating. For example, in [12], a periodic updating strategy, that 
groups certain steps together through monitoring the accumulation of the updating 
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vector and carries out a residual updating at the end of each group, has been proposed 
and shown to be quite effective. As a general method for BiCG type methods, it would 
also be applicable to the mixed algorithm here. However, the present work is focused 
on convergence of the computed residual rn, which is the source of convergence of the 
true residual b — Axn. 

4. Numerical examples. In this section, we present some numerical examples 
to demonstrate the stabilizing effect of the mixed algorithm. Specifically, we shall 
consider the switching criterion discussed in section 3 and compare the mixed method 
with CGS and BiCGSTAB. 

Throughout the examples, Tol used will be 102 unless otherwise specified. In the 
convergence plots below, at the point at which a switching incurs, we use "x" to mark 
the norm of the CGS step without switching. 

Example 1: The matrix is a finite-difference discretization (center difference) on 
a 40 x 40 grids of the following convection diffusion equation 

-Au + l3ux+'ruy = f(x,y)     on     (0,1)2; 

with the homogeneous Dirichlet boundary condition. / is chosen such that the vec- 
tor of ones is the solution. Figure 1 gives the convergence history of the computed 
residuals for two sets of parameters (a): /? = —200, 7 = 200 and (b): /3 = —122 and 
7 = 190. For the mixed method, 14 switchings incurred in (a) and 6 switchings in 
(b). There is a clear improvement of the mixed method over CGS. 

FIG. 1. Convergence History for Example 1 
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Example 2: The matrix is a finite-difference discretization on a 40 x 40 grids of 
the following convection diffusion equation 

- A u + a(xux + yuy) + /3u = f(x, y)     on     (0,1)2; 

with the homogeneous Dirichlet boundary condition. / is a constant. Figure 2 is the 
convergence history of the computed residuals for two sets of parameters (a): a = 100, 
/? = —100, and (b): a = 100, /? = —360. For the mixed method, 3 switchings incurred 
in (a) and 4 switchings in (b). 

FIG. 2. Convergence History for Example 2 
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Example 3: The matrix is ORSREG1 from the OILGEN group of the Harwell- 
Boeing collection [3] of sparse test matrices. The order of the matrix is 2205 and 
it has 14133 nonzero entries. The right-hand side b is chosen to be the vector of 
ones. We implement it (a) without any preconditioning and (b) with the ILU(0) 
preconditioning. The results are given in Figure 3. In case (b) with the ILU(0) 
preconditioning, we choose Tol = 10 as the regular Tol — 102 does not lead to 
any switching for this relatively easy problem. For the mixed method, 6 switchings 
incurred in (a) and 1 switching in (b). 

In all three examples, we have seen the dramatic stabilizing effect of the mixed 
method over CGS. In particular, it is capable of turning a divergent CGS into a 
convergent one with a few switchings. However, this is by no means typical. For most 
cases, the performance of Example 1 (a) and Example 3 (b) (the preconditioning case) 
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FIG. 3. Convergence History for Example 3 
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is more typical in that CGS itself converges and the mixed method improves it slightly 
with a few switchings. 

Through our testing, we also found that in some cases the choice of Tol could 
have significant effect in the performance of the mixed method. It sometimes needs 
to be fine tuned in order to achieve better balance between stability and the number 
of switchings. For some problems, the number of switchings may be too large to 
compensate any gain in stability. Some of these are due to the limitation of a single 
cut switching criterion (12). For example, consider a CGS run where ||rn+i||/||rn|| 
just exceeds Tol. Then, use of (12) will be less efficient in a case it occurs just once 
than in a case it occurs, say, ten times. We plan to study these issues in the future 
and carry out more extensive testing with different switching criteria. 

5. Concluding remarks. We have presented the idea of switching between 
two different type product methods and demonstrated in principle its potential as 
a competitive product method. The mixed CGS-BiCGSTAB method is derived and 
implemented to control local increase in the residual norm. The numerical examples 
show that this implementation could provide a competitive alternative for the class 
of problems where CGS is competitive or where both CGS and BiCGSTAB diverge. 

We point out that the idea of switching may have applications in other contexts. 
Its ultimate success will depend on the switching strategy, the best of which is not 
clear at the moment. The preliminary success of the one used through controlling 
the local increase may also indicate the relation between large local variation in the 
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residual norm and stability of CGS. However, there is no theoretical results to confirm 
this. It would still be interesting to carry out some error analysis to determine the 
precise cause for the possible instability in CGS. A complete understanding in this 
regard may lead to a better implementation of the present idea that picks the best of 
the two methods. 
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