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K-THEORY FOR TRIANGULATED CATEGORIES 1(A): 
HOMOLOGICAL FUNCTORS * 

AMNON NEEMANt 

0. Introduction. We should perhaps begin by reminding the reader briefly of 
Quillen's Q-construction on exact categories. 

DEFINITION 0.1. Let £ be an exact category. The category Q(£) is defined as 
follows. 

0.1.1.  The objects of Q(£) are the objects of £. 
0.1.2.   The morphisms X •^ X' in Q(£) between X,X' G Ob{Q{£)) = Ob{£) 

are isomorphism classes of diagrams of morphisms in £ 

X X' 

\ S 
Y 

where the morphism X —> Y is an admissible mono, while X1 —y Y is an admissible 
epi. Perhaps a more classical way to say this is that X is a subquotient of X''. 

0.1.3.  Composition is defined by composing subquotients; 

X X' X' X" 
\ ^/ and \ y/ 

Y Y' 

compose to give 

X X' X" 

\     s       \      s 
Y PO Y' 

\ S 
Z 

where the square marked PO is a pushout square. 
The category Q{£) can be realised to give a space, which we freely confuse with the 
category. The Quillen if-theory of the exact category £ was defined, in [9], to be the 
homotopy of the loop space of Q{£). That is, 

Ki{£)=ni+l[Q{£)]. 

Quillen proved many nice functoriality properties for his iT-theory, and the one 
most relevant to this article is the resolution theorem. The resolution theorem asserts 
the following. 

THEOREM 0.2. Let F : £ —> J7 be a fully faithful, exact inclusion of exact 
categories. Suppose further that every object y G J7 admits a resolution 

0 —> xn —> xn-.i —> - • • —> xi —> XQ —> y —> 0, 

with all the xi's in £.  Then the natural map 

QiS) -> Q{T) 
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is a homotopy equivalence. 
The hypothesis in Quillen's resolution theorem, namely that every object of J7 have a 
resolution by objects of £, is one of the standard conditions under which the induced 
map of derived categories 

Db(£) —> Db{F) 

is an equivalence. The theorem therefore strongly suggests that Quillen's if-theory 
should depend not on the exact category £, but only on its derived category Db(£). 
To make this even more plausible, there is a theorem of Waldhausen which improves 
on Quillen's resolution. 

THEOREM 0.3. Let F : £ —> T be any exact functor of exact categories. Suppose 
the induced map 

Db{£) —> Db{T) 

is an equivalence of categories.  Then the natural map 

Q{£) —► Q(.F) 

is a homotopy equivalence. 
In other words, Waldhausen improved Quillen's theorem to any exact functor F in- 
ducing an equivalence of derived categories, not only to one induced by a somewhat 
special fully faithful inclusion. See [13], 

It is natural enough to ask whether one can define iiT-theory directly for the 
derived category. This is the main problem addressed by the present series of articles. 
Our first attempt to answer this question was [3]. Let me therefore discuss first [3]. In 
[3], Giffen and the author constructed, for every triangulated category T, a simplicial 
set Q(T). For T = Db{£), £ an exact category, we claimed the following theorem. 

MAIN "THEOREM" OF [3]. The natural inclusion £ -► Db{£) extends to a sim- 
plicial map Q{£) -» Q(Db(£)). This map induces a homotopy equivalence provided 
no object of £ is a proper direct summand of itself. 

Since then we have discovered a gap in the argument; we no longer know whether the 
main "theorem" of [3] is true. The problem seems to be that in [3] we studied the 
wrong Q-construction. 

The most simple-minded Q-construction for a triangulated category T would be 
the category Q(T), defined as follows: 

(1) The objects of Q(T) are the objects of T. 
(2) The morphisms X ++ X' in Q(T) between X,X' € Ob{Q(T)) = Ob{T) are 

isomorphism classes of diagrams of morphisms in T 

X X' 

\ S 
Y 

(3) Composition is defined by 

X X' X' X" 
\ y/ and \ >/ 

Y Y' 
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compose to give 

X X' X" 

\     s       \      s 
Y MV Y' 

\ S 
Z 

where the square marked M — V is a Mayer-Vietoris square (i.e., there exists a mor- 
phism Z -> EX' in T making X' -> Y © Y' -> Z -» EX' into a triangle). 

The geometric realization of Q(T) is a space, and there is a natural map Q(£) -> 
Q(Db(£)). This map is clearly a IIi-isomorphism, but it is hard to prove any more 
than that. 

We could try to study instead a more rigid simplicial set. Let us begin with the 
jfT-theory of exact categories, where these constructions are well-known. We define a 
bisimplicial set 

as follows. A (p, ^)-simplex is a commutative diagram 

LpO > y   • • •   ) y X, pq 

X{ oo -+ Xi 0q 

where all squares are bicartesian. For readers unfamiliar with this simplicial set, let 
us observe that in this diagram, every object is a subquotient of Xoq. In fact, if p = q 
the terms Xij with i+j= p, that is the diagonal terms of the square, form a sequence 
of subquotients of Xoq. All the other information in the diagram amounts to choices, 
unique up to canonical isomorphism, of objects in A isomorphic to the intermediate 
subobjects and quotients. Thus we easily identify a map from the diagonal realisation 

of the simplicial set 

the map takes the simplex 

to Quillen's Q-construction. In the notation above, 



K-THEORY FOR TRIANGULATED CATEGORIES 1(A) 333 

-^po > * X, pp 

XOQ > ►   •••   > > X{ Op 

to the composable morphisms in Q(£) 

Xpo     —>■     Xpi 

T 
^p~l,l         >"    ^p-1,2 

l 
-^p-2,2 

T 
^lp 

1 
X, Op 

It is well-known that this map is a homotopy equivalence; see for instance Proposition 
1.4 on page 1178 of [6]. 

We could imitate this construction with triangulated categories.   Let T be a 
triangulated category. We could define the bisimplicial set 

whose (p, g)-simplices are diagrams of M - V squares 

X, pO x, pq 

T 1 

f T 
^00  *    ' ' '         ►    Xoq 

As in the case of exact categories, there is a natural simplicial map 

QiT) 
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which takes the diagonal realisation of thebisimplicial set to the simplicial set. Con- 
cretely, the map takes the simplex 

X% pO 

i 
Xn 

i 
-^00       —► 

to the chain of composable morphisms 

X, p0 Xpi 

i 
-Xp_i,i -Xp-1,2 

T 
Xp-2,2 

X{ Op 

\ 

Xip 

\ 
Xop 

I have no idea whether this map is a homotopy equivalence. The main "theorem" of 
[3] was stated for the rigidified simplicial sets. It asserted, very precisely: 

MAIN "THEOREM" OF [3]. The natural inclusion £ -► Db(£) extends to a bisim- 
plicial map 

This map induces a homotopy equivalence provided no object of £ is a proper direct 
summand of itself. 

I repeat, we have not been able to decide the truth of the "theorem." However, one 
can obtain something if one changes the simplicial sets even more. 

DEFINITION 0.4. Let T be a small triangulated category. Let the simplicial set 

be defined by having for its (p,q)-simplices the diagrams in T 
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i 
x, pq 

T 

1 f 
-^00  ►    * * *  >    XQq 

together with a coherent differential d : Xpq —> EXoo- A coherent differential d : 
Xpq -> SXQO is a map such that for any 0 < i < if < p, 0 < j < j' < q, 

Xij —> Xi'j ® Xij' —> Xyji —> ^Xij 

is a triangle, where (/>: X^f —> SX^- is the composite 

Xi'j' —>• Xpq ——> EXQO —*" S^ij- 

The reader should note that for all standard triangulated categories, a simplex in 

admits at least one coherent differential; however, I do not know whether this is a 
consequence of the axioms of triangulated categories. 

There is still a map from Quillen's if-theory of the exact category £, to the 
diagonal realization of 

In this article we will prove 
THEOREM 4.8. If 8 is a small abelian category, the map 

is a split inclusion in homotopy.  There is a map 
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which is homotopy left inverse to it. 

If we are willing to change some more the definition of the simplicial set we work with, 
we do better. 

DEFINITION 0.5. Suppose T is a small triangulated category. Let S be some 
non-empty class of biWaldhausen complicial categories in the sense of [10], whose 
homotopy categories are all T. Define 

to be as in Definition 0.4, except that now we furthermore assume that any simplex 
has at least one lifting to a diagram of bicartesian squares in at least one model s £ S 
for the triangulated category T. 
With this new definition of the simplicial set, we will prove: 

THEOREM 7.1. Let £ be a small abelian category, and let 

be as in Definition 0.5.  Then the map 

induces a homotopy equivalence. 
REMARK 0.6.   The particular model for the simplicial set 

r 

given in Definition 0.5 has several unpleasant properties. First, it is not functorial in 
the triangulated category T. Given a triangulated functor, it is very unclear whether 
it takes a diagram admitting a lifting to a model to another diagram with a lifting. 

Note that the class S of permissible model categories is only a class, not a set. 
Typically, we would like to take 5 to be the class of all models, and even if T is small, 
the author sees no reason that the models for it should form a set. If we take S to be 
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the collection of all models, it is perfectly clear that the construction depends only on 
the triangulated category T, albeit non-functorially. 

The most unpleasant property of the space defined in Definition 0.5 is that it 
is NOT an il-space. Given two simplices, they have in general liftings to different 
models. The direct sum will probably have no lifting at all. This is actually a serious 
shortcoming. 

Theorem 7.1 tells us, among other things, that two abelian categories with isomor- 
phic derived categories have isomorphic if-theory spaces. But with the construction 
of Definition 0.5, the isomorphism is not clearly an ii-map. In particular, we have 
no reason to conclude that it is an infinite loop map of infinite loop spaces. 

This problem is relatively easily rectified. 
DEFINITION 0.7. Suppose T is a small triangulated category. Let S be some 

non-empty class of biWaldhausen complicial categories in the sense of [10], whose 
homotopy categories are all T. Define 

to be as in Definition 0.4, except that now we furthermore assume that any simplex 
has A DIRECT SUM DECOMPOSITION WHERE EACH SUMMAND has at least 
one lifting to a diagram of bicartesian squares in at least one model s G S for the 
triangulated category T. 
With this new definition of the simplicial set, we will also prove: 

THEOREM 7.1. Let £ be a small abelian category, and let 

be as in Definition 0.7. Then the natural map 

induces a homotopy equivalence. 
REMARK 0.8. With this definition, it is clear we have an iJ-map of il-spaces; 

in fact, one sees easily that it is an infinite loop map of infinite loop spaces. 
A stronger theorem is actually true. 
STRONG THEOREM 7.1. Let T be a small triangulated category with a t-structure. 

Assume T admits at least one biWaldhausen complicial model. Let S be a non-empty 
class of such models, as in Definitions 0.5 or 0.7. Let S be the heart of the t-structure. 
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Let Tb be the bounded part ofT. If the t-structure is non-degenerate, Tb = T. Define 
the simplicial set 

to be either the simplicial set of Definition 0.5 or the simplicial set of Definition 0.7. 
In either case, the natural map 

induces a homotopy equivalence. 

In the fifth part of this sequence, we will prove the Strong Theorem 7.1. But the proof 
is sufficiently complicated and requires setting up so much notation, that the author 
felt justified in giving first somewhat simpler proofs of weaker theorems. 

It is unpleasant that, in the statement of the theorems, we need to assume the 
existence of models for T, and that the simplicial set is defined in terms of some 
such class of models. We could try to prove a better statement. We begin with some 
definitions. 

DEFINITION 0.9. Let T be a triangulated category. A candidate triangle in T is 
a sequence 

in which the three composites 

vu. 

y 

wv, 

Sx 

{Eujw 

all vanish. 
DEFINITION 0.10.  A candidate triangle is called contractible if it is isomorphic 

to a sum of three trivial candidate triangles 

x       —>    x    —>    0    —>    Ex 

0       —>    y    -^    y    —>     0 

E-1*    —+    0    —>    z    -^     z 

Having defined candidate triangles, and defined which of them we view as contractible, 
it is now time to define morphisms between them. A morphism of candidate triangles 
is a commutative diagram 

w 
y Ex 

S/l 

w Ex' 
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With this definition, the collection of candidate triangles forms a category. We denote 
this category CT(T). Given a morphism of candidate triangles as above, its mapping 
cone is the diagram 

-v   0   \ 
9   W ) 

y®x' 

-w   0 \ / -Zu   0   \ 

zSty' T.x^z' Ej/eEx'. 

The mapping cone construction takes a morphism in CT(T) to an object of CT(T). 
DEFINITION 0.11.  The subcategory ST(T) C CT(T) is the smallest full subcate- 

gory which 
0.11.1. Contains all the distingushed triangles. 
0.11.2.  Contains the mapping cone on any map of its objects. 
0.11.3. If C is a candidate triangle in ST(T), and C is isomorphic to a direct sum 

C 0 C" with C contractible, then C" E ST(T). 
The objects of ST(T) will be referred to as semi-triangles. 

Now we define a simplicial set 
DEFINITION 0.12. Let T be a triangulated category. The simplicial set 

is a modified version of that given in Definition 0.4- As in Definition 0.4, the (p,q)- 
simplices are diagrams in T 

Xpo 

! 

VPQ 

\ I 
XQO         ►    • • *  ►    Xoq 

together with a coherent differential d : Xpq -> SXQO. Here, a coherent differential 
'pq -^ EXoo is a map such that for any 0 < i < i' < p, 0 < j < j' < q, d-.X, 

Xij —> Xi'j 0 Xijf  —> Xyji ZjJiij 

is a semi-triangle; in Definition 0.4 we insisted on it being a distinguished triangle. 
CONJECTURE 0.13. Let T be a small triangulated category with a t-structure. 

Let £ be the heart of the t-structure. Let Tb be the bounded part of T. Define the 
simplicial set 
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as in Definition 0.12.  Then the natural map 

induces a homotopy equivalence. 
REMARK 0.14. Let me explain the status of this conjecture. Four or five years 

ago, I believed I knew how to prove it. I gave talks claiming the result, and promised 
to write a careful account, developing the theory of semi-triangles and indicating 
how the proof of Conjecture 0.13 can be obtained by modifying the arguments in the 
existing articles. 

I never wrote the article. Four years ago, there appeared to be little probability 
the work will ever be published, and there seemed little point in going to great effort. 
Since then, I have not really thought about the problem. I have largely forgotten 
what argument I had. All I have left are somewhat sketchy notes which I wrote for 
myself. In an Appendix, I include these notes. I no longer remember the subtle points 
of the argument. The notes are reproduced purely for the benefit of future workers. 
See Appendix A. 

It seems relevant to note that the results of this article fly in the face of expert 
opinion at the time it was written. The experts had given up for hopeless the attempt 
to define a sensible if-theory for the derived category. In [5] the authors venture the 
opinion: 

"It seems that the derived category is too coarse even to recover from 
it the group Ki" 

In a letter to me, Waldhausen offers the same opinion: 
"From my own experience I feel rather pessimistic about the pro- 
spects of constructing a if-theory of triangulated categories with the 
aim of, say, reconstructing the if-theory of a ring from the underlying 
derived category." 

It is relevant to note the date on Waldhausen's letter. It was sent to me on October 
4, 1988. In other words, Waldhausen wrote his letter after receiving my preprint, in 
response to a note that I enclosed with the preprint. He was not merely venturing an 
opinion on what might be true. He was telling me that he did not believe my result. 
Waldhausen was not alone; a number of referees said essentially the same in referees' 
reports. It is fair to say that it took two years before anyone read this article beyond 
the introduction. 

Unlike many others, Waldhausen was very kind to me. He invited me to visit him 
in Bielefeld and encouraged my work, even if he only half took it seriously. I would 
like to use this opportunity to thank him. I have not always been as grateful as I 
should have been. 
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Now it is natural to define the K-groups 

/ 

idcr)  dM ni+i 

and Theorem 7.1 says that, for an abelian category A, there is a natural isomorphism 
Ki(A) = ^(^^(^l)). This isomorphism begins its life as a natural map 

which can be proved to be a homotopy equivalence by a series of fairly involved 
arguments. It is natural to ask whether the inverse has a simple simplicial description. 
Is there a relatively straightforward simplicial map 

giving the inverse? What makes this seem plausible is that such a map exists on the 
level of Hi; there is a natural map 

p : K^D\A)) -+ KoiA), 

inverse to the map 

Ko(I) : KM "> K0{D\A)) 

induced by the inclusion / : A ^ Dh(A). The map p takes an object X of Db(A) 
(which may be viewed as an element X in the abelian group KQ{pb(A)) and sends it 
to 

p(X) = ^(-l)^(X). 

It is not surprising therefore that, in attempting to construct a natural inverse to 

we will fall back on the homology functor H : Dh(A) -» A. 
The form our theorem will take is quite general. Starting with any abelian cate- 

gory .4, one can construct a rather curious simplicial set, which we will denote 
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It is now time to define it; for more detail, the reader is referred to Construction 4.7. 
DEFINITION 0.15.  Let A be an abelian category. Let Grb(A) be the category of 

bounded graded objects in A. That is, an object X G Grb{A) is a functor 

X-.Z—^A 

where Z is the dicrete category of all integers. The boundedness asserts that X van- 
ishes on all but finitely many n € Z. The morphisms is Grb(A) are natural transfor- 
mations. 

REMARK 0.16.   The category Z admits a translation functor, 

n !->• n + 1. 

Denote this functor by S : Z —> Z. Then S induces a translation functor on Grb(A), 
which we also denote by E. By definition, 

EX = X o E. 

DEFINITION 0.17. Let A be an abelian category. The simplicial set 

is defined as follows. A (p^q)-simplex is a diagram in Grb(A) 

Xpo 

T 
X, pg 

T 

T 1 
XQO  ►    * • •  ►    XQQ 

together with a coherent differential d : Xpq —> EXoo-   Here, a coherent differential 
d : XPq —> T,Xoo is a map such that for any 0 < i < i' < p, 0 < j < j' < q, 

Xij —> Xi'j 0 Xiji —>• Xiiji —> YiXij 

delivers a long exact sequence in A. 
It is essentially trivial from the construction that, given any triangulated category 

T and any bounded homological functor H : T—> A, there is an induced simplicial 
map 
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K(H) 

We remind the reader that a homological functor H : T -> A is called bounded if for 
all X objects of T, H('EnX) = 0 if n <C 0 or n ^> 0. We note also that the simplicial 
map K(H) exists for any of the many definitions we have seen for 

The construction of the map K(H) is insensitive to the choice of model for triangulated 
if-theory. In particular, the ordinary homology functor H : Db(A) -> A induces a 
map 

K(H) 

But the inclusion of / : A M* Db(A) induces a map 

K(I) 

We will prove: 

THEOREM 4.8. The composite K(H) o if(/), which is a map 

K(H) o K(I) 

induces a homotopy equivalence. 
An immediate corollary is 

THEOREM 4.1. A homological functor H : T —> A induces a map Ki(H) : 
Ki(T) —> Ki(A), with strong naturality properties which are discussed more fully in 
Section 4> 

It turns out that Theorem 4.8 remains true for exact categories. That is 

STRONG THEOREM 4.8. Let A be any exact category. The natural map 
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induces a homotopy equivalence. 

Now we have seen two theorems, Theorem 4.8 and 7.1.   Theorem 7.1 came in 
many versions, depending on the definition of the simplicial set 

The next point we wish to make is that, in some sense that the author does not fully 
understand, all these theorems are really the same. More precisely, their proofs are 
almost all the same. In K-theory for triangulated categories I, II and ///, I tried to 
stress this. The articles are therefore informal in style. Because we are proving more 
than one theorem at a time, the theorems are rarely precisely stated. The statements 
of the theorems, as well as large parts of the proof, are left as exercises to the reader. 
I try to explain the central idea of how the proof might go, without entering into the 
grubby detail of just which simplicial set we are dealing with. 

Although I still believe that K-theory for triangulated categories I, //and ///focus 
on the important questions, it is a matter of record that the expository style did not 
inspire confidence in the correctness of the results. Under duress, the author has also 
written two more formal articles, K-theory for triangulated categories 3^ and 3|. In 
those articles, the theorems are carefully stated and the proofs complete and detailed. 
The reader might want to start with one of the more formal articles. The author 
nevertheless believes that the informal articles K-theory for triangulated categories I, 
II and /// contain more interesting mathematics. The rest of the introduction will 
focus on them. When I speak of "this article", I will be referring to parts I, II and 
III. Parts 3.5 and 3.75 amount to a very detailed account of some, but not all, of the 
results that may be found is parts I, II and III. 

As I said, all the theorems have essentially the same proof. But it turns out that 
Theorem 4.8 is somewhat less technical to prove than Theorem 7.1, perhaps because 
it really does not involve triangulated categories. In some sense Theorem 4.8 is also 
the simplest and clearest result of the article. To prove Theorem 7.1, one needs to 
make some modifications to Definition 0.4 of the simplicial set 

r 

and/or make some restrictive hypotheses on the triangulated category T. Theo- 
rem 4.8, on the other hand, is free of technical baggage. It says that with any reason- 
able modification of the definitions, the bisimplicial set 
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contains Q(A) as a retract (up to homotopy). Since it is hard to imagine what the 
other factor could possibly be, Theorem 7.1 is not so surprising. The surprising thing 
is all the technical baggage one must carry to modify a proof of Theorem 4.8 to a 
proof of Theorem 7.1. 

My colleague Nick Kuhn suggested it would be a good idea to sketch an outline 
of the proof in the introduction. Because the proof of Theorem 4.8 is less technical, 
we will sketch it. Here we go. 

The objects of Grb(A) come with a natural notion of length. A graded object 
X G Grb(A) is said to be supported on the interval [m,n] if X vanishes on integers 
outside the interval. We denote by Gr[m)n] the full subcategory of Grb(A)1 whose 
objects are supported in the interval [m,n]. It is possible to construct a K-theory for 
every Gr[m?n]. Our notation for it will be 

By definition, this is a simplicial subset of the larger 

simplex 

Xpo 

i 

. The 

X, pq 

1 

lies in 

i T 
Xoq 

if and only if all the Xij lie in Gr[mjn]. 
There is a natural inclusion 
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<t> 

and it turns out to be very easy to show that 0 is a homotopy equivalence; see 
Theorem 3.7. To complete the proof of Theorem 4.8 it suffices therefore to prove that 
the inclusion 

also induces a homotopy equivalence. 
Given integers m' < m < n < nf, there are inclusions Gr^^ «-> G[m^n']. The 

category Grb(A) is the (directed) union of all these inclusions, and it follows easily 
from the definitions that the simplicial set 

is the directed union of all the simplicial subsets 

It therefore suffices to prove that, for any integers m' <rn <n <n', the inclusions 

0 

all induce homotopy equivalences. It clearly also suffices to consider the case where 
only one of the pairs of integers {m', m} and {n, n'} is actually a pair (that is, either 
n — n' or m' = m). We also lose no generality by assuming that the pair of distinct 
ones differ by only 1. The two possibilities being dual to each other, we may assume 
m = m' + 1, and n' = n. Finally, by translating the complex, we reduce to the case 
m' = 0. 

So we have to prove that the natural inclusion induces a homotopy equivalence 
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The strategy of the proof is the following. There is a commutative diagram, whose 
rows are fibrations 

OLn 

^n+l 

We will prove two lemmas: 

LEMMA 1. (=Lemma 8.8) an : Fn —> Fn+i induces a homotopy equivalence. 
LEMMA 2. (=Lemma 8.10) an : Fn -> Fn+i is null homotopic. 

Concretely, we will find two simplicial models for the homotopy fiber Fn; one of these 
lends itself to the proof of Lemma 1, whereas the other is more useful for considering 
Lemma 2. The surprising fact is that Lemma 1 is true even for the construction 
without the differentials. This will allow us to say something about that construction. 

REMARK 0.18. The proof we just sketched works only if A is an abelian category. 
The proof for exact categories is more delicate. 

This summarises the proof we will find in part I. Parts II and III will deal with 
stronger versions of the theorem, and their proofs are more difficult to briefly outline. 

When writing any article, the author must keep in mind the potential audience. 
For any article, the audience will divide into three groups, listed in order of probable 
size. 
Group 1: The people who want a rough idea of the contents of the article, and at 

the very most a sketch of the proofs in an easy special case. 
Group 2: The people who want to check the result, because they might consider 

using it in their own work. 
Group 3: The people reading the article because they might work on the problem 

themselves. 
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In general, an author writing an article addresses mostly Groups 1 and 2, because 
they greatly outnumber any possible Group 3 audience. In particular, the referee will 
undoubtedly belong to Group 1 or Group 2, and if the article is to be published the 
author has to keep the referee happy. This is the way the present author has written 
most of his other work. 

But nevertheless the author felt this result was different enough to justify a de- 
parture from the accepted norm. The article is most definitely written with a Group 3 
audience in mind. Since it is impossible to keep everyone happy, Group 1 and Group 
2 readers will have to have some patience. The author feels obliged to explain first 
why he thought that he should write the article for that particular audience, and then 
explain how, without an enormous effort, a Group 1 or Group 2 reader can still find 
the article worthwhile. 

The first point that should be made clear is that the author does not view this 
article as the definitive last work on the subject—quite the opposite. The subject 
is embryonic. Until this article, no expert seriously thought it possible to define 
if-theory in terms of the derived category. 

My contribution in this article is only a small first step. It shows that there is 
a if-theory one can define for a triangulated category, and this if-theory is sensible 
enough to agree with Quillen's, in the special case of the derived category of an 
abelian category. But so far the author has been unsuccessful in his attempts to 
prove functoriality properties for the new if-theory, even though there is reason to 
believe that it will have far nicer functorial properties than Waldhausen's if-theory 
of model categories. Part of the problem may be that we still do not understand 
triangulated categories well enough, and part may be that the homotopy theory that 
goes into the new arguments is really a quantum leap harder than in the classical 
arguments of Quillen and Waldhausen. 

In any case, the author firmly believes that the subject is open to a great deal 
of future progress. In fifty to one hundred years from now, people will undoubtedly 
look back at this article and laugh at the clumsy arguments and bad notation. But 
in between, someone will have to think hard about the problem, and prove better 
theorems than I have here. What I tried to do in this article is to help the future 
someones working on this subject. I have written down essentially everything I know, 
providing motivation whenever possible, and giving on occasion more than one proof 
of one result. 

There is no getting around the fact that this article is hard to read. We want 
to prove that some map is a homotopy equivalence. At some point, the proof has to 
degenerate into a sequence of intermediate maps and spaces, and we will have to prove 
the maps homotopy equivalences. Given the simplicial way in which the spaces are 
defined, we will at some point find ourselves constructing a long string of simplicial 
homotopies. 

In this article, the going starts getting rough in Section 7. Sections 1-6 are "soft"; 
we begin with preliminaries. Sections 1 and 2 were lifted straight out of [3], and they 
are mostly a review of triangulated categories for the non-expert. Sections 3, 4, and 5 
are mostly the definitions of the various simplicial sets we will study, with their very 
elementary properties discussed in some detail. The purpose of Sections 3, 4, and 5 is 
to familiarize the reader with the notation, and the general style of argument. If the 
reader will quickly leaf through the article, he will see lots of strange-looking little 
diagrams of squares, triangles, and arrows in bizarre configurations. These diagrams 
are a shorthand notation for the simplicial sets that come up in the proof. 
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People have attacked my notation a great deal. Let me say a few words in my 
own defence. 

By training, I am neither if-theorist nor homotopy theorist. I came to Virginia in 
September 1987, and during the fall Giffen gave a number of talks on the foundations 
of if-theory, leading up to his delooping construction. I found all this very mysterious, 
and in January 1988, I asked Giffen if there was any way to construct if-theory 
directly from the derived category. Giffen became excited, and we started working 
together. Until January 1988,1 had never read Quillen's paper on if-theory, and was 
blissfully ignorant of the geometric realization of a simplicial nerve of a category. 

In the following months I worked very hard, and this article was finished and 
ready to send off to the referee by late September of 1988. In other words, this article 
was written by somebody who had known nothing about the subject nine months 
prior to finishing it. 

I have no doubt that an expert could present the results better than me. Un- 
doubtedly, experts can and will find a notation better adapted for writing down the 
myriad simplicial homotopies that make up the core of the proof. But there are two 
observations one should nevertheless make. Because there are so few homotopies to 
work with, one is forced to write strings of spaces and maps which are much longer 
than is typical of a proof by Quillen or Waldhausen. One needs to have a notation 
flexible enough to be able to provide symbols for all of the spaces and maps that 
occur, but simple enough to be readable. This is quite a tall order. The notation I 
adopt may be less than perfect, but a perfect notation may prove hard to find, even 
for experts. 

The second observation is that it is much too early in the development of the 
theory to be concerned about the optimal presentation of the results. Before one sets 
out to develop the perfect notation for the exposition of this theory, there should be 
some more theory to expose. 

I promised that I would tell the Group 1 and Group 2 audiences how to read this 
article, to get at least the flavor of the theory without spending an enormous effort. 
In this I have tried to offer the reader some help by dividing up the article into parts. 
This part, K-theory for triangulated categories I, is intended primarily for a Group 1 
audience. It sets up the notation, and then gives the simplest proof of the weakest 
useful version of Theorem 7.1. Thus, after the introductory material of Sections 1-6, 
Sections 7 and 8 will be devoted to the proof of Theorem 4.8. A Group 1 reader (a 
reader who only wants the idea of the proof, seeing at most one simple special case 
discussed in detail) is advised to read K-theory for triangulated categories I and then 
quit. 

The next part, K-theory for triangulated categories II, is for the exclusive use 
of Group 3 readers—readers interested in working on the subject. When someone 
writes a long and very difficult paper, he has an obligation to tell the reader why the 
proof must be so complicated. K-theory for triangulated categories II was written to 
achieve just exactly that. Precisely, we study at some length the construction without 
the differentials. There is good reason to believe that this construction is for the birds; 
it is therefore very instructive to see how close the proof comes to showing that its 
homotopy agrees with the homotopy of the construction with the differentials. The 
two simplicial sets are difficult to distinguish. The arguments in the proof that tell 
them apart are remarkably subtle. This is a warning to the reader. An argument that 
is too simple will probably fail to distinguish the construction with the differentials 
from the construction without, and should therefore be viewed as suspect. 
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The third part, K-theory for triangulated categories III, was written with Group 
2 in mind. The reader may well want to carefully check the result, without being 
troubled with subtleties about similar constructions that fail, and what they signify 
regarding the delicacy of the proof. Such a reader should omit K-theory for trian- 
gulated categories II and go directly to K-theory for triangulated categories III. This 
part has the best version of Theorem 7.1, and the proof is careful and complete, but 
without any unnecessary frills. 

In order to keep the cross-references in the articles from getting out of hand, we 
will write Theorem 11.3.4 for Theorem 3.4 of the second part of the series. When the 
reference and the theorem lie within the same part, we will allow ourselves to drop 
the Roman numerals. Thus Theorem 3.4 stands for Theorem 3.4 in whatever part 
you are currently reading. 

I sincerely hope that someone finds a simpler proof, involving fewer intermediate 
spaces and maps. In the revised version of the article I have tried to explain how 
I arrived at the particular sequence of spaces considered in this article. Starting 
from Section 7, at the beginning of each section there is a "Motivation" introduction, 
explaining how the proof should have worked and what difficulties I ran into. In the 
section itself is a modified version of the argument given in the Motivation, often very 
substantially modified, which has the virtue that it is a rigorous proof. In some sense 
my reasons for arriving at the proof I give are entirely irrelevant to the proof. But 
several people have complained that the article was nearly unreadable, and the author 
felt that the Motivation paragraphs might make the construction more transparent. 
The original exposition was very terse, probably partly as a reaction to [3], which had 
been all motivation and no proof. 

Now I come to the acknowledgements. First and foremost I must acknowledge 
the help I received from Giffen. Sections 1 and 2 were lifted straight out of [3], as was 
the idea to prove the theorem by induction. But my debt to Giffen goes far beyond 
that. It is fair to say that everything I know about classical if-theory I learned from 
Giffen. 

I should perhaps explain why the collaboration with Giffen fell apart. When we 
discovered the error in our joint article [3], we naturally wanted to fix it. But we 
had very different ideas about how to proceed. Giffen felt the correct proof should 
follow method A, while I believed, equally strongly, that only method B could work. 
To be fair to Giffen, he had the backing of Thomason. Even long after I proved my 
theorem, and after he had checked it carefully and believed the result, Thomason kept 
telling me that a good proof of the theorem would proceed along the lines of method 
A of Giffen. I continue to be convinced that method A has no chance of working. 
In fact, I wrote K-theory for triangulated categories II largely to show that. When 
Thomason would propose a major simplification of the proof, I would point out that 
such a simplification would prove the stronger theorem for the construction without 
the differentials, as in part II. Needless to say, part II was Thomason's least favorite 
part of the article. But it is relevant to note that, three or four years after Giffen and 
I had these disagreements, Thomason was telling me exactly what Giffen had said 
four years earlier. Maybe they are both right and I am just a stubborn fool. I do not 
know if Giffen is still working on trying to push his ideas through. If Thomason were 
still alive, such an effort would undoubtedly have his blessing. 

In the introduction, there were several allusions to the history of the article, which 
is very unusual. It seems only fair to give a review of this history. In this review, I 
try to stick to the facts and offer very little commentary. The names of individuals 
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are omitted, except when I feel they have acted commendably. I mention by name 
only Thomason, Deligne, Faltings and Franke. 

Since I will be offering very little commentary, I should say now what was com- 
mendable about the people mentioned above. Each went to some considerable effort 
to check a difficult result. It was a result they did not start out believing. This shows 
an admirable intellectual honesty. Having said this, I will now stick to the narrative, 
without offering my judgements. 

I have submitted different versions of the result to many places. Only four of the 
places treated the article at all seriously. These were, in chronological order, 

Publications Math. IHES 
Journal K-Theory 
Annals of Math. 
Inventiones Math. 

The version Giffen and I submitted to Publications Math. IHES in April 1988 con- 
tained a serious gap; this has been extensively discussed in the introduction. The 
article was rejected. When I fixed the gap, I resubmitted, in September 1988. The 
article was now much longer, and Publications Math. IHES did not want to handle 
it. It was suggested I submit to Journal K-Theory. 

I submitted different manuscripts to Journal K-Theory three times. The first 
time the work was rejected on a technical point, within four weeks. The next two 
times Thomason was the referee, and each time he rejected the article because he 
believed he had found a major error. The first time Thomason rejected the article, 
the editor was very kind and encouraged me to submit an improved manuscript. The 
second time he was less kind. In his rejection email, which I have unfortunately not 
kept, he told me that now the scientific merit of my work had been decided; I was 
obviously a charlatan, and under no circumstances should I ever submit the article 
back to Journal K-Theory. 

Thomason was more willing to be open minded. He invited me to Paris in May 
1992, for an interrogation. He was convinced there had to be an error, and was 
determined to find it. He did not spare himself, and he certainly was not about to 
spare me. We met in his office for many hours every day, going into the minutest 
detail of the proof of the theorem he wanted to see. After a week and a half he 
pronounced himself satisfied. 

By then, of course, it was impossible to resubmit to Journal K-Theory. The next 
place I submitted it was Annals of Mathematics. To be completely accurate, I did 
not even wait until after meeting Thomason to submit the articles to the Annals. I 
submitted the result on May 9, 1992. The papers were rejected almost immediately, 
on May 13, 1992. In his rejection letter Deligne tells me that the result is interesting 
and "if true, worth publishing in the Annals of Mathematics." He goes on to say that 
he has read "a little more than the introduction", and based on what he read, it is 
already obvious that the article does not contain a proof of the theorem I claim. 

On June 3, 1992 I resubmitted the then current versions. By then, I had Thoma- 
son to back up my assertion that I knew how to prove a theorem. There were three 
parts, K-theory for triangulated categories 1, 2 and 3. On November 10, 1992 Deligne 
sent me a rejection for the articles. He refereed the articles himself, and did not believe 
the result. In his own words: 

The most important reason [for the rejection] is that I have strong 
doubts about the correctness both of the proof and of the state- 
ments you make. 
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The second major reason Deligne gives for the rejection is that, as written, the articles 
make it nearly impossible for anyone to check the results. 

Since in a footnote Deligne mentioned Theorem 4.8 on pp. 63-64 as one of 
the statements he doubts, I wrote K-theory for triangulated categories 3.5 to give a 
detailed, checkable proof. I submitted this manuscript to the Annals of Mathematics 
on May 28, 1993. The article was rejected December 6, 1993, because the referee 
thought he had found a major mistake, on page 35. The rejection letter quotes the 
referee: "the main result is certainly interesting, and if correct deserves publication." 

It turns out there was no mistake, only a misunderstanding of what the proof 
said. I sent to the Annals a detailed explanation of why there was no mistake on 
page 35, to be forwarded to the referee. I never received an answer. In March 1994, 
Deligne was kind enough to listen to me present the result orally. On August 30, 1994 
I sent to the Annals of Mathematics a revised version of K-theory for triangulated 
categories 3.5. The order in which the lemmas are presented was permuted, and some 
subtle points were elaborated, for example the one where the referee thought he had 
found a mistake. On September 21, 1994 I submitted also K-theory for triangulated 
categories 3.75, the proof presented to Thomason. 

In September 1994, the Annals of Mathematics asked Thomason to be the ref- 
eree. I happen to know this, because Thomason sent me a copy of his email, declining 
Deligne's request to referee either article. In his refusal he says that, having gone 
through the argument carefully orally, he is unwilling to check through the writ- 
ten version. He goes on to describe the main theorem of K-theory for triangulated 
categories 3.75 as "very striking", "at the borderline of statements for which there 
are well-known counterexamples". Thomason concludes his email by telling Deligne 
that, in his opinion, the result of K-theory for triangulated categories 3.75 (the result 
Thomason checked orally) is better than the theorem of K-theory for triangulated 
categories 3.5 (the result Deligne checked orally). 

The Annals of Mathematics rejected both articles on February 5, 1996, almost 
a year and a half later. In the rejection letter they mention that the papers went 
to a referee (presumably someone they contacted after Thomason declined the job). 
The referee sent a preliminary report, expressing doubts "that the organisation of the 
manuscript is reasonably economical". The rejection letter goes on to say that, despite 
contacting the referee "numerous times", the Annals of Mathematics was "unable to 
receive a formal report". 

This left the Annals of Mathematics with no choice but to reject the articles. 
They promise they will keep pressing the referee for a "more constructive report", 
and suggest I try to publish the result elsewhere. 

Let us suppose the Annals of Mathematics got in touch with the current referee 
sometime in October or November 1994. It is now July 1997, more than two and a 
half years later. I am still waiting for the "more constructive report", and from time 
to time I send Deligne an email to remind him of the fact. 

The next journal to seriously consider the articles was Inventiones Mathematicae. 
On February 28, 1996 I sent to Faltings K-theory for triangulated categories 3.75. 
Faltings gave it to Jens Franke to referee. Franke refereed the article and found it 
correct. But on November 25,1996 Faltings rejected the article. In the rejection letter 
he tells me that the good news is that the referee believes the result, the bad news is 
that the backlog in Inventiones is so long that he cannot at the moment accept an 
article as long as mine. He concludes by saying he felt it was important that someone 
should check the result carefully, and that he hopes the endorsement will be useful. 
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This completes the account of the four journals that took the results seriously. I 
have also sent versions of this result to other journals, which rejected them essentially 
out-of-hand. Aside from the journals already mentioned, I have sent articles to 

Journal of Pure and Applied Algebra 
Ann. Sci. Ecole Normale Superieure 
Acta Mathematica 
Memoirs AMS 
Memoires Soc. Math. France 
Lecture Notes in Math. 
American J. Math, 

often submitting different articles to the same journal on more than one occasion. 
The only common feature to these journals is that they sometimes publish very long 
articles. The pattern I have observed is that whereas prestigious journals like the 
Annals of Mathematics or Inventiones Mathematicae take the results seriously, less 
prestigious ones reject the work very quickly. For example, Journal of Pure and 
Applied Algebra took only three days. If you wonder how this is possible, it was all 
done very efficiently, by email. 

I should make precise what I mean by rejecting the articles "out of hand". Each 
of the seven journals mentioned above rejected the articles in a matter of a few weeks. 
The only time I received a referee's report was the third time I submitted a manuscript 
to American J. Math. This unique referee's report was very brief, and clearly based 
only on a reading of the introduction. 

A recent example is the Lecture Notes in Mathematics. The rejection letter was 
very kind. It explains to me in detail that the Lecture Notes faces financial pressures. 
Their sales have dropped, forcing them to raise prices. They were forced to reduce 
their output from >60 volumes in 1989 to <30 in 1991. If they publish esoteric 
articles like mine, with a very limited readership, then many libraries will cancel their 
subscriptions. 

The rejection letter suggests I try to break up the result into smaller articles. But 
I have tried; there is a small article, Loop spaces for the Q-construction, which proves 
a modest result in 35 pages. I have not been able to publish it anywhere. The best I 
could get was a promise from van der Geer that, if my longer articles get published 
somewhere, then he is willing to reconsider Loop spaces for the Q-construction for 
Compositio. 

One of the consequences of this tortuous history has been that there were results 
I never carefully checked. The articles looked for a long time like they would never 
be published. There seemed little point in writing yet more. So although I had 
some ideas about proving better theorems, the motivation to check these carefully 
was missing. For the last four years, I have not thought about the problems. In the 
meantime I have forgotten what I once may have known. All I now have are some 
sketchy notes. 

In an appendix to part I (see Appendix A), we will talk about semi-triangles. 
In appendices to part III, we will include some even sketchier ideas; the appendices 
should not be viewed as theorems the author claims to have carefully checked. 

I am very grateful to Chai, Dold, Mumford and more recently Faltings for their 
help and encouragement. Without them I would have given up years ago. I am also 
grateful to Yau for agreeing to accept the series of articles for the Asian Journal of 
Mathematics. 



354 AMNON NEEMAN 

1. Triangulated categories and exact subcategories. 

DEFINITION 1.1.   An additive category T is called a triangulated category if it 
comes equipped with: 

1.1.1. An automorphism T, : T —> T called the suspension functor; 

1.1.2. A collection of "triangles"; i.e.    sextuples (X,Y,Z,u,V)W) where X, 
Y, and Z are objects of T, u,vyw are morphisms u : X —> Y, v : Y —> Z, and 
w : Z -> EX. 

A morphism of triangles is a triple (/; #; h) of morphisms in T, rendering commutative 
the diagram 

X 

X' Y' Z' 

w 
EX 

2/ 

w 
EX' 

These data must further satisfy the following compatibilities. 

1.1.3. [TR1]: Every sextuple isomorphic to a triangle is a triangle. Every 
morphism u : X -> Y can be embedded in a triangle (X,Y,Z,u,v,w). The sextuple 
(X, X, 0, lx, 0,0) is a triangle. 

1.1.4. [TR2]: (X, Y, Z, u, v, w) is a triangle if and only if (Y, Z, EX, v, w, —T.u) 
is. 

1.1.5. [TR3]: Given two triangles (X,Y,Z,u,v,w) and (X1 ,Y', Z',u',v', w') 
and a commutative square 

X 

X' 

Y 

Y' 

there exists a map h : Z —> Z' which completes the above to a morphism of triangles. 

1.1.6. [TR4] (The octahedral axiom): Given the following diagram 

There exists a way to construct a diagram 
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1.1.7. Notation.  The arrows labeled with a circle are of degree one: a map 

x—e-^r 
means a morphism X -> YY. The triangles marked + are commutative, while the 
ones marked d are distinguished; they are the "triangles" in the sense of Definition 
1.1.2. The symbols + and d are used as in [1]. The notation for morphisms of degree 
one is different from [1], but is more in line with the conventions of this article, where 
we feel free to introduce curious-looking arrows to a stand for the various possible 
classes of morphisms we are led to consider. 

1.1.8. Hidden Hypothesis    Furthermore, the two composites 

y    ->    Z    ->.   y     and     Y    -*    Z   ->    Y' 

agree, as do the two composites 

Y'    ->    EX    -> Ey     and     Y' x1  ->  sy 
It should perhaps be noted that axiom [TR4] has an equivalent formulation, 

which is perhaps more in keeping with the ideas of this article. Given a morphism of 
triangles, one can construct its "mapping cone": i.e. given a morphism 

X 

f 

X' 

Y 

Y1 

w 

Z' 

EX 

EX' 

there is a chain complex (*) 

-v    0 
9    W 

—w 
h ") 

-Su   0 
£/   w' 

Y®X' Z®Y' -   EX ®Z' sy e EX' 
which may or may not be a triangle. [TR4] is equivalent to [TR4']. 

1.1.9. [TR4']: Given a commutative diagram 

X 

X' 

Y 

Y' 

as in 1.1.5 — [T'i?3], then the map h, whose existence is guaranteed by [Ti?3], may be 
chosen so that (*) is a triangle. 
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The proof that [TRl] + [TR2] + [TRS\ + [TR4] imply [TM] is Theorem 1.8 in 
[7]. The proof that [TRl] + [TR2] + [TRS] + [TiM'] imply [1724] is Lemma 5.1 in [8]. 

The theory of triangulated categories has been expounded at length elsewhere. 
We refer the reader to [4], [1] and [11] for details. We only wish to remind the reader 
of three examples. 

EXAMPLE 1.2. The Spanier-Whitehead category (also called the stable homotopy 
category). The objects are desuspensions of finite CW-complexes (i.e. £-mX, where 
X is a finite CW complex). By definition 

HomT(X,Y) = lim [EnX,EnF] 
n—>oo 

where [X, Y] is the set of homotopy classes of maps X ->• Y. The suspension functor 
E is obvious. Triangles are by definition sequences isomorphic to 

T-2& (X) -A E-2*(r) -> E-2*(C» -+ E-
2
*
+1

X 

where C/ is the mapping cone of the map / : X -» Y. 
The axioms are easy to verify; the octahedral axiom is the statement that, given 

maps / : X -> Y and g : Y -> Z, then EC^/ is the cone of the natural map Cg -> EC/. 

EXAMPLE 1.3. The category JC(A). Let A be an additive category. The objects 
of 1C(A) are chain complexes of objects of A, the morphisms in JC(A) are the homotopy 
equivalence classes of chain maps. E : IC(A) —> JC(A) is left translation of a complex, 
with the sign of the differential switched. For any map X -> Y, the sequence X —> 
Y -» C(X —> Y) —> EX is a triangle, where C(X —> Y) stands for the mapping cone 
on X —> Y. The triangles are all sextuples isomorphic to ones obtained as above. 

EXAMPLE 1.4. The category D(A). If A is abelian, we may invert the quasi- 
isomorphisms in )C(A), i.e. the maps inducing isomorphisms in homology. More 
generally, if A is an exact category, we may invert maps X —> Y provided the cone 
C(X —> Y) is acyclic. The category obtained from K(A) by formally inverting the 
quasi-isomorphisms is called the derived category of A, and denoted D(A). 

DEFINITION 1.5. Let T be a triangulated category, A an abelian category. A 
homological functor H : T —> A is a functor which takes triangles to long exact 
sequences: i.e. if (X, Y, Z, u, v,w) is a triangle, then 

H(X) -» H(Y) -> H(Z) 

is exact. More generally, one could define the concept of homological functors H : 
T —> A even when A is only an exact category. 

EXAMPLE 1.6. If X e Ob(T), then Homr(X: —) is a homological functor, where 
A is the category of abelian groups. 

EXAMPLE 1.7. If T = JC(A) or D(A), A abelian, then H(X) = H0{X) defines a 
homological functor. 

DEFINITION 1.8. A full subcategory S C T is called exact if whenever (X,Y,Z, 
u, v, w) is a triangle, X G S and Z G S =^ Y G S. 

REMARK 1.9. In the original version of this paper, I referred to such subcategories 
as thick. Thomason strongly objected, and I have agreed that another term might be 
better. 
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The terminology in the literature is actually quite bad. If A is an abelian category, 
it is customary to refer to a number of types of full subcategories. 

1.9.1. Abelian subcategories.    These are subcategories which are closed with 
respect to the formation of kernels and cokernels. 

1.9.2. Thick subcategories.   These are the categories closed with respect to ex- 
tensions. 

1.9.3. Serre subcategories.   These are the abelian categories closed with respect 
to the formation of extensions and subquotients. 

In if-theory, the most important are the thick subcategories. Quillen's formalism 
of exact categories is an axiomatic description of categories capable of being embed- 
ded in abelian categories as thick subcategories. Exact categories provide a useful 
framework for defining if-theory. 

Naturally, we want to generalize all this to the triangulated setting. Let T be a 
triangulated category, S a full subcategory. Then 

1.9.1.' S is called triangulated if it is closed with respect to the formation of 
triangles; the mapping cone on any morphism in S is in S. 

It would be natural to go on and define 
1.9.2.' S is thick if it is closed under extensions, as in Definition 1.8. 
1.9.3.' S is a Serre subcategory if it is triangulated, and any direct summand of 

an object in S is in S. 
The reason 1.9.3' is a natural definition is that such S's are precisely kernels of 

triangulated functors. Given a triangulated functor F : T —> T', i.e. a functor of 
triangulated categories commuting with the suspension and taking triangles to trian- 
gles, define ker(F) to be the full subcategory of T whose objects X satisfy F(X) = 0. 
Then ker(F) satisfies the hypothesis of 1.9.3'. Given any S satisfying the hypothe- 
sis of 1.9.3', one can form a triangulated category T/S and a triangulated functor 
F : T -> T/S, whose kernel is precisely S. This is closely parallel to the construction 
of the quotient of an abelian category by a Serre subcategory. 

The unfortunate terminological fact is that categories satisfying 1.9.3' are called 
epaisse subcategories of T, not Serre subcategories. With my abysmal knowledge of 
French I did not realize that epaisse is the French for thick, and I went ahead and 
made 1.9.2' a definition. I have to thank Thomason for some basic linguistic instruc- 
tion. Evidently, the people who wrote in English about abelian categories translated 
Gabriel's sous categoric epaisse to thick subcategory. But the same translation was 
not made by the people writing about triangulated categories in English. 

It would be interesting to have a description of exact subcategories of a triangu- 
lated category T which, like Quillen's description in the abelian case, is free of the 
embedding into T. 

EXAMPLE 1.10. Let ii": T -» A be a homological functor. We define T^H-^m]) C 
T to be the full subcategory of T whose objects are 

OHT^Km])) = {X £ T\H(i:qX) = 0 unless n < q < m}. 

The long exact sequence for H immediately establishes that 7(ij;[n,m]) is exact, in the 
sense of Definition 1.8. If H is understood from the context, we will sometimes omit 
it. Thus lC(A)[n,m] will mean lC(A)(H][n,m]) where H is the cohomology functor of 
Example 1.7; similarly for D(A)[nim]. We will also use the notation 
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Db(A)    =        U D(A)ln,m] 

D+(A)   =        U P^KOO) 

D-(^)     = U I>(>l)(_oo,nJ 

REMARK 1.11. Although in Example 1.10 we seemed to suppose that A be 
abelian, it suffices if A is exact. One can no longer define the cohomology functor 
directly, as a functor from D(A) -> A, but the problem is easily remedied. 

Let us conclude by quoting one standard result which we shall heavily rely on: 

LEMMA 1.12. Let (X,Y,Z,u,v,w) and {X1 ,Y',Z'^u',v',w') be triangles. Let 
{f',g',h) be a morphism of triangles. If f and g are isomorphisms, so is h. (Of 
course, h need not be unique). 

Proof See [4], Proposition 1.1(c), p.23. 

2. Mayer-Vietoris squares in triangulated categories. Let T be a trian- 
gulated category. A commutative square 

X f 

r 
Y' 

Cr) v   -      / (9-9') is called Mayer-Vietoris, or simply M — V, if X     —>     Y 0 Y'        —>        Z is 
part of a triangle; i.e.   if there exists w : Z —> EX making the sextuple (X, Y © 

Y',Z,( *   ) , ( g    -g' ) , w) a triangle. 

LEMMA 2.1.  The composite of two M — V squares is M — V. 

Proof (The result seems well known, but for completeness we include the proof.) 
Let 

Xl x2 X3 

9i 

n 
be a diagram of morphisms. Consider the pentagon: 
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■X3®Y1 

9i      ) 

Xz®Yf x1 

By [TR4] we may complete this diagram to an octahedron, whose back face is: 

XzQY! 

The study of this diagram easily yields 
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fl v h Xo X3 

91 92 

Y1 
hi 

9z 

h. 

where all the squares are M - V. 
LEMMA 2.2. Suppose we are given an M — V square 

Xi 

Yt 

X2 

Yi 
Then the third edge of the triangle on fi is isomorphic to the third edge of the triangle 
on/2. 

Proof. (This result is also well known.) Consider the pentagon 

X2- 9  Y1 

+      X2®Yi      + 

d 

Y2 e -Xx 

It may be completed to an octahedron, with back face: 

*2- e Yi 

+ 

Y2 

+ 

-e- Xi 

and this precisely establishes that Z is the common third vertex of /i and $2-        d 

Let T be a triangulated category, and let S C T be a exact subcategory. We 
define: 

DEFINITION 2.3. A morphism f : X -> Y in S is mono if in the triangle 
X ->. Y -4 Z ->• SX, Z € S. 

DEFINITION 2.4. ^4 morphism f : X -¥ Y in S is epi if in the triangle Z -> X -> 
Y -»■ EZ, Z € 5. 
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Monos will be denoted by arrows X )——)- Y, epis by arrows X »• Y. Note that 
monos and epis are generally not monomorphisms and epimorphisms in the usual sense 
of category theory. 

PROPOSITION 2.5. Monos and epis are stable by (Mayer-Vietoris) pushouts and 
pullbacks; i.e. if 

X X' 

/' 

is an M — V square, then f is mono (resp. epi) if and only if f is. 
Proof This is a corollary of Lemma 2.2. □ 
LEMMA 2.6.   Let f : X\ —> X2, 9 : X2 -> X3 be morphisms in a triangulated 

category T. IfYi, Y2 and Y3 are given by the distinguished triangles: 

Xi—*X2—>Yi—> EXi 

X2 —> Xs —> Y2 —> T1X2 

and 

then there is a triangle 

Proof Apply [TR4] to 

Xx —> X3 —> I3 —> SXi, 

Ki—>y3—Ha—^EYL. 

getting an octahedron with missing vertex Y3, as in 
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1-2 X3 

O     d 

Yi 

In particular, Yi ->• Y3 —> Y2 -4 SFi is a triangle. □ 

COROLLARY 2.7.  / : Xi ~> X2 anrf ^ : X2 -> X3 are monos (resp.  epis) so is 
gof-.Xr-tXs. a 

Before proceeding, let us note: 

TRIVIALITY 2.8. /// : X —> Y is any map, then the square 

X         1—-        Y 

X 

is M-V. 

In the next Section we will define the Q-construction of a exact subcategory S 
of a triangulated category T. The main example we should keep in mind is Example 
1.10. Let us end this Section by explicitly working out what the definitions of monos 
and epis mean in this case. 

If H : T ->> A is a cohomological functor, we defined 7[n>m] to be the exact 
subcategory of X € T such that H^X) = 0 unless n < q < m. Write Hq{X) for 
H^X). Then what are the epis and what are the monos in 7[n,m]? 

The reader will easily verify that / : X -> Y is epi if and only if Hrn(X) -> Hrn{Y) 
is epi. Similarly, / : X ->- Y is mono if and only if Hn(X) -> Hn(Y) is mono. If 
T is D(A)1 the derived category of an abelian category A, and H is the cohomology 
functor, then D(A)[oio] = ^4. In this case, the equivalence of categories preserves epis 
and monos. 

3. Two Q-constructions. Let T be a triangulated category, S C T an exact 
subcategory. It is completely standard that one can define a Grothendieck group 
Ko(S). We recall: let F(S) be the free abelian group on the objects of S. Put 

Ko(S) = F(S)/R(S) 

where R(S) C F(S) is generated by the elements X — Y + Z, whenever X, Y, and Z 
are objects of 5, and there is a triangle inT X ->Y -> Z -> EX. 

It is also completely standard that if S = T = Db(£), where £ is an exact 
category, then K0{D

b{£)) = Ko(£). 
We wish to define Ki(S) for i > 0. We will give two constructions. One of the 

constructions will be the one that the theorems will deal with; about the other, we 
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know nearly nothing. The purpose of the second construction is to serve as a caution 
to the unwary. 

CONSTRUCTION 3.1.   Simple-Minded Approach. 

i 
Observe that S has the structure of a bicategory. Define S       y to be the bicategory 

T 
which horizontally and vertically is simply S, while the distinguished squares in S       *" 

T 
are the M — V squares.   The fact that S       ** is a bicategory is Triviality 2.8 and 

T 
Lemma 2.1. Let J\f..(S) be the bisimplicial nerve of the bicategory S      ^ and B..(S) 
its geometric realization. We define 

lfi(5)=ni+1iB..(5). 

REMARK 3.2.     For readers unfamiliar with nerves of bicategories, let us recall 
that J\f..(S) is a bisimplicial set whose (p, g)-simplices are diagrams of M — V squares: 

X pO x, pi X. VI 

\ 

■^10 —► Xll 
""■ "*" 

■Xoo —►   Xoi 

T 
 ►     • • '  V    Xlq 

T 
 ►    • • •         ►    Xoq 

There are horizontal and vertical face and degeneracy maps: the ith horizontal (resp. 
vertical) face map is deleting the ith column (resp. row) and composing the ith and 
(i -f l)th columns (resp. rows) of horizontal (resp. vertical) maps. The degeneracy 
maps are induced by inserting identities. 

CONSTRUCTION 3.3.   The Approach That Almost Works. 

Once again we consider a bisimplicial set, which we will denote by 

A (p, g)-simplex in here is a diagram 
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XpQ >■   Api y   • - • y   Xpq 

t        I T 

1        ! T 
Xl0  Y    Xn  ■¥     ' ' '  >    Xiq 

I        ! T 
XQO         ►    ^01         *    ' ' '        —+    Xoq 

as before, but this time it comes together with a compatible choice of differentials. By 
this we mean a morphism (j): Xpq -> T.XQQ in T such that for any 0 < i < i' < p, 

Q < j < jr < Qi the sequence 

Xij —> Xi'j © Xijt —> Xvjt —v LiXij 

is a triangle in T, where p : Xi'j> -> HXij is the composite 

Xi'j'  —> Xpq  > SAQO "^ TiXij. 

The face and degeneracy maps are as in Construction 3.1, but remembering the dif- 
ferential. 

Once again, B..(S) is the geometric realization of this bisimplicial set, and 

KiiS) %f Ui+1B..(S). 

This approach gives a iif-theory, but it is not quite the one we will study.  See Re- 
mark 3.5. 

REMARK 3.4. Symmetries of the above construction. It seems right at 
this point to discuss the symmetries of the construction. There is a transposing map 
which takes an (p, g)-simplex to a (g,p)-simplex, simply by transposing the diagram. 
The very observant reader will notice that the sign of the differential must be switched. 
Given a (p, q) simplex, we have a diagram 

Xpo     —y  Xpi     —y   ' - •     —y  Xpq 

I        1 T 

T        I T 
XIQ     —►  Xn     —y  - • -     —►  Xiq 

i      i T 
X00     —y  XQI     —y   • - •     —*  Xoq 

possibly together with a coherent differential <f) : Xpq -> EXoo- (The "possibly" is 
because we leave it open whether we are working with Construction 3.1 or Consruction 
3.3.) Anyway, let d : Xi'j' —> "SXij be a differential. If it is given, fine; if not, choose 
one. That is, choose a map d making the sequence 

X^ —y X^j 0 X^' —+ X^j'      y ^Xij 

a triangle in T. Recall that an M — V square is a commutative square 
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s£i 

r 
Xi>j 

Xif 

Xi'ji 

such that X 

f 
r ( 9    -9' ) 

Xiji © Xi'j        —>       Xi'j' is part of a triangle; i.e. if there ex- 

ists d : Xvji -> IZXij making the sextuple (Xij,Xij> ©-XVj, Xi'j> A    .,   ) , ( 9    —g' ), 

d) a triangle. And if we are lucky, the choice for d has already been made for us. 

Be this as it may, transposition switches Xijt with X^j, so it switches the roles 
of g and #', and we find ourselves wondering whether 

(X; ij,Xiji (bXiij,XiijiA   -, j , ( -g   g' ), w) 

is a triangle for some choice of u>, and if so, what on earth this w has to do with our 
original d. But all we have done is switched the sign of ( g —g' ). The reader will 
easily show that by switching the sign of d as well, we obtain a triangle. Replacing d 
by —d is a very coherent thing to do, so transposition does indeed define a simplicial 
map. 

The other symmetry of the construction is the observation that a simplex in 

is nothing other than a simplex in 

the point being that Top is a triangulated category having the same set of triangles 
as T. The dual of an exact subcategory of T is an exact subcategory of Top. 

All the homotopies of the article come equipped with transposes and duals, and 
we use these without explicit mention. 

REMARK 3.5. As we said in Construction 3.3, the simplicial set given there 
is not quite the one we will study. There is a difficulty here which I do not fully 
understand. When we construct homotopies in the simplicial set 
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we need to have a way of building new triangles out of old ones. The main technique 
I know is by the mapping cone construction. Given a map of triangles 

X 

X' Y' 

one can build from it the complex 

w 

w 

EX 

■r 

EX' 

f -v    0   \ f -w    0   \ ( -Y,u    0    \ 
V     9   W ) \     h   v' J \     £/    w' ) 

Y®X' - z©y' -   HX^Z' -+■ Ere sx'. 
The problem with this construction is that the mapping cone on a map of triangles 
is not itself necessarily a triangle. The only triangulated categories for which the 
mapping cone is automatically a triangle are the extremely dull ones, for instance the 
derived category of the category of vector spaces over a field. 

There are two ways to resolve this problem; one is to relax the hypothesis that 
Xij -> Xi'j 0 Xiji -» XVJI -> YtXij in Construction 3.3 is a triangle. One introduces 
the category of semi-triangles which, roughly speaking, are all direct summands of 
successive mapping cones on triangles. This approach is elaborated in Appendix A. 
The homotopies in this article are then all well-defined. The subtlety comes from 
the fact that the simplicial sets are not quite what one expects. For some (sketchy) 
detail, see Appendix A. 

The second approach is to restrict the set of simplices one allows, to ensure that 
all reasonable mapping cones are triangles. This is an approach which I understand 
only partly. The only clean way I see to describe the restrictions to be placed on the 
simplices is by changing the axiomatic formalism of triangulated categories. I once 
promised to write down such a formalism, but never did. The reader can find some 
of the ideas in [7] and [8]. 

Without getting drawn into axiomatic questions regarding the foundations of 
triangulated categories, one can restrict the allowable simplices by demanding that 
they lift to some model for T. This is not pretty, but works. Here is my advice to 
the reader: 
Group 1 Reader: Ignore this point. The only theorem you are advised to read is 

Theorem 4.8, which says that the if-theory of an abelian category A is a 
retract of the if-theory of Dh(A). This is true without any modifications to 
the construction. 

Group 2 Reader: The simplest modification of the simplicial set in Construction 3.3 
that I know to work is the following. A simplex in 
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should be a diagram 

-XraO   ' * ->xn 

xl oo X, On 

as before, together with a coherent differential. But we make a further as- 
sumption. The diagram should be a finite direct sum of diagrams of the same 
form, each of which has a lifting to a model category for T. In fact, we will 
also assume that the model category is a biWaldhausen complicial category, 
as in [10]. This means concretely that it is a category of complexes over some 
abelian (or even exact) category, possibly with restrictions on the cohomology. 
To make my life slightly easier, I will assume that the only model categories 
we allow are the categories of bounded complexes over an abelian category. 
Note that we allow the simplex to lift to any model for T. The construction 
depends only on the triangulated category T. However, it has problems. It 
is, for instance, not functorial in T. It is possible to give better versions of 
this simplicial set, but not quite so easily. 
Perhaps we should also say what we mean when we assert that a simplex has 
a lifting to some model category for T. Suppose we are given a simplex 

X m0 ■^Xr, 

Xoo ■* X, On 

in T. A lifting to a model category consists of an embedding of categories 
T C Db(Q) for some abelian category Q, a diagram of bicartesian squares of 
chain complexes in C(Q) 
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^mO y •+xn 

and for each i and j an isomorphism 

in the category T. We assume further that the isomorphisms pij define an 
isomorphism of the diagrams 

XmO y ^X„ 

XQO ■* Xt On 

and 

Xi mO ^x„ 

x. 00 ■+ X, On 

In other words, the isomorphisms p^ commute with the structure maps of 
the two diagrams, that means even the differential. Perhaps this needs a little 
explanation. 
Recall that the diagram 
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X, mO ^Xrr 

X{ oo "*"   ^0n 

is a diagram of bicartesian squares in C(Q). Thus all the squares must be 
genuine bicartesian squares. There is then a canonical choice for the coherent 
differentials. We have an exact sequence in Cb(Q) 

0  > XQO ' ^ -Xon © -^mO  ^ Xy, 

which gives a quasMsomorphism 

C IXQQ  > Xon 0 XmoJ —> Xmn 

where C (XQO —> Xon 0 Xmo) is the mapping cone on the map /. There is 

also a natural map 

C ( XQO  ^ Xon 0 ^mO )   ^ SXQO 

and the composite a o /3""1 is the coherent choice of differentials we consider 
natural. To be a lifting of 

X, mO ■*x„ 

XQO ■+ X, On 

to C6(Q), the given coherent differentials must agree, via the isomorphisms 
Pij, with the natural ones in 
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x., mO -+*„ 

x. 00 ■+ X{ On 

Group 3 Reader: This is a good problem to work on. It is at present an unsatisfac- 
tory aspect of the theory. There are a number of simplicial sets for which the 
proofs go through, and I do not understand well the relation among them. 

LEMMA 3.6.  With either Construction 3.1 or Construction 3.3, 

Ko(S) = UiB-iS) 

agrees with the usual Grothendieck group. 
Proof. Consider the diagonal realization of the bisimplicial set. It has the homo- 

topy type of B..(S). We need to compute its fundamental group. More explicitly, we 
will produce maps 

<t> : IIuMS) -» K0(S) 

il>:Ko(S)->n1(B..(S)), 

and we will prove that i/; o 0 and <j) o t/j are the identity. (For the rest of the proof, 
KQ(S) stands for the Grothendieck group of S. Once the lemma has been proved, no 
confusion should arise.) 

A 1-simplex in the diagonal realization of the bisimplicial set (which 

here is allowed to stand for either or S       *) is an M — V square 

Y 

i 
X 

Y' 

X' 

(possibly together with a differential Y' —V Y,X). We let its image in Ko(S) be 
Y - X = Y' - X' (recall that X -» X' © Y -» Y' is part of a triangle, hence 
X-X'-Y + Y' = Qin Ko(S)). Let 
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Z     —►   Z'     —►   Z" 

\       \        T 
y     —►   Y'     —►   Y" 

\       \        X 
X     —v  X'     —v  X" 

be a 2-simplex. Its boundary is 

Y     —►   Y' Z     —h   Z" Z'     —y   Z" 

T       T   -   t       T   +   T       T 
X     —►  X1 X     —►  X" Y'     —y  Y" 

This makes it clear that the boundary of a 2-simplex maps to zero, via the map we 
have just defined. Thus we have given a map 

TT (K u (n (Q\\        1-cycles 1-chains 
boundaries      boundaries 

This is the map </>. Now observe that B..(S) is an iJ-space, hence HiB..{S) is 
abelian. Therefore, the natural map TliB..(S) ->- HiB..{S) is an isomorphism. Thus, 
we need only define an inverse 

boundaries 

We define I/J by 

Y     —►   Y Y     —► 0 

W)    =      ] |      +      | | 
■ 0      —►   0 Y     —y 0    . 

The first difficulty is to establish that ijj is well defined; then we will prove that </> and 
tp are inverse to each other. 

3.6.1. ip is well defined. 
To prove this, we have to establish that if X, Y, and Z are objects of 5, and if 

X->y->Z->EXisa triangle in T, then t/>(X - Y + Z) = 0. To do this, compute 
the boundary of the 2-chain 

Y —►   Y     —►   Y              Y     —►  Z —>  0 

X     —y  X     —►  X     +      Y     —y  Z —^0 

I       1       I       T       t      T 
0      —►   0      —»■   0 Y     —y   Z —»■  0 

Y —►   Z     —>■   Z Y     —vF —xZ 

T       1       T       T       T       T 
+      X     —►   0     —*   0      -     Y     —>   Y —>   Z     . 

t       1       T       t       T       T 
X     —►   0     —►   0 X     —*■  X —^0 
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The reader will easily show that this boundary is nothing other than %I>(X — Y + Z). 
This computation proves that ^{X — Y -f Z) is a boundary, and hence vanishes in 

1-chains     ^j^ fact ^^ ^^y) is a cycle for all Y is immediate, and is left to the 

T 
reader. The argument works both in the simplicial set S       y, and in the simplicial 

set . Although we have written out the simplices in the computation 

without indicating the differentials, the reader can easily provide those. 
3.6.2. (j)oil) = 1. This is the obvious identity, and we leave it to the reader. 
3.6.3. ip o (j) = 1. This is a little more delicate, so we will discuss it. 

We need to show that the composite 

HtB^S) = u
1-cy;le.s   A Ko(S) *    1-CycleS 

boundaries boundaries 

is the identity. It is easier to consider the composite 

1-cycles 1-chains ,  . 1-cycles 1-chains 
:~" boundaries      boundaries boundaries       boundaries 

Let / be the composite 

1-chains 
Ko(S) 

1-chains 
boundaries      "uv  /    ' boundaries 

We will prove that 1 — / vanishes on T-—c^c e.s    . This clearly suffices. Let 

Y     —y  Yf 

i    ? 
be a 1-chain. Then 

/ Y 

(1-/) 1 

Y     - 

T       T 
X     - 

Y' 

X' 

X 

Y'\ 

T 
W 

Y' 

-   T 
0 

X' 

+   I 
0 

X' 

Y' 

0 

Y' 

Y' 

X' X' 

+ 
X' 
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Now, studying the boundary of the 2-chain 

x    —► x'    —► o          y —► Y' 

T       T       T       T 1 
X     —►  X'     —»•  0     +     X' —► X' 

f        T       T       T T 
X     —>  X'     —►  0               0 —► 0 

Y —► Y' 

f 1 
-      X —► X' 

T I 
X 

the reader will prove the identity in * o^d ^PS 

X' 

Y 

T 
X 

Y> Y'     —►  Y' X' 

f   =   I       T   -   I 
X' 0      —►   0 0 

X'     —►   0 X 

I       T   +   T 

Y' 

T 
X' 

1 
0 

r 
T 

X' 

T 
X' 

X' 

T 
0 

■   0 

X'     —►  0 X 

Combining these identities, we have proved 

( Y   —► Y1 \        x   —► o        y 

(1-/) i     i   = ?     i - I 
\X     —►  X1 ) X     —►  0 Y' 

( Y     —>   Y'\ 

In particular, (1 — /) f       T 
\X     —   X' j 

depends only on the boundary of the 1-cell 

Y   —► y 

i T   . It is given by the formula 

X     —►   X' 

(i-/)W E 
Ztdc 

with multiplicity 

( Z     —.  0\ 

T      ! 
\z —^ oy 

Y     —►   Y' 

This formula initially holds for the generators    T t    of . l~cnains    ^ ^^ 

X X1 
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extends by linearity to the whole group. In particular, if dc = 0, then (1 — /)(c) = 0. 
□ 

Now let us return to more general considerations. There are many ways to view 
S as a bicategory, and we want to consider several of these. The squares in S will 
always be the M — V squares; but we want to permit ourselves some flexibility in the 
horizontal and vertical categories h(S) and v(S). For instance, we may insist that all 

! 
the morphisms in h(S) be mono. Our notation for the resulting bicategory is S )    *. 
The arrows indicate that the horizontal morphisms are mono, while the vertical ones 

T    T 
are free. In the same vein, we consider also bicategories S       ^ S )    h, etc. Of course, 
there are associated simplicial sets; we can either consider the nerve of the bicategory 

or the bisimplicial sets etc., where a simplex 

comes equipped with a choice of compatible differentials. We observe 
THEOREM 3.7.   The natural inclusions induce homotopy equivalences among the 

I     T     T     T     T        I 
bicategories S >    ^ S      *, S )    *, S       *", S >    *" and S       *.   (Respectively, the 
bisimplicial sets 

~\     r >*    r 

are also homotopy equivalent via the natural maps). 

Proof.   By way of illustration, we will prove that the inclusion S «-* 

S      *" induces a homotopy equivalence. The remaining statements have analogous 
proofs. 

We introduce the trisimplicial set, which we denote 
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By definition, an (n,ra,p)-simplex consists of a diagram of M — V squares: 

LpO ) ►   • • •   > ► X pn Ypo   ►   •••    y Yt pm 

x. 00 ■* X, On ^00 "^   Yo 0m 

(If we want to consider the simplicial sets of Construction 3.3, then we also give a map 
Ypm -> T.XQO as part of the structure.) The ith face maps are deleting the ith column 
in the X square, the ith column in the Y square, or the ith row. There are three 
different commuting simplicial structures, hence a trisimplicial set. The degeneracy 
maps are the corresponding insertions of identities. 

There are two projections out of our trisimplicial set. The first "forgets" the X's, 
the second "forgets" the Y's. We will denote these maps 

We will show that these maps are homotopy equivalences. This immediately estab- 

T T 
lishes that there is some homotopy equivalence S )    y ~ S       *", but it is 
not completely clear that it is induced by the inclusion. The standard way to remedy 
this is to consider the commutative diagram 
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> ► 

We want to prove that the map a above is a homotopy equivalence. What we will 
show is that each of the maps /i, /2, g\ and §2 is a homotopy equivalence. But then 
the commutativity forces a to also be. 

3.7.1. Notation. I hope that the notation is self explanatory. For example, the 
symbol 

stands for the trisimplicial set which consists of diagrams 

Xpo y- Xt pn tpO lpm 

Xoo > ► 

1 
Xon Yoo   > ► -+ Yc Om 
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Thus, the symbols inside the squares indicate the bicategory in which the corre- 
sponding simplex is formed, whereas the arrows connecting the squares describe the 
connecting morphisms X -* Y. 

It is very well known how to show that a map of the type 

t 
 y 

| 

s>-+ 
 ► 

s—+ 

is a homotopy equivalence. The criterion is Quillen's Theorem A; it suffices to show 
that each fiber is contractible. But, because this section is written for the non- 
specialist, let us explain this carefully once. The term 

is naturally a bisimplicial set. But out of perversity, we view it as a trisimplicial set, 
in a way which makes 

a map of trisimplicial sets. By Tornhave's theorem, we can geometrically realize the 
map in any order we wish. We wish to realize first the simplicial structure which is 
trivial on 

—V 

s-+ 
—► 

i.e. where the face maps are deleting a column in the left-hand square. There is an 
induced map of bisimplicial spaces. By a theorem of Segal, it suffices to show that this 
map is a homotopy equivalence. But on the right we get a discrete space consisting 
of the squares 

ipO -* y. pm 

too "►   Yn Om 
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and the fiber over this square is the geometric realization of a simplicial set, which we 
will denote 

This is our notation for the simplicial set of diagrams 

Xpo > > > ► X pn "+    Ypo     ► -+ Y* pm 

Xoo > >• > ► X, On -*■  Yc oo ■+  ^0 0m 

where the array of Y's is held fixed. Thus, if we argue similarly for the other maps 
in our diagram, we deduce that to prove our theorem it suffices to establish the 
contractibility of four simplicial sets. 

3.7.2.   To prove that fi is a homotopy equivalence, it suffices to establish the 
contractibility of 

3.7.3.   To prove that fi is a homotopy equivalence, it suffices to establish the 
contractibility of    * 

3.7.4.   To prove that gi is a homotopy equivalence, it suffices to establish the 
contractibility of 

X 

—»■ 

—>• 
s —*■ 

3.7.5.   To prove that #2 is a homotopy equivalence, it suffices to establish the 
contractibility of 
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The reader will undoubtedly notice that the contractibility statements in 3.7.2, 
3.7.3 and 3.7.4 are trivial. Nevertheless, the author wishes to be permitted to include 
a proof of the contractibility in 3.7.4. This is done mostly to introduce some handy 
notation and illustrate it in a particularly simple case. 

3.7.6. Proof of the contractibility of 

X 

—> 

—► 
s —»■ 

We remind the reader that a simplex in 

X 

 »• 

—► 
s —*■ 

is a diagram of M — V squares 

Xpo  y- x, pn Yt pO Lpm 

XQO   > ► > ► Xt On ■+  Yc oo ■+ Yc 0m 

where the X's are held fixed. We will denote this by putting a frame around the X% 
as shown below 

ipO 1 pm 

Yoo ■+  ^0 0m 

There is only one simplicial structure, obtained by varying the value of the integer 
m. A simplicial homotopy is a procedure for constructing m + 1-simplices out of m- 
simplices. If we are given two topological spaces X and Y and two maps / : X -> Y", 
g : X -+ Y, then a homotopy H : / => g is a map H : X x I —> Y. A simplicial 
version of this is as follows. A simplicial map from one simplicial set to another takes 
m-simplices to m-simplices. A simplicial homotopy should take an m-simplex sm in 
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X to the image of sm x I. But there is a canonical decomposition of the prism Am x / 
as a union of m + 1 simplices. Thus, a simplicial homotopy should take a simplex 
in X to an ordered set of m + 1 simplices in Y. This assignment of m + 1 simplices 
must, of course, be compatible with face maps, in a way that is excellently described 
elsewhere. 

We want to prove the contractibility of 

and we must therefore construct a homotopy of the identity map with a collapsing 
map. To every simplex 

* *; pO 

>  K 00 

1 pm 

■+ Y0 0m 

we must assign m + 1 simplices, providing a contracting homotopy. The ith simplex 
we construct in this ordered set of m -f 1 is 

pm 

0m 

(i+1)—times (n—i+1)—terms 

and as i increases, 0 < i < m, this homotopy gradually replaces the F's by X's, 
contracting the simplex. This is the "contraction to the initial object", which is so 
useful in the classical version of if-theory. The column of X's on the right hand side 
will be denoted XE, where the E stands for East. This is the east face of the square 
of JC's. Our shorthand for the homotopy is 
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X 

—* 

—)* 

xE 
5—" 

3.7.7. We will use the subscripts E, W, N and S to refer to the East, West, 
North and South faces of a (fixed) simplex. The arrow in the above square is to 
remind us that the homotopy is creeping in from the left, gradually replacing the 
God-fearing y's with the godless X's. 

The homotopy displayed above connects the identity with a map we will denote 

and this last map is clearly a contraction. 

The proofs of the contractibility in 3.7.2 and 3.7.3 are closely parallel. One uses 
the contracting homotopies 

X 

>^-+ 

XE 

and 

Yw 

)—> 

respectively to provide the contractions.The heart of the proof is therefore to establish 
the contractibility statement in 3.7.5. 

3.7.8. Proof of the contractibility in 3.7.5. 

We need to prove the contractibility of the simplicial set 

As before, starting with the simplex 
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X, pO ) ).    . • .     ) y X, pn 

XQQ > y   •••   > ► Xon  »- 

we need to constuct homotopies. This time we will use a string of two simplicial 
homotopies, connecting the identity to a contracting map. In each case, we need to 
give the cells of the homotopy. Thus for the simplex 

X, pO 

XQO > ►   •••   > ► X{ 

which is an n-simplex, we need to give an ordered set of n + 1 (n + l)-simplices. 

3.7.8.1.   The first homotopy 

The first homotopy takes the simplex 

Xpo >      > x, pn 

Xnn   ) ►     • ' *     > >-   Xon    ► 

Y, pO 

Y00    »■ 

1 pm 

-*■ Y. Om 

to a string of n -f 1 (n 4- l)-simplices, the (n - i)th of which is given by the diagram 
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Xpo> >Xpi®Ypo> t-X-pn © ipO " 

-^00 > ► Xoi >—>• Xpi © Ybo ) yXpnQYoo- 

Ypo -+¥„ 

Yoo ► ■+Yom 

(i+l) —terms (n — i+l)-terms 

The real point is that these simplices are well-defined; they lie in the simplicial set 

because the map Xji —> Xpi © YJQ must be a mono, simply on the ground that the 
third edge of the triangle on this map is Ypo, which unmistakeably is an object of S. 
So although the simplicial homotow 

Yw 

is not well-defined because the maps in the highlighted oval need not be mono, the 
new homotopy rectifies the problem by adding an X. This homotopy is so important in 
the remainder of the article, that we need a shorthand notation for it. In a sense that 
will be made precise in Sections II. 1 and III.l, this is the only non-trivial homotopy 
in the article. 

The shorthand we adopt for this homotopy is the rather curious-looking diagram 

The idea of the notation is that cells of the homotopy are constucted out of 

Xpo > ►   •••.>- Xt pn 

XQO >- )—► Xi On 



384 AMNON NEEM'AN 

by using only the East face of Y and the North face of X. 

Of course, the homotopy connects the identity with a map for which we also need 
a name. We will denote this map 

and the notation is supposed to remind us that the map depends on the fixed Y and 
on the North face of X, and nothing else. Up to homotopy, we have factored the 
identity map on 

through the simplicial set which I will denote 

My name for this simplicial set is one of my eccentricities. Most people would refer to 
it simply as the nerve of the category of monos in S. An n-simplex is nothing other 
than a chain of composable morphisms 

Xo   >- -+    Xn 

3.7.9. As I have said before, the homotopy of 3.7.8.1 is perhaps the only non- 
trivial homotopy in the article. Of course, the homotopy has a transpose, and both 
it and its transpose have duals. We will denote these: 

3.7.9.1.    The transpose is denoted by 

3.7.9.2.    The dual and transpose of the dual are denoted 
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and 

The reason I have not said which is the dual and which is the transpose of the dual 
is very simple; it is not clear to me whether there is a sensible way to distinguish 
between the two. 

3.7.10. A notation for warnings. In the discussion of the first homotopy 
3.7.8.1, I wanted to stress that the contraction to the terminal object is not a well- 
defined homotopy on 

To do this, I drew the purported contracting homotopy 

Yw 

 ^±^ 
with an oval around the trouble spot. In the future, from time to time I will want 
to write down fake homotopies, to explain what is wrong with them and therefore 
perhaps clarify why our argument has to be so circuitous. The oval I drew above is 
rather ugly, so the notation we will adopt is that a trouble spot will be highlighted by 
five concentric circles. Thus the future notation for the fake homotopy above will be 

Yw Y 

The motivation for the notation is that a well-defined homotopy should be thought 
of as being square, and curves are dangerous; especially an accumulation of five on 
top of one another. 

To complete the proof of 3.7.8 we need a second homotopy, showing us that the 
map 
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which we already know to be homotopic to the identity on 

is in turn null homotopic. But by the discussion above, the map 

factors through the nerve of the subcategory of monos in S, which in my somewhat 
idiosyncratic notation I write 

and this simplicial set is clearly contractible, by the contraction to the initial object. 

REMARK 3.8. In the future we will never give proofs as complete as the one you 
have just seen. Following the customs in the subject, we will leave some amount to 
the reader. In future, we will usually establish that in the analogues of the diagram 
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the maps gi and g2 are homotopy equivalences. Thus we will honestly show that there 
is a homotopy equivalence 

but we will leave entirely to the reader the proof that the homotopy equivalence is 
induced by some obvious map. Indeed, in general we will leave to the reader the 
construction of the analogues of the maps /i, /2 and a. 

EXAMPLE 3.9.      Suppose T = Db(S), where £ is an exact category, and S 

T 
= D[o o](£) = £• Then Theorem 3.6 says, in particular, that £       ^ has the same ho- 

T        I 
motopy type as £ >    *. But £ >    *" is well known to be just Quillen's Q-construction; 

T 
the diagonal realization of £ > *" is the simplicial set whose n-simplices are diagrams 
of cartesian squares 
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I 

^nO   > >" > ►   ^"n 

and this diagram may be viewed as a sequence of maps in Q(£), XQQ*—> Xii«-> 

If we were dealing with , that is still Quillen's iiT-theory. The 

point is that the differential Xpq -> EXQO is unique. (See [1], Corollary 1.1.10.) 
REMARK 3.10. The above statement about the uniqueness of differentials fails 

to hold if we replace triangles by semi-triangles. Several points in the argument 
become more delicate when dealing with semi-triangles. More will be said about this 
in Appendix A. 

4. Two constructions for homological functors. Let T be a triangulated 
category, A an abelian category, and H : T -> A a homological functor. Then it is well 
known that, provided H is bounded (i.e. for all objects X of T, Hn(X) = 0 except 
for finitely many n), then H induces a "natural" map Ko(H) : KQ(T) ~> i^oM) on 
the Grothendieck groups. The map is given by the formula: 

K0[H){X) =   £ (-ir#"(X). 

We wish to show that such a map exists in higher if-theory. Precisely, we will prove: 
THEOREM 4.1.   Let H : T —> A be a homological functor.   There exists a map 

Ki(H) : Ki{T) ->• Ki{A) with the following naturality properties: 
4.1.1. If f : S —> T is a triangulated functor of triangulated categories, then 

Ki(Hof) = Ki(H)oKi(f). 
4.1.2. If g : A —> B is an exact functor of abelian categories, then Ki(g o H) = 

4.1.3. If h : B -> T is an exact functor from the abelian category B to the 
triangulated category T, and if Hn o h = 0 except when n = 0, then Ki(H0 o h) = 
KiWoKiih). 

REMARK 4.2. Part 3 of Theorem 4.1 requires elaboration. An exact functor 
h : B -> T is taken to mean a functor such that if A >—tB —* C is an exact 
sequence in B, then h(A) —> h(B) —> h(C) is part of a triangle in T : there exists 
a map </> : h(C) -» E/i(4) which turns it into a triangle. If we take Construction 
3.1 as the definition of the iif-theory of T, then such an h gives rise to a map of 
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I 1 
bicategories 8 > -> T ^, hence to a map Ki(h) : Ki(£) -t Ki(T). However, if 
we use Construction 3.3, then to define Ki(h) we need to assume for instance that 
(f): h(C) -> T,h(A) is unique (see Example 3.9). 

We only know how to prove Theorem 4.1 when the K-theory of T is defined via 
Construction 3.3. Nevertheless, we will proceed with two parallel arguments so that 
we can pinpoint where Construction 3.1 fails. 

Clearly, what we need is some map out of the bisimplicial set T       *" (resp. 

Let H : T -»• A be our homological functor.   For each object 

X E T, we have a functor Hx : Z ->• A given by Hx(n) = Hn(X). Thus, iJ induces 
a functor, which we also call H, H : T -> iJom(Z,w4). We will call the category 
Hom(Z,A) by the name Gr(A). Thus we think of the functor Hx '• % —>■ -4 as a 
graded object in A 

The category Gr(A) comes complete with a suspension functor S : Gr(A) -» 
Gr(A) (namely, the left shift). It also comes equipped with obvious subcategories 
C?r[m,n](-4) of complexes supported between degrees m and n, and 

Grb(A) =   U Gr[m,n](A). 
m<n 

The fact that H : T -> A is assumed bounded translates to mean that the induced 
functor H : T -> Gr(A) factors through Gr6(^) C Gr(A). 

Y Z is called DEFINITION 4.3.   A sequence in Gr(A) of the form X 
exact if 

4.3.1. It is exact in the middle in every degree; 

4.3.2. Coker(g) and Tl(Ker(f)) agree up to filtrations. Write Hn(X) for the 
degree n part of the graded object X G Gr(A). Then Hn(Ker(f)) is the kernel of 
Hn(f) : Hn(X) -> Hn(Y).   Similarly, Hn{Coker(g)) is the cokernel of Hn{g) : 

Hn(Y) -> Hn{Z). For X -A Y -A Z to be exact we assume, in addition to 4.3.1, 
that there is a finite filtration of Hn(Coker(f)) and a finite filtration ofHn'hl(Ker(g)) 
such that the subquotients are isomorphic in pairs. In particular, after taking the 
graded module associated to suitable filtrations ofCoker(g) and Tl(Ker(f)), they must 
become isomorphic. 

DEFINITION 4.4. A commutative square 

X f 

r 
Y' 
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in Gr(A) is called M -V if 

X Cr) yey'(* i^z 

is exact. 

LEMMA 4.5. Let 

X 

X' f 

be M — V squares in Gr(A); then so is 

X 

X' 

Y Y 

and 

Y> Y' 

9°f 

Z' 

g'of 

Proof.  The lemma follows at once from a simple observation about the abelian 
category A. Given two commutative squares of objects of A 

f X 

X' 

Y 

r and 

Y 

Y' 

such that 

a  I ( -b   ,    f ) 
X "■—/ Y © X' v       -4       ' Y' 

and 

(0 zer^-A^z' 
are exact in the middle, then so is 

X (:•') z®x,y      '-4      ) z' 

Furthermore, Coker(—c , g'of) is an extension oiCoker(—c , gf) by Coker(—b , /'), 

while Ker I ) is an extension of Ker (   ^   ) by Ker I        1.  This statement 

about abelian categories is easy, but for the sake of completeness we include a proof. 
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Consider the three chain complexes 

391 

X Y 0 X'K       -A       ' Y' 

and 

9 
b ) ( -c   ,   g' ) 

Y x—/ Z®Y,K      -U      ' Z' 

X 
(r') 

Zex'v       '—?   J  ) z'. 

If the objects X, X', F, y, Z, and Z' are all in A, then these three complexes may be 
viewed as elements of if (.A), or even D(A), simply by extending to infinite complexes 
all of whose other terms are zero. We have natural maps of complexes 

X 0 Y®X' ( "6   .    /' ) Y' 

X 

9° f 
a 

Z®X , (-c , 9'°r) 

(0 ( -c    ,    9' ) o  —►      y N-^/      zer'     v     —+     '        z' 
and it is trivial to check that this is part of a triangle; there is a map 

Y (0 zer ( 5') 

U. ( "6    ,    /' ) 

which completes the above to a triangle in K^A). 
But then there is a long exact sequence in homology, namely 
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Ker (0 Ker 90f Ker (0 

Ker(-b , /') 

Im( f] 
Ker(-c , g' o f) 

Iml   9a
0f \ 

Ker(-c , g') 
,m(0 

Coker(-b , /')     ►CoAjerC-c , g' o /')    CofcerC-c , p') 

and by hypothesis, the two outside terms in the middle row are zero. The assertion 
is now immediate. □ 

CONSTRUCTION 4.6.    Gr(A) is therefore a bicategory, with squares the M — V 

squares. We can also define bicategories Grb(A), GV[m n](A) )    y, Gr[m n](A)       *", 

T 
Gr[min](A) )    )>, etc.   A mono in Gr^^A) is by definition a map which is mono 
in degree m; an epi is a map which is epi in degree n.  Furthermore, the map H : 
T -> Grb(A) is a bifunctor of bicategories. If we define Ki(Grb(A)) to be Ili+i of the 
geometric realization of Grb(A), there is an induced map Ki(T) -» Ki(Grb(A)). 

CONSTRUCTION 4.7.   We define a bisimplicial set 

to consist of diagrams of M — V squares with a compatible differential; i.e. a (p, q)- 
simplex is a diagram 

X, pO -f X0 

X{ oo X{ 0q 
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together with a map Xpq -» EXQO, such that for every 0 < i < i' < p, 0 < j < f < q, 
the sequence 

is exact degree by degree. 
Once again, it is easy to define the constructions with restricted arrows, or where 

the objects are required to lie in some restricted subcategory. Predictably, we denote 
them 

etc. It is also clear that the bounded homological functor H : T -> Grb(A) induces a 
map 

Theorem 4.1 will immediately follow once we establish 

THEOREM 4.8.  The natural inclusion 

induces a homotopy equivalence. 

REMARK 4.9.   The proof of Theorem 4.8 will not be given until later. For now, 
let us observe that we know relatively little about the map 

T ! T 
A —> = Grm (A) —► -> Grb(A) —> 

of Construction 4.6. This is remarkable because it should, by rights, be easier to con- 

struct homotopies in the nerve of the bicategory Grb(A)        . After all, a simplicial 
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homotopy requires us to construct (n + l)-simplices out of n-simplices, and it is self- 
evident that keeping track of a coherent differential could only be a pain in the butt. 
Thus, it is hard to imagine a proof that works for the construction with differentials, 
but not for the one without. The argument will therefore have to be quite subtle. 
We will in fact try to highlight this point in the remainder of the article. And it is 
not so much that the author finds Construction 4.6 especially intelligent. Quite the 
contrary. But studying it helps one appreciate the subtlety of the proof. 

In fact, one reason we will spend so much effort studying Construction 4.6 is as a 
caution to the reader. There are a number of reasons to suspect that Construction 4.6 
yields a completely ridiculous if-theory. This makes it important to observe how close 
Construction 4.7 is to Construction 4.6, and just how much of the proof goes through 
for both simplicial sets. 

REMARK 4.10. As long as no confusion can arise, that is as long as only one 
abelian category A is being considered, we will allow ourselves to omit explicit mention 
of A in the notation. We will write C?r[m?n] for GV[m)n](^4), and 

for the simplicial set 

Before we end this section, let us observe that the proof of Theorem 3.7 works 
also in Gr(A). Thus we have 

I     f     T 
THEOREM 4.11.  The bicategories Grv^p Grr^t, Grr^^, etc. are homotopy 

equivalent. Similarly, the bisimplicial sets 

etc. are also homotopy equivalent to each other. □ 
REMARK 4.12. It should be observed that the subtle difficulties mentioned in 

Remark 3.5 do not affect Construction 4.7. Precisely, given a map of "triangles" in 
Gr(A) 
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9 

Y' Z' 
w 

EX1 

i.e. a map of long exact sequences, then the mapping cone 

f -v   0   \ [ -w    0   \ ( -Ew    0    \ 
\    9   u' ) \     h   v> ) \     E/    w' ) 

Y^X' zev EXez7 sy e EX' 

is also a "triangle," i.e. a long exact sequence. This is because a "triangle" in Gr(A) 
is a long exact sequence, i.e. the zero object in D(A). The mapping cone on a map 
of "triangles" in Gr(A) is the third vertex of a triangle in D(A) where the other two 
vertices are zero; hence it is zero in D(A), i.e. a long exact sequence. 

5. Waldhausen-Style rigidifications. Following Waldhausen, it is standard 
to consider "rigidified" Q-constructions, where some data associated with a simplex 
is made to be part of the simplex. For instance, the bisimplicial set 

has for its (p, g)-simplices diagrams 

-X, pO x, P<3 

T     T 
0    > ► fOp Xi 00 X{ 0q 

This diagram is usually thought of as a (p, q)-simplex in S *", but where Yij = 
ker^fc -4 Xjk) has been chosen. (For a triangulated category, Yij is the third edge 
of the triangle Y^ -» Xik -» Xjk). By Lemma 2.2, this is not unreasonable. We know 
that up to a (non-canonical) isomorphism, the object Y^ is independent of k. 

Because the map Xik -> Xjk are constrained to be epi, Yij must be in S. Because 
Y^ -» Xik -> Xjk is part of a triangle with Xjk E 5, the map Y^ ->■ Xik must 
be mono. In the notation, we feel free to suppress conditions on the objects and 
morphisms that are forced. Thus the diagrams 
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0     > ►  ^"pO    >■ X, pq 

0    > ►   •••   > *  Yop   > >• XQO   ► Xt Oq 

0       y   Xpo    y 

and 

X, pq 

T 

T 
0    > ►   • • •   >-—*  Yop    >■ XQO   > 

are really the same, since the apparently unrestricted arrows from the V's to the X's 
are in fact forced to be restricted. Furthemore, both agree with 

0 Xpo   ► -f X P9 

0    > >■   •••   > »•  io Op    ' >"   ^-00 Xn X( Og 

and 

0     ► Xpo   >•   • • •    >■ Xp9 

i 

i 
0    > ►   • • •   > >•  ^op    >• XQO   >• -»■ Xog 
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and 

0 

0     ► Xpo  ►   • • •    > Xpq 

i 

■+  ^c Op ■> Xt 00 Xr Oq 

there is no need to explicitly insist that the vertical arrows in the V's be epi. Of 
course, the careful reader will note there are still three more descriptions of the same 
simplex. 

Therefore the simplicial sets 

and 

are really one and the same. Since the author has been too lazy to explicitly write 
out the contents of the triangle labeled 0, we need not in the notation concern our- 
selves about what arrows are permissible there. We permit all the arrows that could 
conceivably go there, keeping the diagram a diagram of M — V squares. 

Until now, we have insisted that the morphisms Xik —> Xjk be constrained to be 
epi. This guaranteed that all the Y's are objects of S. However, when convenient, 
we will do the unprejudiced thing. We will, when necessary, feel free to consider the 
bisimplicial set 

where for a general (p, g)-simplex, the objects in the left hand triangle need not be in 
S. 

Similarly, we can rigidify by adding cokernels of maps. Thus the bisimplicial set 

consist of simplices of S )    *, together with choices of the cokernels of horizontal 
maps. 
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There is, of course, a version of this construction which comes "with compatible 
differentials." Thus, a (p, <7)-simplex in the bisimplicial set 

is a simplex in 

T     1 

together with compatible choices of differentials. That is, for any two squares, one of 
which is embedded in the other 

Z —► Z' 

t T 
Y —y Y' 

\ 1 
X —► X' 

X T 
w w 

Z" 

1 
Y" 

f 
X" 

t 
W" 

Z"' 

T 

\ 
X'" 

T 
The differential Z"f -> EW' "induces" the differential 0 : Y" -)• EX'; precisely, the 
map (/) is the composite 

Y" -> Z'" -» EW -> EX'. 

We have been considering how to "rigidify" the simplex by fixing kernels and coker- 
nels, with or without compatible differentials. But until now we considered only the 
case of an exact subcategory S of a triangulated category T. Of course, we could per- 

form the same "rigidification" construction on the bisimplicial sets Gr(A)       ^ and 
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. We obtain, among others, the simplicial sets 

Waldhausen's usual model for the if-theory of an exact category £ is a simplicial set 
whose edgewise subdivision is the diagonal realization of the bisimplicial set 

T     1 

For an exact category, the choices of kernels and cokernels are rigid. Thus, it is easy 
to show that the "forgetful" map 

T     ! 

induces a homotopy equivalence. The point of this section is that the same is true in 
a triangulated category; but the proof will clearly need to be more subtle. 

THEOREM 5.1. . The natural map 
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is a homotopy equivalence. 
REMARK 5.2.   .   I do not want to write down all the variants of this theorem 

which follow by the same proof. The reader will observe some easy facts. 
5.2.1. The nature of the horizontal map does not enter the proof: we will have 

proved that 

and 

f     T T     T 

are all homotopy equivalences. 
5.2.2. The same proof can be used to show that 

is a homotopy equivalence; in other words, it is inessential that the objects Y, the 
kernels for the vertical maps, lie in the category S. But the proof does not allow the 
vertical map to be mono; we will not prove that 

is a homotopy equivalence. 
5.2.3. The proof is formal enough to work in all our constructions. It works for 

triangulated categories, for Gr(A), and with or without compatible differentials. 
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Proof of Theorem 5.1. Consider the trisimplicial set and two projections 

T     I 

We will prove that /i and /2 are homotopy equivalences. As we have discussed in 
Section 3, this suffices to prove that the simplicial sets are homotopy equivalent, but 
is not quite enough to establish that the homotopy equivalence is induced by the 
natural map. As in Section 3, the way to get around this is to consider the closely 
related diagram 
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T     T 

1     t 1     T 

and the natural map between the diagrams. The reader should think over this point 
now; in the future we will assume without mention that the reader will complete our 
diagrams in the obvious way. 

The serious part of the proof is therefore showing that /i and /2 are homotopy 
equivalences. For /i, this is clear; by Segal's Theorem it suffices to establish the 
contractibility of 

and this follows immediately from the contracting homotopy 
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T     I 

that is, by contracting to the "terminal object", or the south face of Y. 
For /2, the argument closely parallels that of Theorem 3.7. We must prove the 

contractibility of the simplicial set 

I     T 

and the idea is to use essentially the same homotopy as in the proof of Theorem 3.7. 
It is, after all, our only non-trivial homotopy. It is about time we make it begin 
working for us. 

We write the homotopy 

And now it would be only fair to say what the notation means. 
We begin by reminding the reader that the simplicial set 



404 AMNON NEEMAN 

?     T 

has only one simplicial structure. An n-simplex sn is a diagram of M — V squares 

^n       — 

0       ►   Yno     ► 

0     —> "*•   Zon     *    ^00     *• 

x. 00 

Y, nq 

Yc 0q 

Xpo   >•   • • • yCn 

x{ Oq 

and as before, the framed rectangle is fixed. The unique simplicial structure comes 
from varying the integer n. To construct a homotopy we need to assign to every n- 
simplex an ordered set of n -f 1 different (n -I- l)-simplices. The homotopy analogous 
to the non-trivial one in Section 3 takes sn to an ordered set of ra + 1 (n+l)-simplices, 
the ith of which is 
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0 —-> 

0    —► 

0   —yXpo®Zii- 

T     t 

> Zoi  ■^+XpO<&ZQi ^ 

0    —>■  Yno J- 

->    Zin >-    YiQ ^ 

-tXpoftZin ►YtOS^pO >• 

^■XpO^Zon'" ^YooS^pO- 

xt pO 

-^oo   >• 

Yr nq 

->   Yi iq 

-tYioGXp 

n-i + l 

terms 

►YooeXp 

i+1 

terms 

-K X pq 

X{ Oq 

We will have occasion to refer back to this homotopy. When we do, we will refer to 
it as **. 

The homotopy, and its relation with the homotopy we have seen in the proof of 
Theorem 3.7, are best described by noticing that in the following diagram, the part 
surrounded by the box of broken lines is nothing other than the dual of the homotopy 
of 3.7.8.1 
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0 —► 

o   —► 

0    —yXpo^Zu >. 

->■ ZQI   >-Xpo(BZoi- 

"*"    Zin 

>XpO0Z»n- 

+Xpo{&Zon 

>   ^nO     ►    ••"      »•   ^r 

T 

1 

T 
-^00 0-^pO >• 

-XpO    >- 

-^00    ► 

nqr 

■^ n *« 

Ky;-oexp 

-j-vboe^p 

-f X pg 

LQq 

our shorthand for the homotopy is also intended to be suggestive; what is inside the 
box of broken lines below 
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is also simply dual to 3.7.8.1.   The only new point here is that in our favorite old 
homotopy it is relatively easy to keep track of the kernels. 

Of course, this means that the identity on 

T     I 

is homotopic to the simplicial map 

which, as the notation is meant to suggest, factors through 

This last simplicial set is my notation for the slight modification of the nerve of the 
category of epis in 5, where one keeps track of the kernels. This category is clearly 
contractible, by the contraction to the terminal object. □ 
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REMARK 5.3.     Here is the first place where we need to use Remark 3.5. 
problem is the following: the homotopy 

The 

is given by asigning to every n-simplex sn a great many (n 4- l^-simplices, given by 
the diagrams 
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0     ► Yr nO 

0     v 

0   —vXpo^Zu y 

->  Zin   >  Yio    ► 

-vXpoe^in—^yioe^po- 

0  > > ZQI  YX-pot&Zoi y -+XPQ@Zon YYQQ®XPQ y 

■+   Y, nq 

+  Yi iq 

-+Yio®Xp 

n-i+l 

terms 

—y Yoot&Xpq 

i + 1 

terms 

Unfortunately, without some extra hypotheses it is not true that every square need 
give rise to a triangle. In other words, taken at face value, what I have written above 
need not be a simplex. The reader will easily convince himself that the difficulty arises 
with squares of the form 

Zk'l  > Yk'V 

T T 
XpQ 0 Zki     —►   Yko © Xpi' 

The other squares in the homotopy are very clearly M — V, being just direct sums 
of "triangles" (the reason for the inverted commas is that if we are working in the 
construction with no differentials, this means sequences which admit a differential 
completing them to triangles). The difficult square pictured above is difficult. Let us 
analyse it. 
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We start with a simplex 

Zk'i —+ n-o —+  Yk.v 
T t *r 

Zu —+   Yk0 —•■   YkV 

1 1 
Xpo —»• xpV 

and out of it we somehow want to naturally construct a triangle 

Zki © XPQ -» Zk'i 0 Ym © XpV -+ Yvi -> E(Zifc/ © Xpo). 

Let me explain why such a triangle should exist, leaving the details to the reader. We 
have three triangles 

5.3.1. ZHI -► Zwi © ni' -+ 1*'/' -^ SZ^z, 
5.3.2. XVQ —> Yk'o © Xpi' -> yjfe'/' -> SXpQj 

and 
5.3.3. no -> ^'o © Ykv -> y*'i' -> EYio. 

Therefore, there is a map of triangles 5.3.1 © 5.3.2 -¥ 5.3.3. If this map were good, 
its mapping cone would be a triangle 

-> Zki © xvo © E^IW -> (z*// © rWi) © (y^o © -x^/) © no 
-+ ^'Z' © 1*'/' © (lfc'0 © lib/') -> 

There is a map of triangles where the top triangle is contractible 

TrlYk,v -> lib'/en'o -> (!*/' © IA'O) © !*'«' 
4* Ar Ar 

Zki®Xpo®T:-lYk>v    -+    (Zkn@Ykv)@(Yk,0®XpV)®Yko    ->    n'/' 01*'/' © Wfe'o 0^*/') 

This may be completed (uniquely) to a 3 x 3 square: the uniqueness is because each 
column is split. We deduce a triangle 

-» Zki © Xp0 -> Zvi © ^p/' © 1*0 -> 1*'/' -> 

which was what we wanted. The uniqueness allows us to compute every arrow of this 
triangle and prove it to be the obvious candidate. 

When we work with the construction with no differentials, or alternatively with 
Gr(A)i the mapping cone on a map of "triangles" is always a triangle. For Con- 
struction 3.3 one needs to modify it somewhat to guarantee that the only permissible 
simplices behave well with respect to the iterated formation of mapping cones. This 
can be done in a number of ways. As in Remark 3.5, the way the reader should read 
this remark depends on which group he belongs to. 
Group 1; The reader should ignore the point.   For the Gr construction, mapping 

cones of exact sequences are exact. 
Group 2: Every simplicial set we write down should be interpreted as consisting of 

diagrams, each of which splits in some way as a direct sum of other diagrams 
which lift to model categories. It therefore suffices to show that the homotopy 
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/ 
 * 

f 
/ s —> 
/  ± 

—)- / 

/       0 

—> 
s 

takes a simplex with a lifting to another simplex with a lifting. This is obvious. 
Group 3: Depending on your favorite choice of simplicial set representing the K- 

theory, you will need to provide your own argument at this point. I will keep 
this article fairly topological; foundational questions of homological algebra 
which affect the proof will be elaborated elsewhere. 

As I have now repeated ad nauseum, the homotopy of Theorem 5.1 is the only 
homotopy I know in the triangulated setting. Thomason was very concerned about 
how one sees, in the many applications of this homotopy that follow, that all the 
choices of differentials can be made coherently. There is a meta-theorem which es- 
tablishes that. The point is the following. If the X's, Y's, and Z's were all inside 
S = D(^l)[o,o] = "4 C Db(A), then of course the homotopy of Lemma 5.1 is still 
well defined, having the cells described. But by [1] the differential is then unique. 
So the differentials one obtains from the mapping cone construction above must be 
the unique differentials making the various squares M — V. But then, of course, the 
differentials must be extremely compatible. This works initially only under the as- 
sumption that the X's, F's, and Z's are in A C Db(A), but by the principle of the 
extension of algebraic identities, the differentials obtained from mapping cones must 
be highly compatible. 

CAUTION 5.4. We noted in Remark 5.3 that the homotopy of Theorem 5.1 will 
never give us trouble, if by trouble we mean destroying triangles or giving incompatible 
differentials. But this might lull us into a false sense of security. The homotopy is 
very treacherous, and it is best to realize this. 

What the homotopy rarely preserves are monos and epis. It is perhaps best to 
illustrate this with a cautionary example. 

By Theorem 5.1 we know that the map 

induces a homotopy equivalence. By Theorem 3.7 we know that the inclusion 
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also induces a homotopy equivalence. From the commutative diagram 

we easily deduce that the projection 11 also induces a homotopy equivalence. Let 
us now see what goes wrong if we try to prove this directly, using the homotopy of 
Theorem 5.1. 

Consider therefore the trisimplicial set and two projections 

t   t 
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Clearly, /i is a homotopy equivalence. We know, by indirect arguments, that so is /2. 
But we can also ask whether the argument of Theorem 5.1 works. Is it true that /2 
becomes a homotopy equivalence of bisimplicial spaces once we realize the simplicial 
structure degenerate on the target? More concisely, is the fiber: 

T     T 

necessarily contractible? 

I do not know.   The contracting homotopy of Theorem 5.1 certainly does not 
work. A typical cell in the homotopy would be a diagram 
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0       ►   Yno    >• ■+   Yr. nq 

? 
o   —•■ 

vXpo@Zii - 

I    I 
+Xpo®Zin YYio®Xpo ► 

I 

iig 

>-vioe^P 

0   ► 

i 
yXpQ@ZQi - •¥XpQ@Zon ^ybo©-^pO - *YQO®XP 

and the problem, as highlighted by the warning circles, is that the map Xpi -» Ybo © 
Xpi is patently only rarely epi. 

I cannot overemphasize the importance of care at this point. I no longer remem- 
ber all the many times I "proved" a disconnected space contractible. The mistake 
invariably came down to some homotopy which wandered outside its simplicial set. 
This is, in fact, the main reason I have written the proof in such deail. Writing down 
the cells of each homotopy forced me to slow down and check that no homotopy goes 
astray, leaving its simplicial set. I know no general argument that substitutes for a 
careful check of each homotopy. 

Originally, it seemed to me dangerous to even adopt a shorthand for the homotopy. 
A shorthand is an invitation for carelessness. A number of people, several referees 
included, complained that the original version was nearly unreadable; it was hard to 
tell which homotopy is new, and what part of the argument is repetitive. The new 
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version of the article goes in for shorthand in a big way. This should make it clear 
that the homotopies are all the same. 

REMARK 5.5.   Already in 5.2.2, it was observed that this proof does not establish 
the natural map 

to be a homotopy equivalence. On the other hand, by the dual of Theorem 5.1, the 
projection 

clearly is a homotopy equivalence. And here we come to the first key difference 
between the constructions with compatible differentials and the constructions without. 
With Construction 3.3 or 4.7, we have 

 y 

t 

/   0 
 y 

s—+ 

and 

The point is that in a triangulated category, the choice of a third edge 1^ in the 
triangle Y^ -» X^ -» X/fc is the same as a choice of a third edge in the triangle 
Xfo -> Xjfc -> YYij. This phenomenon is actually crucial. We deduce maps, for 
constructions with compatible differentials: 
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T   i 

i   T 

I     T 

T     I     f     ! 

and so on. In other words, we can keep pushing out because the pushouts involve 
information which is already determined by the differentials. Similarly, we can keep 
pulling back. 

6. Triangulated categories with a ^-structure. A triangulated category 
is said to have a ^-structure (sometimes one refers to such categories simply as t- 
categories) if they come equipped with two full subcategories, T-0 and T-0. We define 
7~—n = yl~

n(/T—0) T—71 = S-n('T—®) 
We suppose 
6.0.1. r^cr^r^1 CT^0; 
6.0.2. tforaOT^T^1) = 0; and 
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6.0.3. for all objects X ofT, there exist objects X^0 e T-0, X^1 G T-1, and 
a distinguished triangle X-0 -» X ->• X-1 -* EX-0. 

It turns out that X-0, X-1, and the maps defining the triangle are all canonically 
unique. The assignments X i—> X-0, X i—> X-1 define functors. 

EXAMPLE 6.1. Let A C B be abelian categories, A a full subcategory of 
B. Put T = DA{B), the derived category of complexes in B with A-cohomology. 
Put T^0 = ^(.oco]^) H DA(B), T^0 = D[0iOo){B) n DA(B). Conditions 6.0.1 and 
6.0.2 are trivial; for 6.0.3 let X be an object of T. Then X is a chain complex 
 > X* -* Xm -»•••. Define X^0 to be the chain complex 

 ► X-2 —> X"1 —> X0 —> /m(X0 -> X1) —> 0 —> • • • , 

while X-1 is the complex 

 > 0 —> coA:er(X0 -^ X1) —» X2 —> X3 —> • • • . 

Clearly, this satisfies hypothesis 6.0.3. 
Suppose T is a triangulated category with a ^-structure. Define C = T-0 flT-0. 

Then C is a full subcategory of T, and it may be proved that C is abelian. In Example 
6.1, C = A (See [1], Theorem 1.3.6). 

It is also true that the functor H : T -> C given by the formula H{X) = (X^0)^0 

is a homological functor. Suppose that H detects non-zero objects; that is, if Hl(X) = 
0 for all i, then X = 0. It may be checked that T-n = T(H;(-oc,n])i while T-n = 
T(H][n,oo)) in the notation of Example 1.10. Thus, an object X of T is in T-n if and 
only if Hl{X) = 0 for i > n, and the dual statement is true of T-n. In particular, 
T-n, T^n are exact subcategories of T; so is 7[m,n] = T-m n T-n. Details of the 
proof are in [1], Section 1.3. 

We write Tb for   U 77m n]. If T = T6, the ^-structure is called nondegenerate. 
m<n        ' 
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