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THE 14-DIMENSIONAL KERVAIRE INVARIANT AND THE 
SPORADIC GROUP M12 * 

R. JAMES MILGRAMt 

There is a 14 dimensional aspect to the sporadic group M12- For one thing 

Syl2(M12) = Syl2(G2(q)) 

for q = 3,5 mod (8) and the exceptional Lie group G2 is 14 dimensional. Secondly, in 
[AMM1] we showed that the Poincare series for iJ*(Mi2;F2) is 

1 + t2 + 3*3 + t* + 3£5 + 4*6 + 2t7 + 4*8 + 3t9 + t10 + St11 + ^12 4- *14 

(l-t4)(l-^)(l-^) 

which suggests, since (1_t4w1^6)(1_t7) is the Poincare series for the classifying space 
BG2 , that there should be a fibering of the form 

with the fiber a 14 dimensional Poincare duality space. Indeed, in [M], (see also [BW]), 
I constructed just such a fibration. 

There is one more way in which one might expect the sporadic nature of Mi2 to 
manifest itself. According to [R], the natural homotopy class in 

7rf4(50) = 22 = (K,(r2) 

associated to the reframing of G2 is 6, so one would expect that there was some way 
in which a homotopy class in 7r[4(5

0) could be associated to F, and this class should 
be cr2 or a2 4- 6. In other words, this class should represent an element in 7rf4(5

0) of 
Kervaire invariant one. Indeed, it is the object of this note to show just that. 

One connection between homotopy theory and group theory lies in the well known 
equivalence Z x Bg ~ Q(S0) = limn,-»oo(^n£n), and there is a natural embedding 
hiMn C 5i2, embedding M12 as a maximal subgroup of £12, that gives rise to a 
composition map 

which, at the homotopy level induces a map Bh,*: 7r*(2?^i2)—>7r*(50). Then the main 
result of this note is 

THEOREM. There is an element A e TT^BM^) with Hurewicz image [F], the 
orientation class of the fiber F above, and every such A has image Bh(A) = cr| or 
erf + R under the composition above. 

The way in which the class A is constructed may have independent interest. The 
construction is based on the use of the stable transfer, 

tr:Q(BG2(q))—>Q(Bsyl2(M12))i 
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the existence of a fibration 
G2—>B%2{q)—>BG2, 

and the fact that G2 is parallelizable to construct the homotopy class A, while the in- 
clusions SyhiM^) M- M12 «-> ^12 give rise to an exotic way of mapping the homotopy 
class associated to G2 into stable homotopy. 

There is yet one more connection we should mention. In [MO] we construct 
stable splittings for BM12 and BsyhiM^)- ^n particular, BM^ splits into irreducible 
summands as follows: 

EM12 -s £G2(3) 
V BL3{2) V XE^! 

where E — Qs * Qs C SyfaiMu) and XE,SI is one 0f the three dominant summands 
of this group. Then, by looking at the proof of our main result it becomes clear that 
the result would not have been possible without the summand #1,3(2) being part of 
the decomposition. In particular this tends to indicate that if there are any further 
direct constructions of Kervaire invariant one classes, the group G involved must, at 
the very least, have non-trivial Schur multiplier since H2 (#1,3(2) 5^2) 7^ 0. 

All homology and cohomology groups in the remainder of this note will have 
coefficients F2 and so the coefficients will not appear in the expressions H*(X) or 
H*(X). 

In §1 we review the basic facts we need about M12, ^2(^)5 and SyhiM^), as well 
as the cohomology of these groups. In particular, Theorem 1.8 gives the structure of 
H*(F) and proves the important relation (a7, [F]) = 1 where a is the two dimensional 
generator in iJ*(Mi2). 

THEOREM 1.8. H*(F) has generators a, /?, c, m, and n, subject to the following 
relations: m4 = n2 = 0, a2/?2 = (a3 + /?2)/3 = 0, a5 = a2/3c, a7 = m3n. The Steenrod 
operations are given on these generators by Sq1(a) = /3, Sq1^) = a2, Sq2(/3) — a/3, 
Sq2(c) = a(P 4- c), Sg^m) = 0, Sq2(m) = n, Sq4(n) = 0. A tabie of the generators is 
given as follows 

Dim    2    3     4      5       6 7        8 9 10     11      12    13          14 
a    0    a2    a/3    a3 a4 

c            ac    /3c a2c    a/Sc a3c            cAc 
P2 a2P    aP2 a3P a5    a4/3    a6 

m             n     m2 mn m3             m2n                   a7 = m3n 

and these generators also form a basis for H*(Mi2) as a module over the Dickson 
algebra D3 = F2 [d^, d^, dy]. 

It is exactly the fact that a7 is dual to [F] which twists the homotopy class A to a 
Kervaire invariant one class. The relation between G2 and F reminds one of a degree 
one surgery problem, but I don't know if F can be replaced by a closed manifold. 

In §2 and §3 we review the basic facts we need from iterated loop space theory. 
Then, in §4 we determine the cohomology map H*(Si2)—>H*(Mi2) induced from 
the inclusion above. This also may have independent interest, though the idea is 
very direct. Since both groups are detected by restriction to maximal elementaries it 
suffices to analyze the conjugacy classes of the images of the three maximal 23,s in 
M12. The result is given in table (4.5) and the explicit images of the generators are 
then given exactly in the remarks following the table. 

Finally, in §5 we put all this together to prove our main result. Here, the key step is 
an explicit determination of a transfer map tr*(H*{Q(BM12))-^H*(Q(BG2(q})) as far 
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as we need it. Again this is achieved by restricting to 2-elementaries. The key result, 
Lemma 5.3, which gives an explicit method for determining such transfer-restriction 
may also have independent interest. 

1. The groups M12 and G2 (q) and their common 2-Sylow subgroup. The 
cohomology of M12 is discussed in [AM, pp. 261-263]. It is detected by restriction 
to the three 23's which represent the three conjugacy classes of maximal elementary 
2-groups in Mi 2. The result is 

THEOREM 1.1. iJ*(Mi2;F2) has 8 generators, 0:2, 03, cs, rm, d^, n^, de and dj, 
(where the subscripts denote the dimension) with restriction images given as follows: 

(1.2) 

gen.\group Vi v3 v5 

O! 0 W d2 

P 0 0 dz 

c 0 /13 T
3
 + r2A + A3 

m d3 0 0 
di d4 (^4 (i4 

n cWs 0 0 

d6 d6 d6 d6 

dr d7 d7 dr 

where 

(1.3) 

•(23) =   W2[h,T,X], 

d2 = r2 + rA + A2, 

d3 = r2A + A2r, 

d4 = h4 + h2d2 + hds + (%, 

d6 = h4d2 + h2(% + hd2d3 + d|> 

dr =  h4d3 + h^ds + hd%. 

The structure of H*(BG2(q)) with q = 3,5 mod (8) is described in [M] similarly. 
The groups share the same 2-Sylow subgroup but G^Ctf) has exactly two maximal 2- 
elementaries, the first represented by V3 while Vi fuses with Vs to give the second. In 
particular, H* (G2 (q); F2) is also represented by restriction to Vi and V3, and we have 
the result of [M] 

THEOREM 1.4. H*(BG2^) with q = S,5 mod (8) has 5 generators fhs, dt, fis, de, 
di, with fhs restricting to ds in if*(Vi), H*(V5), and 0 in iJ*(V3), n = Sq2(rh), and 
the di as above. 

There is an identification of limn,->oo BQ , x localized at 2 with BG2 localized at 
2 via etale theory and consequently a (2-local) fibration 

Go >BG2{q)~ 
>BG2 

using a theorem of J. Harper which identifies G2 (2-locally) with any simply connected 
space which has the same F2-cohomology ring as G2 as a module over the Steenrod 
algebra. Moreover we obtain the cohomology of the fiber of the map BQ , . -^BG2 by 
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noting that since iJ*(^2(9)5^2) is Cohen-Macaulay over iJ*(BG2;^2) = ¥2[d4,de,d7], 
it follows that 

(1.5) H*(Fiber) = H*(BG2{q)) 0F2[d4,ci6,d7] F2 

and this is seen to give the desired isomorphism (see e.g. the discussion below, specif- 
ically the remarks preceeding 1.8). 

Relating the two restriction images we see that m \-> m + /? in H*(Mi2), n »-» nH- 
a^S and H*(G2(q)) C H*(Mi2) though there is no homomorphism M12—>G2(q) which 
will induce this cohomology map. However, in [M] a 2-local map of ^--constructions 

B+    -^> B+ 

was constructed which does, in fact, realize the cohomology map above. In particular 
we get a diagram of fiberings 

Bt,     —►     BG2 

(1.6) 

'Mr 

j                1                   " 

G2  ►      ^(3)        ^       BGa 

Again, in the upper fibration, since iJ* (^^r12; F2) is Cohen-Macaulay over iI*(i?G2) 
from [AM], we have 

(1-7) H*{F)  = F*(5M12)0F2[d4,d6,d7]F2 

It is well known that H*(G2) = F2[m3]/(m4) <8)E(n) with Sq2(fh) = n, Sq1(n) = 
m2. 

We also need the structure of H* (F) as a module over the Steenrod algebra. The 
result is 

THEOREM 1.8. H*(F) has generators a, /?, c, m, and n, subject to the following 
relations: m4 = n2 — 0, a2j32 = (a3 +/32)/3 = 0, a5 — a2/?c, a7 = m3n. Tiie Steenrod 
operations are given on these generators by Sq1(a) = (3, Sq1^) — a2, Sq2(/3) — a/3, 
Sq2(c) = a(f3 -f c), 5q'1(m) = 0, Sq2(m) = n, Sq4(n) — 0. A tabie of the generators is 
given as follows 

Dim 2 
a 

3 4 
a2 

5 
a/3 

6 
a3 

7 8 
a4 

9 10 11 12 13 14 

c ac /3c a2c a/3c a3c a4c 
Z?2 a2/3 a^2 a3^ as a4^ a6 

m n m2 mn m3 m2n a?' = m3n 

and these generators also form a basis for H*(Mi2) as a module over the Dickson 
algebra Ds = F2 [^4, d^, dj]. 

This result does not appear in the published literature, though it is given in [O]. 
We defer the proof to §6 since the details of the proof are not needed in proving our 
main result. 
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REMARK 1.9. The element in H*(G2(q)) which restricts to (0, d%, 0) is particularly 
important in what follows. We have the following decompositions in terms of the 
generators a, ft, ra, n, ^4, de and c?7: 

(^7,0,0)  = m3n + mnde + md^dj 

(1.10) (0,0, *)  = Pdi + cPP 

(0,d?,0)  = o?| + (m + ^^^ + a2/3c?7-f mnde + m3n. 

We also have a second description of this element as 

(0,d?,0)  = a(d6+ad4 + a3+/32)2 

where the first description gives the expression for this class in H*{F) as m3n while 
the second expression gives it as a7 + a/?4. But since, in H*(F) we have /33 = a3/3 it 
follows that /34 = a(a/?)2 = 0 which establishes the cup product relation a7 = m3n in 
the theorem. Also, this shows that a7 evaluates as 1 on the top dimensional class of 
the fiber F and hence also the fiber G2. 

For later use we also need to recall some of the detailed structure of SyfaiMw), 
which from here on we denote H. 

H^^:22 = (c,d):(s1k) 

where the action is given by cs = d, ds = c, ck = c-1, dk = d_1. Then H has five 
conjugacy classes of maximal 2-elementary subgroups 

Vi = (c2,d2,A;) 

V2 = (c2,d2,cA:) 

(1.11) V3 = (c2,d?,cdk) 

V* = ((cd)\k,s) 

y5 = {(cdy,cdk,s) 

with Vi and Vz normal in H. Moreover, as already noted, they fuse as follows: in 
M12, {Vi,^}, {^3,^4}, {%}, and in ©2(9), {^1,^2,^}, {^2,^3}. 

2. Filtration arguments. We briefly review the homology structure of Q(S0) 
as far as we need it. 

First, limnM-oo Bsn = Bs^, and there is a map e: Bs^ —>(9(50)o) the 0-component 
of <2(50), which is a homology equivalence. Moreover, the inclusion Bsn ^^ Bs^ 
induces an inclusion in homology. 

The loop sum operation 

(2.1) *:Q(S0)xQ(S°)—>Q(S°) 

makes H*(Q(S0)) into a graded commutative ring, while the inclusions 

induce maps of classifying spaces 

(2.2) B+:BsmxBsn^BSn+m 
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which make H^(Bs00) into a commutative ring. They fit together in a commutative 
diagram 

exe 

(2.3) 

BsmxBSn    —►    Q(50)xQ(50) 

B+ 

Bsn+m        —> Q(S°). 

We can put in more structure. There are inclusions p: Sn I 2^<S2n which, at the 
level of classifying spaces lead to maps 

P> 

(2.4) (Bsn)
2Xz/2Ez/2-^Bs2n 

and hence, for each class a G Hj(Sn), there is an associated class in H2j+m(Bsni2) 
which, at the chain level is a ® a (8) em. The image of this class in H2j+m{Bs2n) is 
called Qm(a) and we can iterate this operation obtaining Q(i1,...,iT.)(a) in dimension 

REMARK. The construction above actually has an intrinsic description. Let 
Cfc(Mn) be the configuration space of fc-tuples of ordered, distinct points of Mn. Let 

fi,...,fk be based maps Sn = Rn U 00 -4 X, then define, for (z,fi,...,fk) G CA;(IRn)x 
(n71^)^, the map g: Mn Uoo—>X as fi (suitably rescaled) in a disk neighborhood ofxi, 
the ith point in z and 00 in the complement of these neighborhoods. Now pass to limits 
over n and note that the construction actually factors through Ck(M.k) xsk (tt

nX)k. 
The operation a *-} Qi (a) is linear and there is a Cartan formula which connects 

it with the loop sum: 
i 

Qi{a* ft = ^Qi(a) ^Qi-m- 
j=o 

Let / = (zi,... ,ir). We say that 7 is admissible if and only if 0 < ij < z'j+i for 
each j = 1,..., r — 1. Note that Qo(a) = a * a the loop sum product. For this reason 
we suppress those / which contain O's and say / is generating if it is admissible and 
h > 0. 

THEOREM 2.5. H^Bs^) = F2 [1, Qi(J)*2(- J),..., Qj(J)*2r(-J),...] where the 
ring structure is generated by loop sum, J represents the limit J = limn^oo(Jn'- Sn—> 
Sn) with Jn the identity map, and I = (ii,..., zr) runs over all generating sequences. 

A filtration degree in H^(Bs00) is given by setting deg(a * b) = deg(a) -j- deg(b), 
while deg(Qi(J)) = 2r for I = (ji,...,jr) and deg(a + b) = max{deg{a),deg{b)). 
Then jrn is the subgroup generated by all the elmements of degree < n in H^Bs^). 
It turns out that H* (Bsn) is exactly the subgroup consisting of the elements above of 
filtration < n. 

Dually, let F71 be the kernel of the cohomology surjection H*(Bsoo)—±H*(Bsn). 
Then !Fn and Tn are mutual annhilators, and F71 is closed under the action of the 
Steenrod algebra .4(2). 

Also, there is a natural compliment to !Fn, the ideal in H^(Bs00) generated by the 
elements above with second degree > n. In view of the linearity of the Qi-operations 
and the Cartan formula this ideal is actually intrinsic, and independent of the perhaps 
different choices for embedding Bsn to construct Q(S0). We call this ideal Hn, and 
this gives an associated graded algebra, UHn/Tln+i. 
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Additionally, the composite 

Tn ^ H* (Bs^) -A iJ* (BsJ/nn 

is an isomorphism. 
Finally, note that T-ln and J771 are dual to each other. 
REMARK 2.6. The associated graded ring JJ . 'HJI'HJ+I is naturally isomorphic to 

H^Bsvc) as an algebra but not as a coalgebra. Indeed, as a coalgebra the associated 
graded ring is primitively generated. 

3. The construction of Q(X). We recall the well known May-Milgram con- 
struction of Q(X) — IrninM-oo fin£nX for X any connected CW-complex with base 
point *. 

oo 

(3.i) Qpo-n^x^xn/- 
1 

where ~ is an equivalence relation that identifies points of the form {e,xi,.. .,£„} 
with {pi(e), xi,..., fi,..., Xn) if Xi = *, where pf. Esn -^Esn_1 is a suitable map. A 
good model for Esn is the configuration space Cn (E00) which consists of all ordered 
n-tuples (xi,...,xn) G (M00)71 where the xi are all distinct. Of course <Sn acts by 
permuting coordinates. With this model pi simply forgets Xi. 

The natural map Q(Q(X))—*Q{X) given as ^{eval) where 

evah EnnnX->X 

is the usual evaluation map is realized in this model by the inclusion 

Esn xsn (Esm xsm X^)n = Esn x (Esn)
n xSmlSn X™ -* Esnm xsnm X nm 

obtained by regarding the product of the E's as a free <Sm iSn space and including the 
wreath product as as subgroup of Snm> 

e 
Consequently, given a subgroup G C Sn there is a map BG^Bsn *->• Q{S0), 

which prolongs to a map Q(e):Q(BG)^Q(S0). 
The homology of Q(X) is given as 

(3.2) F2[a,...Q/(a),...] 

as / runs over all generating sequences as above and the a run over a basis for 
iJ*(X;F2). Moreover the homology map H*(Q(BG))-+H*(Q(S

0
)) is determined by 

observing that it is natural with respect to loop sums and Qi(a) i-)- Qi(e(a)). 
As a basic example, suppose that H C G has index k < oo.  Then there is the 

Frobenius homomorphism 

(3.3) f:G—>HlSk 

defined for example in [AM, 
and by prolongation, a map 
defined for example in [AM, pp. 73-75] which gives rise to Bf:BG^Esk xsk (##)*, 

Q(Bf) 
Q(BG)^Q(BH) 
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which is one of the variants and generalizations of the well known cohomology transfer 
map. 

In particular H*(H) embeds into H*(Q(BH)) via the liftings 

a J-> a 0 1 < 1 + l(g>a< l + --. + l< l<g)a 

taking H*(H) to H*(Esk xsk {BH) ), and the composite BQ M- Q(BG)—>Q(BH) 
tr 

gives rise to the ordinary cohomology transfer H* (H) —> H* (G). 

4. The inclusion M12 ^ <Si2. It is well known, see e.g. [AM, p. 185], that 
iJ*(5n,Fp) is detected by restriction to conjugacy class representatives of the maximal 
elementary abelian p-groups, and since the same is true for H*(Mi2) it suffices to study 
the induced maps on elementary 2-groups in order to determine the cohomology map 
H*(5i2;F2)-^i?*(M12;F2). 

The conjugacy classes of maximal elementary 2-groups in Sn are also completely 
determined in [AM, pp. 185-186]. For £12 they are {Wi)Q, W2 x (W1)4, (W2)2 x (Wi)2, 
(W3) x {Wi)2, (W2)3 and W2 x W3 where Wi = 2i C ^^ is the regular representation 
of 2*. 

The embedding of M12 in Su is given explicitly in [AM, pp. 254-255]. There, if 
we set c = db-1, we find that a copy of SyhiM^) is given as (c, d, fc, s) and the map 
into S12 restricts to this subgroup as 

c H-> (1,10,11,12)(2,9,3,5) 

d ^ (1,10,11,12)(4,8,7,6) 

k H^ (1,12)(5,9)(6,8)(10,11) 

s ^ (1,11)(2,7)(3,4)(5,8)(6,9)(10,12). 

Thus the image of Vi is given as 

(4.1) d2 

k 

(i,n)(io,i2) 
(1,11)(10,12) 
(1,12)(10,11) 

(2,3) (5,9) 
(4,7) (6,8) 

(5,9) (6,8) 

which shows that Vi <-»• W2 x (Wi)4 C <Si2- For the second, V3, we have 

(2,3)(5,9) 

(2,5) (3,9) 

which shows that V3 «-> (W2)3 C £12 • Finally, the last group V5 gives 

(4.2) d2 

cdk 

1,11X10,12) 
(1,11X10,12) 
(1,10)(11,12) 

(4,7)(6,8) 
(4,6) (7,8) 

(4.3) 
c2d2 

ks 
(1,12)(10,11) 
(1,10)(11,12) 

(2,3)(4,7)(5,9)(6,8) 
(2,9)(3,5)(4,6)(7,8) 
(2,7)(3,4)(5,6)(8,9) 

SO V5 «->• W2 X W3 C <Sl2. 

In [AMM2], see also [AM, pp.  213-214], the cohomology ring #*(<Si2;F2) was 
determined, and it was shown that over the Steenrod algebra ,4(2) it has five generators 
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0"i, ^2, as, 04, and ere. Under restriction we get the following table 

(4.4) 

gen.\group W2 X (PFi)4 M3 
W2XW3 

tfl 10(71 0 0 

^2 ^2 0 1 4- 1 0 a2 5(d2 ® 1 ® 1) efe ® 1 

(73 ^2 0 CTi + 1 (g) CTs 0 0 

(74 Cfe 0 (72 + 1 <S> (74 5(^2 ® ^2 ® 1) l®d4 

(76 Cf2 0 (74 6,2 ® d2 ® d2 d2 ® di 

where at denotes the ith symmetric monomial in the generators for the individual 
summands, while di denotes the appropriate Dickson element in the cohomology of 
Wi. 

In terms of the filtration discussed in §3 a\ is dual to the element Qi{ J) *(—2), the 
unique element in dimension i and filtration 2 but not 4, while o^o^ lies in filtration 
4 but not 6 and is dual to e* * ei+k- Also, Sq1(a2) 4- (72(7i is dual to Q(i,i,)(J) and 
has filtration 4 but not 6 as do the elements (cr2)i(Sq1(a2y which corresponds to 
Qj,i+j(J)' All the remaining elements of the image have filtration degree at least 6. 

The data above together with these restrictions of the ai generators now deter- 
mines the restriction image explicitly. As an example we do the cases of as and ae 
restricting to H*(Vi). Let x,y generate H*(W2), zi,Z2,zs,Z4 generate ^((Wi)4), in 
the order above, then we see that 

c2   i-)- x*zlz^ 

d2  h-> x^z^zl 

k  i-»  y*z^zl 

so, dually, 
x i-)>  A + r 

y *-* h 

zi *-+ A 

Z2 ^ r 

zs i-*- A + h 

z^ H-> r 4- h 

where h is dual to &, A is dual to c2, and r is dual to d2. It follows that we have 

cfe 0 (7i + 1 <S> (73   H-* (Ar(A + r) + (r + A)(AT + (A + r)h + h2) 

=  (A + r)2/H-(A-fr)/i2 

= ds 
^2 0(74  H->  ((A + r)2 + /i(A + 7-) + /i2)MA + /i)(r-j-/i) 

= Ar(/i4 + Ar/i2 + (A + r)(A2 + r2 + Ar)/i + Ar(A2 + r2)) 

= (/e -M3. 

The calculations in the remaining cases are similar. Specifically, ai restricts to zero 
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in all three, and for the rest we have 

323 

(4.5) 

gen.\group Vi v3 v5 

cri 0 0 0 
02 0 ft2 

d2 

o* ds 0 0 
<J4 d4 di (^4 

ere de+d* W+de de+dl+4 

Hence a = res* fa), m = re5*(cr3), d^ = res*(cr^), res*(ere) = a3 + ft2 + m2 + de. 
Moreover, since /? = Sq1(a), n = Sg2(m), de = Sq2(d±) and di = Sq1^) it follows 
that among the generators for jff*(Mi2) only c is not in the image of restriction. 

5. The connection of Mu with the Kervaire class in dimension 14. 
call that H C M12 is the 2-Sylow subgroup of M12. The sequence of inclusions 

Re- 

H <-> Mi2^5i2 

gives rise to the sequence of inclusions of classifying spaces 

Bh 

BH 
C
-> BMX. >Bs12^Q(S0) 

which prolongs to 

Q(BH)^Q(BM12)^^IQ(SO) 

in the manner explained in §3. On the other hand, as we pointed out in §1, if is 
also the 2-Sylow subgroup of G2(q) for q = 3,5 mod (8). Thus we have the transfer 
map Q(BG2(q))-^Q(BH), and, since Q(BG2(q)) = Q(^G2(g)) because the Whitehead 
theorem already shows that HBG — ^>BQ, we obtain the following sequence of maps: 

(5.1) Q(G2)—+Q{B+.g))—*Q{BH)—*Q(BM12)—>Q(S°). 

But G2, being a Lie group, is parallelizable, so the suspension E14G2 ^ S28 V S14^, 
with Y the 11-skeleton of G2, and there is a corresponding spherical class of the form 
[G2] + D E iIi4(Q(G2);Z) where D is a sum of loop sum decomposable elements. 
Consequently we finally obtain the composition 

(5.2) 
tr 

S"—>Q(G2)—►<?(£! (J—►$(£»)—►<?(£*,„)—>Q(S0) 

and we want to determine the image of this S14 in 7ri4(Q(50)) — nl4(S
0). 

What we need to understand to begin is the map tr*:H*(H)—>H*(G2(q)), at 
least when restricted to the image of iJ*(Mi2). In G2(g) we have pointed out that for 
the 5 conjugacy classes of 23,s in H, Vi, V2 and V5 fuse to Vu with normalizer quotient 
NG2(S)(VII)/(VII) 

= ^4 (fixing a point) while V3 and V4 fuse to Vj with normalizer 
quotient L3(2). (In particular, the centralizers of Vu and Vj are just the Vj, j = /, // 
themselves in G2(3).) 
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LEMMA 5.3. Tie image of a general element of H*(H) under transfer to the 
cohomology ring H*(G2{q)) and then restriction to H*(VII) is the sum 

(5.4) <& £ Tf (re** (a)) + ^ ^ T2* (re*^ (a)) + £ T5*(re*^ (a)) 

wiiere r^ runs over coset representatives for NG{Vi)/NH{Vi) while gi G Cr2(3) satisfies 
<?f 1V5^i = Vi, aiid 92ly^92 = V2. Similarly, for transfer through 6^2(0) followed by 
restriction to Vj we get the following sum 

(5.5) c93 £ T$(resl* (a)) + J^ ^ (res^ (a)) 

with g^V^gs = V3, and n as above. 
Proof. We do the case of V5, the case of V4 being identical. Let G2(q) = U VsgiH 

be the double coset decomposition. From the Mackey formula we have that the com- 
position res* • tr above is the sum over the gi of the compositions 

tr 
H*(H)—+H*(Hng-1V5gi)-^H*(gr1HginV5)-^H*(Vs) 

but the last transfer is identically zero unless g^V^gi C H, that is to say, g^V^gi is 
equal to one of V5, Vi or V2 (this last since we can vary gi by right multiplication by 
any element in H without changing the double coset). 

On the other hand, if g^V^gi C H then V^giH — giig^VkgijH = giH is just 
an ordinary coset of if, and conversely, if VsgH = g'H then g~1Vsg C H so the set 
of terms in the Mackey formula which are non-zero correspond exactly to the set of 
ordinary cosets of H in the double coset decompostion of G2(q)- We now identify 
these double cosets more precisely. 

Suppose that g^V^gi = g^V^gj C H. Then 

gj19i- 9rlv59i—>9T1y^9i 

is an automorphism of this subgroup of H. Varying gi on the left by elements of 
V5 has no effect on the automorphism, while varying gi on the right by elements of 
Nnig^Vsgi) varies the automorphism by an element in Noig^V^gi) which lies in the 
same coset of H as g^gi in 02(0)- Consequently, the set of cosets giH corresponding 
to Vi is in one to one correspondence with NG(Vi)/NH{Vi), and the result follows. 
□ 

REMARK 5.6. Actually the lemma above is a special case of (the evident) general 
formula for the effect of the composition of transfer with restriction to an elementary 
abelian p-group. 

tr* 
COROLLARY 5.7. The composite H*(H)—>iJ*(G2(3))—>H*(Vn) on an element 

a which restricts to zero in H*(Vi) and H*(V2) is the same as the composition 

res* £ 
H*(H)^H*{V5)—*H*(Vs) 

where S(res*(a)) = J2tes3 t*{res*(a)) and S3 = S±INH(V$). 
EXAMPLE 5.8. Note that c € F*(Mi2) restricts to an element in H"(Vs) which is 

invariant under Z/3 and restricts to 0 in Vi, V2. Thus, trH
2K '(c) = (1 + r*)c where 

r* exchanges A and r. But this is just ds. Hence, tr*(c) — m. 
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EXAMPLE 5.9. A second special case of (5.4) is the transfer for ca2 in dimension 
7. In VJI the restriction of tr(ca2) is d^ds = dj 4- dsd^ while in Vjr the restriction is 
the sum over the cosets of D$ C 1/3(2) of r(/i7). This can be evaluated as follows: the 
cosets are the set of flags Wi C W2 C Vj where Wi is a vector subspace of V/ having 
dimension i. In particular we can regard h as representing the non-zero vector in the 
dual Vf which annihilates W2, so, since there are exactly three flags with the same 
W2 we see that 

resG2(3)tr*(ca2)  = 3Z1 v7 

v€Vi 

=   dy 

so it follows that tr*(ca2) = md^ + dy e H*(G2(3>)). Similarly, we have 

(5.10) tr*(a7)  = m3n mod (/(F2[d4,4,^7])), 

where I(W2[d4,de,d7]) is the augmentation ideal in the Dickson algebra, since it re- 
stricts to 0 in H*(Vn) and d% e H*{Vi). 

Finally, we can determine the image of transfer on each of the remaining genera- 
tors of H*(Mi2) C H in ff*(Gf2(3)) as a module over the Dickson algebra. This is all 
we need to determine the cohomology map tr o res*: H*{Mi2)—^H*(G2{q)) since 

trg(a U res%{b)) = trg(a) U 6 

for any b G H*(G). Of course, this does not determine the cohomology map 

H*{Q(BG2iq)))%H*(Q(BH)), 

but it does determine it up to terms involving elements dual to loop sums and terms 
of the form Qi{/3). 

Note that the image of H*(Q(BG2(q)) in ^4/% in H*(Q(S0)) is detected by the 
elements cr^Sg1^)^'. Thus, we need to study the composite map on the cr^(5g1(cr2)^. 
The transfer does not preserve cup products but it is natural with respect to the action 
of the Steenrod algebra, -4(2), and, in low dimensions, the module over ,4(2) spanned 
by these classes is generated by 02, af, ^l- For our purposes it suffices to determine 
the transfer just on the images of these elements in H*(Mi2). But 0*2 ^ a G iI*(Mi2) 
as we have seen. We have 

LEMMA 5.11. trores*(a) = trores*(a3) = 0 in H*(G2{q)), while tr ores*(a7) = 
m3n. 

Proof. We have already verified the map on a7. It remains to check the others. 
Since H2(G2(q)) = 0 the result follows for a. It remains to check a3. Since d^ G 
11*(V5) is invariant under S3 it follows that the restriction of tr*(a3) to H*(VII) is 
zero. Also, ^v e H1 (23)'u3 = 0 so the restriction to H*(Vi) is also zero and the result 
follows.       D 
COROLLARY 5.12: The image of [514] in diagram (d) represents either the class a2 or 
cr2 + ^in7rf4(5

0). 
Proof. The projection of the image of H*(Q(BG2^)) to H^/HQ via the composi- 

tion in (5.1) or (5.2) is zero in dimensions < 14 abd 5.11 shows that it takes the class 
[G2]to{Q7(J)*Q7(J)*4(-J)}. 

As we have already seen, the Hurewicz image of the sphere in (5.2) has the form 
[G2] + D where D is a sum of loop sum decomposables. Moreover, by naturality with 
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respect to loop sum, the image of D is contained in He- Consequently, the spherical 
class in 7ri4(Q(50) obtained by the composition (5.2) has non-trivial Hurewicz image in 
Hu{Q(S0)) of the form Q7(J)*Q7(J)*4(-J) summed with terms of higher filtration. 
Consequently, it can only be erf or K + erf, since crf4(5

0) = 22 and the Hurewicz image 
of R is trivial in H4/Tie- D 

6. The proof of Theorem 1.8. We begin by determining the structures of the 
various images under projection 

i?*(Mi2)^if*(23) 

as 23 runs over Vi, V3, V5 and i = 1,3,5 respectively. 
LEMMA 6.1. The image of 7r£ in H*(Vh) is 

¥2 [dfe, c/3, ^4] = F2 [d4,de,d7](l, cfe, cfe, c^ ^2^3, ^, d^)(l, c) 

with relations 
c2  = dsc + dl -\-ds 

d^ds  = dr -f- ^3^4? 

^2 "^ ^3    =   ^2^4 "+■ ^6) 

In particular it is Cohen-Macaluay over ¥2 [d*, cfe, dj] on the stated generators. 
Proof. First we note that Sq1(c) = r4 + r2A2 -f A4 = d|, 5g2(c) = r5 + r4A + A5 

which in turn is seen to be cfeCc + cfe). Thus we have 

c2 = SqHc) = Sq1Sq2{c) = 5g1(*c + cfeds) = dzc + d* + rf2 

as asserted. This proves the first relation. 
The expressions for the di i = 4,6, 7, given in (1.3) give the relations ofcc^ -j-de = 

dl + djj, 6^4 + c?7 = ^2^3 which are sufBcient to show that the algebra spanned 
by d21d3,d4,de,d7 is just the polynomial algebra F2[d2,d3jd4]. Consequently the 
Poincare series of this algebra is 

1 (1 - x + a;2)(l + x + x2 4- x3 -f x4 + z5 + a;6) 
(1 - x4)(l - a:3)(l - x2) (1 - :r4)(l - xQ)(l - x7) 

__   1 + x2 + x3 + a:4 + xb + x6 + £8 

(l-a:4)(l-x6)(l-x7)       ' 

Next, if we factor out by the ideal (^4,^6,^7) this polynomial ring becomes the algebra 

F2[*,d3]/(dl+d§,dld3) 

which has generators (at most) 1, cfe, ds, c?2, c?2C?3j c?!, dg. Hence, checking the Poincare 
series the result follows.       D 

COROLLARY 6.2.  The image of nl in H*(Vi) is generated by ^4,^6,^7,^3,^2^3 
and as a module over ¥2 [dt, de, dr] is free on the generators 

1, ds, d2d3, dg, d2d3, d3, d2d3 

Proof. We embed this algebra into the algebra above. Note that ds, d2d3, d§, are 
already generators and 

d2d3 = d^ mod (d4,d6,d7). 
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On the other hand we have d^ = dzde + cfod?, ^2^3 = G^cfade + d^dj which are 
independent of the previous generators over F2 [0/4, de, d?]. Finally, 

^c?!  =  d2d^dQ H- (c^dsjdr 

=  (^2^3)^30^6 + dsd^dj 4- dy, 

which shows that this element is already present in the image, so the process stops 
and we are done.       D 

Finally, we look at the structure of the image of TT^ in JET^VS). 

LEMMA 6.3. The subalgebra of H*(V3) generated by d^,d6^d7,h has the form 
¥2 [h, ^4, de] and is Cohen-Macaulay over ¥2 [d4, de, dj]. It can be written 

F2[d4,d6,d7](l,/l,/l2,/l3,/l4,/l5,/l6) 

with relation dy = h7 + /i3d4 + hde. 
Proof. We first verify the relation: 

Wdk  = h7 + hSd2 + h*d3 + hZdl 

hde  =  h5d2 + /i3d| -f h2d2d3 + hd$ 

so summing with h7 directly gives dy. This relation shows that the algebra spanned 
by d4,de, d?, h is already spanned by d4,de, and h. But it is easy to check that these 
three elements are transcendent ally independent. 

Hence, the algebra we are considering is, indeed, F2 [ft, d4, de] with Poincare series 

1 
(1 - x)(l - x*)(l - XQ) 

_   1 -f x + x2 + x3 + x4 + £5 + x6 

(l-a;4)(l-x6)(l-x7) 

On the other hand, from our relation, the algebra is surely spanned as a module over 
F2[d4,d6,d7] by the elements 1, ft, ft2, ft3, ft4, ft5 and ft6, so the Poincare series above 
shows that it must be free on these generators and we are done.       □ 

LEMMA 6.4.  Let Pi, i = 1,3,5 be the Icernel of projection fl"*(Mi2)->-ff*(Vi), 
then we have 
(1) A generating set for P5 over H*(Mi2) is 

(     de d6-hft2d4 + ft6 0 ) 
(     d7 d7 0 ) 
(     d3 0 0 ) 
( d2d3 0 0 ) 

(2) The image of P5 under TTI: JJ*(Mi2)-->ff*(Vi) is 

(de,dy) 0 F2[d4,de,d7](d3,d2d3,d|,d2d|,d|,d2djj) 

where (de, dy) is the idea] in F2[d4, de, dy] generated by de and dy. 
Proof. We check (1) first. The defining relations in the image of TTS have been 

seen to be dy + d4d3 + d^ds = 0, and de + d4d2 + d| + d| =0. Thus, the elements 
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d? 4- ^4^3 4- d^ds, de + d^ + d\ 4- d^ together with the remaining generators of H* (Mi2) 
which map to zero in iJ*(Vr5) generate P5. This gives the list in (1). 

Next we check (2). But this is entirely direct from (1).       D 
Now we study P5 in more detail. The generators given above are generators over 

H*(Mi2) so the generators as a module over F2 [dt, de, dj] are given by the elements 

(     de de + Wdi + /i6 
0   ) 

(     d7 d7 0   ) 
(     d3 0 0   ) 
(      ^2^3 0 0   ) 
(   4 0 0   ) 
( d2di 0 0   ) 
(   4 0 0   ) 
(   did* 0 0   ) 

together with products of these elements with powers of the remaining generators, 

(0,/l2,d2),       (0,0, ds)       (0,/*3,c) 

where we can clearly ignore the middle generator. From the relation in F2[ft, d^cfe] 
we see that 

(0,/i2,d2)(d6,d6+/i2d4-l-/i6,0)   =  (0,/i8+/i2d6 + /i4d4,0) 

=  (0,/id7,0) 

so the remaining generators (over F2[d4,d6,d7]) for P5 are contained in the following 
list 

0    hd7    0    ) 
0 /i2d7 0 ) 
0 /l3d7 0 ) 
0 h±d7 0 ) 
0 h^d7 0 ) 
0 hQd7 0 ). 

But we easily see that the three generators (de, hP + /i2d4 + de, 0), (dy, dy, 0) and 

(0,/i6d7 + d4/*2d7,0) 

together give just two copies of F2 [d4, de, d7] since we have an exact sequence 

(6.5) 0—^F2[d4,d6,d7](d7^-f d6P)t->F2[d4,d6,d7](A,JB)—Kde^)—>0 

where A i-> de and B \-^ dt'in the ideal (dQ^dj) C F2 [d4, de, dr]. Thus the last generator 
in the list above may be suppressed Moreover, by the same imbedding technique as 
was used in the second lemma we see that the remaining needed generators (0, Mdr, 0), 
1 < i < 6 are independent and generate a free module over F2 [d*, de, dj]. However, 
since the generators (de, h6 + h2d4 + de, 0) and (d7, d7,0) are not needed, we see that 
(0, /i7d7,0) ~ (0, d2,0) is also a free generator, and adding this in gives a complete list 
of generators for H* (M12) over F2 [d^, de, dy].       D 
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