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ADAPTIVE CONTROL OF A DIFFUSION TO A GOAL AND A
PARABOLIC MONGE-AMPERE-TYPE EQUATION*

IOANNIS KARATZAST

Abstract. We study the following adaptive stochastic control problem: to maximize the
probability P[X(T) = 1] of reaching the “goal” z = 1 during the finite time-horizon [0,T], over
“control” processes 7(-) which are adapted to the natural filtration of the “observation” process Y (t) =
W (t) + Bt,0 < t < T and satisfy almost surely foT 72(t)dt < oo and 0 < X(t) =z + fot w(s)dY (s) <
1,V0 < t < T. Here W(-) is standard Brownian motion, and B is an independent random variable
with known distribution u. The case B = b # 0 of this problem was studied by Kulldorff (1993).
Modifying a martingale method due to Heath (1993), we find an optimal control process #(:) for
the general case of this problem, and solve explicitly for its value and for the associated Hamilton-
Jacobi-Bellman equation of Dynamic Programming. This reduces to 2Qz:Qs = QzzQyy — ng, an
apparently novel parabolic-Monge-Ampére-type equation.

Key words. Adaptive stochastic control, goal problems, Monge-Ampeére equation, Neyman-
Pearson lemma

To the memory of Stamatis Cambanis (1943-1995)

1. Introduction. On a given probability space (2, F,P), let W(-) = {W(£),0 <
t < T} be standard, one-dimensional Brownian motion on the finite time-horizon
[0,T], and let B be an independent random variable with known distribution p that
satisfies

(L1) u({op) <1, /R 1bls(db) < oo.

Neither the process W(-) nor the random variable B is observed directly, but the
process

(1.2) Yt)EW@)+Bt, 0<t<T
is; we shall denote by F = {F(¢);0 < ¢t < T} the augmentation of the natural filtration
(1.3) FY({#)=0(Y(s);0<s<t), 0<t<T

generated by the observation process Y (-) of (1.2).

For a given initial position z, in the interval S = [0,1], the state-space of
our problem, consider the class A(z,) = A(z0;0,T) of F — progressively measurable
processes 7 : [0,T] x @ — R which satisfy

(1.4) /Tﬂ@m<m
0
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and
A ¢
(1.5) 0< X () =z +/ m(s)dY(s) <1, 0<t<T
0

almost surely. This is the class of our admissible control processes for the initial
position z,. As we shall see (cf. Remark 3.1 below), for every process m(-) in this
class A(z,), the corresponding state-process X=om(-) = X(-) of (1.5) is absorbed at
the endpoints of the interval S = [0, 1], namely

(1.6) X() = X(-A), where T 2inf{t € [0,T); X(£) € (0,1)} A T.

The objective of our stochastic control problem will be to choose the process
7(-) € A(z,) so as to maximize the probability of reaching the right-endpoint of the
interval S = [0,1] by the time ¢ = T. That is, we shall try to compute the value
function

(1.7) V(z,) & sup P[X%n(T)=1], o €][0,1]
m()EA(zo)

and to single out an optimal control process #(-) € A(z,) that attains the supremum
in (1.7), namely

(1.8) V(zo) = P[Xz"(T) =1], z, €0,1],
if such a process exists.

We call this problem adaptive control of the state-process X (-) to the goal z =1,
because we are trying to steer (“control”) the process X (-) to the right-endpoint z = 1
(our “goal”) without having exact knowledge of the drift parameter B in (1.2). This
drift is modelled as a random variable with known “prior” distribution p, which has
to be updated continuously (“adaptive” control) as the information F(t),0 <t < T
about the observations-process Y (-) keeps coming in.

In the case where we have ezact knowledge about the drift-parameter B = b €
R\{0} (i.e., with p = &, b # 0), this control problem was solved in the very interesting
paper of Kulldorff (1993). Kulldorff computed the value function of (1.7) and the
optimal control process 7 (-) of (1.8) in the form

(1.9) V(2o) = ®(&~(z0) + [bIVT)

at) = sgnb (Y(t)+\/T‘I>—1(xo))

sgnb 1 R
= = (po @ )(X= (1), 0<t<T

respectively, with the notation

1L1)  B() 2 / or()du, ps(z) 2 \/;_e—*/zs; ZER 550

oo TS
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and ¢(-) = ¢i(-). Kulldorff’s approach was later simplified by Heath (1993), who
derived the results (1.9), (1.10) using a martingale approach combined with the cel-
ebrated Neyman-Pearson lemma from classical hypothesis-testing in statistics. We
shall employ in section 5 a modification of Heath’s argument, to deal with a general
distribution u as in (1.1) for the random variable B.

Our initial interest in this problem was to decide whether the so-called certainty-
equivalence principle, of substituting in place of b in (1.10) the conditional expectation

(1.12) B(t) =E[B|F(t)], 0<t<T

of the unobserved random variable B, given the observations up to time ¢, would lead
to a control law

sgnB(t)
VT —t

which is optimal for the problem of (1.7). Such a simple substitution principle does
in fact lead to an optimal law in the context of partially observed linear-quadratic-
gaussian control (cf. Fleming and Rishel (1975)), as well as in the context of the
partially observed control problem of Benes and Rishel (see Benes et al. (1991), or
Karatzas and Ocone (1992)). For the goal problem of (1.7), the control law (1.13) that
results from this simple substitution principle, turns out to be optimal only in very
special cases, namely when p([0,00)) = 1 or when p((—o00,0]) = 1; see sections 6 and
7. The law of (1.13) fails to be optimal even for distributions p that are symmetric
around the origin, as we demonstrate in section 8. For such symmetric distributions
it is still possible to obtain an explicit expression for the optimal law in terms of the
current state X (t) and the current estimate B(t) of B as in (1.12); this expression
(8.8) is, however, quite different from that mandated by the “certainty-equivalence”
principle of (1.13).

(1.13) 7CE(t) = (po®-1)(Xzm®(t), 0<t<T

1.1. An interpretation. Suppose that the price-per-share S(-) of a common
stock follows the geometric Brownian motion process

dS(t) = S(¢)[Bdt + dW ()] = S(t)dY (t), S(0) =5 > 0

where B is an unobservable drift-parameter, the “appreciation rate” of the stock.
We model this unobservable rate as a random variable, independent of the Brown-
ian motion W (-), with known distribution y; this distribution quantifies our “prior
knowledge” about the possible values that B can assume, as well as their respective
likelihood. Based on the observations

Ft)=0(Su);0<u<t)=0(Y(u);0<u<t)

of the stock-prices over the interval [0,t], we choose our “portfolio” =« (t) at time ¢
(that is, the amount of money to be invested in the stock at that time). Our “wealth
process” corresponding to the portfolio 7(-) is then

t
X(t) = 2o +/ r(8)dY(s), 0<t<T
0

as in (1.5), where z, € (0,1) stands for our “initial capital”. We are interested
in attaining the level of wealth z = 1, before time ¢ = T and without going into
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penury (i.e., reaching the level z = 0). If our objective is to maximize the probability
P[X(T) = 1] of achieving this, we are exactly in the context of problem (1.7).

2. Summary. We provide a careful formulation of the stochastic control prob-
lem (1.7) in section 8, with the help of the Girsanov theorem and of enlargement of
filtrations; and in section 4 we embed this problem in the standard framework of filter-
ing, stochastic control, and dynamic programming. In particular, we write down the
Hamilton-Jacobi-Bellman (HJB) equation of Dynamic Programming for the prob-
lem of (1.7), and notice that this equation reduces after normalization (or change of
probability measure) to the Monge-Ampére-type equation

(2.1) 2Qz:Qs = det(D2Q),
where
(2.2) det(D2Q) 2 Qa2 Qyy — Qy-

Here z € [0,1] stands for the state-variable X () of (1.5), y € R stands for the
Brownian-motion-with-drift Y'(¢) of (1.2), s € [0,T] is the “time-to-go” T — ¢ until
the end of the horizon, and det(D2?Q) is the determinant of the Hessian matrix D2Q
of second-order derivatives in the spatial variables. The identification with (1.7) is
through

(2.3) V(z,) = Q(T, 20,0)

for the value of the stochastic control problem. To our knowledge, the equation (2.1)
is studied here for the first time.

In section 5 we solve the problem of (1.7) very explicitly and we identify an
optimal control process 7(-) as in (1.8), by adapting to our situation the methodology
of Heath (1993). This methodology relies on the celebrated Neyman-Pearson lemma
from classical hypothesis testing, and on the martingale representation property of the
Brownian filtration. The precise answers that we obtain via this methodology allow
us
(a) to solve explicitly the appropriate, in our context, initial-boundary value problem

for the Monge-Ampére-type equation (2.1), and

(b) to decide whether the optimal control process #(-) is in the form (1.3) of the
“certainty-equivalence principle.”
This program is carried out in sections 6, 7, 9 for the cases
() w(0,00) =1,
(#1) p((=00,0]) =1, and
(11%) p((0,00)) - p((—00,0)) >0,
respectively. It turns out that the certainty-equivalence principle holds in cases
(¢) and (iz), but fails to hold even for symmetric distributions p with p((0,00)) =
1((—00,0)) > 0 (cf. section 8, Remark 8.1).

“Goal” problems have been studied by Probability theorists, in the context of
stochastic games, at least since Breiman (1961) and Dubins and Savage (1965). For
various formulations of such problems, the reader is referred to the papers by Pestien
and Sudderth (1985), Heath et al. (1987), Orey et al. (1987), Sudderth and Weeras-
inghe (1989), and to the recent book by Maitra and Sudderth (1996).

The classical, elliptic Monge-Ampére equation det(D2Q) = f, in the notation
of (2.2), has a long and venerable history in both Analysis and Geometry; see for
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instance Pogorelov (1964, 1978), Cheng and Yau (1977), Lions (1983), Krylov (1984,
1987) and Caffarelli (1990, 1991), Caffarelli and Cabré (1995). Parabolic versions
of this equation were introduced by Krylov (1976, 1987) and were further studied
recently, from the point of view of existence, uniqueness and regularity of solutions
to initial- and initial/boundary-value problems, by Spiliotis (1992, 1994, 1997) and
Wang and Wang (1992, 1993).

3. Formulation. Let us start with a given complete probability space (Q,F,
Po), and on it
(i) a Brownian motion Y'(-) = {Y'(¢);0 <t < T} on the finite time-horizon [0, T], as
well as
(i) a real-valued random variable B, independent of the process Y (-) under the prob-
ability measure Po, and with distribution P°[B € A] = u(4), A € B(R) that
satisfies the conditions of (1.1).
We shall denote by F = {F(t);0 < t < T} the augmentation of the natural filtration
(1.3) generated by the process Y(-), and by G = {G(t);0 < t < T'} the augmentation
of the filtration

(3.1) FBY(t) £ ¢(B,Y(s); 0<s<t), 0<t<T.

Then it can be checked that Y () is a (G,P°) — Brownian motion, and that the
exponential process

(3.2) Z(t) 2 exp [BY(t) — B2t/2], 0<t < T

is a (G,P°) - martingale; in particular,

(3.3) P(A) £ E°[Z(T)- 1], A€G(T)

is a probability measure, equivalent to P°. Under this probability measure P, the
process

(3.4) W(t) 2Y(t) - Bt, G(t); 0<t<T

is standard Brownian motion independent of the random variable B, by the Girsanov
Theorem (e.g. Karatzas and Shreve (1991), section 3.5); and we have P[B € A] =
Po[B € A] = u(A), A € B(R).

In other words, on the filtered probability space (2, F,P) with F = {F(2);0 <
t < T}, we are in the setting of the Introduction (section 1, formule (1.1)-(1.8)), and
we are interested in the stochastic control problem (1.7) posed there. This problem
will be the focus of the remainder of the paper.
3.1 Remark: It develops from (1.5) that the continuous processes X (-), 1 — X (-) are
both non-negative local martingales (hence also supermartingales) under the proba-
bility measure P©, for every z, € [0,1] and 7(-) € A(z,). From a well-known property
of non-negative supermartingales (e.g. Karatzas and Shreve (1991), Problem 1.3.29),
both these processes are absorbed at the origin when they reach it, namely

X(t)=0,Vte€[n,T] ae on {r0<T}

1-X(t)=0,Vte[n,T] ae on {n<T}
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with 7 2 inf {t € [0,T); X(t) = j} AT and j = 0,1. Our claim (1.6) follows from
this, since 7 = 19 A 71.

4. Filtering and dynamic programming. In this section we shall place the
problem of (1.7) within the standard framework of Stochastic Control and Dynamic
Programming as expounded, for instance, in Fleming and Rishel (1975), Chapter 6,
or Fleming and Soner (1993), Chapter 4. Let us start by introducing the (F,Po)—
martingale

2(0) 2 Bo[SIF()] = BolZ(T)|F ()

Be (Ee[Z(T)IGNIF () = BlZ(0)|F ()]

(4.1)
= o[ exp (BY (t) — B2¢/2)|F ()]
_ {F(t,Y(t)) ; 0< tsT}
- 1 ; t=0 ’
where
(42) F(t.9)2 [ exp Gy = bt/2u(d), (1) € 0,00) xR
R

Let us also write the (F,P) — martingale of (1.12) as

E°[BZ(T)|F(t)]
E°[Z(D)|F(t)]
- A(t) -E°[B - E°(Z(T)|5())|F(®)]
L
-
=_1t_ °[B exp (BY (t) — B2/2)|F(t)]

Z
Gt Y(®) ; 0<t<T
J bu(db) 5 t=0

B(t) = E[B|f(t>] =

(4.3) = E°[BZ(t)|F(8)]

~

with the help of the “Bayes rule” (Lemma 3.5.3 in Karatzas and Shreve (1991)). We
have set

>

(44) G(t.9) & 7= [ bexp Gy=12/2u@h) = (Z) 1), (9) € 0,00 xR

Then it is straightforward to verify that the process
t ¢
(4.5) N(t) 2y Y(t) - / B(s)ds =Y (t) — / G(s,Y(s))ds, 0<t<T
0 0

is an (F, P)-martingale with continuous paths and quadratic variation < N > (t) =t
for 0 <t < T. In other words, N(-) is an (F,P)-Brownian motion process; it is the
familiar innovations process of filtering theory (recall the P. Lévy Theorem 3.3.16 in
Karatzas and Shreve (1991)).
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4.1. Remark. The functions F, G of (4.2), (4.4) are of class C1:2 on (0, 0) x R,
and satisfy on this strip the equations

1 1
(4.6) Fi+ 3Fyy =0, Git 5Gyy + GGy =0

respectively.

The innovations process N(-) of (4.5) will allow us to embed the problem of (1.7)
within the usual Dynamic Programming framework for Stochastic Control, as follows.
Let us re-write the equation (4.5) in the form

(4.7) dY(t)=G(T -t,Y(t))dt+dN(t), T—s<t<T and YT -s)=y

on the interval [T —s, T), with G(T'—t,-) = G(t,-) and with arbitrary initial condition
y € R for the observations process Y (-); let us also re-write the equation (1.5) as

(4.8) dX(t) = n(®)[G(T —t,Y(¢))dt +dN(t)], T—s<t<T and X(T-s)=g,

again on the interval [T — s,T] and with arbitrary initial condition z € S = [0, 1] for
the state-process X (-). Thus, we can re-express the value of (1.7) as

(4'9) V(zo) = U(T7 Zo, O)a

where

(4.10) U(s,z,y) 2 sup  E[lpy(X(D)), (s,7,9) € [0,T] x [0,1] x R.
w(-)EA(z;T—s,T)

We expect the function U : [0,T] x [0,1] x ® — [0, 1] of (4.10) to be of class
C122 on (0,T) x (0,1) x R, and to satisfy in this strip the Hamilton-Jacobi-Bellman
(HJB) equation of Dynamic Programming

) Us = %Uw + c":tiy + Mmazren [(7r2 /2)Usa + 7(GU; + Uzy)]
= [vw - (G + Usy)2| +GU,

associated with the dynamics of (4.7)-(4.8), along with the inequality
(4.12) Uzz <0, on (0,7) x (0,1) x R,

the initial condition

(4.13) U@0,z,y) = 1i1y(2), (=,y) €[0,1] x R,

and the boundary conditions

(4.14) U(s,0+,y) =0, U(s,1—,9)=1; 0<s<T, yeR

The initial-boundary value problem (4.11)-(4.14) for the non-linear equation of
(4.11) looks quite complicated. It can be simplified somewhat by use of the transfor-
mation

(415)  Q(s,z,9) £ {U(anui?T&SlT; ;) Y " fi;T} (z,y) €[0,1] x R
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into the following Initial-Boundary Value Problem

(4.16) Q0,z,y) = F(T,y) - 1q13(z); (z,y) €[0,1] x R
(4.17) Q(s,0+,9) =0, Q(s,1-,y) =F(T —s,y); 0<s<T,yeR
(4.18) Qzz <0, on (0,T) x (0,1) x R

for the parabolic-Monge-Ampére-type equation
(4.19) 2Q2:Qs = Qz5Qyy — Q2%y, on (0,T) x (0,1) x R.

4.2. Remark. Subject to the inequality of (4.18), the Monge- Ampere-type equ-
ation (4.19) can be written as

1
(4-19)' Qs = iQyU + maZzer [(7"2/2)sz + ﬂ'sz)] , on (07 T) x (0, 1) x R
since the expression in brackets is maximized by

Qzy
QI:L‘ ’

The equation (4.19) is then the HJB equation of Dynamic Programmmg, for the
problem of maximizing the probability

(4.20) ™ = —

P[X(T) = 1] = E°[Z(T) - 1{x(1)=1j] = E°[F(T,Y(T)) - 1113(X(T))]
over m(-) € A(z;T — s,T), subject to the dynamics
dX(t) = w(t)dé(t), X(T —s)==z€[0,1]
dY(t) =dé(t), Y(T—s)=yeR
on the time-interval [T — s,T] ; here &(-) is (F,P°) — standard Brownian Motion.
4.3. Remark. From (4.9), (4.15) we obtain, formally at least,
(4.21) V(zo) = Q(T, z,,0).

On the other hand, we expect from (4.20) that an optimal control process #(-) € A(zo),
as in (1.8), should exist, and should be given in the feedback-form

(4.22) #(t) = —g:: (T —t,X(),Y®) - Loz (®),

where X (t) = Xz (t), 0< ¢t <T.

5. The martingale approach of D. Heath. We present in this section the
solution of Problem (1.7), which is based on the Neyman-Pearson lemma of classical
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hypothesis-testing and on the martingale methodology, as developed by Heath (1993)
for the case of constant B = b # 0.

The starting point of this approach is the observation that, for every z, € [0, 1]
and 7(-) € A(z,), the process X (-) = X®o7(-) of (1.5) is an (F,Po)-local martingale
with values in the interval [0, 1], hence an (F,P°)-martingale. In particular, we have

Po[Xzonr(T) = 1] = Eo[Xa:onr(T) . 1{X=o-"(T)=1}]

5.1
(5.1 < Eo[Xzem(T)] = 2o, Vm(:) € A(zo).

Since the event {Xz-7(T) = 1} belongs to the o-algebra F(T'), it follows from (5.1)
that

A
(5.2) V*(x,) = supacr(T),pe(r)<e, P(A)

dominates the value of our control problem (1.7):

(5.3) V*(30) 2 V(20) = supn(yenis, PX=m(T) = 1.

The point here, made by Heath (1993) for constant B = b # 0, is that

(i)  the “auxiliary value” V*(z,) of (5.2) is very easy to compute, and that

(ii) equality actually holds in (5.3), so that in turn

(iii) we get to compute V(z,) as well. As a by-product of this last computation,
we shall be able to obtain an optimal control process @ (:) € A(zo).

In order to make headway with this program, let us observe that the optimization
problem of (5.2) is the same as that encountered in the classical setting of testing a
simple hypothesis versus a simple alternative. The solution of this problem is given
by the following celebrated result (e.g. Lehmann (1986)):

5.1. Lemma. (Neyman-Pearson): Suppose that we can find a number k = k(z,)
> 0, such that the event

A [, [ dP
A= {E [dPO If(T)] 2 k}
has Po(Ay) = z,; then V*(z,) = P(Ay). X

Proof. For any A € F(T) with P°(A) < z, and with Z(T) = E°[ 45| F(T)] as in
(4.1), we have

P(Ay) — P(A) = / 2(T)dpo — / 2(T)dpe

AgnAe AgnA
> k[Po(A N Ac) — Po(AS N A)]
= k[Po(Ag) — P°(A)] = k[z, — Po(A)] > 0. 0

In order to find a number & > 0 with the properties of Lemma 5.1, let us notice
that for every t > 0 the function y — F'(¢,y) of (4.2) is strictly convez, and that with

(5.4) F(t) & infyenF(ty), t>0

we have one of the following three possibilities:
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(5.5)(i)  u([0,00)) =1: Then F(t,-) is strictly increasing on R, with F(t, —o0) =
f(t) = p({0}) and F(t,00) = oo.

(5.5)(i1) p((—00,0]) =1: Then F(t,-) is strictly decreasing on R, with F (¢, —o0) =
oo and F'(t,00) = f(t) = pu({0}).

(5.5)(iii) w((0,00)) - p((—00,0)) > 0: In this case the infimum of (5.4) is attained at
some y. = v(t) € R; the function F(¢,-) is strictly increasing on (v(t), o) and strictly
decreasing on (—oo, v(t)), with F(t, £00) = co.

As a consequence, the function

h(k) & Pe(Ay) = Po[Z(T) > k]
(5.6)

=Po[F(T,Y(T)) > k| = pr(z)dz, k> f(T)

/{Z;F(T,Z)Zk}
is continuous and strictly decreasing, with h(f(T')) 2 limp~ ¢(ryh(k) = 1 and h(c0) £
limy rooh(k) = 0. Thus, for every z, € [0, 1], there is a unique k& = k(z,) in [f(T), 0]
with h(k(z,)) = 2o, and for this k we have

(5.7)

V(@) = P(Ays,)) = E°[Z(T) - I{Z(T)Zn(zo)}] = / F(T, z)pr(2)dz
{z:F(T,2)2k(zo)}

in the notation of (1.11), (5.2), from Lemma 5.1 and (4.1).
Suppose now that we are able to find a control process #(-) € A(z,), such that

(5.8) {Xzom(T) = 1} = Ay(s,), mod. P(Po).

Then we have

(5.9) V*(50) = P(Ax(an)) = PIX=o#(T) = 1] < V(z)

from (5.7), (1.7); and in conjunction with (5.3), this proves both the equality
(5.10) V(2o) = V*(20)

and the optimality (1.8) of #(-) for the problem of (1.7).

In order to find a process 7#(-) € A(z,) with the property (5.8), let us consider
the (F,Po)-martingale

X() 2 Ee[la,.,, ()] = Po[2(T) > k(zo)| F(t)]
(5.11) = Po[F(T,Y () + (Y(T) - Y () > r(x0)|F ()]
=X({T-tY(®), 0<t<T

where

A L{P(T,y)>r(z0)} ; s=0,yeR }
5.12 X(s,y) = W= .
(5.12) (s,9) { JbTgnyon(enyy Ps@)dz 5 8>0, yeR.

_ The process X (-) of (5.11) takes values in the interval S = [0, 1] and starts out at
X(0) = X(T,0) = h(k(zo)) = xo, by virtue of (5.6) and (5.12). From the martingale
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representation property of the Brownian filtration (e.g. Karatzas and Shreve (1991),
Theorem 3.4.15), there exists a process #(-) € A(z,) such that

(5.13) X (t) = Xzooft(t) 2 Zo + /t w(s)dY(s), 0<t<T
0

holds Po—almost surely; and this process #(-) is unique, modulo (A ® P°)-a.e. equiv-
alence, where )\ stands for “Lebesgue measure”. In particular,

(5.14) Xzo#(T) = X(T) = 15 a.s.

x(zo) ?

so that (5.8) holds.
The process 7#(-) of (5.13) can be identified explicitly, in the following manner:
notice that the function

(5.12) X = [ paly — 2)dz
{2:iF(T,2)2K(z0)}
of (5.12) is of class C12 and satisfies the heat equation
1
(5.15) Xs = §ny, on (0,00) x R.
Therefore, an application of It6’ s rule to (5.11) yields
¢
X(t) == + / Xy(T —5,Y(s))dY (s), 0 <t <T;
0

and from the uniqueness of the stochastic integral representation (5.13), we conclude
#(t) = X(T -4,Y(®) - 1pm)(t), 0<t<T

where
Z —
Xy(say) = / ( y) (Ps(y - z)dz, s> 07 yE R.
{:F(T,2)2R(z0)} ~ S

We have proved the following result.

5.2. Theorem. The value-function of the stochastic control problem (1.7) is
given by the expression of (5.7). An optimal control process #(-) € A(z,), and its
corresponding state- process X (-) = X®o:%(-), are given as
(516)  #(t) = KT —t,Y(t) - lom(®), X(t)=XT-tY(®); 0<t<T
in the notation of (5.12).

5.3. Remark. Let us look at the value-process

(5.17) n(t) £ Efla,., |F@®)] = PX(T) = |F ()], 0<t<T.
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This is an (F,P)-martingale with n(0) = V(z,), n(T) = 1{1}(X(T)), a.s. ; from the
Bayes rule, it can be written as

(5.18)
t) = B2 Lo, 17 (0]
M= TR Z@F )
- t 5E [F(T, Y (T)) - Lp,y (1) 2n@a)}lF (t)]]
=L). [F(T Y(t)+ (Y(T) - Y(t)))'l{F(T,Y(t)+(Y(T)—Y(t)))ZN(Io)}|‘7:(t)]]
(i o<i<r)
; t=0
where

(5.19)  H(s,y) £ { F(T,y) - L{p(T,)>x(za)} ; s=0yeR }

f{z;F(T,y—!-z)Zn(zo)} F(T,y+2z)ps(z)dz ; s>0,y€eR.

This function is of class C1:2 and satisfies the heat equation
1
(5.20) Hs = §Hyy, on (0,00) x R.

In particular, we have
(5.7) V(z,) = H(T,0)

from (5.19), (5.7).

In sections 6-9 we shall compute the quantities of Theorem 5.2 (optimal control
process 7(-), optimal state-process X (-), value function) even more explicitly, in each of
the three cases of (5.5). We shall also show, in each of the three cases, how to compute a
function @ : [0,T]x[0, 1] x ® — [0, 1] which solves the initial-boundary value problem
of (4.16)-(4.19) for the Monge-Ampeére-type equation (4.19), and satisfies

(5.21) V(zo) = Q(T,2,,0), z, €[0,1]

as well as

(5.22) H(s,y) = Q(s, X(s,¥),v), (s,y) €[0,T] xR
(5.23) X(50) = - 22 (5, X(s0)0), (5:0) € 0.7 x R

in the notation of (5.12), (5.19), and in accordance with (4.22), (5.16).

6. The case p([0,00)) = 1. This is the case of (5.5)(¢): for every t > 0, the
function F(t,-) is strictly increasing, and maps R onto (u({0}), c0) with F(t,—o0) =
u({0}), F(t,00) = oo. If we denote by F-1(t,-) : (u({0}),00) — R the inverse of
this mapping, the function of (5.6) becomes

_ [ 2z = o T HLK)
w0 = [ o= a(-TD), k> o).
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We have thus F~1(T,k(z,)) = —vVT®1(z,), and the quantities of (5.12), (5.19)
become

1[—ﬁq>—1(zo),oo)(y) ; s=0,yeR
(6 1) X(S ) = -1
. Y @(Mq%&l) : s>0,yeR
H(s,y) = F(T,y)- 1[_ﬁ¢—1(z°),oo)(y) ; §=0
b - -1
(6.2) ST BT,y - 2)pu(2)dz 5 s> 0
_ F(T,y) - 1[—\/T<I>-1(z°),oo)(y) ; =0
= -1
[T XED BTy ey()dz 5 s> 0

for y € R. As a consequence, the optimal state-and control-processes of (5.16) take
the form

¢ I VFo-1(e,)e) Y (D) 5 t=T
(6.3) X(t)={ Q(m%xm) ocicr
and
) = — Y () + VT 9-1(zo)
(6.4) QO = w( T 1 ) ~1o,7) (%)

1 N
3-1) (X)) - Lo (), 0<t<T
\/T_—t (‘Po )( ( )) [O,T)( ) >0
respectively. Notice that these formulee (6.3), (6.4) do not depend on the particular
form of the distribution g at all.

6.1. Remark. In this case the function G of (4.4) is strictly positive, and so the
same is true for the estimate B(t) = E[B|F(t)] = G(t,Y (t)) of (4.3). Therefore, the
optimal control-process 7 (-) is trivially of the “certainty-equivalence” form (1.13).

From the expression (6.2) for H(s, y), it is now not hard to construct the function
Q that satisfies (5.22).

6.2. Proposition. The function

(6.5) Q(s,x,y)={ F(T,y) 1q)(a) ; s=0,we[0,1],ye%}

f_‘/ci@_l(z) F(T,y—2)ps(2)dz ; 0<s<T,z€[0,1],yeR

solves the initial-boundary value problem (4.16)-(4.19) for the parabolic-Monge-Am-
pére-type equation (4.19), and satisfies the conditions (5.21)-(5.23).

Elementary computations lead to this result; some of these are facilitated by
writing the second expression of (6.5) in the form

&~ 1(z)
Qs,,y) / F(T,y - 2v/5)p()dz
(6.5)" —oo

= /[0 ) exp [by — b2(T — s)/2] ®(®~1(z) + by/s) u(db),
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on (0,T] x [0, 1] x R. The details of these derivations are left to the care of the reader,
who should also notice the discontinuity of the function @ in (6.5), as s \, O:

A,

Q(O+a z, y) = lzms\oQ(s,z,y)
= [ exp oy = 02T/2] 8(871(a) uat)
[0,00)
=zF(T,y) # Q(0,z,y); 0<z<1, yeR
6.3. Example. In the special case u = &,b > 0 considered by Kulldorff (1993),

the functions F,G and @ of (4.2), (4.4) and (6.5) become respectively F(t,y) =
exp [by — b2/t],G(t,y) = b and Q(s,z,y) = F(T — s,y)U(s,z,y), where

[ lm i s=00<z<1
(6.6) U(s’z’y)_{¢(¢>—1(z)+b\/§) . 0<s<T,0<z<1

is the function of (4.10) in the present context. This function does not depend on
y € R; it solves the initial-boundary value problem (4.11)-(4.14) for the H JB equation
(4.11), which now takes the much simpler form

b2 U2
2 Uss

(6.7) Us + =0; s>0,0<z<1

7. The case p((—00,0]) = 1. Here we are in the setup of case (5.5)(éz). It is
straight-forward to see that the analogues of (6.1), (6.2) and (6.5) are now

1 - (y) ; s=0,yer
[VT®=1(z,),00)
7.1 X = 2
(7.1) (5,9) { (}(\/Ttb \l/gga:o)—y) . >0, yER,
F(T,y) - 1 7p- ¥) i s=0,yeR
(7.2) (s,9) = ﬁ@“(X(s,y))[ To~1(z,),00)
I F(T,y +z)ps(z)dz 5 s>0, yeR,
and

F(T’y)l{l}(z) 5 S=0,IL‘€[O,1],yE§R }

73) Qs z,y) =1 ee-ics
(7.8) Qs z.) {f_\{)—: ()F(T,y+z)<ps(z)dz ; 0<s<T,z€e[0,1],yeR

respectively; that the function Q satisfies the initial-boundary value problem of (4.16)-
(4.19); and that the optimal processes of Theorem 5.2 are

X®)=XT-t,Y(), 0<t<T

-1 VT®-1(z,) — Y (t) sgnB(t)
T—1 o( Tt )= VTt ¥°

In other words, the “certainty-equivalence principle” of (1.13) leads again to an optimal
control process.

#1t) = d-1)(X(t), 0<t<T.
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8. The symmetric case. Before we tackle the general case

p((=0,0)) - u((0,00)) >0

of (5.5)(3%7) in the next section, let us consider here a symmetric distribution p, that
is

u(A) = p(—A), VA € B(R)
with p((—00,0)) = u((0,00)) > 0. In this case, the function
v Py =a0) +2 [ e i2cosh(bpulds), ¢> 0
(0,00)

is evenly symmetric and strictly convex; it is also strictly increasing on [0, c0) with
F(t,0) = o0, and f(t) = F(t,0) = p({0}) + 2f(0’oo) e~bt/2;(db) in the notation of
(5.4). This function maps [0, oo} onto [f(t), 00]; we denote by F-1(¢,-) : [f(t), 00] —
[0, 00] the inverse of F(t,-) on [0, 00], so that

F(T,2) 2k <= |z| 2 F-\(T,k)

_ FY(T, k)
h(k) =2[1 - q>(——\/_T——)]
for k > f(T), and thus F~1(T, k(z,)) = VT®-1(1 — (z,/2)) in the notation of (5.6),
(5.7). Similarly, the functions of (5.12), (5.19) become

(8.1) X(s,9) = L(s,y; VT®~(1 = (2/2))), H(s,y) = M(s,4;VT@ (1 - (z0/2)))

where

(8.2)

L(s,y;p) 2 Hjy1>p) ; 8=0,y€%,p>0}
s Jgerzny s —2)dz =2 - (2ZE) = ®(2E) 5 s>0,y€R,p>0

and

F(T,y) 1 =
(83)  M(s,y3p) = { (T:9) - 1qjy)>p) ; s=0,yeRp>0 }

f{|z|2p} F(T,z)ps(y —2)dz ; s>0,yeR,p>0.
Notice that, for every given p > 0, the functions of (8.2), (8.3) satisfy the heat equation

1 1
(8.4) L, = ELyy, M, = §Myy on (0,00) x R.

With this notation, the optimal control-process #(-) and the optimal state-process

A~

X (-) of Theorem 5.2 are given as
8:5)  #(t) = Ly(T —t,Y(®);ps) - 1oy (t), X() = L(T —,Y(8);pe); 0<t<T

where p. = VT®-1(1 — (z0/2)).
8.1. Remark. In the notation of (1.11), (8.2) we have

(8.6) Ly<s,y;p)=—\}-§[so(y¢“§”)—w(yj;’)] | 5>0.
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Observe from this, that the function X'(s,-) of (8.1) is evenly symmetric, and strictly
increasing on (0, 00) with X(s,0) = 2[1 — ®(®-1(1 — (z,/2))\/T/s)], X(s,00) = 1.
Denoting by Y(s, ) : [X(s,0), 1] — [0, 0o] the inverse of this mapping, we get |Y (t)| =
V(T —t,X(t)) and thus also

(8.7) #(t) = sgn¥ (t) - L (T —t, V(T —t,X(t)); p*), 0<t<T

where p. = VT®-1(1 — (2,/2)).

Now it is not hard to see that the function G(t,-) of (4.4) is oddly symmetric on
R, with sgnG(t,y) = sgn(y), t > 0. Thus sgnY (t) = sgnB(t), and we can re-write
the expression (8.7) for the optimal control process as a function

88) ()= 357;3_(2) [‘P(\j}T__p t) - yT+—p t)] ‘,D:?/?Z‘-Tz?i‘_’iifiz»

of the current state X () and the current estimate B(t) = E[B|F(t)] of the unob-
servable drift-parameter B. The ezpression (8.8) is quite different from (1.18), the
feedback law postulated by the “certainty-equivalence principle”. Again, however, the
formule (8.5), (8.7) do not depend on the particular form of the “prior distribution”
measure g at all.

For every fixed (s,y) € (0,00) x R, the mapping p — L(s,y;p) of (8.2) is
continuous and strictly decreasing on (0, c0) with L(s,y;0+) = 1 and L(s,y;00) = 0;
we shall denote by P(s,y;-) : [0,1] — [0, c0] the inverse of this mapping.

8.2. Theorem. The function

A [ F(T,y) -lim(z) s=0, (z,y) €[0,1]] xR
0 Qe 2 {JOD) o e

solves the initial-boundary value problem (4.16)-(4.19) for the parabolic-Monge-Am-
pére-type equation (4.19), and satisfies the conditions (5.21)-(5.23).

The computations required for the proof of this result are a little heavier than
those needed for Theorem 7.2; we leave them again to the attention of the reader,
but note that the verification of the boundary conditions (4.17) is facilitated by the
formula

(8.10) M(s,y;p) = / V=V (T=9)/2 L(s,y + bs; p)u(db)
R

which links the functions of (8.2) and (8.3).

9. The case p((—00,0)) - p((0,00)) > 0. We are now in the setup of case
(5.5)(#i1). For every ¢t > 0, let us denote by F;'(t,) : [f(£),00] — [v(t),00] and
FZ(t,) : [f(),00] — [—oo,(t)], the inverses of the function F(t,-) on [v(t), 0]
(respectively, on [—oo, ¥(t)]), and set T'+(:) = F{'(T,). The functions of (5.6) and
(5.12), (5.19) are now given as

o = ([ 7+ o Jer@s, k2 1),
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and
(9.1) X(s,y) = L(s, 457+, 7-)
(9.2) H(s,y) = M(s,y37+,7-)
on [0,00) x R, where we have set v+ = Ty (k(z,)) and
(9.3)
) A l[poo)()+1( oor]() ; s=0
L(s,y;p,7) = (f_ +f )SOs _zdz_g_qy(u) @(}L—\/?') : s>0
Mo.gipr) & FEV) (1) @) + Lcouni®)) 3 5=0
(9.4) (f +f ) (T,2)ps(y —2)dz ; s>0

- / eby—b*(T=9)/2 L(s,y + bs; p,r)u(dd), y € R,
R

for —oo < 7 < p < 0o. For any such given pair (p,r), the functions of (9.3), (9.4)
satisfy the heat equation, as in (8.4). Furthermore, we have the expressions
(9.5)

7(t) = Ly(T —t, Y (¢);v+,7-) = %[cp(y \—/;4,) - so(y :/;")] I;:iﬁa;’ 0<t<T

(9.6) X(@t)=L(T - t,Y(#);v,7-); 0<t<T

for the optimal processes of Theorem 5.2.
On the other hand, for fixed (s,y) € (0,7] x R, the equations

9.7) L(s,y;p,r) =

(9.8) F(T,p)=F(T,r)

determine a unique pair (p,r) 2 (P(s,y;%), R(s,y;z)), —oo <7 < v(T) <p < o0, for
any given z € [0,1]. In terms of the resulting functions P and R, we have then the
following analogue of Theorem 8.2.

9.1. Theorem. The function

A F(T,y)-101y(2) i s=0, (z,y) €[0,1] xR
(99 Qls,%:) =\ M(s,y;p,7) ’ 0<s<T, (z,y)€[0,1] xR

p=P(s,y;z) ;
r=R(s,y;z)

solves the initial-boundary value problem (4.16)-(4.19) and satisfies the conditions
(5.21)-(5.23).
We shall leave again the necessary computations to the care of the diligent reader.
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